rtl8169.c revision 1.21 1 /* $NetBSD: rtl8169.c,v 1.21 2005/07/11 21:42:58 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 bus_dmamap_sync(sc->sc_dmat,
493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 BUS_DMASYNC_POSTREAD);
497 bus_dmamap_unload(sc->sc_dmat,
498 sc->rtk_ldata.rtk_rx_dmamap[0]);
499
500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 eh = mtod(m0, struct ether_header *);
503
504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 total_len = RTK_RXBYTES(cur_rx);
506 rxstat = le32toh(cur_rx->rtk_cmdstat);
507
508 if (total_len != ETHER_MIN_LEN) {
509 aprint_error("%s: diagnostic failed, received short packet\n",
510 sc->sc_dev.dv_xname);
511 error = EIO;
512 goto done;
513 }
514
515 /* Test that the received packet data matches what we sent. */
516
517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 aprint_error("%s: WARNING, DMA FAILURE!\n",
521 sc->sc_dev.dv_xname);
522 aprint_error("%s: expected TX data: %s",
523 sc->sc_dev.dv_xname, ether_sprintf(dst));
524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 aprint_error("%s: received RX data: %s",
526 sc->sc_dev.dv_xname,
527 ether_sprintf(eh->ether_dhost));
528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 ntohs(eh->ether_type));
530 aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Read the re(4) man page for more details.\n",
535 sc->sc_dev.dv_xname);
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->rtk_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 u_char eaddr[ETHER_ADDR_LEN];
560 u_int16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564
565 /* XXX JRS: bus-attach-independent code begins approximately here */
566
567 /* Reset the adapter. */
568 re_reset(sc);
569
570 if (sc->rtk_type == RTK_8169) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 if (hwrev == (0x1 << 28)) {
576 sc->sc_rev = 4;
577 } else if (hwrev == (0x1 << 26)) {
578 sc->sc_rev = 3;
579 } else if (hwrev == (0x1 << 23)) {
580 sc->sc_rev = 2;
581 } else
582 sc->sc_rev = 1;
583
584 /* Set RX length mask */
585
586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587
588 /* Force station address autoload from the EEPROM */
589
590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 for (i = 0; i < RTK_TIMEOUT; i++) {
592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 break;
594 DELAY(100);
595 }
596 if (i == RTK_TIMEOUT)
597 aprint_error("%s: eeprom autoload timed out\n",
598 sc->sc_dev.dv_xname);
599
600 for (i = 0; i < ETHER_ADDR_LEN; i++)
601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602
603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 } else {
605
606 /* Set RX length mask */
607
608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609
610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 addr_len = RTK_EEADDR_LEN1;
612 else
613 addr_len = RTK_EEADDR_LEN0;
614
615 /*
616 * Get station address from the EEPROM.
617 */
618 for (i = 0; i < 3; i++) {
619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 eaddr[(i * 2) + 0] = val & 0xff;
621 eaddr[(i * 2) + 1] = val >> 8;
622 }
623
624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct rtk_desc)) {
632 sc->rtk_ldata.rtk_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct rtk_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638
639 /* Allocate DMA'able memory for the TX ring */
640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 sc->sc_dev.dv_xname, error);
645 goto fail_0;
646 }
647
648 /* Load the map for the TX ring. */
649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 BUS_DMA_NOWAIT)) != 0) {
653 aprint_error("%s: can't map tx list, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_1;
656 }
657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658
659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 aprint_error("%s: can't create tx list map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_2;
665 }
666
667
668 if ((error = bus_dmamap_load(sc->sc_dmat,
669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 aprint_error("%s: can't load tx list, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_3;
674 }
675
676 /* Create DMA maps for TX buffers */
677 for (i = 0; i < RTK_TX_QLEN; i++) {
678 error = bus_dmamap_create(sc->sc_dmat,
679 round_page(IP_MAXPACKET),
680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 0, BUS_DMA_ALLOCNOW,
682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 sc->sc_dev.dv_xname, error);
696 goto fail_4;
697 }
698
699 /* Load the map for the RX ring. */
700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 BUS_DMA_NOWAIT)) != 0) {
704 aprint_error("%s: can't map rx list, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_5;
707 }
708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709
710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 aprint_error("%s: can't create rx list map, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_6;
716 }
717
718 if ((error = bus_dmamap_load(sc->sc_dmat,
719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 aprint_error("%s: can't load rx list, error = %d\n",
722 sc->sc_dev.dv_xname, error);
723 goto fail_7;
724 }
725
726 /* Create DMA maps for RX buffers */
727 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 if (error) {
731 aprint_error("%s: can't create DMA map for RX\n",
732 sc->sc_dev.dv_xname);
733 goto fail_8;
734 }
735 }
736
737 /*
738 * Record interface as attached. From here, we should not fail.
739 */
740 sc->sc_flags |= RTK_ATTACHED;
741
742 ifp = &sc->ethercom.ec_if;
743 ifp->if_softc = sc;
744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 ifp->if_mtu = ETHERMTU;
746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 ifp->if_ioctl = re_ioctl;
748 sc->ethercom.ec_capabilities |=
749 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 ifp->if_start = re_start;
751 ifp->if_stop = re_stop;
752
753 /*
754 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
755 */
756
757 ifp->if_capabilities |=
758 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
759 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
760 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
761 IFCAP_TSOv4;
762 ifp->if_watchdog = re_watchdog;
763 ifp->if_init = re_init;
764 if (sc->rtk_type == RTK_8169)
765 ifp->if_baudrate = 1000000000;
766 else
767 ifp->if_baudrate = 100000000;
768 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
769 ifp->if_capenable = ifp->if_capabilities;
770 IFQ_SET_READY(&ifp->if_snd);
771
772 callout_init(&sc->rtk_tick_ch);
773
774 /* Do MII setup */
775 sc->mii.mii_ifp = ifp;
776 sc->mii.mii_readreg = re_miibus_readreg;
777 sc->mii.mii_writereg = re_miibus_writereg;
778 sc->mii.mii_statchg = re_miibus_statchg;
779 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
780 re_ifmedia_sts);
781 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
782 MII_OFFSET_ANY, 0);
783 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
784
785 /*
786 * Call MI attach routine.
787 */
788 if_attach(ifp);
789 ether_ifattach(ifp, eaddr);
790
791
792 /*
793 * Make sure the interface is shutdown during reboot.
794 */
795 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
796 if (sc->sc_sdhook == NULL)
797 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
798 sc->sc_dev.dv_xname);
799 /*
800 * Add a suspend hook to make sure we come back up after a
801 * resume.
802 */
803 sc->sc_powerhook = powerhook_establish(re_power, sc);
804 if (sc->sc_powerhook == NULL)
805 aprint_error("%s: WARNING: unable to establish power hook\n",
806 sc->sc_dev.dv_xname);
807
808
809 return;
810
811 fail_8:
812 /* Destroy DMA maps for RX buffers. */
813 for (i = 0; i < RTK_RX_DESC_CNT; i++)
814 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
815 bus_dmamap_destroy(sc->sc_dmat,
816 sc->rtk_ldata.rtk_rx_dmamap[i]);
817
818 /* Free DMA'able memory for the RX ring. */
819 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
820 fail_7:
821 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
822 fail_6:
823 bus_dmamem_unmap(sc->sc_dmat,
824 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
825 fail_5:
826 bus_dmamem_free(sc->sc_dmat,
827 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
828
829 fail_4:
830 /* Destroy DMA maps for TX buffers. */
831 for (i = 0; i < RTK_TX_QLEN; i++)
832 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
833 bus_dmamap_destroy(sc->sc_dmat,
834 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
835
836 /* Free DMA'able memory for the TX ring. */
837 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
838 fail_3:
839 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
840 fail_2:
841 bus_dmamem_unmap(sc->sc_dmat,
842 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
843 fail_1:
844 bus_dmamem_free(sc->sc_dmat,
845 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
846 fail_0:
847 return;
848 }
849
850
851 /*
852 * re_activate:
853 * Handle device activation/deactivation requests.
854 */
855 int
856 re_activate(struct device *self, enum devact act)
857 {
858 struct rtk_softc *sc = (void *) self;
859 int s, error = 0;
860
861 s = splnet();
862 switch (act) {
863 case DVACT_ACTIVATE:
864 error = EOPNOTSUPP;
865 break;
866 case DVACT_DEACTIVATE:
867 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
868 if_deactivate(&sc->ethercom.ec_if);
869 break;
870 }
871 splx(s);
872
873 return error;
874 }
875
876 /*
877 * re_detach:
878 * Detach a rtk interface.
879 */
880 int
881 re_detach(struct rtk_softc *sc)
882 {
883 struct ifnet *ifp = &sc->ethercom.ec_if;
884 int i;
885
886 /*
887 * Succeed now if there isn't any work to do.
888 */
889 if ((sc->sc_flags & RTK_ATTACHED) == 0)
890 return 0;
891
892 /* Unhook our tick handler. */
893 callout_stop(&sc->rtk_tick_ch);
894
895 /* Detach all PHYs. */
896 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
897
898 /* Delete all remaining media. */
899 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
900
901 ether_ifdetach(ifp);
902 if_detach(ifp);
903
904 /* XXX undo re_allocmem() */
905
906 /* Destroy DMA maps for RX buffers. */
907 for (i = 0; i < RTK_RX_DESC_CNT; i++)
908 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
909 bus_dmamap_destroy(sc->sc_dmat,
910 sc->rtk_ldata.rtk_rx_dmamap[i]);
911
912 /* Free DMA'able memory for the RX ring. */
913 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
914 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
915 bus_dmamem_unmap(sc->sc_dmat,
916 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
917 bus_dmamem_free(sc->sc_dmat,
918 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
919
920 /* Destroy DMA maps for TX buffers. */
921 for (i = 0; i < RTK_TX_QLEN; i++)
922 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
925
926 /* Free DMA'able memory for the TX ring. */
927 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
928 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
929 bus_dmamem_unmap(sc->sc_dmat,
930 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
931 bus_dmamem_free(sc->sc_dmat,
932 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
933
934
935 shutdownhook_disestablish(sc->sc_sdhook);
936 powerhook_disestablish(sc->sc_powerhook);
937
938 return 0;
939 }
940
941 /*
942 * re_enable:
943 * Enable the RTL81X9 chip.
944 */
945 static int
946 re_enable(struct rtk_softc *sc)
947 {
948 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
949 if ((*sc->sc_enable)(sc) != 0) {
950 aprint_error("%s: device enable failed\n",
951 sc->sc_dev.dv_xname);
952 return EIO;
953 }
954 sc->sc_flags |= RTK_ENABLED;
955 }
956 return 0;
957 }
958
959 /*
960 * re_disable:
961 * Disable the RTL81X9 chip.
962 */
963 static void
964 re_disable(struct rtk_softc *sc)
965 {
966
967 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
968 (*sc->sc_disable)(sc);
969 sc->sc_flags &= ~RTK_ENABLED;
970 }
971 }
972
973 /*
974 * re_power:
975 * Power management (suspend/resume) hook.
976 */
977 void
978 re_power(int why, void *arg)
979 {
980 struct rtk_softc *sc = (void *) arg;
981 struct ifnet *ifp = &sc->ethercom.ec_if;
982 int s;
983
984 s = splnet();
985 switch (why) {
986 case PWR_SUSPEND:
987 case PWR_STANDBY:
988 re_stop(ifp, 0);
989 if (sc->sc_power != NULL)
990 (*sc->sc_power)(sc, why);
991 break;
992 case PWR_RESUME:
993 if (ifp->if_flags & IFF_UP) {
994 if (sc->sc_power != NULL)
995 (*sc->sc_power)(sc, why);
996 re_init(ifp);
997 }
998 break;
999 case PWR_SOFTSUSPEND:
1000 case PWR_SOFTSTANDBY:
1001 case PWR_SOFTRESUME:
1002 break;
1003 }
1004 splx(s);
1005 }
1006
1007
1008 static int
1009 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1010 {
1011 struct mbuf *n = NULL;
1012 bus_dmamap_t map;
1013 struct rtk_desc *d;
1014 u_int32_t cmdstat;
1015 int error;
1016
1017 if (m == NULL) {
1018 MGETHDR(n, M_DONTWAIT, MT_DATA);
1019 if (n == NULL)
1020 return ENOBUFS;
1021 m = n;
1022
1023 MCLGET(m, M_DONTWAIT);
1024 if (!(m->m_flags & M_EXT)) {
1025 m_freem(m);
1026 return ENOBUFS;
1027 }
1028 } else
1029 m->m_data = m->m_ext.ext_buf;
1030
1031 /*
1032 * Initialize mbuf length fields and fixup
1033 * alignment so that the frame payload is
1034 * longword aligned.
1035 */
1036 m->m_len = m->m_pkthdr.len = MCLBYTES;
1037 m_adj(m, RTK_ETHER_ALIGN);
1038
1039 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1040 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1041 BUS_DMA_READ|BUS_DMA_NOWAIT);
1042
1043 if (error)
1044 goto out;
1045
1046 d = &sc->rtk_ldata.rtk_rx_list[idx];
1047 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1048 goto out;
1049
1050 cmdstat = map->dm_segs[0].ds_len;
1051 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1052 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1053 if (idx == (RTK_RX_DESC_CNT - 1))
1054 cmdstat |= RTK_RDESC_CMD_EOR;
1055 d->rtk_cmdstat = htole32(cmdstat);
1056
1057 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1058 htole32(RTK_RDESC_CMD_OWN);
1059 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1060
1061 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1062 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1063 BUS_DMASYNC_PREREAD);
1064
1065 return 0;
1066 out:
1067 if (n != NULL)
1068 m_freem(n);
1069 return ENOMEM;
1070 }
1071
1072 static int
1073 re_tx_list_init(struct rtk_softc *sc)
1074 {
1075 int i;
1076
1077 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1078 for (i = 0; i < RTK_TX_QLEN; i++) {
1079 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1080 }
1081
1082 bus_dmamap_sync(sc->sc_dmat,
1083 sc->rtk_ldata.rtk_tx_list_map, 0,
1084 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1085 sc->rtk_ldata.rtk_txq_prodidx = 0;
1086 sc->rtk_ldata.rtk_txq_considx = 0;
1087 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1088 sc->rtk_ldata.rtk_tx_nextfree = 0;
1089
1090 return 0;
1091 }
1092
1093 static int
1094 re_rx_list_init(struct rtk_softc *sc)
1095 {
1096 int i;
1097
1098 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1099 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1100 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1101
1102 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1103 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1104 return ENOBUFS;
1105 }
1106
1107 /* Flush the RX descriptors */
1108
1109 bus_dmamap_sync(sc->sc_dmat,
1110 sc->rtk_ldata.rtk_rx_list_map,
1111 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1112 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1113
1114 sc->rtk_ldata.rtk_rx_prodidx = 0;
1115 sc->rtk_head = sc->rtk_tail = NULL;
1116
1117 return 0;
1118 }
1119
1120 /*
1121 * RX handler for C+ and 8169. For the gigE chips, we support
1122 * the reception of jumbo frames that have been fragmented
1123 * across multiple 2K mbuf cluster buffers.
1124 */
1125 static void
1126 re_rxeof(struct rtk_softc *sc)
1127 {
1128 struct mbuf *m;
1129 struct ifnet *ifp;
1130 int i, total_len;
1131 struct rtk_desc *cur_rx;
1132 u_int32_t rxstat, rxvlan;
1133
1134 ifp = &sc->ethercom.ec_if;
1135 i = sc->rtk_ldata.rtk_rx_prodidx;
1136
1137 /* Invalidate the descriptor memory */
1138
1139 bus_dmamap_sync(sc->sc_dmat,
1140 sc->rtk_ldata.rtk_rx_list_map,
1141 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1142 BUS_DMASYNC_POSTREAD);
1143
1144 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1145
1146 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1147 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1148 total_len = RTK_RXBYTES(cur_rx);
1149 rxstat = le32toh(cur_rx->rtk_cmdstat);
1150 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1151
1152 /* Invalidate the RX mbuf and unload its map */
1153
1154 bus_dmamap_sync(sc->sc_dmat,
1155 sc->rtk_ldata.rtk_rx_dmamap[i],
1156 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1157 BUS_DMASYNC_POSTREAD);
1158 bus_dmamap_unload(sc->sc_dmat,
1159 sc->rtk_ldata.rtk_rx_dmamap[i]);
1160
1161 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1162 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1163 if (sc->rtk_head == NULL)
1164 sc->rtk_head = sc->rtk_tail = m;
1165 else {
1166 m->m_flags &= ~M_PKTHDR;
1167 sc->rtk_tail->m_next = m;
1168 sc->rtk_tail = m;
1169 }
1170 re_newbuf(sc, i, NULL);
1171 RTK_RX_DESC_INC(sc, i);
1172 continue;
1173 }
1174
1175 /*
1176 * NOTE: for the 8139C+, the frame length field
1177 * is always 12 bits in size, but for the gigE chips,
1178 * it is 13 bits (since the max RX frame length is 16K).
1179 * Unfortunately, all 32 bits in the status word
1180 * were already used, so to make room for the extra
1181 * length bit, RealTek took out the 'frame alignment
1182 * error' bit and shifted the other status bits
1183 * over one slot. The OWN, EOR, FS and LS bits are
1184 * still in the same places. We have already extracted
1185 * the frame length and checked the OWN bit, so rather
1186 * than using an alternate bit mapping, we shift the
1187 * status bits one space to the right so we can evaluate
1188 * them using the 8169 status as though it was in the
1189 * same format as that of the 8139C+.
1190 */
1191 if (sc->rtk_type == RTK_8169)
1192 rxstat >>= 1;
1193
1194 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1195 ifp->if_ierrors++;
1196 /*
1197 * If this is part of a multi-fragment packet,
1198 * discard all the pieces.
1199 */
1200 if (sc->rtk_head != NULL) {
1201 m_freem(sc->rtk_head);
1202 sc->rtk_head = sc->rtk_tail = NULL;
1203 }
1204 re_newbuf(sc, i, m);
1205 RTK_RX_DESC_INC(sc, i);
1206 continue;
1207 }
1208
1209 /*
1210 * If allocating a replacement mbuf fails,
1211 * reload the current one.
1212 */
1213
1214 if (re_newbuf(sc, i, NULL)) {
1215 ifp->if_ierrors++;
1216 if (sc->rtk_head != NULL) {
1217 m_freem(sc->rtk_head);
1218 sc->rtk_head = sc->rtk_tail = NULL;
1219 }
1220 re_newbuf(sc, i, m);
1221 RTK_RX_DESC_INC(sc, i);
1222 continue;
1223 }
1224
1225 RTK_RX_DESC_INC(sc, i);
1226
1227 if (sc->rtk_head != NULL) {
1228 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1229 /*
1230 * Special case: if there's 4 bytes or less
1231 * in this buffer, the mbuf can be discarded:
1232 * the last 4 bytes is the CRC, which we don't
1233 * care about anyway.
1234 */
1235 if (m->m_len <= ETHER_CRC_LEN) {
1236 sc->rtk_tail->m_len -=
1237 (ETHER_CRC_LEN - m->m_len);
1238 m_freem(m);
1239 } else {
1240 m->m_len -= ETHER_CRC_LEN;
1241 m->m_flags &= ~M_PKTHDR;
1242 sc->rtk_tail->m_next = m;
1243 }
1244 m = sc->rtk_head;
1245 sc->rtk_head = sc->rtk_tail = NULL;
1246 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1247 } else
1248 m->m_pkthdr.len = m->m_len =
1249 (total_len - ETHER_CRC_LEN);
1250
1251 ifp->if_ipackets++;
1252 m->m_pkthdr.rcvif = ifp;
1253
1254 /* Do RX checksumming if enabled */
1255
1256 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1257
1258 /* Check IP header checksum */
1259 if (rxstat & RTK_RDESC_STAT_PROTOID)
1260 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1261 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1262 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1263 }
1264
1265 /* Check TCP/UDP checksum */
1266 if (RTK_TCPPKT(rxstat) &&
1267 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1268 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1269 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1270 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1271 }
1272 if (RTK_UDPPKT(rxstat) &&
1273 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1274 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1275 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1276 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1277 }
1278
1279 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1280 VLAN_INPUT_TAG(ifp, m,
1281 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1282 continue);
1283 }
1284 #if NBPFILTER > 0
1285 if (ifp->if_bpf)
1286 bpf_mtap(ifp->if_bpf, m);
1287 #endif
1288 (*ifp->if_input)(ifp, m);
1289 }
1290
1291 /* Flush the RX DMA ring */
1292
1293 bus_dmamap_sync(sc->sc_dmat,
1294 sc->rtk_ldata.rtk_rx_list_map,
1295 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1296 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1297
1298 sc->rtk_ldata.rtk_rx_prodidx = i;
1299
1300 return;
1301 }
1302
1303 static void
1304 re_txeof(struct rtk_softc *sc)
1305 {
1306 struct ifnet *ifp;
1307 int idx;
1308
1309 ifp = &sc->ethercom.ec_if;
1310 idx = sc->rtk_ldata.rtk_txq_considx;
1311
1312 /* Invalidate the TX descriptor list */
1313
1314 bus_dmamap_sync(sc->sc_dmat,
1315 sc->rtk_ldata.rtk_tx_list_map,
1316 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1317 BUS_DMASYNC_POSTREAD);
1318
1319 while (/* CONSTCOND */ 1) {
1320 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1321 int descidx;
1322 u_int32_t txstat;
1323
1324 if (txq->txq_mbuf == NULL) {
1325 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1326 break;
1327 }
1328
1329 descidx = txq->txq_descidx;
1330 txstat =
1331 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1332 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1333 if (txstat & RTK_TDESC_CMD_OWN)
1334 break;
1335
1336 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1337 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1338 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1339 m_freem(txq->txq_mbuf);
1340 txq->txq_mbuf = NULL;
1341
1342 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1343 ifp->if_collisions++;
1344 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1345 ifp->if_oerrors++;
1346 else
1347 ifp->if_opackets++;
1348
1349 idx = (idx + 1) % RTK_TX_QLEN;
1350 }
1351
1352 /* No changes made to the TX ring, so no flush needed */
1353
1354 if (idx != sc->rtk_ldata.rtk_txq_considx) {
1355 sc->rtk_ldata.rtk_txq_considx = idx;
1356 ifp->if_flags &= ~IFF_OACTIVE;
1357 ifp->if_timer = 0;
1358 }
1359
1360 /*
1361 * If not all descriptors have been released reaped yet,
1362 * reload the timer so that we will eventually get another
1363 * interrupt that will cause us to re-enter this routine.
1364 * This is done in case the transmitter has gone idle.
1365 */
1366 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1367 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1368
1369 return;
1370 }
1371
1372 /*
1373 * Stop all chip I/O so that the kernel's probe routines don't
1374 * get confused by errant DMAs when rebooting.
1375 */
1376 static void
1377 re_shutdown(void *vsc)
1378
1379 {
1380 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1381
1382 re_stop(&sc->ethercom.ec_if, 0);
1383 }
1384
1385
1386 static void
1387 re_tick(void *xsc)
1388 {
1389 struct rtk_softc *sc = xsc;
1390 int s;
1391
1392 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1393 s = splnet();
1394
1395 mii_tick(&sc->mii);
1396 splx(s);
1397
1398 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1399 }
1400
1401 #ifdef DEVICE_POLLING
1402 static void
1403 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1404 {
1405 struct rtk_softc *sc = ifp->if_softc;
1406
1407 RTK_LOCK(sc);
1408 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1409 ether_poll_deregister(ifp);
1410 cmd = POLL_DEREGISTER;
1411 }
1412 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1413 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1414 goto done;
1415 }
1416
1417 sc->rxcycles = count;
1418 re_rxeof(sc);
1419 re_txeof(sc);
1420
1421 if (ifp->if_snd.ifq_head != NULL)
1422 (*ifp->if_start)(ifp);
1423
1424 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1425 u_int16_t status;
1426
1427 status = CSR_READ_2(sc, RTK_ISR);
1428 if (status == 0xffff)
1429 goto done;
1430 if (status)
1431 CSR_WRITE_2(sc, RTK_ISR, status);
1432
1433 /*
1434 * XXX check behaviour on receiver stalls.
1435 */
1436
1437 if (status & RTK_ISR_SYSTEM_ERR) {
1438 re_reset(sc);
1439 re_init(sc);
1440 }
1441 }
1442 done:
1443 RTK_UNLOCK(sc);
1444 }
1445 #endif /* DEVICE_POLLING */
1446
1447 int
1448 re_intr(void *arg)
1449 {
1450 struct rtk_softc *sc = arg;
1451 struct ifnet *ifp;
1452 u_int16_t status;
1453 int handled = 0;
1454
1455 ifp = &sc->ethercom.ec_if;
1456
1457 if (!(ifp->if_flags & IFF_UP))
1458 return 0;
1459
1460 #ifdef DEVICE_POLLING
1461 if (ifp->if_flags & IFF_POLLING)
1462 goto done;
1463 if ((ifp->if_capenable & IFCAP_POLLING) &&
1464 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1465 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1466 re_poll(ifp, 0, 1);
1467 goto done;
1468 }
1469 #endif /* DEVICE_POLLING */
1470
1471 for (;;) {
1472
1473 status = CSR_READ_2(sc, RTK_ISR);
1474 /* If the card has gone away the read returns 0xffff. */
1475 if (status == 0xffff)
1476 break;
1477 if (status) {
1478 handled = 1;
1479 CSR_WRITE_2(sc, RTK_ISR, status);
1480 }
1481
1482 if ((status & RTK_INTRS_CPLUS) == 0)
1483 break;
1484
1485 if ((status & RTK_ISR_RX_OK) ||
1486 (status & RTK_ISR_RX_ERR))
1487 re_rxeof(sc);
1488
1489 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1490 (status & RTK_ISR_TX_ERR) ||
1491 (status & RTK_ISR_TX_DESC_UNAVAIL))
1492 re_txeof(sc);
1493
1494 if (status & RTK_ISR_SYSTEM_ERR) {
1495 re_reset(sc);
1496 re_init(ifp);
1497 }
1498
1499 if (status & RTK_ISR_LINKCHG) {
1500 callout_stop(&sc->rtk_tick_ch);
1501 re_tick(sc);
1502 }
1503 }
1504
1505 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1506 if (ifp->if_snd.ifq_head != NULL)
1507 (*ifp->if_start)(ifp);
1508
1509 #ifdef DEVICE_POLLING
1510 done:
1511 #endif
1512
1513 return handled;
1514 }
1515
1516 static int
1517 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1518 {
1519 bus_dmamap_t map;
1520 int error, i, startidx, curidx;
1521 struct m_tag *mtag;
1522 struct rtk_desc *d;
1523 u_int32_t cmdstat, rtk_flags;
1524 struct rtk_txq *txq;
1525
1526 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1527 return EFBIG;
1528 }
1529
1530 /*
1531 * Set up checksum offload. Note: checksum offload bits must
1532 * appear in all descriptors of a multi-descriptor transmit
1533 * attempt. (This is according to testing done with an 8169
1534 * chip. I'm not sure if this is a requirement or a bug.)
1535 */
1536
1537 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1538 u_int32_t segsz = m->m_pkthdr.segsz;
1539
1540 rtk_flags = RTK_TDESC_CMD_LGSEND |
1541 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1542 } else {
1543
1544 /*
1545 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1546 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1547 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1548 */
1549
1550 rtk_flags = 0;
1551 if ((m->m_pkthdr.csum_flags &
1552 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1553 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1554 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1555 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1556 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1557 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1558 }
1559 }
1560 }
1561
1562 txq = &sc->rtk_ldata.rtk_txq[*idx];
1563 map = txq->txq_dmamap;
1564 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1565 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1566
1567 if (error) {
1568 /* XXX try to defrag if EFBIG? */
1569
1570 aprint_error("%s: can't map mbuf (error %d)\n",
1571 sc->sc_dev.dv_xname, error);
1572
1573 return error;
1574 }
1575
1576 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1577 error = EFBIG;
1578 goto fail_unload;
1579 }
1580
1581 /*
1582 * Make sure that the caches are synchronized before we
1583 * ask the chip to start DMA for the packet data.
1584 */
1585 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1586 BUS_DMASYNC_PREWRITE);
1587
1588 /*
1589 * Map the segment array into descriptors. Note that we set the
1590 * start-of-frame and end-of-frame markers for either TX or RX, but
1591 * they really only have meaning in the TX case. (In the RX case,
1592 * it's the chip that tells us where packets begin and end.)
1593 * We also keep track of the end of the ring and set the
1594 * end-of-ring bits as needed, and we set the ownership bits
1595 * in all except the very first descriptor. (The caller will
1596 * set this descriptor later when it start transmission or
1597 * reception.)
1598 */
1599 i = 0;
1600 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1601 while (1) {
1602 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1603 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1604 while (i > 0) {
1605 sc->rtk_ldata.rtk_tx_list[
1606 (curidx + RTK_TX_DESC_CNT(sc) - i) %
1607 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1608 i--;
1609 }
1610 error = ENOBUFS;
1611 goto fail_unload;
1612 }
1613
1614 cmdstat = map->dm_segs[i].ds_len;
1615 d->rtk_bufaddr_lo =
1616 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1617 d->rtk_bufaddr_hi =
1618 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1619 if (i == 0)
1620 cmdstat |= RTK_TDESC_CMD_SOF;
1621 else
1622 cmdstat |= RTK_TDESC_CMD_OWN;
1623 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1624 cmdstat |= RTK_TDESC_CMD_EOR;
1625 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1626 i++;
1627 if (i == map->dm_nsegs)
1628 break;
1629 RTK_TX_DESC_INC(sc, curidx);
1630 }
1631
1632 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1633
1634 txq->txq_mbuf = m;
1635 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1636
1637 /*
1638 * Set up hardware VLAN tagging. Note: vlan tag info must
1639 * appear in the first descriptor of a multi-descriptor
1640 * transmission attempt.
1641 */
1642
1643 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1644 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1645 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1646 RTK_TDESC_VLANCTL_TAG);
1647 }
1648
1649 /* Transfer ownership of packet to the chip. */
1650
1651 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1652 htole32(RTK_TDESC_CMD_OWN);
1653 if (startidx != curidx)
1654 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1655 htole32(RTK_TDESC_CMD_OWN);
1656
1657 txq->txq_descidx = curidx;
1658 RTK_TX_DESC_INC(sc, curidx);
1659 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1660 *idx = (*idx + 1) % RTK_TX_QLEN;
1661
1662 return 0;
1663
1664 fail_unload:
1665 bus_dmamap_unload(sc->sc_dmat, map);
1666
1667 return error;
1668 }
1669
1670 /*
1671 * Main transmit routine for C+ and gigE NICs.
1672 */
1673
1674 static void
1675 re_start(struct ifnet *ifp)
1676 {
1677 struct rtk_softc *sc;
1678 int idx;
1679
1680 sc = ifp->if_softc;
1681
1682 idx = sc->rtk_ldata.rtk_txq_prodidx;
1683 while (/* CONSTCOND */ 1) {
1684 struct mbuf *m;
1685 int error;
1686
1687 IFQ_POLL(&ifp->if_snd, m);
1688 if (m == NULL)
1689 break;
1690
1691 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1692 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1693 ifp->if_flags |= IFF_OACTIVE;
1694 break;
1695 }
1696
1697 error = re_encap(sc, m, &idx);
1698 if (error == EFBIG &&
1699 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1700 IFQ_DEQUEUE(&ifp->if_snd, m);
1701 m_freem(m);
1702 ifp->if_oerrors++;
1703 continue;
1704 }
1705 if (error) {
1706 ifp->if_flags |= IFF_OACTIVE;
1707 break;
1708 }
1709
1710 IFQ_DEQUEUE(&ifp->if_snd, m);
1711
1712 #if NBPFILTER > 0
1713 /*
1714 * If there's a BPF listener, bounce a copy of this frame
1715 * to him.
1716 */
1717 if (ifp->if_bpf)
1718 bpf_mtap(ifp->if_bpf, m);
1719 #endif
1720 }
1721
1722 if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1723 return;
1724 }
1725 sc->rtk_ldata.rtk_txq_prodidx = idx;
1726
1727 /* Flush the TX descriptors */
1728
1729 bus_dmamap_sync(sc->sc_dmat,
1730 sc->rtk_ldata.rtk_tx_list_map,
1731 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1732 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1733
1734 /*
1735 * RealTek put the TX poll request register in a different
1736 * location on the 8169 gigE chip. I don't know why.
1737 */
1738
1739 if (sc->rtk_type == RTK_8169)
1740 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1741 else
1742 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1743
1744 /*
1745 * Use the countdown timer for interrupt moderation.
1746 * 'TX done' interrupts are disabled. Instead, we reset the
1747 * countdown timer, which will begin counting until it hits
1748 * the value in the TIMERINT register, and then trigger an
1749 * interrupt. Each time we write to the TIMERCNT register,
1750 * the timer count is reset to 0.
1751 */
1752 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1753
1754 /*
1755 * Set a timeout in case the chip goes out to lunch.
1756 */
1757 ifp->if_timer = 5;
1758
1759 return;
1760 }
1761
1762 static int
1763 re_init(struct ifnet *ifp)
1764 {
1765 struct rtk_softc *sc = ifp->if_softc;
1766 u_int32_t rxcfg = 0;
1767 u_int32_t reg;
1768 int error;
1769
1770 if ((error = re_enable(sc)) != 0)
1771 goto out;
1772
1773 /*
1774 * Cancel pending I/O and free all RX/TX buffers.
1775 */
1776 re_stop(ifp, 0);
1777
1778 /*
1779 * Enable C+ RX and TX mode, as well as VLAN stripping and
1780 * RX checksum offload. We must configure the C+ register
1781 * before all others.
1782 */
1783 reg = 0;
1784
1785 /*
1786 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1787 * FreeBSD drivers set these bits anyway (for 8139C+?).
1788 * So far, it works.
1789 */
1790
1791 /*
1792 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1793 * For 8169S/8110S rev 2 and above, do not set bit 14.
1794 */
1795 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1796 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1797
1798 if (1) {/* not for 8169S ? */
1799 reg |= RTK_CPLUSCMD_VLANSTRIP |
1800 (ifp->if_capenable &
1801 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1802 IFCAP_CSUM_UDPv4_Rx) ?
1803 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1804 }
1805
1806 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1807 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1808
1809 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1810 if (sc->rtk_type == RTK_8169)
1811 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1812
1813 DELAY(10000);
1814
1815 /*
1816 * Init our MAC address. Even though the chipset
1817 * documentation doesn't mention it, we need to enter "Config
1818 * register write enable" mode to modify the ID registers.
1819 */
1820 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1821 memcpy(®, LLADDR(ifp->if_sadl), 4);
1822 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1823 reg = 0;
1824 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1825 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1826 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1827
1828 /*
1829 * For C+ mode, initialize the RX descriptors and mbufs.
1830 */
1831 re_rx_list_init(sc);
1832 re_tx_list_init(sc);
1833
1834 /*
1835 * Enable transmit and receive.
1836 */
1837 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1838
1839 /*
1840 * Set the initial TX and RX configuration.
1841 */
1842 if (sc->rtk_testmode) {
1843 if (sc->rtk_type == RTK_8169)
1844 CSR_WRITE_4(sc, RTK_TXCFG,
1845 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1846 else
1847 CSR_WRITE_4(sc, RTK_TXCFG,
1848 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1849 } else
1850 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1851 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1852
1853 /* Set the individual bit to receive frames for this host only. */
1854 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1855 rxcfg |= RTK_RXCFG_RX_INDIV;
1856
1857 /* If we want promiscuous mode, set the allframes bit. */
1858 if (ifp->if_flags & IFF_PROMISC)
1859 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1860 else
1861 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1862 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1863
1864 /*
1865 * Set capture broadcast bit to capture broadcast frames.
1866 */
1867 if (ifp->if_flags & IFF_BROADCAST)
1868 rxcfg |= RTK_RXCFG_RX_BROAD;
1869 else
1870 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1871 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1872
1873 /*
1874 * Program the multicast filter, if necessary.
1875 */
1876 rtk_setmulti(sc);
1877
1878 #ifdef DEVICE_POLLING
1879 /*
1880 * Disable interrupts if we are polling.
1881 */
1882 if (ifp->if_flags & IFF_POLLING)
1883 CSR_WRITE_2(sc, RTK_IMR, 0);
1884 else /* otherwise ... */
1885 #endif /* DEVICE_POLLING */
1886 /*
1887 * Enable interrupts.
1888 */
1889 if (sc->rtk_testmode)
1890 CSR_WRITE_2(sc, RTK_IMR, 0);
1891 else
1892 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1893
1894 /* Start RX/TX process. */
1895 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1896 #ifdef notdef
1897 /* Enable receiver and transmitter. */
1898 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1899 #endif
1900 /*
1901 * Load the addresses of the RX and TX lists into the chip.
1902 */
1903
1904 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1905 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1906 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1907 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1908
1909 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1910 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1911 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1912 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1913
1914 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1915
1916 /*
1917 * Initialize the timer interrupt register so that
1918 * a timer interrupt will be generated once the timer
1919 * reaches a certain number of ticks. The timer is
1920 * reloaded on each transmit. This gives us TX interrupt
1921 * moderation, which dramatically improves TX frame rate.
1922 */
1923
1924 if (sc->rtk_type == RTK_8169)
1925 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1926 else
1927 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1928
1929 /*
1930 * For 8169 gigE NICs, set the max allowed RX packet
1931 * size so we can receive jumbo frames.
1932 */
1933 if (sc->rtk_type == RTK_8169)
1934 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1935
1936 if (sc->rtk_testmode)
1937 return 0;
1938
1939 mii_mediachg(&sc->mii);
1940
1941 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1942
1943 ifp->if_flags |= IFF_RUNNING;
1944 ifp->if_flags &= ~IFF_OACTIVE;
1945
1946 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1947
1948 out:
1949 if (error) {
1950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1951 ifp->if_timer = 0;
1952 aprint_error("%s: interface not running\n",
1953 sc->sc_dev.dv_xname);
1954 }
1955
1956 return error;
1957
1958 }
1959
1960 /*
1961 * Set media options.
1962 */
1963 static int
1964 re_ifmedia_upd(struct ifnet *ifp)
1965 {
1966 struct rtk_softc *sc;
1967
1968 sc = ifp->if_softc;
1969
1970 return mii_mediachg(&sc->mii);
1971 }
1972
1973 /*
1974 * Report current media status.
1975 */
1976 static void
1977 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1978 {
1979 struct rtk_softc *sc;
1980
1981 sc = ifp->if_softc;
1982
1983 mii_pollstat(&sc->mii);
1984 ifmr->ifm_active = sc->mii.mii_media_active;
1985 ifmr->ifm_status = sc->mii.mii_media_status;
1986
1987 return;
1988 }
1989
1990 static int
1991 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1992 {
1993 struct rtk_softc *sc = ifp->if_softc;
1994 struct ifreq *ifr = (struct ifreq *) data;
1995 int s, error = 0;
1996
1997 s = splnet();
1998
1999 switch (command) {
2000 case SIOCSIFMTU:
2001 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2002 error = EINVAL;
2003 ifp->if_mtu = ifr->ifr_mtu;
2004 break;
2005 case SIOCGIFMEDIA:
2006 case SIOCSIFMEDIA:
2007 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2008 break;
2009 default:
2010 error = ether_ioctl(ifp, command, data);
2011 if (error == ENETRESET) {
2012 if (ifp->if_flags & IFF_RUNNING)
2013 rtk_setmulti(sc);
2014 error = 0;
2015 }
2016 break;
2017 }
2018
2019 splx(s);
2020
2021 return error;
2022 }
2023
2024 static void
2025 re_watchdog(struct ifnet *ifp)
2026 {
2027 struct rtk_softc *sc;
2028 int s;
2029
2030 sc = ifp->if_softc;
2031 s = splnet();
2032 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2033 ifp->if_oerrors++;
2034
2035 re_txeof(sc);
2036 re_rxeof(sc);
2037
2038 re_init(ifp);
2039
2040 splx(s);
2041 }
2042
2043 /*
2044 * Stop the adapter and free any mbufs allocated to the
2045 * RX and TX lists.
2046 */
2047 static void
2048 re_stop(struct ifnet *ifp, int disable)
2049 {
2050 register int i;
2051 struct rtk_softc *sc = ifp->if_softc;
2052
2053 callout_stop(&sc->rtk_tick_ch);
2054
2055 #ifdef DEVICE_POLLING
2056 ether_poll_deregister(ifp);
2057 #endif /* DEVICE_POLLING */
2058
2059 mii_down(&sc->mii);
2060
2061 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2062 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2063
2064 if (sc->rtk_head != NULL) {
2065 m_freem(sc->rtk_head);
2066 sc->rtk_head = sc->rtk_tail = NULL;
2067 }
2068
2069 /* Free the TX list buffers. */
2070 for (i = 0; i < RTK_TX_QLEN; i++) {
2071 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2072 bus_dmamap_unload(sc->sc_dmat,
2073 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2074 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2075 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2076 }
2077 }
2078
2079 /* Free the RX list buffers. */
2080 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2081 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2082 bus_dmamap_unload(sc->sc_dmat,
2083 sc->rtk_ldata.rtk_rx_dmamap[i]);
2084 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2085 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2086 }
2087 }
2088
2089 if (disable)
2090 re_disable(sc);
2091
2092 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2093 ifp->if_timer = 0;
2094
2095 return;
2096 }
2097