rtl8169.c revision 1.25.6.2 1 /* $NetBSD: rtl8169.c,v 1.25.6.2 2006/12/10 07:17:07 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if (sc->rtk_type == RTK_8169) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if (sc->rtk_type == RTK_8169) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if (sc->rtk_type == RTK_8139CPLUS) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (sc->rtk_type == RTK_8169) {
578 uint32_t hwrev;
579
580 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
581 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
582 if (hwrev == (0x1 << 28)) {
583 sc->sc_rev = 4;
584 } else if (hwrev == (0x1 << 26)) {
585 sc->sc_rev = 3;
586 } else if (hwrev == (0x1 << 23)) {
587 sc->sc_rev = 2;
588 } else
589 sc->sc_rev = 1;
590
591 /* Set RX length mask */
592
593 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
594
595 /* Force station address autoload from the EEPROM */
596
597 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
598 for (i = 0; i < RTK_TIMEOUT; i++) {
599 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
600 == 0)
601 break;
602 DELAY(100);
603 }
604 if (i == RTK_TIMEOUT)
605 aprint_error("%s: eeprom autoload timed out\n",
606 sc->sc_dev.dv_xname);
607
608 for (i = 0; i < ETHER_ADDR_LEN; i++)
609 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
610
611 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
612 } else {
613
614 /* Set RX length mask */
615
616 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
617
618 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
619 addr_len = RTK_EEADDR_LEN1;
620 else
621 addr_len = RTK_EEADDR_LEN0;
622
623 /*
624 * Get station address from the EEPROM.
625 */
626 for (i = 0; i < 3; i++) {
627 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
628 eaddr[(i * 2) + 0] = val & 0xff;
629 eaddr[(i * 2) + 1] = val >> 8;
630 }
631
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
633 }
634
635 aprint_normal("%s: Ethernet address %s\n",
636 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
637
638 if (sc->re_ldata.re_tx_desc_cnt >
639 PAGE_SIZE / sizeof(struct re_desc)) {
640 sc->re_ldata.re_tx_desc_cnt =
641 PAGE_SIZE / sizeof(struct re_desc);
642 }
643
644 aprint_verbose("%s: using %d tx descriptors\n",
645 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
646 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
647
648 /* Allocate DMA'able memory for the TX ring */
649 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
650 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
651 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
652 aprint_error("%s: can't allocate tx listseg, error = %d\n",
653 sc->sc_dev.dv_xname, error);
654 goto fail_0;
655 }
656
657 /* Load the map for the TX ring. */
658 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
659 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
660 (caddr_t *)&sc->re_ldata.re_tx_list,
661 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
662 aprint_error("%s: can't map tx list, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_1;
665 }
666 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
667
668 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
669 RE_TX_LIST_SZ(sc), 0, 0,
670 &sc->re_ldata.re_tx_list_map)) != 0) {
671 aprint_error("%s: can't create tx list map, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_2;
674 }
675
676
677 if ((error = bus_dmamap_load(sc->sc_dmat,
678 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
679 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
680 aprint_error("%s: can't load tx list, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_3;
683 }
684
685 /* Create DMA maps for TX buffers */
686 for (i = 0; i < RE_TX_QLEN; i++) {
687 error = bus_dmamap_create(sc->sc_dmat,
688 round_page(IP_MAXPACKET),
689 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
690 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
691 if (error) {
692 aprint_error("%s: can't create DMA map for TX\n",
693 sc->sc_dev.dv_xname);
694 goto fail_4;
695 }
696 }
697
698 /* Allocate DMA'able memory for the RX ring */
699 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
700 if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
702 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_4;
706 }
707
708 /* Load the map for the RX ring. */
709 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
710 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
711 (caddr_t *)&sc->re_ldata.re_rx_list,
712 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
713 aprint_error("%s: can't map rx list, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_5;
716 }
717 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
718
719 if ((error = bus_dmamap_create(sc->sc_dmat,
720 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
721 &sc->re_ldata.re_rx_list_map)) != 0) {
722 aprint_error("%s: can't create rx list map, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_6;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat,
728 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
729 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error("%s: can't load rx list, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_7;
733 }
734
735 /* Create DMA maps for RX buffers */
736 for (i = 0; i < RE_RX_DESC_CNT; i++) {
737 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
739 if (error) {
740 aprint_error("%s: can't create DMA map for RX\n",
741 sc->sc_dev.dv_xname);
742 goto fail_8;
743 }
744 }
745
746 /*
747 * Record interface as attached. From here, we should not fail.
748 */
749 sc->sc_flags |= RTK_ATTACHED;
750
751 ifp = &sc->ethercom.ec_if;
752 ifp->if_softc = sc;
753 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 ifp->if_mtu = ETHERMTU;
755 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 ifp->if_ioctl = re_ioctl;
757 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
758
759 /*
760 * This is a way to disable hw VLAN tagging by default
761 * (RE_VLAN is undefined), as it is problematic. PR 32643
762 */
763
764 #ifdef RE_VLAN
765 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
766 #endif
767 ifp->if_start = re_start;
768 ifp->if_stop = re_stop;
769
770 /*
771 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
772 * so we have a workaround to handle the bug by padding
773 * such packets manually.
774 */
775 ifp->if_capabilities |=
776 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
777 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
778 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
779 IFCAP_TSOv4;
780 ifp->if_watchdog = re_watchdog;
781 ifp->if_init = re_init;
782 if (sc->rtk_type == RTK_8169)
783 ifp->if_baudrate = 1000000000;
784 else
785 ifp->if_baudrate = 100000000;
786 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
787 ifp->if_capenable = ifp->if_capabilities;
788 IFQ_SET_READY(&ifp->if_snd);
789
790 callout_init(&sc->rtk_tick_ch);
791
792 /* Do MII setup */
793 sc->mii.mii_ifp = ifp;
794 sc->mii.mii_readreg = re_miibus_readreg;
795 sc->mii.mii_writereg = re_miibus_writereg;
796 sc->mii.mii_statchg = re_miibus_statchg;
797 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
798 re_ifmedia_sts);
799 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
800 MII_OFFSET_ANY, 0);
801 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
802
803 /*
804 * Call MI attach routine.
805 */
806 if_attach(ifp);
807 ether_ifattach(ifp, eaddr);
808
809
810 /*
811 * Make sure the interface is shutdown during reboot.
812 */
813 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
814 if (sc->sc_sdhook == NULL)
815 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
816 sc->sc_dev.dv_xname);
817 /*
818 * Add a suspend hook to make sure we come back up after a
819 * resume.
820 */
821 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
822 re_power, sc);
823 if (sc->sc_powerhook == NULL)
824 aprint_error("%s: WARNING: unable to establish power hook\n",
825 sc->sc_dev.dv_xname);
826
827
828 return;
829
830 fail_8:
831 /* Destroy DMA maps for RX buffers. */
832 for (i = 0; i < RE_RX_DESC_CNT; i++)
833 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
834 bus_dmamap_destroy(sc->sc_dmat,
835 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
836
837 /* Free DMA'able memory for the RX ring. */
838 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
839 fail_7:
840 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
841 fail_6:
842 bus_dmamem_unmap(sc->sc_dmat,
843 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
844 fail_5:
845 bus_dmamem_free(sc->sc_dmat,
846 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
847
848 fail_4:
849 /* Destroy DMA maps for TX buffers. */
850 for (i = 0; i < RE_TX_QLEN; i++)
851 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
852 bus_dmamap_destroy(sc->sc_dmat,
853 sc->re_ldata.re_txq[i].txq_dmamap);
854
855 /* Free DMA'able memory for the TX ring. */
856 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
857 fail_3:
858 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
859 fail_2:
860 bus_dmamem_unmap(sc->sc_dmat,
861 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
862 fail_1:
863 bus_dmamem_free(sc->sc_dmat,
864 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
865 fail_0:
866 return;
867 }
868
869
870 /*
871 * re_activate:
872 * Handle device activation/deactivation requests.
873 */
874 int
875 re_activate(struct device *self, enum devact act)
876 {
877 struct rtk_softc *sc = (void *)self;
878 int s, error = 0;
879
880 s = splnet();
881 switch (act) {
882 case DVACT_ACTIVATE:
883 error = EOPNOTSUPP;
884 break;
885 case DVACT_DEACTIVATE:
886 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
887 if_deactivate(&sc->ethercom.ec_if);
888 break;
889 }
890 splx(s);
891
892 return error;
893 }
894
895 /*
896 * re_detach:
897 * Detach a rtk interface.
898 */
899 int
900 re_detach(struct rtk_softc *sc)
901 {
902 struct ifnet *ifp = &sc->ethercom.ec_if;
903 int i;
904
905 /*
906 * Succeed now if there isn't any work to do.
907 */
908 if ((sc->sc_flags & RTK_ATTACHED) == 0)
909 return 0;
910
911 /* Unhook our tick handler. */
912 callout_stop(&sc->rtk_tick_ch);
913
914 /* Detach all PHYs. */
915 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
916
917 /* Delete all remaining media. */
918 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
919
920 ether_ifdetach(ifp);
921 if_detach(ifp);
922
923 /* Destroy DMA maps for RX buffers. */
924 for (i = 0; i < RE_RX_DESC_CNT; i++)
925 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
926 bus_dmamap_destroy(sc->sc_dmat,
927 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
928
929 /* Free DMA'able memory for the RX ring. */
930 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
931 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
932 bus_dmamem_unmap(sc->sc_dmat,
933 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
934 bus_dmamem_free(sc->sc_dmat,
935 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
936
937 /* Destroy DMA maps for TX buffers. */
938 for (i = 0; i < RE_TX_QLEN; i++)
939 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
940 bus_dmamap_destroy(sc->sc_dmat,
941 sc->re_ldata.re_txq[i].txq_dmamap);
942
943 /* Free DMA'able memory for the TX ring. */
944 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
945 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
946 bus_dmamem_unmap(sc->sc_dmat,
947 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
948 bus_dmamem_free(sc->sc_dmat,
949 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
950
951
952 shutdownhook_disestablish(sc->sc_sdhook);
953 powerhook_disestablish(sc->sc_powerhook);
954
955 return 0;
956 }
957
958 /*
959 * re_enable:
960 * Enable the RTL81X9 chip.
961 */
962 static int
963 re_enable(struct rtk_softc *sc)
964 {
965
966 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
967 if ((*sc->sc_enable)(sc) != 0) {
968 aprint_error("%s: device enable failed\n",
969 sc->sc_dev.dv_xname);
970 return EIO;
971 }
972 sc->sc_flags |= RTK_ENABLED;
973 }
974 return 0;
975 }
976
977 /*
978 * re_disable:
979 * Disable the RTL81X9 chip.
980 */
981 static void
982 re_disable(struct rtk_softc *sc)
983 {
984
985 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
986 (*sc->sc_disable)(sc);
987 sc->sc_flags &= ~RTK_ENABLED;
988 }
989 }
990
991 /*
992 * re_power:
993 * Power management (suspend/resume) hook.
994 */
995 void
996 re_power(int why, void *arg)
997 {
998 struct rtk_softc *sc = (void *)arg;
999 struct ifnet *ifp = &sc->ethercom.ec_if;
1000 int s;
1001
1002 s = splnet();
1003 switch (why) {
1004 case PWR_SUSPEND:
1005 case PWR_STANDBY:
1006 re_stop(ifp, 0);
1007 if (sc->sc_power != NULL)
1008 (*sc->sc_power)(sc, why);
1009 break;
1010 case PWR_RESUME:
1011 if (ifp->if_flags & IFF_UP) {
1012 if (sc->sc_power != NULL)
1013 (*sc->sc_power)(sc, why);
1014 re_init(ifp);
1015 }
1016 break;
1017 case PWR_SOFTSUSPEND:
1018 case PWR_SOFTSTANDBY:
1019 case PWR_SOFTRESUME:
1020 break;
1021 }
1022 splx(s);
1023 }
1024
1025
1026 static int
1027 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1028 {
1029 struct mbuf *n = NULL;
1030 bus_dmamap_t map;
1031 struct re_desc *d;
1032 struct re_rxsoft *rxs;
1033 uint32_t cmdstat;
1034 int error;
1035
1036 if (m == NULL) {
1037 MGETHDR(n, M_DONTWAIT, MT_DATA);
1038 if (n == NULL)
1039 return ENOBUFS;
1040
1041 MCLGET(n, M_DONTWAIT);
1042 if ((n->m_flags & M_EXT) == 0) {
1043 m_freem(n);
1044 return ENOBUFS;
1045 }
1046 m = n;
1047 } else
1048 m->m_data = m->m_ext.ext_buf;
1049
1050 /*
1051 * Initialize mbuf length fields and fixup
1052 * alignment so that the frame payload is
1053 * longword aligned.
1054 */
1055 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1056 m->m_data += RE_ETHER_ALIGN;
1057
1058 rxs = &sc->re_ldata.re_rxsoft[idx];
1059 map = rxs->rxs_dmamap;
1060 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1061 BUS_DMA_READ|BUS_DMA_NOWAIT);
1062
1063 if (error)
1064 goto out;
1065
1066 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1067 BUS_DMASYNC_PREREAD);
1068
1069 d = &sc->re_ldata.re_rx_list[idx];
1070 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1071 cmdstat = le32toh(d->re_cmdstat);
1072 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1073 if (cmdstat & RE_RDESC_STAT_OWN) {
1074 aprint_error("%s: tried to map busy RX descriptor\n",
1075 sc->sc_dev.dv_xname);
1076 goto out;
1077 }
1078
1079 rxs->rxs_mbuf = m;
1080
1081 cmdstat = map->dm_segs[0].ds_len;
1082 if (idx == (RE_RX_DESC_CNT - 1))
1083 cmdstat |= RE_RDESC_CMD_EOR;
1084 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1085 d->re_cmdstat = htole32(cmdstat);
1086 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1087 cmdstat |= RE_RDESC_CMD_OWN;
1088 d->re_cmdstat = htole32(cmdstat);
1089 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1090
1091 return 0;
1092 out:
1093 if (n != NULL)
1094 m_freem(n);
1095 return ENOMEM;
1096 }
1097
1098 static int
1099 re_tx_list_init(struct rtk_softc *sc)
1100 {
1101 int i;
1102
1103 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1104 for (i = 0; i < RE_TX_QLEN; i++) {
1105 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1106 }
1107
1108 bus_dmamap_sync(sc->sc_dmat,
1109 sc->re_ldata.re_tx_list_map, 0,
1110 sc->re_ldata.re_tx_list_map->dm_mapsize,
1111 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1112 sc->re_ldata.re_txq_prodidx = 0;
1113 sc->re_ldata.re_txq_considx = 0;
1114 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1115 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1116 sc->re_ldata.re_tx_nextfree = 0;
1117
1118 return 0;
1119 }
1120
1121 static int
1122 re_rx_list_init(struct rtk_softc *sc)
1123 {
1124 int i;
1125
1126 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1127
1128 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1129 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1130 return ENOBUFS;
1131 }
1132
1133 sc->re_ldata.re_rx_prodidx = 0;
1134 sc->re_head = sc->re_tail = NULL;
1135
1136 return 0;
1137 }
1138
1139 /*
1140 * RX handler for C+ and 8169. For the gigE chips, we support
1141 * the reception of jumbo frames that have been fragmented
1142 * across multiple 2K mbuf cluster buffers.
1143 */
1144 static void
1145 re_rxeof(struct rtk_softc *sc)
1146 {
1147 struct mbuf *m;
1148 struct ifnet *ifp;
1149 int i, total_len;
1150 struct re_desc *cur_rx;
1151 struct re_rxsoft *rxs;
1152 uint32_t rxstat, rxvlan;
1153
1154 ifp = &sc->ethercom.ec_if;
1155
1156 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1157 cur_rx = &sc->re_ldata.re_rx_list[i];
1158 RE_RXDESCSYNC(sc, i,
1159 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1160 rxstat = le32toh(cur_rx->re_cmdstat);
1161 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1162 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1163 break;
1164 }
1165 total_len = rxstat & sc->re_rxlenmask;
1166 rxvlan = le32toh(cur_rx->re_vlanctl);
1167 rxs = &sc->re_ldata.re_rxsoft[i];
1168 m = rxs->rxs_mbuf;
1169
1170 /* Invalidate the RX mbuf and unload its map */
1171
1172 bus_dmamap_sync(sc->sc_dmat,
1173 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1174 BUS_DMASYNC_POSTREAD);
1175 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1176
1177 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1178 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1179 if (sc->re_head == NULL)
1180 sc->re_head = sc->re_tail = m;
1181 else {
1182 m->m_flags &= ~M_PKTHDR;
1183 sc->re_tail->m_next = m;
1184 sc->re_tail = m;
1185 }
1186 re_newbuf(sc, i, NULL);
1187 continue;
1188 }
1189
1190 /*
1191 * NOTE: for the 8139C+, the frame length field
1192 * is always 12 bits in size, but for the gigE chips,
1193 * it is 13 bits (since the max RX frame length is 16K).
1194 * Unfortunately, all 32 bits in the status word
1195 * were already used, so to make room for the extra
1196 * length bit, RealTek took out the 'frame alignment
1197 * error' bit and shifted the other status bits
1198 * over one slot. The OWN, EOR, FS and LS bits are
1199 * still in the same places. We have already extracted
1200 * the frame length and checked the OWN bit, so rather
1201 * than using an alternate bit mapping, we shift the
1202 * status bits one space to the right so we can evaluate
1203 * them using the 8169 status as though it was in the
1204 * same format as that of the 8139C+.
1205 */
1206 if (sc->rtk_type == RTK_8169)
1207 rxstat >>= 1;
1208
1209 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1210 #ifdef RE_DEBUG
1211 aprint_error("%s: RX error (rxstat = 0x%08x)",
1212 sc->sc_dev.dv_xname, rxstat);
1213 if (rxstat & RE_RDESC_STAT_FRALIGN)
1214 aprint_error(", frame alignment error");
1215 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1216 aprint_error(", out of buffer space");
1217 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1218 aprint_error(", FIFO overrun");
1219 if (rxstat & RE_RDESC_STAT_GIANT)
1220 aprint_error(", giant packet");
1221 if (rxstat & RE_RDESC_STAT_RUNT)
1222 aprint_error(", runt packet");
1223 if (rxstat & RE_RDESC_STAT_CRCERR)
1224 aprint_error(", CRC error");
1225 aprint_error("\n");
1226 #endif
1227 ifp->if_ierrors++;
1228 /*
1229 * If this is part of a multi-fragment packet,
1230 * discard all the pieces.
1231 */
1232 if (sc->re_head != NULL) {
1233 m_freem(sc->re_head);
1234 sc->re_head = sc->re_tail = NULL;
1235 }
1236 re_newbuf(sc, i, m);
1237 continue;
1238 }
1239
1240 /*
1241 * If allocating a replacement mbuf fails,
1242 * reload the current one.
1243 */
1244
1245 if (re_newbuf(sc, i, NULL) != 0) {
1246 ifp->if_ierrors++;
1247 if (sc->re_head != NULL) {
1248 m_freem(sc->re_head);
1249 sc->re_head = sc->re_tail = NULL;
1250 }
1251 re_newbuf(sc, i, m);
1252 continue;
1253 }
1254
1255 if (sc->re_head != NULL) {
1256 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1257 /*
1258 * Special case: if there's 4 bytes or less
1259 * in this buffer, the mbuf can be discarded:
1260 * the last 4 bytes is the CRC, which we don't
1261 * care about anyway.
1262 */
1263 if (m->m_len <= ETHER_CRC_LEN) {
1264 sc->re_tail->m_len -=
1265 (ETHER_CRC_LEN - m->m_len);
1266 m_freem(m);
1267 } else {
1268 m->m_len -= ETHER_CRC_LEN;
1269 m->m_flags &= ~M_PKTHDR;
1270 sc->re_tail->m_next = m;
1271 }
1272 m = sc->re_head;
1273 sc->re_head = sc->re_tail = NULL;
1274 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1275 } else
1276 m->m_pkthdr.len = m->m_len =
1277 (total_len - ETHER_CRC_LEN);
1278
1279 ifp->if_ipackets++;
1280 m->m_pkthdr.rcvif = ifp;
1281
1282 /* Do RX checksumming */
1283
1284 /* Check IP header checksum */
1285 if (rxstat & RE_RDESC_STAT_PROTOID) {
1286 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1287 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1288 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1289 }
1290
1291 /* Check TCP/UDP checksum */
1292 if (RE_TCPPKT(rxstat)) {
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1294 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1295 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1296 } else if (RE_UDPPKT(rxstat)) {
1297 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1298 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1299 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1300 }
1301
1302 #ifdef RE_VLAN
1303 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1304 VLAN_INPUT_TAG(ifp, m,
1305 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1306 continue);
1307 }
1308 #endif
1309 #if NBPFILTER > 0
1310 if (ifp->if_bpf)
1311 bpf_mtap(ifp->if_bpf, m);
1312 #endif
1313 (*ifp->if_input)(ifp, m);
1314 }
1315
1316 sc->re_ldata.re_rx_prodidx = i;
1317 }
1318
1319 static void
1320 re_txeof(struct rtk_softc *sc)
1321 {
1322 struct ifnet *ifp;
1323 struct re_txq *txq;
1324 uint32_t txstat;
1325 int idx, descidx;
1326
1327 ifp = &sc->ethercom.ec_if;
1328
1329 for (idx = sc->re_ldata.re_txq_considx;
1330 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1331 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1332 txq = &sc->re_ldata.re_txq[idx];
1333 KASSERT(txq->txq_mbuf != NULL);
1334
1335 descidx = txq->txq_descidx;
1336 RE_TXDESCSYNC(sc, descidx,
1337 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1338 txstat =
1339 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1340 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1341 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1342 if (txstat & RE_TDESC_CMD_OWN) {
1343 break;
1344 }
1345
1346 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1347 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1348 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1349 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1350 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1351 m_freem(txq->txq_mbuf);
1352 txq->txq_mbuf = NULL;
1353
1354 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1355 ifp->if_collisions++;
1356 if (txstat & RE_TDESC_STAT_TXERRSUM)
1357 ifp->if_oerrors++;
1358 else
1359 ifp->if_opackets++;
1360 }
1361
1362 sc->re_ldata.re_txq_considx = idx;
1363
1364 if (sc->re_ldata.re_txq_free > 0)
1365 ifp->if_flags &= ~IFF_OACTIVE;
1366
1367 /*
1368 * If not all descriptors have been released reaped yet,
1369 * reload the timer so that we will eventually get another
1370 * interrupt that will cause us to re-enter this routine.
1371 * This is done in case the transmitter has gone idle.
1372 */
1373 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1374 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1375 else
1376 ifp->if_timer = 0;
1377 }
1378
1379 /*
1380 * Stop all chip I/O so that the kernel's probe routines don't
1381 * get confused by errant DMAs when rebooting.
1382 */
1383 static void
1384 re_shutdown(void *vsc)
1385
1386 {
1387 struct rtk_softc *sc = vsc;
1388
1389 re_stop(&sc->ethercom.ec_if, 0);
1390 }
1391
1392
1393 static void
1394 re_tick(void *xsc)
1395 {
1396 struct rtk_softc *sc = xsc;
1397 int s;
1398
1399 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1400 s = splnet();
1401
1402 mii_tick(&sc->mii);
1403 splx(s);
1404
1405 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1406 }
1407
1408 #ifdef DEVICE_POLLING
1409 static void
1410 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1411 {
1412 struct rtk_softc *sc = ifp->if_softc;
1413
1414 RTK_LOCK(sc);
1415 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1416 ether_poll_deregister(ifp);
1417 cmd = POLL_DEREGISTER;
1418 }
1419 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1420 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1421 goto done;
1422 }
1423
1424 sc->rxcycles = count;
1425 re_rxeof(sc);
1426 re_txeof(sc);
1427
1428 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1429 (*ifp->if_start)(ifp);
1430
1431 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1432 uint16_t status;
1433
1434 status = CSR_READ_2(sc, RTK_ISR);
1435 if (status == 0xffff)
1436 goto done;
1437 if (status)
1438 CSR_WRITE_2(sc, RTK_ISR, status);
1439
1440 /*
1441 * XXX check behaviour on receiver stalls.
1442 */
1443
1444 if (status & RTK_ISR_SYSTEM_ERR) {
1445 re_init(sc);
1446 }
1447 }
1448 done:
1449 RTK_UNLOCK(sc);
1450 }
1451 #endif /* DEVICE_POLLING */
1452
1453 int
1454 re_intr(void *arg)
1455 {
1456 struct rtk_softc *sc = arg;
1457 struct ifnet *ifp;
1458 uint16_t status;
1459 int handled = 0;
1460
1461 ifp = &sc->ethercom.ec_if;
1462
1463 if ((ifp->if_flags & IFF_UP) == 0)
1464 return 0;
1465
1466 #ifdef DEVICE_POLLING
1467 if (ifp->if_flags & IFF_POLLING)
1468 goto done;
1469 if ((ifp->if_capenable & IFCAP_POLLING) &&
1470 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1471 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1472 re_poll(ifp, 0, 1);
1473 goto done;
1474 }
1475 #endif /* DEVICE_POLLING */
1476
1477 for (;;) {
1478
1479 status = CSR_READ_2(sc, RTK_ISR);
1480 /* If the card has gone away the read returns 0xffff. */
1481 if (status == 0xffff)
1482 break;
1483 if (status) {
1484 handled = 1;
1485 CSR_WRITE_2(sc, RTK_ISR, status);
1486 }
1487
1488 if ((status & RTK_INTRS_CPLUS) == 0)
1489 break;
1490
1491 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1492 re_rxeof(sc);
1493
1494 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1495 RTK_ISR_TX_DESC_UNAVAIL))
1496 re_txeof(sc);
1497
1498 if (status & RTK_ISR_SYSTEM_ERR) {
1499 re_init(ifp);
1500 }
1501
1502 if (status & RTK_ISR_LINKCHG) {
1503 callout_stop(&sc->rtk_tick_ch);
1504 re_tick(sc);
1505 }
1506 }
1507
1508 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1509 re_start(ifp);
1510
1511 #ifdef DEVICE_POLLING
1512 done:
1513 #endif
1514
1515 return handled;
1516 }
1517
1518
1519
1520 /*
1521 * Main transmit routine for C+ and gigE NICs.
1522 */
1523
1524 static void
1525 re_start(struct ifnet *ifp)
1526 {
1527 struct rtk_softc *sc;
1528 struct mbuf *m;
1529 bus_dmamap_t map;
1530 struct re_txq *txq;
1531 struct re_desc *d;
1532 #ifdef RE_VLAN
1533 struct m_tag *mtag;
1534 #endif
1535 uint32_t cmdstat, re_flags;
1536 int ofree, idx, error, nsegs, seg;
1537 int startdesc, curdesc, lastdesc;
1538 boolean_t pad;
1539
1540 sc = ifp->if_softc;
1541 ofree = sc->re_ldata.re_txq_free;
1542
1543 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1544
1545 IFQ_POLL(&ifp->if_snd, m);
1546 if (m == NULL)
1547 break;
1548
1549 if (sc->re_ldata.re_txq_free == 0 ||
1550 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1551 /* no more free slots left */
1552 ifp->if_flags |= IFF_OACTIVE;
1553 break;
1554 }
1555
1556 /*
1557 * Set up checksum offload. Note: checksum offload bits must
1558 * appear in all descriptors of a multi-descriptor transmit
1559 * attempt. (This is according to testing done with an 8169
1560 * chip. I'm not sure if this is a requirement or a bug.)
1561 */
1562
1563 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1564 uint32_t segsz = m->m_pkthdr.segsz;
1565
1566 re_flags = RE_TDESC_CMD_LGSEND |
1567 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1568 } else {
1569 /*
1570 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1571 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1572 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1573 */
1574 re_flags = 0;
1575 if ((m->m_pkthdr.csum_flags &
1576 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1577 != 0) {
1578 re_flags |= RE_TDESC_CMD_IPCSUM;
1579 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1580 re_flags |= RE_TDESC_CMD_TCPCSUM;
1581 } else if (m->m_pkthdr.csum_flags &
1582 M_CSUM_UDPv4) {
1583 re_flags |= RE_TDESC_CMD_UDPCSUM;
1584 }
1585 }
1586 }
1587
1588 txq = &sc->re_ldata.re_txq[idx];
1589 map = txq->txq_dmamap;
1590 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1591 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1592
1593 if (error) {
1594 /* XXX try to defrag if EFBIG? */
1595 aprint_error("%s: can't map mbuf (error %d)\n",
1596 sc->sc_dev.dv_xname, error);
1597
1598 IFQ_DEQUEUE(&ifp->if_snd, m);
1599 m_freem(m);
1600 ifp->if_oerrors++;
1601 continue;
1602 }
1603
1604 nsegs = map->dm_nsegs;
1605 pad = FALSE;
1606 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1607 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1608 pad = TRUE;
1609 nsegs++;
1610 }
1611
1612 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1613 /*
1614 * Not enough free descriptors to transmit this packet.
1615 */
1616 ifp->if_flags |= IFF_OACTIVE;
1617 bus_dmamap_unload(sc->sc_dmat, map);
1618 break;
1619 }
1620
1621 IFQ_DEQUEUE(&ifp->if_snd, m);
1622
1623 /*
1624 * Make sure that the caches are synchronized before we
1625 * ask the chip to start DMA for the packet data.
1626 */
1627 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1628 BUS_DMASYNC_PREWRITE);
1629
1630 /*
1631 * Map the segment array into descriptors.
1632 * Note that we set the start-of-frame and
1633 * end-of-frame markers for either TX or RX,
1634 * but they really only have meaning in the TX case.
1635 * (In the RX case, it's the chip that tells us
1636 * where packets begin and end.)
1637 * We also keep track of the end of the ring
1638 * and set the end-of-ring bits as needed,
1639 * and we set the ownership bits in all except
1640 * the very first descriptor. (The caller will
1641 * set this descriptor later when it start
1642 * transmission or reception.)
1643 */
1644 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1645 lastdesc = -1;
1646 for (seg = 0; seg < map->dm_nsegs;
1647 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1648 d = &sc->re_ldata.re_tx_list[curdesc];
1649 #ifdef DIAGNOSTIC
1650 RE_TXDESCSYNC(sc, curdesc,
1651 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1652 cmdstat = le32toh(d->re_cmdstat);
1653 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1654 if (cmdstat & RE_TDESC_STAT_OWN) {
1655 panic("%s: tried to map busy TX descriptor",
1656 sc->sc_dev.dv_xname);
1657 }
1658 #endif
1659
1660 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1661 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1662 if (seg == 0)
1663 cmdstat |= RE_TDESC_CMD_SOF;
1664 else
1665 cmdstat |= RE_TDESC_CMD_OWN;
1666 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1667 cmdstat |= RE_TDESC_CMD_EOR;
1668 if (seg == nsegs - 1) {
1669 cmdstat |= RE_TDESC_CMD_EOF;
1670 lastdesc = curdesc;
1671 }
1672 d->re_cmdstat = htole32(cmdstat);
1673 RE_TXDESCSYNC(sc, curdesc,
1674 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1675 }
1676 if (pad) {
1677 bus_addr_t paddaddr;
1678
1679 d = &sc->re_ldata.re_tx_list[curdesc];
1680 paddaddr = RE_TXPADDADDR(sc);
1681 re_set_bufaddr(d, paddaddr);
1682 cmdstat = re_flags |
1683 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1684 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1685 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1686 cmdstat |= RE_TDESC_CMD_EOR;
1687 d->re_cmdstat = htole32(cmdstat);
1688 RE_TXDESCSYNC(sc, curdesc,
1689 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1690 lastdesc = curdesc;
1691 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1692 }
1693 KASSERT(lastdesc != -1);
1694
1695 /*
1696 * Set up hardware VLAN tagging. Note: vlan tag info must
1697 * appear in the first descriptor of a multi-descriptor
1698 * transmission attempt.
1699 */
1700
1701 #ifdef RE_VLAN
1702 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1703 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1704 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1705 RE_TDESC_VLANCTL_TAG);
1706 }
1707 #endif
1708
1709 /* Transfer ownership of packet to the chip. */
1710
1711 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1712 htole32(RE_TDESC_CMD_OWN);
1713 RE_TXDESCSYNC(sc, startdesc,
1714 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1715
1716 /* update info of TX queue and descriptors */
1717 txq->txq_mbuf = m;
1718 txq->txq_descidx = lastdesc;
1719 txq->txq_nsegs = nsegs;
1720
1721 sc->re_ldata.re_txq_free--;
1722 sc->re_ldata.re_tx_free -= nsegs;
1723 sc->re_ldata.re_tx_nextfree = curdesc;
1724
1725 #if NBPFILTER > 0
1726 /*
1727 * If there's a BPF listener, bounce a copy of this frame
1728 * to him.
1729 */
1730 if (ifp->if_bpf)
1731 bpf_mtap(ifp->if_bpf, m);
1732 #endif
1733 }
1734
1735 if (sc->re_ldata.re_txq_free < ofree) {
1736 /*
1737 * TX packets are enqueued.
1738 */
1739 sc->re_ldata.re_txq_prodidx = idx;
1740
1741 /*
1742 * Start the transmitter to poll.
1743 *
1744 * RealTek put the TX poll request register in a different
1745 * location on the 8169 gigE chip. I don't know why.
1746 */
1747 if (sc->rtk_type == RTK_8169)
1748 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1749 else
1750 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1751
1752 /*
1753 * Use the countdown timer for interrupt moderation.
1754 * 'TX done' interrupts are disabled. Instead, we reset the
1755 * countdown timer, which will begin counting until it hits
1756 * the value in the TIMERINT register, and then trigger an
1757 * interrupt. Each time we write to the TIMERCNT register,
1758 * the timer count is reset to 0.
1759 */
1760 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1761
1762 /*
1763 * Set a timeout in case the chip goes out to lunch.
1764 */
1765 ifp->if_timer = 5;
1766 }
1767 }
1768
1769 static int
1770 re_init(struct ifnet *ifp)
1771 {
1772 struct rtk_softc *sc = ifp->if_softc;
1773 uint8_t *enaddr;
1774 uint32_t rxcfg = 0;
1775 uint32_t reg;
1776 int error;
1777
1778 if ((error = re_enable(sc)) != 0)
1779 goto out;
1780
1781 /*
1782 * Cancel pending I/O and free all RX/TX buffers.
1783 */
1784 re_stop(ifp, 0);
1785
1786 re_reset(sc);
1787
1788 /*
1789 * Enable C+ RX and TX mode, as well as VLAN stripping and
1790 * RX checksum offload. We must configure the C+ register
1791 * before all others.
1792 */
1793 reg = 0;
1794
1795 /*
1796 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1797 * FreeBSD drivers set these bits anyway (for 8139C+?).
1798 * So far, it works.
1799 */
1800
1801 /*
1802 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1803 * For 8169S/8110S rev 2 and above, do not set bit 14.
1804 */
1805 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1806 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1807
1808 if (1) {/* not for 8169S ? */
1809 reg |=
1810 #ifdef RE_VLAN
1811 RTK_CPLUSCMD_VLANSTRIP |
1812 #endif
1813 (ifp->if_capenable &
1814 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1815 IFCAP_CSUM_UDPv4_Rx) ?
1816 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1817 }
1818
1819 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1820 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1821
1822 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1823 if (sc->rtk_type == RTK_8169)
1824 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1825
1826 DELAY(10000);
1827
1828 /*
1829 * Init our MAC address. Even though the chipset
1830 * documentation doesn't mention it, we need to enter "Config
1831 * register write enable" mode to modify the ID registers.
1832 */
1833 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1834 enaddr = LLADDR(ifp->if_sadl);
1835 reg = enaddr[0] | (enaddr[1] << 8) |
1836 (enaddr[2] << 16) | (enaddr[3] << 24);
1837 CSR_WRITE_4(sc, RTK_IDR0, reg);
1838 reg = enaddr[4] | (enaddr[5] << 8);
1839 CSR_WRITE_4(sc, RTK_IDR4, reg);
1840 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1841
1842 /*
1843 * For C+ mode, initialize the RX descriptors and mbufs.
1844 */
1845 re_rx_list_init(sc);
1846 re_tx_list_init(sc);
1847
1848 /*
1849 * Load the addresses of the RX and TX lists into the chip.
1850 */
1851 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1852 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1853 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1854 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1855
1856 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1857 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1858 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1859 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1860
1861 /*
1862 * Enable transmit and receive.
1863 */
1864 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1865
1866 /*
1867 * Set the initial TX and RX configuration.
1868 */
1869 if (sc->re_testmode) {
1870 if (sc->rtk_type == RTK_8169)
1871 CSR_WRITE_4(sc, RTK_TXCFG,
1872 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1873 else
1874 CSR_WRITE_4(sc, RTK_TXCFG,
1875 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1876 } else
1877 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1878
1879 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1880
1881 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1882
1883 /* Set the individual bit to receive frames for this host only. */
1884 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1885 rxcfg |= RTK_RXCFG_RX_INDIV;
1886
1887 /* If we want promiscuous mode, set the allframes bit. */
1888 if (ifp->if_flags & IFF_PROMISC)
1889 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1890 else
1891 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1892 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1893
1894 /*
1895 * Set capture broadcast bit to capture broadcast frames.
1896 */
1897 if (ifp->if_flags & IFF_BROADCAST)
1898 rxcfg |= RTK_RXCFG_RX_BROAD;
1899 else
1900 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1901 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1902
1903 /*
1904 * Program the multicast filter, if necessary.
1905 */
1906 rtk_setmulti(sc);
1907
1908 #ifdef DEVICE_POLLING
1909 /*
1910 * Disable interrupts if we are polling.
1911 */
1912 if (ifp->if_flags & IFF_POLLING)
1913 CSR_WRITE_2(sc, RTK_IMR, 0);
1914 else /* otherwise ... */
1915 #endif /* DEVICE_POLLING */
1916 /*
1917 * Enable interrupts.
1918 */
1919 if (sc->re_testmode)
1920 CSR_WRITE_2(sc, RTK_IMR, 0);
1921 else
1922 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1923
1924 /* Start RX/TX process. */
1925 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1926 #ifdef notdef
1927 /* Enable receiver and transmitter. */
1928 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1929 #endif
1930
1931 /*
1932 * Initialize the timer interrupt register so that
1933 * a timer interrupt will be generated once the timer
1934 * reaches a certain number of ticks. The timer is
1935 * reloaded on each transmit. This gives us TX interrupt
1936 * moderation, which dramatically improves TX frame rate.
1937 */
1938
1939 if (sc->rtk_type == RTK_8169)
1940 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1941 else
1942 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1943
1944 /*
1945 * For 8169 gigE NICs, set the max allowed RX packet
1946 * size so we can receive jumbo frames.
1947 */
1948 if (sc->rtk_type == RTK_8169)
1949 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1950
1951 if (sc->re_testmode)
1952 return 0;
1953
1954 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1955
1956 ifp->if_flags |= IFF_RUNNING;
1957 ifp->if_flags &= ~IFF_OACTIVE;
1958
1959 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1960
1961 out:
1962 if (error) {
1963 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1964 ifp->if_timer = 0;
1965 aprint_error("%s: interface not running\n",
1966 sc->sc_dev.dv_xname);
1967 }
1968
1969 return error;
1970 }
1971
1972 /*
1973 * Set media options.
1974 */
1975 static int
1976 re_ifmedia_upd(struct ifnet *ifp)
1977 {
1978 struct rtk_softc *sc;
1979
1980 sc = ifp->if_softc;
1981
1982 return mii_mediachg(&sc->mii);
1983 }
1984
1985 /*
1986 * Report current media status.
1987 */
1988 static void
1989 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1990 {
1991 struct rtk_softc *sc;
1992
1993 sc = ifp->if_softc;
1994
1995 mii_pollstat(&sc->mii);
1996 ifmr->ifm_active = sc->mii.mii_media_active;
1997 ifmr->ifm_status = sc->mii.mii_media_status;
1998 }
1999
2000 static int
2001 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2002 {
2003 struct rtk_softc *sc = ifp->if_softc;
2004 struct ifreq *ifr = (struct ifreq *) data;
2005 int s, error = 0;
2006
2007 s = splnet();
2008
2009 switch (command) {
2010 case SIOCSIFMTU:
2011 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2012 error = EINVAL;
2013 ifp->if_mtu = ifr->ifr_mtu;
2014 break;
2015 case SIOCGIFMEDIA:
2016 case SIOCSIFMEDIA:
2017 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2018 break;
2019 default:
2020 error = ether_ioctl(ifp, command, data);
2021 if (error == ENETRESET) {
2022 if (ifp->if_flags & IFF_RUNNING)
2023 rtk_setmulti(sc);
2024 error = 0;
2025 }
2026 break;
2027 }
2028
2029 splx(s);
2030
2031 return error;
2032 }
2033
2034 static void
2035 re_watchdog(struct ifnet *ifp)
2036 {
2037 struct rtk_softc *sc;
2038 int s;
2039
2040 sc = ifp->if_softc;
2041 s = splnet();
2042 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2043 ifp->if_oerrors++;
2044
2045 re_txeof(sc);
2046 re_rxeof(sc);
2047
2048 re_init(ifp);
2049
2050 splx(s);
2051 }
2052
2053 /*
2054 * Stop the adapter and free any mbufs allocated to the
2055 * RX and TX lists.
2056 */
2057 static void
2058 re_stop(struct ifnet *ifp, int disable)
2059 {
2060 int i;
2061 struct rtk_softc *sc = ifp->if_softc;
2062
2063 callout_stop(&sc->rtk_tick_ch);
2064
2065 #ifdef DEVICE_POLLING
2066 ether_poll_deregister(ifp);
2067 #endif /* DEVICE_POLLING */
2068
2069 mii_down(&sc->mii);
2070
2071 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2072 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2073
2074 if (sc->re_head != NULL) {
2075 m_freem(sc->re_head);
2076 sc->re_head = sc->re_tail = NULL;
2077 }
2078
2079 /* Free the TX list buffers. */
2080 for (i = 0; i < RE_TX_QLEN; i++) {
2081 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2082 bus_dmamap_unload(sc->sc_dmat,
2083 sc->re_ldata.re_txq[i].txq_dmamap);
2084 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2085 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2086 }
2087 }
2088
2089 /* Free the RX list buffers. */
2090 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2091 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2092 bus_dmamap_unload(sc->sc_dmat,
2093 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2094 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2095 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2096 }
2097 }
2098
2099 if (disable)
2100 re_disable(sc);
2101
2102 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2103 ifp->if_timer = 0;
2104 }
2105