rtl8169.c revision 1.19 1 /* $NetBSD: rtl8169.c,v 1.19 2005/05/15 07:48:49 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 bus_dmamap_sync(sc->sc_dmat,
493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 BUS_DMASYNC_POSTWRITE);
497 bus_dmamap_unload(sc->sc_dmat,
498 sc->rtk_ldata.rtk_rx_dmamap[0]);
499
500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 eh = mtod(m0, struct ether_header *);
503
504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 total_len = RTK_RXBYTES(cur_rx);
506 rxstat = le32toh(cur_rx->rtk_cmdstat);
507
508 if (total_len != ETHER_MIN_LEN) {
509 aprint_error("%s: diagnostic failed, received short packet\n",
510 sc->sc_dev.dv_xname);
511 error = EIO;
512 goto done;
513 }
514
515 /* Test that the received packet data matches what we sent. */
516
517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 aprint_error("%s: WARNING, DMA FAILURE!\n",
521 sc->sc_dev.dv_xname);
522 aprint_error("%s: expected TX data: %s",
523 sc->sc_dev.dv_xname, ether_sprintf(dst));
524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 aprint_error("%s: received RX data: %s",
526 sc->sc_dev.dv_xname,
527 ether_sprintf(eh->ether_dhost));
528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 ntohs(eh->ether_type));
530 aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Read the re(4) man page for more details.\n",
535 sc->sc_dev.dv_xname);
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->rtk_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 u_char eaddr[ETHER_ADDR_LEN];
560 u_int16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564
565 /* XXX JRS: bus-attach-independent code begins approximately here */
566
567 /* Reset the adapter. */
568 re_reset(sc);
569
570 if (sc->rtk_type == RTK_8169) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 if (hwrev == (0x1 << 28)) {
576 sc->sc_rev = 4;
577 } else if (hwrev == (0x1 << 26)) {
578 sc->sc_rev = 3;
579 } else if (hwrev == (0x1 << 23)) {
580 sc->sc_rev = 2;
581 } else
582 sc->sc_rev = 1;
583
584 /* Set RX length mask */
585
586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587
588 /* Force station address autoload from the EEPROM */
589
590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 for (i = 0; i < RTK_TIMEOUT; i++) {
592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 break;
594 DELAY(100);
595 }
596 if (i == RTK_TIMEOUT)
597 aprint_error("%s: eeprom autoload timed out\n",
598 sc->sc_dev.dv_xname);
599
600 for (i = 0; i < ETHER_ADDR_LEN; i++)
601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602
603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 } else {
605
606 /* Set RX length mask */
607
608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609
610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 addr_len = RTK_EEADDR_LEN1;
612 else
613 addr_len = RTK_EEADDR_LEN0;
614
615 /*
616 * Get station address from the EEPROM.
617 */
618 for (i = 0; i < 3; i++) {
619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 eaddr[(i * 2) + 0] = val & 0xff;
621 eaddr[(i * 2) + 1] = val >> 8;
622 }
623
624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct rtk_desc)) {
632 sc->rtk_ldata.rtk_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct rtk_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638
639 /* Allocate DMA'able memory for the TX ring */
640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 sc->sc_dev.dv_xname, error);
645 goto fail_0;
646 }
647
648 /* Load the map for the TX ring. */
649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 BUS_DMA_NOWAIT)) != 0) {
653 aprint_error("%s: can't map tx list, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_1;
656 }
657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658
659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 aprint_error("%s: can't create tx list map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_2;
665 }
666
667
668 if ((error = bus_dmamap_load(sc->sc_dmat,
669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 aprint_error("%s: can't load tx list, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_3;
674 }
675
676 /* Create DMA maps for TX buffers */
677 for (i = 0; i < RTK_TX_QLEN; i++) {
678 error = bus_dmamap_create(sc->sc_dmat,
679 round_page(IP_MAXPACKET),
680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 0, BUS_DMA_ALLOCNOW,
682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 sc->sc_dev.dv_xname, error);
696 goto fail_4;
697 }
698
699 /* Load the map for the RX ring. */
700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 BUS_DMA_NOWAIT)) != 0) {
704 aprint_error("%s: can't map rx list, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_5;
707 }
708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709
710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 aprint_error("%s: can't create rx list map, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_6;
716 }
717
718 if ((error = bus_dmamap_load(sc->sc_dmat,
719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 aprint_error("%s: can't load rx list, error = %d\n",
722 sc->sc_dev.dv_xname, error);
723 goto fail_7;
724 }
725
726 /* Create DMA maps for RX buffers */
727 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 if (error) {
731 aprint_error("%s: can't create DMA map for RX\n",
732 sc->sc_dev.dv_xname);
733 goto fail_8;
734 }
735 }
736
737 /*
738 * Record interface as attached. From here, we should not fail.
739 */
740 sc->sc_flags |= RTK_ATTACHED;
741
742 ifp = &sc->ethercom.ec_if;
743 ifp->if_softc = sc;
744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 ifp->if_mtu = ETHERMTU;
746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 ifp->if_ioctl = re_ioctl;
748 sc->ethercom.ec_capabilities |=
749 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 ifp->if_start = re_start;
751 ifp->if_stop = re_stop;
752
753 /*
754 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
755 */
756
757 ifp->if_capabilities |=
758 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
759 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
760 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
761 IFCAP_TSOv4;
762 ifp->if_watchdog = re_watchdog;
763 ifp->if_init = re_init;
764 if (sc->rtk_type == RTK_8169)
765 ifp->if_baudrate = 1000000000;
766 else
767 ifp->if_baudrate = 100000000;
768 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
769 ifp->if_capenable = ifp->if_capabilities;
770 IFQ_SET_READY(&ifp->if_snd);
771
772 callout_init(&sc->rtk_tick_ch);
773
774 /* Do MII setup */
775 sc->mii.mii_ifp = ifp;
776 sc->mii.mii_readreg = re_miibus_readreg;
777 sc->mii.mii_writereg = re_miibus_writereg;
778 sc->mii.mii_statchg = re_miibus_statchg;
779 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
780 re_ifmedia_sts);
781 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
782 MII_OFFSET_ANY, 0);
783 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
784
785 /*
786 * Call MI attach routine.
787 */
788 if_attach(ifp);
789 ether_ifattach(ifp, eaddr);
790
791
792 /*
793 * Make sure the interface is shutdown during reboot.
794 */
795 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
796 if (sc->sc_sdhook == NULL)
797 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
798 sc->sc_dev.dv_xname);
799 /*
800 * Add a suspend hook to make sure we come back up after a
801 * resume.
802 */
803 sc->sc_powerhook = powerhook_establish(re_power, sc);
804 if (sc->sc_powerhook == NULL)
805 aprint_error("%s: WARNING: unable to establish power hook\n",
806 sc->sc_dev.dv_xname);
807
808
809 return;
810
811 fail_8:
812 /* Destroy DMA maps for RX buffers. */
813 for (i = 0; i < RTK_RX_DESC_CNT; i++)
814 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
815 bus_dmamap_destroy(sc->sc_dmat,
816 sc->rtk_ldata.rtk_rx_dmamap[i]);
817
818 /* Free DMA'able memory for the RX ring. */
819 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
820 fail_7:
821 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
822 fail_6:
823 bus_dmamem_unmap(sc->sc_dmat,
824 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
825 fail_5:
826 bus_dmamem_free(sc->sc_dmat,
827 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
828
829 fail_4:
830 /* Destroy DMA maps for TX buffers. */
831 for (i = 0; i < RTK_TX_QLEN; i++)
832 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
833 bus_dmamap_destroy(sc->sc_dmat,
834 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
835
836 /* Free DMA'able memory for the TX ring. */
837 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
838 fail_3:
839 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
840 fail_2:
841 bus_dmamem_unmap(sc->sc_dmat,
842 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
843 fail_1:
844 bus_dmamem_free(sc->sc_dmat,
845 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
846 fail_0:
847 return;
848 }
849
850
851 /*
852 * re_activate:
853 * Handle device activation/deactivation requests.
854 */
855 int
856 re_activate(struct device *self, enum devact act)
857 {
858 struct rtk_softc *sc = (void *) self;
859 int s, error = 0;
860
861 s = splnet();
862 switch (act) {
863 case DVACT_ACTIVATE:
864 error = EOPNOTSUPP;
865 break;
866 case DVACT_DEACTIVATE:
867 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
868 if_deactivate(&sc->ethercom.ec_if);
869 break;
870 }
871 splx(s);
872
873 return error;
874 }
875
876 /*
877 * re_detach:
878 * Detach a rtk interface.
879 */
880 int
881 re_detach(struct rtk_softc *sc)
882 {
883 struct ifnet *ifp = &sc->ethercom.ec_if;
884 int i;
885
886 /*
887 * Succeed now if there isn't any work to do.
888 */
889 if ((sc->sc_flags & RTK_ATTACHED) == 0)
890 return 0;
891
892 /* Unhook our tick handler. */
893 callout_stop(&sc->rtk_tick_ch);
894
895 /* Detach all PHYs. */
896 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
897
898 /* Delete all remaining media. */
899 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
900
901 ether_ifdetach(ifp);
902 if_detach(ifp);
903
904 /* XXX undo re_allocmem() */
905
906 /* Destroy DMA maps for RX buffers. */
907 for (i = 0; i < RTK_RX_DESC_CNT; i++)
908 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
909 bus_dmamap_destroy(sc->sc_dmat,
910 sc->rtk_ldata.rtk_rx_dmamap[i]);
911
912 /* Free DMA'able memory for the RX ring. */
913 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
914 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
915 bus_dmamem_unmap(sc->sc_dmat,
916 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
917 bus_dmamem_free(sc->sc_dmat,
918 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
919
920 /* Destroy DMA maps for TX buffers. */
921 for (i = 0; i < RTK_TX_QLEN; i++)
922 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
925
926 /* Free DMA'able memory for the TX ring. */
927 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
928 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
929 bus_dmamem_unmap(sc->sc_dmat,
930 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
931 bus_dmamem_free(sc->sc_dmat,
932 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
933
934
935 shutdownhook_disestablish(sc->sc_sdhook);
936 powerhook_disestablish(sc->sc_powerhook);
937
938 return 0;
939 }
940
941 /*
942 * re_enable:
943 * Enable the RTL81X9 chip.
944 */
945 static int
946 re_enable(struct rtk_softc *sc)
947 {
948 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
949 if ((*sc->sc_enable)(sc) != 0) {
950 aprint_error("%s: device enable failed\n",
951 sc->sc_dev.dv_xname);
952 return EIO;
953 }
954 sc->sc_flags |= RTK_ENABLED;
955 }
956 return 0;
957 }
958
959 /*
960 * re_disable:
961 * Disable the RTL81X9 chip.
962 */
963 static void
964 re_disable(struct rtk_softc *sc)
965 {
966
967 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
968 (*sc->sc_disable)(sc);
969 sc->sc_flags &= ~RTK_ENABLED;
970 }
971 }
972
973 /*
974 * re_power:
975 * Power management (suspend/resume) hook.
976 */
977 void
978 re_power(int why, void *arg)
979 {
980 struct rtk_softc *sc = (void *) arg;
981 struct ifnet *ifp = &sc->ethercom.ec_if;
982 int s;
983
984 s = splnet();
985 switch (why) {
986 case PWR_SUSPEND:
987 case PWR_STANDBY:
988 re_stop(ifp, 0);
989 if (sc->sc_power != NULL)
990 (*sc->sc_power)(sc, why);
991 break;
992 case PWR_RESUME:
993 if (ifp->if_flags & IFF_UP) {
994 if (sc->sc_power != NULL)
995 (*sc->sc_power)(sc, why);
996 re_init(ifp);
997 }
998 break;
999 case PWR_SOFTSUSPEND:
1000 case PWR_SOFTSTANDBY:
1001 case PWR_SOFTRESUME:
1002 break;
1003 }
1004 splx(s);
1005 }
1006
1007
1008 static int
1009 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1010 {
1011 struct mbuf *n = NULL;
1012 bus_dmamap_t map;
1013 struct rtk_desc *d;
1014 u_int32_t cmdstat;
1015 int error;
1016
1017 if (m == NULL) {
1018 MGETHDR(n, M_DONTWAIT, MT_DATA);
1019 if (n == NULL)
1020 return ENOBUFS;
1021 m = n;
1022
1023 MCLGET(m, M_DONTWAIT);
1024 if (!(m->m_flags & M_EXT)) {
1025 m_freem(m);
1026 return ENOBUFS;
1027 }
1028 } else
1029 m->m_data = m->m_ext.ext_buf;
1030
1031 /*
1032 * Initialize mbuf length fields and fixup
1033 * alignment so that the frame payload is
1034 * longword aligned.
1035 */
1036 m->m_len = m->m_pkthdr.len = MCLBYTES;
1037 m_adj(m, RTK_ETHER_ALIGN);
1038
1039 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1040 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1041
1042 if (error)
1043 goto out;
1044
1045 d = &sc->rtk_ldata.rtk_rx_list[idx];
1046 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1047 goto out;
1048
1049 cmdstat = map->dm_segs[0].ds_len;
1050 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1051 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1052 if (idx == (RTK_RX_DESC_CNT - 1))
1053 cmdstat |= RTK_RDESC_CMD_EOR;
1054 d->rtk_cmdstat = htole32(cmdstat);
1055
1056 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1057 htole32(RTK_RDESC_CMD_OWN);
1058 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1059
1060 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1061 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1062 BUS_DMASYNC_PREREAD);
1063
1064 return 0;
1065 out:
1066 if (n != NULL)
1067 m_freem(n);
1068 return ENOMEM;
1069 }
1070
1071 static int
1072 re_tx_list_init(struct rtk_softc *sc)
1073 {
1074 int i;
1075
1076 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1077 for (i = 0; i < RTK_TX_QLEN; i++) {
1078 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1079 }
1080
1081 bus_dmamap_sync(sc->sc_dmat,
1082 sc->rtk_ldata.rtk_tx_list_map, 0,
1083 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1084 sc->rtk_ldata.rtk_txq_prodidx = 0;
1085 sc->rtk_ldata.rtk_txq_considx = 0;
1086 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1087 sc->rtk_ldata.rtk_tx_nextfree = 0;
1088
1089 return 0;
1090 }
1091
1092 static int
1093 re_rx_list_init(struct rtk_softc *sc)
1094 {
1095 int i;
1096
1097 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1098 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1099 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1100
1101 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1102 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1103 return ENOBUFS;
1104 }
1105
1106 /* Flush the RX descriptors */
1107
1108 bus_dmamap_sync(sc->sc_dmat,
1109 sc->rtk_ldata.rtk_rx_list_map,
1110 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1111 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1112
1113 sc->rtk_ldata.rtk_rx_prodidx = 0;
1114 sc->rtk_head = sc->rtk_tail = NULL;
1115
1116 return 0;
1117 }
1118
1119 /*
1120 * RX handler for C+ and 8169. For the gigE chips, we support
1121 * the reception of jumbo frames that have been fragmented
1122 * across multiple 2K mbuf cluster buffers.
1123 */
1124 static void
1125 re_rxeof(struct rtk_softc *sc)
1126 {
1127 struct mbuf *m;
1128 struct ifnet *ifp;
1129 int i, total_len;
1130 struct rtk_desc *cur_rx;
1131 u_int32_t rxstat, rxvlan;
1132
1133 ifp = &sc->ethercom.ec_if;
1134 i = sc->rtk_ldata.rtk_rx_prodidx;
1135
1136 /* Invalidate the descriptor memory */
1137
1138 bus_dmamap_sync(sc->sc_dmat,
1139 sc->rtk_ldata.rtk_rx_list_map,
1140 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1141 BUS_DMASYNC_POSTREAD);
1142
1143 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1144
1145 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1146 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1147 total_len = RTK_RXBYTES(cur_rx);
1148 rxstat = le32toh(cur_rx->rtk_cmdstat);
1149 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1150
1151 /* Invalidate the RX mbuf and unload its map */
1152
1153 bus_dmamap_sync(sc->sc_dmat,
1154 sc->rtk_ldata.rtk_rx_dmamap[i],
1155 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1156 BUS_DMASYNC_POSTWRITE);
1157 bus_dmamap_unload(sc->sc_dmat,
1158 sc->rtk_ldata.rtk_rx_dmamap[i]);
1159
1160 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1161 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1162 if (sc->rtk_head == NULL)
1163 sc->rtk_head = sc->rtk_tail = m;
1164 else {
1165 m->m_flags &= ~M_PKTHDR;
1166 sc->rtk_tail->m_next = m;
1167 sc->rtk_tail = m;
1168 }
1169 re_newbuf(sc, i, NULL);
1170 RTK_RX_DESC_INC(sc, i);
1171 continue;
1172 }
1173
1174 /*
1175 * NOTE: for the 8139C+, the frame length field
1176 * is always 12 bits in size, but for the gigE chips,
1177 * it is 13 bits (since the max RX frame length is 16K).
1178 * Unfortunately, all 32 bits in the status word
1179 * were already used, so to make room for the extra
1180 * length bit, RealTek took out the 'frame alignment
1181 * error' bit and shifted the other status bits
1182 * over one slot. The OWN, EOR, FS and LS bits are
1183 * still in the same places. We have already extracted
1184 * the frame length and checked the OWN bit, so rather
1185 * than using an alternate bit mapping, we shift the
1186 * status bits one space to the right so we can evaluate
1187 * them using the 8169 status as though it was in the
1188 * same format as that of the 8139C+.
1189 */
1190 if (sc->rtk_type == RTK_8169)
1191 rxstat >>= 1;
1192
1193 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1194 ifp->if_ierrors++;
1195 /*
1196 * If this is part of a multi-fragment packet,
1197 * discard all the pieces.
1198 */
1199 if (sc->rtk_head != NULL) {
1200 m_freem(sc->rtk_head);
1201 sc->rtk_head = sc->rtk_tail = NULL;
1202 }
1203 re_newbuf(sc, i, m);
1204 RTK_RX_DESC_INC(sc, i);
1205 continue;
1206 }
1207
1208 /*
1209 * If allocating a replacement mbuf fails,
1210 * reload the current one.
1211 */
1212
1213 if (re_newbuf(sc, i, NULL)) {
1214 ifp->if_ierrors++;
1215 if (sc->rtk_head != NULL) {
1216 m_freem(sc->rtk_head);
1217 sc->rtk_head = sc->rtk_tail = NULL;
1218 }
1219 re_newbuf(sc, i, m);
1220 RTK_RX_DESC_INC(sc, i);
1221 continue;
1222 }
1223
1224 RTK_RX_DESC_INC(sc, i);
1225
1226 if (sc->rtk_head != NULL) {
1227 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1228 /*
1229 * Special case: if there's 4 bytes or less
1230 * in this buffer, the mbuf can be discarded:
1231 * the last 4 bytes is the CRC, which we don't
1232 * care about anyway.
1233 */
1234 if (m->m_len <= ETHER_CRC_LEN) {
1235 sc->rtk_tail->m_len -=
1236 (ETHER_CRC_LEN - m->m_len);
1237 m_freem(m);
1238 } else {
1239 m->m_len -= ETHER_CRC_LEN;
1240 m->m_flags &= ~M_PKTHDR;
1241 sc->rtk_tail->m_next = m;
1242 }
1243 m = sc->rtk_head;
1244 sc->rtk_head = sc->rtk_tail = NULL;
1245 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1246 } else
1247 m->m_pkthdr.len = m->m_len =
1248 (total_len - ETHER_CRC_LEN);
1249
1250 ifp->if_ipackets++;
1251 m->m_pkthdr.rcvif = ifp;
1252
1253 /* Do RX checksumming if enabled */
1254
1255 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1256
1257 /* Check IP header checksum */
1258 if (rxstat & RTK_RDESC_STAT_PROTOID)
1259 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1260 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1261 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1262 }
1263
1264 /* Check TCP/UDP checksum */
1265 if (RTK_TCPPKT(rxstat) &&
1266 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1267 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1268 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1269 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1270 }
1271 if (RTK_UDPPKT(rxstat) &&
1272 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1273 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1274 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1275 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1276 }
1277
1278 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1279 VLAN_INPUT_TAG(ifp, m,
1280 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1281 continue);
1282 }
1283 #if NBPFILTER > 0
1284 if (ifp->if_bpf)
1285 bpf_mtap(ifp->if_bpf, m);
1286 #endif
1287 (*ifp->if_input)(ifp, m);
1288 }
1289
1290 /* Flush the RX DMA ring */
1291
1292 bus_dmamap_sync(sc->sc_dmat,
1293 sc->rtk_ldata.rtk_rx_list_map,
1294 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1295 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1296
1297 sc->rtk_ldata.rtk_rx_prodidx = i;
1298
1299 return;
1300 }
1301
1302 static void
1303 re_txeof(struct rtk_softc *sc)
1304 {
1305 struct ifnet *ifp;
1306 int idx;
1307
1308 ifp = &sc->ethercom.ec_if;
1309 idx = sc->rtk_ldata.rtk_txq_considx;
1310
1311 /* Invalidate the TX descriptor list */
1312
1313 bus_dmamap_sync(sc->sc_dmat,
1314 sc->rtk_ldata.rtk_tx_list_map,
1315 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1316 BUS_DMASYNC_POSTREAD);
1317
1318 while (/* CONSTCOND */ 1) {
1319 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1320 int descidx;
1321 u_int32_t txstat;
1322
1323 if (txq->txq_mbuf == NULL) {
1324 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1325 break;
1326 }
1327
1328 descidx = txq->txq_descidx;
1329 txstat =
1330 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1331 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1332 if (txstat & RTK_TDESC_CMD_OWN)
1333 break;
1334
1335 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1336 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1337 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1338 m_freem(txq->txq_mbuf);
1339 txq->txq_mbuf = NULL;
1340
1341 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1342 ifp->if_collisions++;
1343 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1344 ifp->if_oerrors++;
1345 else
1346 ifp->if_opackets++;
1347
1348 idx = (idx + 1) % RTK_TX_QLEN;
1349 }
1350
1351 /* No changes made to the TX ring, so no flush needed */
1352
1353 if (idx != sc->rtk_ldata.rtk_txq_considx) {
1354 sc->rtk_ldata.rtk_txq_considx = idx;
1355 ifp->if_flags &= ~IFF_OACTIVE;
1356 ifp->if_timer = 0;
1357 }
1358
1359 /*
1360 * If not all descriptors have been released reaped yet,
1361 * reload the timer so that we will eventually get another
1362 * interrupt that will cause us to re-enter this routine.
1363 * This is done in case the transmitter has gone idle.
1364 */
1365 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1366 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367
1368 return;
1369 }
1370
1371 /*
1372 * Stop all chip I/O so that the kernel's probe routines don't
1373 * get confused by errant DMAs when rebooting.
1374 */
1375 static void
1376 re_shutdown(void *vsc)
1377
1378 {
1379 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1380
1381 re_stop(&sc->ethercom.ec_if, 0);
1382 }
1383
1384
1385 static void
1386 re_tick(void *xsc)
1387 {
1388 struct rtk_softc *sc = xsc;
1389 int s;
1390
1391 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1392 s = splnet();
1393
1394 mii_tick(&sc->mii);
1395 splx(s);
1396
1397 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1398 }
1399
1400 #ifdef DEVICE_POLLING
1401 static void
1402 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1403 {
1404 struct rtk_softc *sc = ifp->if_softc;
1405
1406 RTK_LOCK(sc);
1407 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1408 ether_poll_deregister(ifp);
1409 cmd = POLL_DEREGISTER;
1410 }
1411 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1412 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1413 goto done;
1414 }
1415
1416 sc->rxcycles = count;
1417 re_rxeof(sc);
1418 re_txeof(sc);
1419
1420 if (ifp->if_snd.ifq_head != NULL)
1421 (*ifp->if_start)(ifp);
1422
1423 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1424 u_int16_t status;
1425
1426 status = CSR_READ_2(sc, RTK_ISR);
1427 if (status == 0xffff)
1428 goto done;
1429 if (status)
1430 CSR_WRITE_2(sc, RTK_ISR, status);
1431
1432 /*
1433 * XXX check behaviour on receiver stalls.
1434 */
1435
1436 if (status & RTK_ISR_SYSTEM_ERR) {
1437 re_reset(sc);
1438 re_init(sc);
1439 }
1440 }
1441 done:
1442 RTK_UNLOCK(sc);
1443 }
1444 #endif /* DEVICE_POLLING */
1445
1446 int
1447 re_intr(void *arg)
1448 {
1449 struct rtk_softc *sc = arg;
1450 struct ifnet *ifp;
1451 u_int16_t status;
1452 int handled = 0;
1453
1454 ifp = &sc->ethercom.ec_if;
1455
1456 if (!(ifp->if_flags & IFF_UP))
1457 return 0;
1458
1459 #ifdef DEVICE_POLLING
1460 if (ifp->if_flags & IFF_POLLING)
1461 goto done;
1462 if ((ifp->if_capenable & IFCAP_POLLING) &&
1463 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1464 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1465 re_poll(ifp, 0, 1);
1466 goto done;
1467 }
1468 #endif /* DEVICE_POLLING */
1469
1470 for (;;) {
1471
1472 status = CSR_READ_2(sc, RTK_ISR);
1473 /* If the card has gone away the read returns 0xffff. */
1474 if (status == 0xffff)
1475 break;
1476 if (status) {
1477 handled = 1;
1478 CSR_WRITE_2(sc, RTK_ISR, status);
1479 }
1480
1481 if ((status & RTK_INTRS_CPLUS) == 0)
1482 break;
1483
1484 if ((status & RTK_ISR_RX_OK) ||
1485 (status & RTK_ISR_RX_ERR))
1486 re_rxeof(sc);
1487
1488 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1489 (status & RTK_ISR_TX_ERR) ||
1490 (status & RTK_ISR_TX_DESC_UNAVAIL))
1491 re_txeof(sc);
1492
1493 if (status & RTK_ISR_SYSTEM_ERR) {
1494 re_reset(sc);
1495 re_init(ifp);
1496 }
1497
1498 if (status & RTK_ISR_LINKCHG) {
1499 callout_stop(&sc->rtk_tick_ch);
1500 re_tick(sc);
1501 }
1502 }
1503
1504 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1505 if (ifp->if_snd.ifq_head != NULL)
1506 (*ifp->if_start)(ifp);
1507
1508 #ifdef DEVICE_POLLING
1509 done:
1510 #endif
1511
1512 return handled;
1513 }
1514
1515 static int
1516 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1517 {
1518 bus_dmamap_t map;
1519 int error, i, startidx, curidx;
1520 struct m_tag *mtag;
1521 struct rtk_desc *d;
1522 u_int32_t cmdstat, rtk_flags;
1523 struct rtk_txq *txq;
1524
1525 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1526 return EFBIG;
1527 }
1528
1529 /*
1530 * Set up checksum offload. Note: checksum offload bits must
1531 * appear in all descriptors of a multi-descriptor transmit
1532 * attempt. (This is according to testing done with an 8169
1533 * chip. I'm not sure if this is a requirement or a bug.)
1534 */
1535
1536 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1537 u_int32_t segsz = m->m_pkthdr.segsz;
1538
1539 rtk_flags = RTK_TDESC_CMD_LGSEND |
1540 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1541 } else {
1542
1543 /*
1544 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1545 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1546 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1547 */
1548
1549 rtk_flags = 0;
1550 if ((m->m_pkthdr.csum_flags &
1551 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1552 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1553 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1554 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1555 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1556 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1557 }
1558 }
1559 }
1560
1561 txq = &sc->rtk_ldata.rtk_txq[*idx];
1562 map = txq->txq_dmamap;
1563 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1564
1565 if (error) {
1566 /* XXX try to defrag if EFBIG? */
1567
1568 aprint_error("%s: can't map mbuf (error %d)\n",
1569 sc->sc_dev.dv_xname, error);
1570
1571 return error;
1572 }
1573
1574 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1575 error = EFBIG;
1576 goto fail_unload;
1577 }
1578 /*
1579 * Map the segment array into descriptors. Note that we set the
1580 * start-of-frame and end-of-frame markers for either TX or RX, but
1581 * they really only have meaning in the TX case. (In the RX case,
1582 * it's the chip that tells us where packets begin and end.)
1583 * We also keep track of the end of the ring and set the
1584 * end-of-ring bits as needed, and we set the ownership bits
1585 * in all except the very first descriptor. (The caller will
1586 * set this descriptor later when it start transmission or
1587 * reception.)
1588 */
1589 i = 0;
1590 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1591 while (1) {
1592 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1593 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1594 while (i > 0) {
1595 sc->rtk_ldata.rtk_tx_list[
1596 (curidx + RTK_TX_DESC_CNT(sc) - i) %
1597 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1598 i--;
1599 }
1600 error = ENOBUFS;
1601 goto fail_unload;
1602 }
1603
1604 cmdstat = map->dm_segs[i].ds_len;
1605 d->rtk_bufaddr_lo =
1606 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1607 d->rtk_bufaddr_hi =
1608 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1609 if (i == 0)
1610 cmdstat |= RTK_TDESC_CMD_SOF;
1611 else
1612 cmdstat |= RTK_TDESC_CMD_OWN;
1613 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1614 cmdstat |= RTK_TDESC_CMD_EOR;
1615 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1616 i++;
1617 if (i == map->dm_nsegs)
1618 break;
1619 RTK_TX_DESC_INC(sc, curidx);
1620 }
1621
1622 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1623
1624 txq->txq_mbuf = m;
1625 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1626
1627 /*
1628 * Set up hardware VLAN tagging. Note: vlan tag info must
1629 * appear in the first descriptor of a multi-descriptor
1630 * transmission attempt.
1631 */
1632
1633 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1634 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1635 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1636 RTK_TDESC_VLANCTL_TAG);
1637 }
1638
1639 /* Transfer ownership of packet to the chip. */
1640
1641 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1642 htole32(RTK_TDESC_CMD_OWN);
1643 if (startidx != curidx)
1644 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1645 htole32(RTK_TDESC_CMD_OWN);
1646
1647 txq->txq_descidx = curidx;
1648 RTK_TX_DESC_INC(sc, curidx);
1649 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1650 *idx = (*idx + 1) % RTK_TX_QLEN;
1651
1652 return 0;
1653
1654 fail_unload:
1655 bus_dmamap_unload(sc->sc_dmat, map);
1656
1657 return error;
1658 }
1659
1660 /*
1661 * Main transmit routine for C+ and gigE NICs.
1662 */
1663
1664 static void
1665 re_start(struct ifnet *ifp)
1666 {
1667 struct rtk_softc *sc;
1668 int idx;
1669
1670 sc = ifp->if_softc;
1671
1672 idx = sc->rtk_ldata.rtk_txq_prodidx;
1673 while (/* CONSTCOND */ 1) {
1674 struct mbuf *m;
1675 int error;
1676
1677 IFQ_POLL(&ifp->if_snd, m);
1678 if (m == NULL)
1679 break;
1680
1681 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1682 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1683 ifp->if_flags |= IFF_OACTIVE;
1684 break;
1685 }
1686
1687 error = re_encap(sc, m, &idx);
1688 if (error == EFBIG &&
1689 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1690 IFQ_DEQUEUE(&ifp->if_snd, m);
1691 m_freem(m);
1692 ifp->if_oerrors++;
1693 continue;
1694 }
1695 if (error) {
1696 ifp->if_flags |= IFF_OACTIVE;
1697 break;
1698 }
1699
1700 IFQ_DEQUEUE(&ifp->if_snd, m);
1701
1702 #if NBPFILTER > 0
1703 /*
1704 * If there's a BPF listener, bounce a copy of this frame
1705 * to him.
1706 */
1707 if (ifp->if_bpf)
1708 bpf_mtap(ifp->if_bpf, m);
1709 #endif
1710 }
1711
1712 if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1713 return;
1714 }
1715 sc->rtk_ldata.rtk_txq_prodidx = idx;
1716
1717 /* Flush the TX descriptors */
1718
1719 bus_dmamap_sync(sc->sc_dmat,
1720 sc->rtk_ldata.rtk_tx_list_map,
1721 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1722 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1723
1724 /*
1725 * RealTek put the TX poll request register in a different
1726 * location on the 8169 gigE chip. I don't know why.
1727 */
1728
1729 if (sc->rtk_type == RTK_8169)
1730 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1731 else
1732 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1733
1734 /*
1735 * Use the countdown timer for interrupt moderation.
1736 * 'TX done' interrupts are disabled. Instead, we reset the
1737 * countdown timer, which will begin counting until it hits
1738 * the value in the TIMERINT register, and then trigger an
1739 * interrupt. Each time we write to the TIMERCNT register,
1740 * the timer count is reset to 0.
1741 */
1742 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1743
1744 /*
1745 * Set a timeout in case the chip goes out to lunch.
1746 */
1747 ifp->if_timer = 5;
1748
1749 return;
1750 }
1751
1752 static int
1753 re_init(struct ifnet *ifp)
1754 {
1755 struct rtk_softc *sc = ifp->if_softc;
1756 u_int32_t rxcfg = 0;
1757 u_int32_t reg;
1758 int error;
1759
1760 if ((error = re_enable(sc)) != 0)
1761 goto out;
1762
1763 /*
1764 * Cancel pending I/O and free all RX/TX buffers.
1765 */
1766 re_stop(ifp, 0);
1767
1768 /*
1769 * Enable C+ RX and TX mode, as well as VLAN stripping and
1770 * RX checksum offload. We must configure the C+ register
1771 * before all others.
1772 */
1773 reg = 0;
1774
1775 /*
1776 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1777 * FreeBSD drivers set these bits anyway (for 8139C+?).
1778 * So far, it works.
1779 */
1780
1781 /*
1782 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1783 * For 8169S/8110S rev 2 and above, do not set bit 14.
1784 */
1785 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1786 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1787
1788 if (1) {/* not for 8169S ? */
1789 reg |= RTK_CPLUSCMD_VLANSTRIP |
1790 (ifp->if_capenable &
1791 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1792 IFCAP_CSUM_UDPv4_Rx) ?
1793 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1794 }
1795
1796 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1797 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1798
1799 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1800 if (sc->rtk_type == RTK_8169)
1801 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1802
1803 DELAY(10000);
1804
1805 /*
1806 * Init our MAC address. Even though the chipset
1807 * documentation doesn't mention it, we need to enter "Config
1808 * register write enable" mode to modify the ID registers.
1809 */
1810 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1811 memcpy(®, LLADDR(ifp->if_sadl), 4);
1812 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1813 reg = 0;
1814 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1815 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1816 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1817
1818 /*
1819 * For C+ mode, initialize the RX descriptors and mbufs.
1820 */
1821 re_rx_list_init(sc);
1822 re_tx_list_init(sc);
1823
1824 /*
1825 * Enable transmit and receive.
1826 */
1827 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1828
1829 /*
1830 * Set the initial TX and RX configuration.
1831 */
1832 if (sc->rtk_testmode) {
1833 if (sc->rtk_type == RTK_8169)
1834 CSR_WRITE_4(sc, RTK_TXCFG,
1835 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1836 else
1837 CSR_WRITE_4(sc, RTK_TXCFG,
1838 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1839 } else
1840 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1841 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1842
1843 /* Set the individual bit to receive frames for this host only. */
1844 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1845 rxcfg |= RTK_RXCFG_RX_INDIV;
1846
1847 /* If we want promiscuous mode, set the allframes bit. */
1848 if (ifp->if_flags & IFF_PROMISC)
1849 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1850 else
1851 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1852 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1853
1854 /*
1855 * Set capture broadcast bit to capture broadcast frames.
1856 */
1857 if (ifp->if_flags & IFF_BROADCAST)
1858 rxcfg |= RTK_RXCFG_RX_BROAD;
1859 else
1860 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1861 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1862
1863 /*
1864 * Program the multicast filter, if necessary.
1865 */
1866 rtk_setmulti(sc);
1867
1868 #ifdef DEVICE_POLLING
1869 /*
1870 * Disable interrupts if we are polling.
1871 */
1872 if (ifp->if_flags & IFF_POLLING)
1873 CSR_WRITE_2(sc, RTK_IMR, 0);
1874 else /* otherwise ... */
1875 #endif /* DEVICE_POLLING */
1876 /*
1877 * Enable interrupts.
1878 */
1879 if (sc->rtk_testmode)
1880 CSR_WRITE_2(sc, RTK_IMR, 0);
1881 else
1882 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1883
1884 /* Start RX/TX process. */
1885 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1886 #ifdef notdef
1887 /* Enable receiver and transmitter. */
1888 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1889 #endif
1890 /*
1891 * Load the addresses of the RX and TX lists into the chip.
1892 */
1893
1894 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1895 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1896 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1897 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1898
1899 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1900 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1901 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1902 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1903
1904 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1905
1906 /*
1907 * Initialize the timer interrupt register so that
1908 * a timer interrupt will be generated once the timer
1909 * reaches a certain number of ticks. The timer is
1910 * reloaded on each transmit. This gives us TX interrupt
1911 * moderation, which dramatically improves TX frame rate.
1912 */
1913
1914 if (sc->rtk_type == RTK_8169)
1915 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1916 else
1917 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1918
1919 /*
1920 * For 8169 gigE NICs, set the max allowed RX packet
1921 * size so we can receive jumbo frames.
1922 */
1923 if (sc->rtk_type == RTK_8169)
1924 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1925
1926 if (sc->rtk_testmode)
1927 return 0;
1928
1929 mii_mediachg(&sc->mii);
1930
1931 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1932
1933 ifp->if_flags |= IFF_RUNNING;
1934 ifp->if_flags &= ~IFF_OACTIVE;
1935
1936 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1937
1938 out:
1939 if (error) {
1940 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1941 ifp->if_timer = 0;
1942 aprint_error("%s: interface not running\n",
1943 sc->sc_dev.dv_xname);
1944 }
1945
1946 return error;
1947
1948 }
1949
1950 /*
1951 * Set media options.
1952 */
1953 static int
1954 re_ifmedia_upd(struct ifnet *ifp)
1955 {
1956 struct rtk_softc *sc;
1957
1958 sc = ifp->if_softc;
1959
1960 return mii_mediachg(&sc->mii);
1961 }
1962
1963 /*
1964 * Report current media status.
1965 */
1966 static void
1967 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1968 {
1969 struct rtk_softc *sc;
1970
1971 sc = ifp->if_softc;
1972
1973 mii_pollstat(&sc->mii);
1974 ifmr->ifm_active = sc->mii.mii_media_active;
1975 ifmr->ifm_status = sc->mii.mii_media_status;
1976
1977 return;
1978 }
1979
1980 static int
1981 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1982 {
1983 struct rtk_softc *sc = ifp->if_softc;
1984 struct ifreq *ifr = (struct ifreq *) data;
1985 int s, error = 0;
1986
1987 s = splnet();
1988
1989 switch (command) {
1990 case SIOCSIFMTU:
1991 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1992 error = EINVAL;
1993 ifp->if_mtu = ifr->ifr_mtu;
1994 break;
1995 case SIOCGIFMEDIA:
1996 case SIOCSIFMEDIA:
1997 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1998 break;
1999 default:
2000 error = ether_ioctl(ifp, command, data);
2001 if (error == ENETRESET) {
2002 if (ifp->if_flags & IFF_RUNNING)
2003 rtk_setmulti(sc);
2004 error = 0;
2005 }
2006 break;
2007 }
2008
2009 splx(s);
2010
2011 return error;
2012 }
2013
2014 static void
2015 re_watchdog(struct ifnet *ifp)
2016 {
2017 struct rtk_softc *sc;
2018 int s;
2019
2020 sc = ifp->if_softc;
2021 s = splnet();
2022 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2023 ifp->if_oerrors++;
2024
2025 re_txeof(sc);
2026 re_rxeof(sc);
2027
2028 re_init(ifp);
2029
2030 splx(s);
2031 }
2032
2033 /*
2034 * Stop the adapter and free any mbufs allocated to the
2035 * RX and TX lists.
2036 */
2037 static void
2038 re_stop(struct ifnet *ifp, int disable)
2039 {
2040 register int i;
2041 struct rtk_softc *sc = ifp->if_softc;
2042
2043 callout_stop(&sc->rtk_tick_ch);
2044
2045 #ifdef DEVICE_POLLING
2046 ether_poll_deregister(ifp);
2047 #endif /* DEVICE_POLLING */
2048
2049 mii_down(&sc->mii);
2050
2051 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2052 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2053
2054 if (sc->rtk_head != NULL) {
2055 m_freem(sc->rtk_head);
2056 sc->rtk_head = sc->rtk_tail = NULL;
2057 }
2058
2059 /* Free the TX list buffers. */
2060 for (i = 0; i < RTK_TX_QLEN; i++) {
2061 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2062 bus_dmamap_unload(sc->sc_dmat,
2063 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2064 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2065 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2066 }
2067 }
2068
2069 /* Free the RX list buffers. */
2070 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2071 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2072 bus_dmamap_unload(sc->sc_dmat,
2073 sc->rtk_ldata.rtk_rx_dmamap[i]);
2074 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2075 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2076 }
2077 }
2078
2079 if (disable)
2080 re_disable(sc);
2081
2082 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2083 ifp->if_timer = 0;
2084
2085 return;
2086 }
2087