rtl8169.c revision 1.25 1 /* $NetBSD: rtl8169.c,v 1.25 2006/06/18 16:14:10 rpaulo Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 bus_dmamap_sync(sc->sc_dmat,
493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 BUS_DMASYNC_POSTREAD);
497 bus_dmamap_unload(sc->sc_dmat,
498 sc->rtk_ldata.rtk_rx_dmamap[0]);
499
500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 eh = mtod(m0, struct ether_header *);
503
504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 total_len = RTK_RXBYTES(cur_rx);
506 rxstat = le32toh(cur_rx->rtk_cmdstat);
507
508 if (total_len != ETHER_MIN_LEN) {
509 aprint_error("%s: diagnostic failed, received short packet\n",
510 sc->sc_dev.dv_xname);
511 error = EIO;
512 goto done;
513 }
514
515 /* Test that the received packet data matches what we sent. */
516
517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 aprint_error("%s: WARNING, DMA FAILURE!\n",
521 sc->sc_dev.dv_xname);
522 aprint_error("%s: expected TX data: %s",
523 sc->sc_dev.dv_xname, ether_sprintf(dst));
524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 aprint_error("%s: received RX data: %s",
526 sc->sc_dev.dv_xname,
527 ether_sprintf(eh->ether_dhost));
528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 ntohs(eh->ether_type));
530 aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Read the re(4) man page for more details.\n",
535 sc->sc_dev.dv_xname);
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->rtk_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 u_char eaddr[ETHER_ADDR_LEN];
560 u_int16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564
565 /* XXX JRS: bus-attach-independent code begins approximately here */
566
567 /* Reset the adapter. */
568 re_reset(sc);
569
570 if (sc->rtk_type == RTK_8169) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 if (hwrev == (0x1 << 28)) {
576 sc->sc_rev = 4;
577 } else if (hwrev == (0x1 << 26)) {
578 sc->sc_rev = 3;
579 } else if (hwrev == (0x1 << 23)) {
580 sc->sc_rev = 2;
581 } else
582 sc->sc_rev = 1;
583
584 /* Set RX length mask */
585
586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587
588 /* Force station address autoload from the EEPROM */
589
590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 for (i = 0; i < RTK_TIMEOUT; i++) {
592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 break;
594 DELAY(100);
595 }
596 if (i == RTK_TIMEOUT)
597 aprint_error("%s: eeprom autoload timed out\n",
598 sc->sc_dev.dv_xname);
599
600 for (i = 0; i < ETHER_ADDR_LEN; i++)
601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602
603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 } else {
605
606 /* Set RX length mask */
607
608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609
610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 addr_len = RTK_EEADDR_LEN1;
612 else
613 addr_len = RTK_EEADDR_LEN0;
614
615 /*
616 * Get station address from the EEPROM.
617 */
618 for (i = 0; i < 3; i++) {
619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 eaddr[(i * 2) + 0] = val & 0xff;
621 eaddr[(i * 2) + 1] = val >> 8;
622 }
623
624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct rtk_desc)) {
632 sc->rtk_ldata.rtk_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct rtk_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638
639 /* Allocate DMA'able memory for the TX ring */
640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 sc->sc_dev.dv_xname, error);
645 goto fail_0;
646 }
647
648 /* Load the map for the TX ring. */
649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 BUS_DMA_NOWAIT)) != 0) {
653 aprint_error("%s: can't map tx list, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_1;
656 }
657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658
659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 aprint_error("%s: can't create tx list map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_2;
665 }
666
667
668 if ((error = bus_dmamap_load(sc->sc_dmat,
669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 aprint_error("%s: can't load tx list, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_3;
674 }
675
676 /* Create DMA maps for TX buffers */
677 for (i = 0; i < RTK_TX_QLEN; i++) {
678 error = bus_dmamap_create(sc->sc_dmat,
679 round_page(IP_MAXPACKET),
680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 0, BUS_DMA_ALLOCNOW,
682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 sc->sc_dev.dv_xname, error);
696 goto fail_4;
697 }
698
699 /* Load the map for the RX ring. */
700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 BUS_DMA_NOWAIT)) != 0) {
704 aprint_error("%s: can't map rx list, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_5;
707 }
708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709
710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 aprint_error("%s: can't create rx list map, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_6;
716 }
717
718 if ((error = bus_dmamap_load(sc->sc_dmat,
719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 aprint_error("%s: can't load rx list, error = %d\n",
722 sc->sc_dev.dv_xname, error);
723 goto fail_7;
724 }
725
726 /* Create DMA maps for RX buffers */
727 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 if (error) {
731 aprint_error("%s: can't create DMA map for RX\n",
732 sc->sc_dev.dv_xname);
733 goto fail_8;
734 }
735 }
736
737 /*
738 * Record interface as attached. From here, we should not fail.
739 */
740 sc->sc_flags |= RTK_ATTACHED;
741
742 ifp = &sc->ethercom.ec_if;
743 ifp->if_softc = sc;
744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 ifp->if_mtu = ETHERMTU;
746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 ifp->if_ioctl = re_ioctl;
748 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
749
750 /*
751 * This is a way to disable hw VLAN tagging by default
752 * (RE_VLAN is undefined), as it is problematic. PR 32643
753 */
754
755 #ifdef RE_VLAN
756 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
757 #endif
758 ifp->if_start = re_start;
759 ifp->if_stop = re_stop;
760
761 /*
762 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
763 */
764
765 ifp->if_capabilities |=
766 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
767 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
768 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
769 IFCAP_TSOv4;
770 ifp->if_watchdog = re_watchdog;
771 ifp->if_init = re_init;
772 if (sc->rtk_type == RTK_8169)
773 ifp->if_baudrate = 1000000000;
774 else
775 ifp->if_baudrate = 100000000;
776 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
777 ifp->if_capenable = ifp->if_capabilities;
778 IFQ_SET_READY(&ifp->if_snd);
779
780 callout_init(&sc->rtk_tick_ch);
781
782 /* Do MII setup */
783 sc->mii.mii_ifp = ifp;
784 sc->mii.mii_readreg = re_miibus_readreg;
785 sc->mii.mii_writereg = re_miibus_writereg;
786 sc->mii.mii_statchg = re_miibus_statchg;
787 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
788 re_ifmedia_sts);
789 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
790 MII_OFFSET_ANY, 0);
791 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
792
793 /*
794 * Call MI attach routine.
795 */
796 if_attach(ifp);
797 ether_ifattach(ifp, eaddr);
798
799
800 /*
801 * Make sure the interface is shutdown during reboot.
802 */
803 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
804 if (sc->sc_sdhook == NULL)
805 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
806 sc->sc_dev.dv_xname);
807 /*
808 * Add a suspend hook to make sure we come back up after a
809 * resume.
810 */
811 sc->sc_powerhook = powerhook_establish(re_power, sc);
812 if (sc->sc_powerhook == NULL)
813 aprint_error("%s: WARNING: unable to establish power hook\n",
814 sc->sc_dev.dv_xname);
815
816
817 return;
818
819 fail_8:
820 /* Destroy DMA maps for RX buffers. */
821 for (i = 0; i < RTK_RX_DESC_CNT; i++)
822 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
823 bus_dmamap_destroy(sc->sc_dmat,
824 sc->rtk_ldata.rtk_rx_dmamap[i]);
825
826 /* Free DMA'able memory for the RX ring. */
827 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
828 fail_7:
829 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
830 fail_6:
831 bus_dmamem_unmap(sc->sc_dmat,
832 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
833 fail_5:
834 bus_dmamem_free(sc->sc_dmat,
835 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
836
837 fail_4:
838 /* Destroy DMA maps for TX buffers. */
839 for (i = 0; i < RTK_TX_QLEN; i++)
840 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
841 bus_dmamap_destroy(sc->sc_dmat,
842 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
843
844 /* Free DMA'able memory for the TX ring. */
845 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
846 fail_3:
847 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
848 fail_2:
849 bus_dmamem_unmap(sc->sc_dmat,
850 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
851 fail_1:
852 bus_dmamem_free(sc->sc_dmat,
853 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
854 fail_0:
855 return;
856 }
857
858
859 /*
860 * re_activate:
861 * Handle device activation/deactivation requests.
862 */
863 int
864 re_activate(struct device *self, enum devact act)
865 {
866 struct rtk_softc *sc = (void *) self;
867 int s, error = 0;
868
869 s = splnet();
870 switch (act) {
871 case DVACT_ACTIVATE:
872 error = EOPNOTSUPP;
873 break;
874 case DVACT_DEACTIVATE:
875 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
876 if_deactivate(&sc->ethercom.ec_if);
877 break;
878 }
879 splx(s);
880
881 return error;
882 }
883
884 /*
885 * re_detach:
886 * Detach a rtk interface.
887 */
888 int
889 re_detach(struct rtk_softc *sc)
890 {
891 struct ifnet *ifp = &sc->ethercom.ec_if;
892 int i;
893
894 /*
895 * Succeed now if there isn't any work to do.
896 */
897 if ((sc->sc_flags & RTK_ATTACHED) == 0)
898 return 0;
899
900 /* Unhook our tick handler. */
901 callout_stop(&sc->rtk_tick_ch);
902
903 /* Detach all PHYs. */
904 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
905
906 /* Delete all remaining media. */
907 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
908
909 ether_ifdetach(ifp);
910 if_detach(ifp);
911
912 /* XXX undo re_allocmem() */
913
914 /* Destroy DMA maps for RX buffers. */
915 for (i = 0; i < RTK_RX_DESC_CNT; i++)
916 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
917 bus_dmamap_destroy(sc->sc_dmat,
918 sc->rtk_ldata.rtk_rx_dmamap[i]);
919
920 /* Free DMA'able memory for the RX ring. */
921 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
922 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
923 bus_dmamem_unmap(sc->sc_dmat,
924 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
925 bus_dmamem_free(sc->sc_dmat,
926 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
927
928 /* Destroy DMA maps for TX buffers. */
929 for (i = 0; i < RTK_TX_QLEN; i++)
930 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
931 bus_dmamap_destroy(sc->sc_dmat,
932 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
933
934 /* Free DMA'able memory for the TX ring. */
935 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
936 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
937 bus_dmamem_unmap(sc->sc_dmat,
938 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
939 bus_dmamem_free(sc->sc_dmat,
940 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
941
942
943 shutdownhook_disestablish(sc->sc_sdhook);
944 powerhook_disestablish(sc->sc_powerhook);
945
946 return 0;
947 }
948
949 /*
950 * re_enable:
951 * Enable the RTL81X9 chip.
952 */
953 static int
954 re_enable(struct rtk_softc *sc)
955 {
956 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
957 if ((*sc->sc_enable)(sc) != 0) {
958 aprint_error("%s: device enable failed\n",
959 sc->sc_dev.dv_xname);
960 return EIO;
961 }
962 sc->sc_flags |= RTK_ENABLED;
963 }
964 return 0;
965 }
966
967 /*
968 * re_disable:
969 * Disable the RTL81X9 chip.
970 */
971 static void
972 re_disable(struct rtk_softc *sc)
973 {
974
975 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
976 (*sc->sc_disable)(sc);
977 sc->sc_flags &= ~RTK_ENABLED;
978 }
979 }
980
981 /*
982 * re_power:
983 * Power management (suspend/resume) hook.
984 */
985 void
986 re_power(int why, void *arg)
987 {
988 struct rtk_softc *sc = (void *) arg;
989 struct ifnet *ifp = &sc->ethercom.ec_if;
990 int s;
991
992 s = splnet();
993 switch (why) {
994 case PWR_SUSPEND:
995 case PWR_STANDBY:
996 re_stop(ifp, 0);
997 if (sc->sc_power != NULL)
998 (*sc->sc_power)(sc, why);
999 break;
1000 case PWR_RESUME:
1001 if (ifp->if_flags & IFF_UP) {
1002 if (sc->sc_power != NULL)
1003 (*sc->sc_power)(sc, why);
1004 re_init(ifp);
1005 }
1006 break;
1007 case PWR_SOFTSUSPEND:
1008 case PWR_SOFTSTANDBY:
1009 case PWR_SOFTRESUME:
1010 break;
1011 }
1012 splx(s);
1013 }
1014
1015
1016 static int
1017 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1018 {
1019 struct mbuf *n = NULL;
1020 bus_dmamap_t map;
1021 struct rtk_desc *d;
1022 u_int32_t cmdstat;
1023 int error;
1024
1025 if (m == NULL) {
1026 MGETHDR(n, M_DONTWAIT, MT_DATA);
1027 if (n == NULL)
1028 return ENOBUFS;
1029 m = n;
1030
1031 MCLGET(m, M_DONTWAIT);
1032 if (!(m->m_flags & M_EXT)) {
1033 m_freem(m);
1034 return ENOBUFS;
1035 }
1036 } else
1037 m->m_data = m->m_ext.ext_buf;
1038
1039 /*
1040 * Initialize mbuf length fields and fixup
1041 * alignment so that the frame payload is
1042 * longword aligned.
1043 */
1044 m->m_len = m->m_pkthdr.len = MCLBYTES;
1045 m_adj(m, RTK_ETHER_ALIGN);
1046
1047 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1048 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1049 BUS_DMA_READ|BUS_DMA_NOWAIT);
1050
1051 if (error)
1052 goto out;
1053
1054 d = &sc->rtk_ldata.rtk_rx_list[idx];
1055 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1056 goto out;
1057
1058 cmdstat = map->dm_segs[0].ds_len;
1059 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1060 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1061 if (idx == (RTK_RX_DESC_CNT - 1))
1062 cmdstat |= RTK_RDESC_CMD_EOR;
1063 d->rtk_cmdstat = htole32(cmdstat);
1064
1065 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1066 htole32(RTK_RDESC_CMD_OWN);
1067 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1068
1069 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1070 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1071 BUS_DMASYNC_PREREAD);
1072
1073 return 0;
1074 out:
1075 if (n != NULL)
1076 m_freem(n);
1077 return ENOMEM;
1078 }
1079
1080 static int
1081 re_tx_list_init(struct rtk_softc *sc)
1082 {
1083 int i;
1084
1085 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1086 for (i = 0; i < RTK_TX_QLEN; i++) {
1087 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1088 }
1089
1090 bus_dmamap_sync(sc->sc_dmat,
1091 sc->rtk_ldata.rtk_tx_list_map, 0,
1092 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1093 sc->rtk_ldata.rtk_txq_prodidx = 0;
1094 sc->rtk_ldata.rtk_txq_considx = 0;
1095 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1096 sc->rtk_ldata.rtk_tx_nextfree = 0;
1097
1098 return 0;
1099 }
1100
1101 static int
1102 re_rx_list_init(struct rtk_softc *sc)
1103 {
1104 int i;
1105
1106 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1107 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1108 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1109
1110 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1111 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1112 return ENOBUFS;
1113 }
1114
1115 /* Flush the RX descriptors */
1116
1117 bus_dmamap_sync(sc->sc_dmat,
1118 sc->rtk_ldata.rtk_rx_list_map,
1119 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1120 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1121
1122 sc->rtk_ldata.rtk_rx_prodidx = 0;
1123 sc->rtk_head = sc->rtk_tail = NULL;
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * RX handler for C+ and 8169. For the gigE chips, we support
1130 * the reception of jumbo frames that have been fragmented
1131 * across multiple 2K mbuf cluster buffers.
1132 */
1133 static void
1134 re_rxeof(struct rtk_softc *sc)
1135 {
1136 struct mbuf *m;
1137 struct ifnet *ifp;
1138 int i, total_len;
1139 struct rtk_desc *cur_rx;
1140 u_int32_t rxstat, rxvlan;
1141
1142 ifp = &sc->ethercom.ec_if;
1143 i = sc->rtk_ldata.rtk_rx_prodidx;
1144
1145 /* Invalidate the descriptor memory */
1146
1147 bus_dmamap_sync(sc->sc_dmat,
1148 sc->rtk_ldata.rtk_rx_list_map,
1149 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1150 BUS_DMASYNC_POSTREAD);
1151
1152 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1153
1154 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1155 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1156 total_len = RTK_RXBYTES(cur_rx);
1157 rxstat = le32toh(cur_rx->rtk_cmdstat);
1158 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1159
1160 /* Invalidate the RX mbuf and unload its map */
1161
1162 bus_dmamap_sync(sc->sc_dmat,
1163 sc->rtk_ldata.rtk_rx_dmamap[i],
1164 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1165 BUS_DMASYNC_POSTREAD);
1166 bus_dmamap_unload(sc->sc_dmat,
1167 sc->rtk_ldata.rtk_rx_dmamap[i]);
1168
1169 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1170 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1171 if (sc->rtk_head == NULL)
1172 sc->rtk_head = sc->rtk_tail = m;
1173 else {
1174 m->m_flags &= ~M_PKTHDR;
1175 sc->rtk_tail->m_next = m;
1176 sc->rtk_tail = m;
1177 }
1178 re_newbuf(sc, i, NULL);
1179 RTK_RX_DESC_INC(sc, i);
1180 continue;
1181 }
1182
1183 /*
1184 * NOTE: for the 8139C+, the frame length field
1185 * is always 12 bits in size, but for the gigE chips,
1186 * it is 13 bits (since the max RX frame length is 16K).
1187 * Unfortunately, all 32 bits in the status word
1188 * were already used, so to make room for the extra
1189 * length bit, RealTek took out the 'frame alignment
1190 * error' bit and shifted the other status bits
1191 * over one slot. The OWN, EOR, FS and LS bits are
1192 * still in the same places. We have already extracted
1193 * the frame length and checked the OWN bit, so rather
1194 * than using an alternate bit mapping, we shift the
1195 * status bits one space to the right so we can evaluate
1196 * them using the 8169 status as though it was in the
1197 * same format as that of the 8139C+.
1198 */
1199 if (sc->rtk_type == RTK_8169)
1200 rxstat >>= 1;
1201
1202 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1203 ifp->if_ierrors++;
1204 /*
1205 * If this is part of a multi-fragment packet,
1206 * discard all the pieces.
1207 */
1208 if (sc->rtk_head != NULL) {
1209 m_freem(sc->rtk_head);
1210 sc->rtk_head = sc->rtk_tail = NULL;
1211 }
1212 re_newbuf(sc, i, m);
1213 RTK_RX_DESC_INC(sc, i);
1214 continue;
1215 }
1216
1217 /*
1218 * If allocating a replacement mbuf fails,
1219 * reload the current one.
1220 */
1221
1222 if (re_newbuf(sc, i, NULL)) {
1223 ifp->if_ierrors++;
1224 if (sc->rtk_head != NULL) {
1225 m_freem(sc->rtk_head);
1226 sc->rtk_head = sc->rtk_tail = NULL;
1227 }
1228 re_newbuf(sc, i, m);
1229 RTK_RX_DESC_INC(sc, i);
1230 continue;
1231 }
1232
1233 RTK_RX_DESC_INC(sc, i);
1234
1235 if (sc->rtk_head != NULL) {
1236 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1237 /*
1238 * Special case: if there's 4 bytes or less
1239 * in this buffer, the mbuf can be discarded:
1240 * the last 4 bytes is the CRC, which we don't
1241 * care about anyway.
1242 */
1243 if (m->m_len <= ETHER_CRC_LEN) {
1244 sc->rtk_tail->m_len -=
1245 (ETHER_CRC_LEN - m->m_len);
1246 m_freem(m);
1247 } else {
1248 m->m_len -= ETHER_CRC_LEN;
1249 m->m_flags &= ~M_PKTHDR;
1250 sc->rtk_tail->m_next = m;
1251 }
1252 m = sc->rtk_head;
1253 sc->rtk_head = sc->rtk_tail = NULL;
1254 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1255 } else
1256 m->m_pkthdr.len = m->m_len =
1257 (total_len - ETHER_CRC_LEN);
1258
1259 ifp->if_ipackets++;
1260 m->m_pkthdr.rcvif = ifp;
1261
1262 /* Do RX checksumming if enabled */
1263
1264 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1265
1266 /* Check IP header checksum */
1267 if (rxstat & RTK_RDESC_STAT_PROTOID)
1268 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1269 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1270 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1271 }
1272
1273 /* Check TCP/UDP checksum */
1274 if (RTK_TCPPKT(rxstat) &&
1275 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1276 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1277 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1278 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1279 }
1280 if (RTK_UDPPKT(rxstat) &&
1281 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1282 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1283 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1285 }
1286
1287 #ifdef RE_VLAN
1288 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1289 VLAN_INPUT_TAG(ifp, m,
1290 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1291 continue);
1292 }
1293 #endif
1294 #if NBPFILTER > 0
1295 if (ifp->if_bpf)
1296 bpf_mtap(ifp->if_bpf, m);
1297 #endif
1298 (*ifp->if_input)(ifp, m);
1299 }
1300
1301 /* Flush the RX DMA ring */
1302
1303 bus_dmamap_sync(sc->sc_dmat,
1304 sc->rtk_ldata.rtk_rx_list_map,
1305 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1306 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1307
1308 sc->rtk_ldata.rtk_rx_prodidx = i;
1309
1310 return;
1311 }
1312
1313 static void
1314 re_txeof(struct rtk_softc *sc)
1315 {
1316 struct ifnet *ifp;
1317 int idx;
1318
1319 ifp = &sc->ethercom.ec_if;
1320 idx = sc->rtk_ldata.rtk_txq_considx;
1321
1322 /* Invalidate the TX descriptor list */
1323
1324 bus_dmamap_sync(sc->sc_dmat,
1325 sc->rtk_ldata.rtk_tx_list_map,
1326 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1327 BUS_DMASYNC_POSTREAD);
1328
1329 while (/* CONSTCOND */ 1) {
1330 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1331 int descidx;
1332 u_int32_t txstat;
1333
1334 if (txq->txq_mbuf == NULL) {
1335 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1336 break;
1337 }
1338
1339 descidx = txq->txq_descidx;
1340 txstat =
1341 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1342 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1343 if (txstat & RTK_TDESC_CMD_OWN)
1344 break;
1345
1346 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1347 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1348 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1349 m_freem(txq->txq_mbuf);
1350 txq->txq_mbuf = NULL;
1351
1352 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1353 ifp->if_collisions++;
1354 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1355 ifp->if_oerrors++;
1356 else
1357 ifp->if_opackets++;
1358
1359 idx = (idx + 1) % RTK_TX_QLEN;
1360 }
1361
1362 /* No changes made to the TX ring, so no flush needed */
1363
1364 if (idx != sc->rtk_ldata.rtk_txq_considx) {
1365 sc->rtk_ldata.rtk_txq_considx = idx;
1366 ifp->if_flags &= ~IFF_OACTIVE;
1367 ifp->if_timer = 0;
1368 }
1369
1370 /*
1371 * If not all descriptors have been released reaped yet,
1372 * reload the timer so that we will eventually get another
1373 * interrupt that will cause us to re-enter this routine.
1374 * This is done in case the transmitter has gone idle.
1375 */
1376 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1377 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1378
1379 return;
1380 }
1381
1382 /*
1383 * Stop all chip I/O so that the kernel's probe routines don't
1384 * get confused by errant DMAs when rebooting.
1385 */
1386 static void
1387 re_shutdown(void *vsc)
1388
1389 {
1390 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1391
1392 re_stop(&sc->ethercom.ec_if, 0);
1393 }
1394
1395
1396 static void
1397 re_tick(void *xsc)
1398 {
1399 struct rtk_softc *sc = xsc;
1400 int s;
1401
1402 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1403 s = splnet();
1404
1405 mii_tick(&sc->mii);
1406 splx(s);
1407
1408 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1409 }
1410
1411 #ifdef DEVICE_POLLING
1412 static void
1413 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1414 {
1415 struct rtk_softc *sc = ifp->if_softc;
1416
1417 RTK_LOCK(sc);
1418 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1419 ether_poll_deregister(ifp);
1420 cmd = POLL_DEREGISTER;
1421 }
1422 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1423 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1424 goto done;
1425 }
1426
1427 sc->rxcycles = count;
1428 re_rxeof(sc);
1429 re_txeof(sc);
1430
1431 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1432 (*ifp->if_start)(ifp);
1433
1434 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1435 u_int16_t status;
1436
1437 status = CSR_READ_2(sc, RTK_ISR);
1438 if (status == 0xffff)
1439 goto done;
1440 if (status)
1441 CSR_WRITE_2(sc, RTK_ISR, status);
1442
1443 /*
1444 * XXX check behaviour on receiver stalls.
1445 */
1446
1447 if (status & RTK_ISR_SYSTEM_ERR) {
1448 re_reset(sc);
1449 re_init(sc);
1450 }
1451 }
1452 done:
1453 RTK_UNLOCK(sc);
1454 }
1455 #endif /* DEVICE_POLLING */
1456
1457 int
1458 re_intr(void *arg)
1459 {
1460 struct rtk_softc *sc = arg;
1461 struct ifnet *ifp;
1462 u_int16_t status;
1463 int handled = 0;
1464
1465 ifp = &sc->ethercom.ec_if;
1466
1467 if (!(ifp->if_flags & IFF_UP))
1468 return 0;
1469
1470 #ifdef DEVICE_POLLING
1471 if (ifp->if_flags & IFF_POLLING)
1472 goto done;
1473 if ((ifp->if_capenable & IFCAP_POLLING) &&
1474 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1475 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1476 re_poll(ifp, 0, 1);
1477 goto done;
1478 }
1479 #endif /* DEVICE_POLLING */
1480
1481 for (;;) {
1482
1483 status = CSR_READ_2(sc, RTK_ISR);
1484 /* If the card has gone away the read returns 0xffff. */
1485 if (status == 0xffff)
1486 break;
1487 if (status) {
1488 handled = 1;
1489 CSR_WRITE_2(sc, RTK_ISR, status);
1490 }
1491
1492 if ((status & RTK_INTRS_CPLUS) == 0)
1493 break;
1494
1495 if ((status & RTK_ISR_RX_OK) ||
1496 (status & RTK_ISR_RX_ERR))
1497 re_rxeof(sc);
1498
1499 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1500 (status & RTK_ISR_TX_ERR) ||
1501 (status & RTK_ISR_TX_DESC_UNAVAIL))
1502 re_txeof(sc);
1503
1504 if (status & RTK_ISR_SYSTEM_ERR) {
1505 re_reset(sc);
1506 re_init(ifp);
1507 }
1508
1509 if (status & RTK_ISR_LINKCHG) {
1510 callout_stop(&sc->rtk_tick_ch);
1511 re_tick(sc);
1512 }
1513 }
1514
1515 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1516 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1517 (*ifp->if_start)(ifp);
1518
1519 #ifdef DEVICE_POLLING
1520 done:
1521 #endif
1522
1523 return handled;
1524 }
1525
1526 static int
1527 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1528 {
1529 bus_dmamap_t map;
1530 int error, i, startidx, curidx;
1531 #ifdef RE_VLAN
1532 struct m_tag *mtag;
1533 #endif
1534 struct rtk_desc *d;
1535 u_int32_t cmdstat, rtk_flags;
1536 struct rtk_txq *txq;
1537
1538 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1539 return EFBIG;
1540 }
1541
1542 /*
1543 * Set up checksum offload. Note: checksum offload bits must
1544 * appear in all descriptors of a multi-descriptor transmit
1545 * attempt. (This is according to testing done with an 8169
1546 * chip. I'm not sure if this is a requirement or a bug.)
1547 */
1548
1549 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1550 u_int32_t segsz = m->m_pkthdr.segsz;
1551
1552 rtk_flags = RTK_TDESC_CMD_LGSEND |
1553 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1554 } else {
1555
1556 /*
1557 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1558 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1559 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1560 */
1561
1562 rtk_flags = 0;
1563 if ((m->m_pkthdr.csum_flags &
1564 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1565 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1566 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1567 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1568 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1569 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1570 }
1571 }
1572 }
1573
1574 txq = &sc->rtk_ldata.rtk_txq[*idx];
1575 map = txq->txq_dmamap;
1576 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1577 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1578
1579 if (error) {
1580 /* XXX try to defrag if EFBIG? */
1581
1582 aprint_error("%s: can't map mbuf (error %d)\n",
1583 sc->sc_dev.dv_xname, error);
1584
1585 return error;
1586 }
1587
1588 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1589 error = EFBIG;
1590 goto fail_unload;
1591 }
1592
1593 /*
1594 * Make sure that the caches are synchronized before we
1595 * ask the chip to start DMA for the packet data.
1596 */
1597 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1598 BUS_DMASYNC_PREWRITE);
1599
1600 /*
1601 * Map the segment array into descriptors. Note that we set the
1602 * start-of-frame and end-of-frame markers for either TX or RX, but
1603 * they really only have meaning in the TX case. (In the RX case,
1604 * it's the chip that tells us where packets begin and end.)
1605 * We also keep track of the end of the ring and set the
1606 * end-of-ring bits as needed, and we set the ownership bits
1607 * in all except the very first descriptor. (The caller will
1608 * set this descriptor later when it start transmission or
1609 * reception.)
1610 */
1611 i = 0;
1612 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1613 while (1) {
1614 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1615 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1616 while (i > 0) {
1617 sc->rtk_ldata.rtk_tx_list[
1618 (curidx + RTK_TX_DESC_CNT(sc) - i) %
1619 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1620 i--;
1621 }
1622 error = ENOBUFS;
1623 goto fail_unload;
1624 }
1625
1626 cmdstat = map->dm_segs[i].ds_len;
1627 d->rtk_bufaddr_lo =
1628 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1629 d->rtk_bufaddr_hi =
1630 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1631 if (i == 0)
1632 cmdstat |= RTK_TDESC_CMD_SOF;
1633 else
1634 cmdstat |= RTK_TDESC_CMD_OWN;
1635 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1636 cmdstat |= RTK_TDESC_CMD_EOR;
1637 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1638 i++;
1639 if (i == map->dm_nsegs)
1640 break;
1641 RTK_TX_DESC_INC(sc, curidx);
1642 }
1643
1644 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1645
1646 txq->txq_mbuf = m;
1647 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1648
1649 /*
1650 * Set up hardware VLAN tagging. Note: vlan tag info must
1651 * appear in the first descriptor of a multi-descriptor
1652 * transmission attempt.
1653 */
1654
1655 #ifdef RE_VLAN
1656 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1657 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1658 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1659 RTK_TDESC_VLANCTL_TAG);
1660 }
1661 #endif
1662
1663 /* Transfer ownership of packet to the chip. */
1664
1665 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1666 htole32(RTK_TDESC_CMD_OWN);
1667 if (startidx != curidx)
1668 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1669 htole32(RTK_TDESC_CMD_OWN);
1670
1671 txq->txq_descidx = curidx;
1672 RTK_TX_DESC_INC(sc, curidx);
1673 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1674 *idx = (*idx + 1) % RTK_TX_QLEN;
1675
1676 return 0;
1677
1678 fail_unload:
1679 bus_dmamap_unload(sc->sc_dmat, map);
1680
1681 return error;
1682 }
1683
1684 /*
1685 * Main transmit routine for C+ and gigE NICs.
1686 */
1687
1688 static void
1689 re_start(struct ifnet *ifp)
1690 {
1691 struct rtk_softc *sc;
1692 int idx;
1693
1694 sc = ifp->if_softc;
1695
1696 idx = sc->rtk_ldata.rtk_txq_prodidx;
1697 while (/* CONSTCOND */ 1) {
1698 struct mbuf *m;
1699 int error;
1700
1701 IFQ_POLL(&ifp->if_snd, m);
1702 if (m == NULL)
1703 break;
1704
1705 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1706 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1707 ifp->if_flags |= IFF_OACTIVE;
1708 break;
1709 }
1710
1711 error = re_encap(sc, m, &idx);
1712 if (error == EFBIG &&
1713 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1714 IFQ_DEQUEUE(&ifp->if_snd, m);
1715 m_freem(m);
1716 ifp->if_oerrors++;
1717 continue;
1718 }
1719 if (error) {
1720 ifp->if_flags |= IFF_OACTIVE;
1721 break;
1722 }
1723
1724 IFQ_DEQUEUE(&ifp->if_snd, m);
1725
1726 #if NBPFILTER > 0
1727 /*
1728 * If there's a BPF listener, bounce a copy of this frame
1729 * to him.
1730 */
1731 if (ifp->if_bpf)
1732 bpf_mtap(ifp->if_bpf, m);
1733 #endif
1734 }
1735
1736 if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1737 return;
1738 }
1739 sc->rtk_ldata.rtk_txq_prodidx = idx;
1740
1741 /* Flush the TX descriptors */
1742
1743 bus_dmamap_sync(sc->sc_dmat,
1744 sc->rtk_ldata.rtk_tx_list_map,
1745 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1746 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1747
1748 /*
1749 * RealTek put the TX poll request register in a different
1750 * location on the 8169 gigE chip. I don't know why.
1751 */
1752
1753 if (sc->rtk_type == RTK_8169)
1754 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1755 else
1756 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1757
1758 /*
1759 * Use the countdown timer for interrupt moderation.
1760 * 'TX done' interrupts are disabled. Instead, we reset the
1761 * countdown timer, which will begin counting until it hits
1762 * the value in the TIMERINT register, and then trigger an
1763 * interrupt. Each time we write to the TIMERCNT register,
1764 * the timer count is reset to 0.
1765 */
1766 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1767
1768 /*
1769 * Set a timeout in case the chip goes out to lunch.
1770 */
1771 ifp->if_timer = 5;
1772
1773 return;
1774 }
1775
1776 static int
1777 re_init(struct ifnet *ifp)
1778 {
1779 struct rtk_softc *sc = ifp->if_softc;
1780 u_int32_t rxcfg = 0;
1781 u_int32_t reg;
1782 int error;
1783
1784 if ((error = re_enable(sc)) != 0)
1785 goto out;
1786
1787 /*
1788 * Cancel pending I/O and free all RX/TX buffers.
1789 */
1790 re_stop(ifp, 0);
1791
1792 /*
1793 * Enable C+ RX and TX mode, as well as VLAN stripping and
1794 * RX checksum offload. We must configure the C+ register
1795 * before all others.
1796 */
1797 reg = 0;
1798
1799 /*
1800 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1801 * FreeBSD drivers set these bits anyway (for 8139C+?).
1802 * So far, it works.
1803 */
1804
1805 /*
1806 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1807 * For 8169S/8110S rev 2 and above, do not set bit 14.
1808 */
1809 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1810 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1811
1812 if (1) {/* not for 8169S ? */
1813 reg |=
1814 #ifdef RE_VLAN
1815 RTK_CPLUSCMD_VLANSTRIP |
1816 #endif
1817 (ifp->if_capenable &
1818 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1819 IFCAP_CSUM_UDPv4_Rx) ?
1820 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1821 }
1822
1823 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1824 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1825
1826 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1827 if (sc->rtk_type == RTK_8169)
1828 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1829
1830 DELAY(10000);
1831
1832 /*
1833 * Init our MAC address. Even though the chipset
1834 * documentation doesn't mention it, we need to enter "Config
1835 * register write enable" mode to modify the ID registers.
1836 */
1837 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1838 memcpy(®, LLADDR(ifp->if_sadl), 4);
1839 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1840 reg = 0;
1841 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1842 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1843 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1844
1845 /*
1846 * For C+ mode, initialize the RX descriptors and mbufs.
1847 */
1848 re_rx_list_init(sc);
1849 re_tx_list_init(sc);
1850
1851 /*
1852 * Enable transmit and receive.
1853 */
1854 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1855
1856 /*
1857 * Set the initial TX and RX configuration.
1858 */
1859 if (sc->rtk_testmode) {
1860 if (sc->rtk_type == RTK_8169)
1861 CSR_WRITE_4(sc, RTK_TXCFG,
1862 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1863 else
1864 CSR_WRITE_4(sc, RTK_TXCFG,
1865 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1866 } else
1867 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1868 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1869
1870 /* Set the individual bit to receive frames for this host only. */
1871 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1872 rxcfg |= RTK_RXCFG_RX_INDIV;
1873
1874 /* If we want promiscuous mode, set the allframes bit. */
1875 if (ifp->if_flags & IFF_PROMISC)
1876 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1877 else
1878 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1879 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1880
1881 /*
1882 * Set capture broadcast bit to capture broadcast frames.
1883 */
1884 if (ifp->if_flags & IFF_BROADCAST)
1885 rxcfg |= RTK_RXCFG_RX_BROAD;
1886 else
1887 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1888 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1889
1890 /*
1891 * Program the multicast filter, if necessary.
1892 */
1893 rtk_setmulti(sc);
1894
1895 #ifdef DEVICE_POLLING
1896 /*
1897 * Disable interrupts if we are polling.
1898 */
1899 if (ifp->if_flags & IFF_POLLING)
1900 CSR_WRITE_2(sc, RTK_IMR, 0);
1901 else /* otherwise ... */
1902 #endif /* DEVICE_POLLING */
1903 /*
1904 * Enable interrupts.
1905 */
1906 if (sc->rtk_testmode)
1907 CSR_WRITE_2(sc, RTK_IMR, 0);
1908 else
1909 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1910
1911 /* Start RX/TX process. */
1912 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1913 #ifdef notdef
1914 /* Enable receiver and transmitter. */
1915 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1916 #endif
1917 /*
1918 * Load the addresses of the RX and TX lists into the chip.
1919 */
1920
1921 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1922 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1923 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1924 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1925
1926 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1927 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1928 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1929 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1930
1931 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1932
1933 /*
1934 * Initialize the timer interrupt register so that
1935 * a timer interrupt will be generated once the timer
1936 * reaches a certain number of ticks. The timer is
1937 * reloaded on each transmit. This gives us TX interrupt
1938 * moderation, which dramatically improves TX frame rate.
1939 */
1940
1941 if (sc->rtk_type == RTK_8169)
1942 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1943 else
1944 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1945
1946 /*
1947 * For 8169 gigE NICs, set the max allowed RX packet
1948 * size so we can receive jumbo frames.
1949 */
1950 if (sc->rtk_type == RTK_8169)
1951 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1952
1953 if (sc->rtk_testmode)
1954 return 0;
1955
1956 mii_mediachg(&sc->mii);
1957
1958 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1959
1960 ifp->if_flags |= IFF_RUNNING;
1961 ifp->if_flags &= ~IFF_OACTIVE;
1962
1963 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1964
1965 out:
1966 if (error) {
1967 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1968 ifp->if_timer = 0;
1969 aprint_error("%s: interface not running\n",
1970 sc->sc_dev.dv_xname);
1971 }
1972
1973 return error;
1974
1975 }
1976
1977 /*
1978 * Set media options.
1979 */
1980 static int
1981 re_ifmedia_upd(struct ifnet *ifp)
1982 {
1983 struct rtk_softc *sc;
1984
1985 sc = ifp->if_softc;
1986
1987 return mii_mediachg(&sc->mii);
1988 }
1989
1990 /*
1991 * Report current media status.
1992 */
1993 static void
1994 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1995 {
1996 struct rtk_softc *sc;
1997
1998 sc = ifp->if_softc;
1999
2000 mii_pollstat(&sc->mii);
2001 ifmr->ifm_active = sc->mii.mii_media_active;
2002 ifmr->ifm_status = sc->mii.mii_media_status;
2003
2004 return;
2005 }
2006
2007 static int
2008 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2009 {
2010 struct rtk_softc *sc = ifp->if_softc;
2011 struct ifreq *ifr = (struct ifreq *) data;
2012 int s, error = 0;
2013
2014 s = splnet();
2015
2016 switch (command) {
2017 case SIOCSIFMTU:
2018 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2019 error = EINVAL;
2020 ifp->if_mtu = ifr->ifr_mtu;
2021 break;
2022 case SIOCGIFMEDIA:
2023 case SIOCSIFMEDIA:
2024 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2025 break;
2026 default:
2027 error = ether_ioctl(ifp, command, data);
2028 if (error == ENETRESET) {
2029 if (ifp->if_flags & IFF_RUNNING)
2030 rtk_setmulti(sc);
2031 error = 0;
2032 }
2033 break;
2034 }
2035
2036 splx(s);
2037
2038 return error;
2039 }
2040
2041 static void
2042 re_watchdog(struct ifnet *ifp)
2043 {
2044 struct rtk_softc *sc;
2045 int s;
2046
2047 sc = ifp->if_softc;
2048 s = splnet();
2049 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2050 ifp->if_oerrors++;
2051
2052 re_txeof(sc);
2053 re_rxeof(sc);
2054
2055 re_init(ifp);
2056
2057 splx(s);
2058 }
2059
2060 /*
2061 * Stop the adapter and free any mbufs allocated to the
2062 * RX and TX lists.
2063 */
2064 static void
2065 re_stop(struct ifnet *ifp, int disable)
2066 {
2067 register int i;
2068 struct rtk_softc *sc = ifp->if_softc;
2069
2070 callout_stop(&sc->rtk_tick_ch);
2071
2072 #ifdef DEVICE_POLLING
2073 ether_poll_deregister(ifp);
2074 #endif /* DEVICE_POLLING */
2075
2076 mii_down(&sc->mii);
2077
2078 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2079 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2080
2081 if (sc->rtk_head != NULL) {
2082 m_freem(sc->rtk_head);
2083 sc->rtk_head = sc->rtk_tail = NULL;
2084 }
2085
2086 /* Free the TX list buffers. */
2087 for (i = 0; i < RTK_TX_QLEN; i++) {
2088 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2089 bus_dmamap_unload(sc->sc_dmat,
2090 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2091 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2092 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2093 }
2094 }
2095
2096 /* Free the RX list buffers. */
2097 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2098 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2099 bus_dmamap_unload(sc->sc_dmat,
2100 sc->rtk_ldata.rtk_rx_dmamap[i]);
2101 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2102 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2103 }
2104 }
2105
2106 if (disable)
2107 re_disable(sc);
2108
2109 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2110 ifp->if_timer = 0;
2111
2112 return;
2113 }
2114