rtl8169.c revision 1.25.6.3 1 /* $NetBSD: rtl8169.c,v 1.25.6.3 2006/12/18 11:42:13 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if (sc->rtk_type == RTK_8169) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if (sc->rtk_type == RTK_8169) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if (sc->rtk_type == RTK_8139CPLUS) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (sc->rtk_type == RTK_8169) {
578 uint32_t hwrev;
579
580 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
581 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
582 if (hwrev == (0x1 << 28)) {
583 sc->sc_rev = 4;
584 } else if (hwrev == (0x1 << 26)) {
585 sc->sc_rev = 3;
586 } else if (hwrev == (0x1 << 23)) {
587 sc->sc_rev = 2;
588 } else
589 sc->sc_rev = 1;
590
591 /* Set RX length mask */
592
593 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
594
595 /* Force station address autoload from the EEPROM */
596
597 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
598 for (i = 0; i < RTK_TIMEOUT; i++) {
599 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
600 == 0)
601 break;
602 DELAY(100);
603 }
604 if (i == RTK_TIMEOUT)
605 aprint_error("%s: eeprom autoload timed out\n",
606 sc->sc_dev.dv_xname);
607
608 for (i = 0; i < ETHER_ADDR_LEN; i++)
609 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
610
611 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
612 } else {
613
614 /* Set RX length mask */
615
616 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
617
618 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
619 addr_len = RTK_EEADDR_LEN1;
620 else
621 addr_len = RTK_EEADDR_LEN0;
622
623 /*
624 * Get station address from the EEPROM.
625 */
626 for (i = 0; i < 3; i++) {
627 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
628 eaddr[(i * 2) + 0] = val & 0xff;
629 eaddr[(i * 2) + 1] = val >> 8;
630 }
631
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
633 }
634
635 aprint_normal("%s: Ethernet address %s\n",
636 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
637
638 if (sc->re_ldata.re_tx_desc_cnt >
639 PAGE_SIZE / sizeof(struct re_desc)) {
640 sc->re_ldata.re_tx_desc_cnt =
641 PAGE_SIZE / sizeof(struct re_desc);
642 }
643
644 aprint_verbose("%s: using %d tx descriptors\n",
645 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
646 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
647
648 /* Allocate DMA'able memory for the TX ring */
649 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
650 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
651 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
652 aprint_error("%s: can't allocate tx listseg, error = %d\n",
653 sc->sc_dev.dv_xname, error);
654 goto fail_0;
655 }
656
657 /* Load the map for the TX ring. */
658 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
659 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
660 (caddr_t *)&sc->re_ldata.re_tx_list,
661 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
662 aprint_error("%s: can't map tx list, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_1;
665 }
666 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
667
668 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
669 RE_TX_LIST_SZ(sc), 0, 0,
670 &sc->re_ldata.re_tx_list_map)) != 0) {
671 aprint_error("%s: can't create tx list map, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_2;
674 }
675
676
677 if ((error = bus_dmamap_load(sc->sc_dmat,
678 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
679 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
680 aprint_error("%s: can't load tx list, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_3;
683 }
684
685 /* Create DMA maps for TX buffers */
686 for (i = 0; i < RE_TX_QLEN; i++) {
687 error = bus_dmamap_create(sc->sc_dmat,
688 round_page(IP_MAXPACKET),
689 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
690 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
691 if (error) {
692 aprint_error("%s: can't create DMA map for TX\n",
693 sc->sc_dev.dv_xname);
694 goto fail_4;
695 }
696 }
697
698 /* Allocate DMA'able memory for the RX ring */
699 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
700 if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
702 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_4;
706 }
707
708 /* Load the map for the RX ring. */
709 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
710 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
711 (caddr_t *)&sc->re_ldata.re_rx_list,
712 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
713 aprint_error("%s: can't map rx list, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_5;
716 }
717 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
718
719 if ((error = bus_dmamap_create(sc->sc_dmat,
720 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
721 &sc->re_ldata.re_rx_list_map)) != 0) {
722 aprint_error("%s: can't create rx list map, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_6;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat,
728 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
729 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error("%s: can't load rx list, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_7;
733 }
734
735 /* Create DMA maps for RX buffers */
736 for (i = 0; i < RE_RX_DESC_CNT; i++) {
737 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
739 if (error) {
740 aprint_error("%s: can't create DMA map for RX\n",
741 sc->sc_dev.dv_xname);
742 goto fail_8;
743 }
744 }
745
746 /*
747 * Record interface as attached. From here, we should not fail.
748 */
749 sc->sc_flags |= RTK_ATTACHED;
750
751 ifp = &sc->ethercom.ec_if;
752 ifp->if_softc = sc;
753 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 ifp->if_mtu = ETHERMTU;
755 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 ifp->if_ioctl = re_ioctl;
757 sc->ethercom.ec_capabilities |=
758 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
759 ifp->if_start = re_start;
760 ifp->if_stop = re_stop;
761
762 /*
763 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
764 * so we have a workaround to handle the bug by padding
765 * such packets manually.
766 */
767 ifp->if_capabilities |=
768 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
769 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
770 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
771 IFCAP_TSOv4;
772 ifp->if_watchdog = re_watchdog;
773 ifp->if_init = re_init;
774 if (sc->rtk_type == RTK_8169)
775 ifp->if_baudrate = 1000000000;
776 else
777 ifp->if_baudrate = 100000000;
778 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
779 ifp->if_capenable = ifp->if_capabilities;
780 IFQ_SET_READY(&ifp->if_snd);
781
782 callout_init(&sc->rtk_tick_ch);
783
784 /* Do MII setup */
785 sc->mii.mii_ifp = ifp;
786 sc->mii.mii_readreg = re_miibus_readreg;
787 sc->mii.mii_writereg = re_miibus_writereg;
788 sc->mii.mii_statchg = re_miibus_statchg;
789 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
790 re_ifmedia_sts);
791 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
792 MII_OFFSET_ANY, 0);
793 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
794
795 /*
796 * Call MI attach routine.
797 */
798 if_attach(ifp);
799 ether_ifattach(ifp, eaddr);
800
801
802 /*
803 * Make sure the interface is shutdown during reboot.
804 */
805 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
806 if (sc->sc_sdhook == NULL)
807 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
808 sc->sc_dev.dv_xname);
809 /*
810 * Add a suspend hook to make sure we come back up after a
811 * resume.
812 */
813 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
814 re_power, sc);
815 if (sc->sc_powerhook == NULL)
816 aprint_error("%s: WARNING: unable to establish power hook\n",
817 sc->sc_dev.dv_xname);
818
819
820 return;
821
822 fail_8:
823 /* Destroy DMA maps for RX buffers. */
824 for (i = 0; i < RE_RX_DESC_CNT; i++)
825 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
826 bus_dmamap_destroy(sc->sc_dmat,
827 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
828
829 /* Free DMA'able memory for the RX ring. */
830 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
831 fail_7:
832 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
833 fail_6:
834 bus_dmamem_unmap(sc->sc_dmat,
835 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
836 fail_5:
837 bus_dmamem_free(sc->sc_dmat,
838 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
839
840 fail_4:
841 /* Destroy DMA maps for TX buffers. */
842 for (i = 0; i < RE_TX_QLEN; i++)
843 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
844 bus_dmamap_destroy(sc->sc_dmat,
845 sc->re_ldata.re_txq[i].txq_dmamap);
846
847 /* Free DMA'able memory for the TX ring. */
848 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
849 fail_3:
850 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
851 fail_2:
852 bus_dmamem_unmap(sc->sc_dmat,
853 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
854 fail_1:
855 bus_dmamem_free(sc->sc_dmat,
856 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
857 fail_0:
858 return;
859 }
860
861
862 /*
863 * re_activate:
864 * Handle device activation/deactivation requests.
865 */
866 int
867 re_activate(struct device *self, enum devact act)
868 {
869 struct rtk_softc *sc = (void *)self;
870 int s, error = 0;
871
872 s = splnet();
873 switch (act) {
874 case DVACT_ACTIVATE:
875 error = EOPNOTSUPP;
876 break;
877 case DVACT_DEACTIVATE:
878 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
879 if_deactivate(&sc->ethercom.ec_if);
880 break;
881 }
882 splx(s);
883
884 return error;
885 }
886
887 /*
888 * re_detach:
889 * Detach a rtk interface.
890 */
891 int
892 re_detach(struct rtk_softc *sc)
893 {
894 struct ifnet *ifp = &sc->ethercom.ec_if;
895 int i;
896
897 /*
898 * Succeed now if there isn't any work to do.
899 */
900 if ((sc->sc_flags & RTK_ATTACHED) == 0)
901 return 0;
902
903 /* Unhook our tick handler. */
904 callout_stop(&sc->rtk_tick_ch);
905
906 /* Detach all PHYs. */
907 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
908
909 /* Delete all remaining media. */
910 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
911
912 ether_ifdetach(ifp);
913 if_detach(ifp);
914
915 /* Destroy DMA maps for RX buffers. */
916 for (i = 0; i < RE_RX_DESC_CNT; i++)
917 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
918 bus_dmamap_destroy(sc->sc_dmat,
919 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
920
921 /* Free DMA'able memory for the RX ring. */
922 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
923 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
924 bus_dmamem_unmap(sc->sc_dmat,
925 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
926 bus_dmamem_free(sc->sc_dmat,
927 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
928
929 /* Destroy DMA maps for TX buffers. */
930 for (i = 0; i < RE_TX_QLEN; i++)
931 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->re_ldata.re_txq[i].txq_dmamap);
934
935 /* Free DMA'able memory for the TX ring. */
936 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
937 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
938 bus_dmamem_unmap(sc->sc_dmat,
939 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
940 bus_dmamem_free(sc->sc_dmat,
941 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
942
943
944 shutdownhook_disestablish(sc->sc_sdhook);
945 powerhook_disestablish(sc->sc_powerhook);
946
947 return 0;
948 }
949
950 /*
951 * re_enable:
952 * Enable the RTL81X9 chip.
953 */
954 static int
955 re_enable(struct rtk_softc *sc)
956 {
957
958 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
959 if ((*sc->sc_enable)(sc) != 0) {
960 aprint_error("%s: device enable failed\n",
961 sc->sc_dev.dv_xname);
962 return EIO;
963 }
964 sc->sc_flags |= RTK_ENABLED;
965 }
966 return 0;
967 }
968
969 /*
970 * re_disable:
971 * Disable the RTL81X9 chip.
972 */
973 static void
974 re_disable(struct rtk_softc *sc)
975 {
976
977 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
978 (*sc->sc_disable)(sc);
979 sc->sc_flags &= ~RTK_ENABLED;
980 }
981 }
982
983 /*
984 * re_power:
985 * Power management (suspend/resume) hook.
986 */
987 void
988 re_power(int why, void *arg)
989 {
990 struct rtk_softc *sc = (void *)arg;
991 struct ifnet *ifp = &sc->ethercom.ec_if;
992 int s;
993
994 s = splnet();
995 switch (why) {
996 case PWR_SUSPEND:
997 case PWR_STANDBY:
998 re_stop(ifp, 0);
999 if (sc->sc_power != NULL)
1000 (*sc->sc_power)(sc, why);
1001 break;
1002 case PWR_RESUME:
1003 if (ifp->if_flags & IFF_UP) {
1004 if (sc->sc_power != NULL)
1005 (*sc->sc_power)(sc, why);
1006 re_init(ifp);
1007 }
1008 break;
1009 case PWR_SOFTSUSPEND:
1010 case PWR_SOFTSTANDBY:
1011 case PWR_SOFTRESUME:
1012 break;
1013 }
1014 splx(s);
1015 }
1016
1017
1018 static int
1019 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1020 {
1021 struct mbuf *n = NULL;
1022 bus_dmamap_t map;
1023 struct re_desc *d;
1024 struct re_rxsoft *rxs;
1025 uint32_t cmdstat;
1026 int error;
1027
1028 if (m == NULL) {
1029 MGETHDR(n, M_DONTWAIT, MT_DATA);
1030 if (n == NULL)
1031 return ENOBUFS;
1032
1033 MCLGET(n, M_DONTWAIT);
1034 if ((n->m_flags & M_EXT) == 0) {
1035 m_freem(n);
1036 return ENOBUFS;
1037 }
1038 m = n;
1039 } else
1040 m->m_data = m->m_ext.ext_buf;
1041
1042 /*
1043 * Initialize mbuf length fields and fixup
1044 * alignment so that the frame payload is
1045 * longword aligned.
1046 */
1047 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1048 m->m_data += RE_ETHER_ALIGN;
1049
1050 rxs = &sc->re_ldata.re_rxsoft[idx];
1051 map = rxs->rxs_dmamap;
1052 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1053 BUS_DMA_READ|BUS_DMA_NOWAIT);
1054
1055 if (error)
1056 goto out;
1057
1058 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1059 BUS_DMASYNC_PREREAD);
1060
1061 d = &sc->re_ldata.re_rx_list[idx];
1062 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1063 cmdstat = le32toh(d->re_cmdstat);
1064 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1065 if (cmdstat & RE_RDESC_STAT_OWN) {
1066 aprint_error("%s: tried to map busy RX descriptor\n",
1067 sc->sc_dev.dv_xname);
1068 goto out;
1069 }
1070
1071 rxs->rxs_mbuf = m;
1072
1073 d->re_vlanctl = 0;
1074 cmdstat = map->dm_segs[0].ds_len;
1075 if (idx == (RE_RX_DESC_CNT - 1))
1076 cmdstat |= RE_RDESC_CMD_EOR;
1077 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1078 d->re_cmdstat = htole32(cmdstat);
1079 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1080 cmdstat |= RE_RDESC_CMD_OWN;
1081 d->re_cmdstat = htole32(cmdstat);
1082 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083
1084 return 0;
1085 out:
1086 if (n != NULL)
1087 m_freem(n);
1088 return ENOMEM;
1089 }
1090
1091 static int
1092 re_tx_list_init(struct rtk_softc *sc)
1093 {
1094 int i;
1095
1096 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1097 for (i = 0; i < RE_TX_QLEN; i++) {
1098 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1099 }
1100
1101 bus_dmamap_sync(sc->sc_dmat,
1102 sc->re_ldata.re_tx_list_map, 0,
1103 sc->re_ldata.re_tx_list_map->dm_mapsize,
1104 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105 sc->re_ldata.re_txq_prodidx = 0;
1106 sc->re_ldata.re_txq_considx = 0;
1107 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1108 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1109 sc->re_ldata.re_tx_nextfree = 0;
1110
1111 return 0;
1112 }
1113
1114 static int
1115 re_rx_list_init(struct rtk_softc *sc)
1116 {
1117 int i;
1118
1119 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1120
1121 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1122 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1123 return ENOBUFS;
1124 }
1125
1126 sc->re_ldata.re_rx_prodidx = 0;
1127 sc->re_head = sc->re_tail = NULL;
1128
1129 return 0;
1130 }
1131
1132 /*
1133 * RX handler for C+ and 8169. For the gigE chips, we support
1134 * the reception of jumbo frames that have been fragmented
1135 * across multiple 2K mbuf cluster buffers.
1136 */
1137 static void
1138 re_rxeof(struct rtk_softc *sc)
1139 {
1140 struct mbuf *m;
1141 struct ifnet *ifp;
1142 int i, total_len;
1143 struct re_desc *cur_rx;
1144 struct re_rxsoft *rxs;
1145 uint32_t rxstat, rxvlan;
1146
1147 ifp = &sc->ethercom.ec_if;
1148
1149 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1150 cur_rx = &sc->re_ldata.re_rx_list[i];
1151 RE_RXDESCSYNC(sc, i,
1152 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1153 rxstat = le32toh(cur_rx->re_cmdstat);
1154 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1155 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1156 break;
1157 }
1158 total_len = rxstat & sc->re_rxlenmask;
1159 rxvlan = le32toh(cur_rx->re_vlanctl);
1160 rxs = &sc->re_ldata.re_rxsoft[i];
1161 m = rxs->rxs_mbuf;
1162
1163 /* Invalidate the RX mbuf and unload its map */
1164
1165 bus_dmamap_sync(sc->sc_dmat,
1166 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1167 BUS_DMASYNC_POSTREAD);
1168 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1169
1170 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1171 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1172 if (sc->re_head == NULL)
1173 sc->re_head = sc->re_tail = m;
1174 else {
1175 m->m_flags &= ~M_PKTHDR;
1176 sc->re_tail->m_next = m;
1177 sc->re_tail = m;
1178 }
1179 re_newbuf(sc, i, NULL);
1180 continue;
1181 }
1182
1183 /*
1184 * NOTE: for the 8139C+, the frame length field
1185 * is always 12 bits in size, but for the gigE chips,
1186 * it is 13 bits (since the max RX frame length is 16K).
1187 * Unfortunately, all 32 bits in the status word
1188 * were already used, so to make room for the extra
1189 * length bit, RealTek took out the 'frame alignment
1190 * error' bit and shifted the other status bits
1191 * over one slot. The OWN, EOR, FS and LS bits are
1192 * still in the same places. We have already extracted
1193 * the frame length and checked the OWN bit, so rather
1194 * than using an alternate bit mapping, we shift the
1195 * status bits one space to the right so we can evaluate
1196 * them using the 8169 status as though it was in the
1197 * same format as that of the 8139C+.
1198 */
1199 if (sc->rtk_type == RTK_8169)
1200 rxstat >>= 1;
1201
1202 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1203 #ifdef RE_DEBUG
1204 aprint_error("%s: RX error (rxstat = 0x%08x)",
1205 sc->sc_dev.dv_xname, rxstat);
1206 if (rxstat & RE_RDESC_STAT_FRALIGN)
1207 aprint_error(", frame alignment error");
1208 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1209 aprint_error(", out of buffer space");
1210 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1211 aprint_error(", FIFO overrun");
1212 if (rxstat & RE_RDESC_STAT_GIANT)
1213 aprint_error(", giant packet");
1214 if (rxstat & RE_RDESC_STAT_RUNT)
1215 aprint_error(", runt packet");
1216 if (rxstat & RE_RDESC_STAT_CRCERR)
1217 aprint_error(", CRC error");
1218 aprint_error("\n");
1219 #endif
1220 ifp->if_ierrors++;
1221 /*
1222 * If this is part of a multi-fragment packet,
1223 * discard all the pieces.
1224 */
1225 if (sc->re_head != NULL) {
1226 m_freem(sc->re_head);
1227 sc->re_head = sc->re_tail = NULL;
1228 }
1229 re_newbuf(sc, i, m);
1230 continue;
1231 }
1232
1233 /*
1234 * If allocating a replacement mbuf fails,
1235 * reload the current one.
1236 */
1237
1238 if (re_newbuf(sc, i, NULL) != 0) {
1239 ifp->if_ierrors++;
1240 if (sc->re_head != NULL) {
1241 m_freem(sc->re_head);
1242 sc->re_head = sc->re_tail = NULL;
1243 }
1244 re_newbuf(sc, i, m);
1245 continue;
1246 }
1247
1248 if (sc->re_head != NULL) {
1249 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1250 /*
1251 * Special case: if there's 4 bytes or less
1252 * in this buffer, the mbuf can be discarded:
1253 * the last 4 bytes is the CRC, which we don't
1254 * care about anyway.
1255 */
1256 if (m->m_len <= ETHER_CRC_LEN) {
1257 sc->re_tail->m_len -=
1258 (ETHER_CRC_LEN - m->m_len);
1259 m_freem(m);
1260 } else {
1261 m->m_len -= ETHER_CRC_LEN;
1262 m->m_flags &= ~M_PKTHDR;
1263 sc->re_tail->m_next = m;
1264 }
1265 m = sc->re_head;
1266 sc->re_head = sc->re_tail = NULL;
1267 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1268 } else
1269 m->m_pkthdr.len = m->m_len =
1270 (total_len - ETHER_CRC_LEN);
1271
1272 ifp->if_ipackets++;
1273 m->m_pkthdr.rcvif = ifp;
1274
1275 /* Do RX checksumming */
1276
1277 /* Check IP header checksum */
1278 if (rxstat & RE_RDESC_STAT_PROTOID) {
1279 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1280 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1281 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1282 }
1283
1284 /* Check TCP/UDP checksum */
1285 if (RE_TCPPKT(rxstat)) {
1286 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1287 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1288 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1289 } else if (RE_UDPPKT(rxstat)) {
1290 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1291 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1292 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1293 }
1294
1295 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1296 VLAN_INPUT_TAG(ifp, m,
1297 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1298 continue);
1299 }
1300 #if NBPFILTER > 0
1301 if (ifp->if_bpf)
1302 bpf_mtap(ifp->if_bpf, m);
1303 #endif
1304 (*ifp->if_input)(ifp, m);
1305 }
1306
1307 sc->re_ldata.re_rx_prodidx = i;
1308 }
1309
1310 static void
1311 re_txeof(struct rtk_softc *sc)
1312 {
1313 struct ifnet *ifp;
1314 struct re_txq *txq;
1315 uint32_t txstat;
1316 int idx, descidx;
1317
1318 ifp = &sc->ethercom.ec_if;
1319
1320 for (idx = sc->re_ldata.re_txq_considx;
1321 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1322 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1323 txq = &sc->re_ldata.re_txq[idx];
1324 KASSERT(txq->txq_mbuf != NULL);
1325
1326 descidx = txq->txq_descidx;
1327 RE_TXDESCSYNC(sc, descidx,
1328 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1329 txstat =
1330 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1331 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1332 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1333 if (txstat & RE_TDESC_CMD_OWN) {
1334 break;
1335 }
1336
1337 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1338 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1339 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1340 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1341 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1342 m_freem(txq->txq_mbuf);
1343 txq->txq_mbuf = NULL;
1344
1345 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1346 ifp->if_collisions++;
1347 if (txstat & RE_TDESC_STAT_TXERRSUM)
1348 ifp->if_oerrors++;
1349 else
1350 ifp->if_opackets++;
1351 }
1352
1353 sc->re_ldata.re_txq_considx = idx;
1354
1355 if (sc->re_ldata.re_txq_free > 0)
1356 ifp->if_flags &= ~IFF_OACTIVE;
1357
1358 /*
1359 * If not all descriptors have been released reaped yet,
1360 * reload the timer so that we will eventually get another
1361 * interrupt that will cause us to re-enter this routine.
1362 * This is done in case the transmitter has gone idle.
1363 */
1364 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1365 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1366 else
1367 ifp->if_timer = 0;
1368 }
1369
1370 /*
1371 * Stop all chip I/O so that the kernel's probe routines don't
1372 * get confused by errant DMAs when rebooting.
1373 */
1374 static void
1375 re_shutdown(void *vsc)
1376
1377 {
1378 struct rtk_softc *sc = vsc;
1379
1380 re_stop(&sc->ethercom.ec_if, 0);
1381 }
1382
1383
1384 static void
1385 re_tick(void *xsc)
1386 {
1387 struct rtk_softc *sc = xsc;
1388 int s;
1389
1390 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1391 s = splnet();
1392
1393 mii_tick(&sc->mii);
1394 splx(s);
1395
1396 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1397 }
1398
1399 #ifdef DEVICE_POLLING
1400 static void
1401 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1402 {
1403 struct rtk_softc *sc = ifp->if_softc;
1404
1405 RTK_LOCK(sc);
1406 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1407 ether_poll_deregister(ifp);
1408 cmd = POLL_DEREGISTER;
1409 }
1410 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1411 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1412 goto done;
1413 }
1414
1415 sc->rxcycles = count;
1416 re_rxeof(sc);
1417 re_txeof(sc);
1418
1419 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1420 (*ifp->if_start)(ifp);
1421
1422 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1423 uint16_t status;
1424
1425 status = CSR_READ_2(sc, RTK_ISR);
1426 if (status == 0xffff)
1427 goto done;
1428 if (status)
1429 CSR_WRITE_2(sc, RTK_ISR, status);
1430
1431 /*
1432 * XXX check behaviour on receiver stalls.
1433 */
1434
1435 if (status & RTK_ISR_SYSTEM_ERR) {
1436 re_init(sc);
1437 }
1438 }
1439 done:
1440 RTK_UNLOCK(sc);
1441 }
1442 #endif /* DEVICE_POLLING */
1443
1444 int
1445 re_intr(void *arg)
1446 {
1447 struct rtk_softc *sc = arg;
1448 struct ifnet *ifp;
1449 uint16_t status;
1450 int handled = 0;
1451
1452 ifp = &sc->ethercom.ec_if;
1453
1454 if ((ifp->if_flags & IFF_UP) == 0)
1455 return 0;
1456
1457 #ifdef DEVICE_POLLING
1458 if (ifp->if_flags & IFF_POLLING)
1459 goto done;
1460 if ((ifp->if_capenable & IFCAP_POLLING) &&
1461 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1462 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1463 re_poll(ifp, 0, 1);
1464 goto done;
1465 }
1466 #endif /* DEVICE_POLLING */
1467
1468 for (;;) {
1469
1470 status = CSR_READ_2(sc, RTK_ISR);
1471 /* If the card has gone away the read returns 0xffff. */
1472 if (status == 0xffff)
1473 break;
1474 if (status) {
1475 handled = 1;
1476 CSR_WRITE_2(sc, RTK_ISR, status);
1477 }
1478
1479 if ((status & RTK_INTRS_CPLUS) == 0)
1480 break;
1481
1482 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1483 re_rxeof(sc);
1484
1485 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1486 RTK_ISR_TX_DESC_UNAVAIL))
1487 re_txeof(sc);
1488
1489 if (status & RTK_ISR_SYSTEM_ERR) {
1490 re_init(ifp);
1491 }
1492
1493 if (status & RTK_ISR_LINKCHG) {
1494 callout_stop(&sc->rtk_tick_ch);
1495 re_tick(sc);
1496 }
1497 }
1498
1499 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1500 re_start(ifp);
1501
1502 #ifdef DEVICE_POLLING
1503 done:
1504 #endif
1505
1506 return handled;
1507 }
1508
1509
1510
1511 /*
1512 * Main transmit routine for C+ and gigE NICs.
1513 */
1514
1515 static void
1516 re_start(struct ifnet *ifp)
1517 {
1518 struct rtk_softc *sc;
1519 struct mbuf *m;
1520 bus_dmamap_t map;
1521 struct re_txq *txq;
1522 struct re_desc *d;
1523 struct m_tag *mtag;
1524 uint32_t cmdstat, re_flags;
1525 int ofree, idx, error, nsegs, seg;
1526 int startdesc, curdesc, lastdesc;
1527 boolean_t pad;
1528
1529 sc = ifp->if_softc;
1530 ofree = sc->re_ldata.re_txq_free;
1531
1532 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1533
1534 IFQ_POLL(&ifp->if_snd, m);
1535 if (m == NULL)
1536 break;
1537
1538 if (sc->re_ldata.re_txq_free == 0 ||
1539 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1540 /* no more free slots left */
1541 ifp->if_flags |= IFF_OACTIVE;
1542 break;
1543 }
1544
1545 /*
1546 * Set up checksum offload. Note: checksum offload bits must
1547 * appear in all descriptors of a multi-descriptor transmit
1548 * attempt. (This is according to testing done with an 8169
1549 * chip. I'm not sure if this is a requirement or a bug.)
1550 */
1551
1552 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1553 uint32_t segsz = m->m_pkthdr.segsz;
1554
1555 re_flags = RE_TDESC_CMD_LGSEND |
1556 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1557 } else {
1558 /*
1559 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1560 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1561 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1562 */
1563 re_flags = 0;
1564 if ((m->m_pkthdr.csum_flags &
1565 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1566 != 0) {
1567 re_flags |= RE_TDESC_CMD_IPCSUM;
1568 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1569 re_flags |= RE_TDESC_CMD_TCPCSUM;
1570 } else if (m->m_pkthdr.csum_flags &
1571 M_CSUM_UDPv4) {
1572 re_flags |= RE_TDESC_CMD_UDPCSUM;
1573 }
1574 }
1575 }
1576
1577 txq = &sc->re_ldata.re_txq[idx];
1578 map = txq->txq_dmamap;
1579 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1580 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1581
1582 if (error) {
1583 /* XXX try to defrag if EFBIG? */
1584 aprint_error("%s: can't map mbuf (error %d)\n",
1585 sc->sc_dev.dv_xname, error);
1586
1587 IFQ_DEQUEUE(&ifp->if_snd, m);
1588 m_freem(m);
1589 ifp->if_oerrors++;
1590 continue;
1591 }
1592
1593 nsegs = map->dm_nsegs;
1594 pad = FALSE;
1595 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1596 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1597 pad = TRUE;
1598 nsegs++;
1599 }
1600
1601 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1602 /*
1603 * Not enough free descriptors to transmit this packet.
1604 */
1605 ifp->if_flags |= IFF_OACTIVE;
1606 bus_dmamap_unload(sc->sc_dmat, map);
1607 break;
1608 }
1609
1610 IFQ_DEQUEUE(&ifp->if_snd, m);
1611
1612 /*
1613 * Make sure that the caches are synchronized before we
1614 * ask the chip to start DMA for the packet data.
1615 */
1616 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1617 BUS_DMASYNC_PREWRITE);
1618
1619 /*
1620 * Map the segment array into descriptors.
1621 * Note that we set the start-of-frame and
1622 * end-of-frame markers for either TX or RX,
1623 * but they really only have meaning in the TX case.
1624 * (In the RX case, it's the chip that tells us
1625 * where packets begin and end.)
1626 * We also keep track of the end of the ring
1627 * and set the end-of-ring bits as needed,
1628 * and we set the ownership bits in all except
1629 * the very first descriptor. (The caller will
1630 * set this descriptor later when it start
1631 * transmission or reception.)
1632 */
1633 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1634 lastdesc = -1;
1635 for (seg = 0; seg < map->dm_nsegs;
1636 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1637 d = &sc->re_ldata.re_tx_list[curdesc];
1638 #ifdef DIAGNOSTIC
1639 RE_TXDESCSYNC(sc, curdesc,
1640 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1641 cmdstat = le32toh(d->re_cmdstat);
1642 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1643 if (cmdstat & RE_TDESC_STAT_OWN) {
1644 panic("%s: tried to map busy TX descriptor",
1645 sc->sc_dev.dv_xname);
1646 }
1647 #endif
1648
1649 d->re_vlanctl = 0;
1650 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1651 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1652 if (seg == 0)
1653 cmdstat |= RE_TDESC_CMD_SOF;
1654 else
1655 cmdstat |= RE_TDESC_CMD_OWN;
1656 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1657 cmdstat |= RE_TDESC_CMD_EOR;
1658 if (seg == nsegs - 1) {
1659 cmdstat |= RE_TDESC_CMD_EOF;
1660 lastdesc = curdesc;
1661 }
1662 d->re_cmdstat = htole32(cmdstat);
1663 RE_TXDESCSYNC(sc, curdesc,
1664 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1665 }
1666 if (pad) {
1667 bus_addr_t paddaddr;
1668
1669 d = &sc->re_ldata.re_tx_list[curdesc];
1670 d->re_vlanctl = 0;
1671 paddaddr = RE_TXPADDADDR(sc);
1672 re_set_bufaddr(d, paddaddr);
1673 cmdstat = re_flags |
1674 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1675 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1676 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1677 cmdstat |= RE_TDESC_CMD_EOR;
1678 d->re_cmdstat = htole32(cmdstat);
1679 RE_TXDESCSYNC(sc, curdesc,
1680 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1681 lastdesc = curdesc;
1682 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1683 }
1684 KASSERT(lastdesc != -1);
1685
1686 /*
1687 * Set up hardware VLAN tagging. Note: vlan tag info must
1688 * appear in the first descriptor of a multi-descriptor
1689 * transmission attempt.
1690 */
1691 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1692 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1693 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1694 RE_TDESC_VLANCTL_TAG);
1695 }
1696
1697 /* Transfer ownership of packet to the chip. */
1698
1699 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1700 htole32(RE_TDESC_CMD_OWN);
1701 RE_TXDESCSYNC(sc, startdesc,
1702 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1703
1704 /* update info of TX queue and descriptors */
1705 txq->txq_mbuf = m;
1706 txq->txq_descidx = lastdesc;
1707 txq->txq_nsegs = nsegs;
1708
1709 sc->re_ldata.re_txq_free--;
1710 sc->re_ldata.re_tx_free -= nsegs;
1711 sc->re_ldata.re_tx_nextfree = curdesc;
1712
1713 #if NBPFILTER > 0
1714 /*
1715 * If there's a BPF listener, bounce a copy of this frame
1716 * to him.
1717 */
1718 if (ifp->if_bpf)
1719 bpf_mtap(ifp->if_bpf, m);
1720 #endif
1721 }
1722
1723 if (sc->re_ldata.re_txq_free < ofree) {
1724 /*
1725 * TX packets are enqueued.
1726 */
1727 sc->re_ldata.re_txq_prodidx = idx;
1728
1729 /*
1730 * Start the transmitter to poll.
1731 *
1732 * RealTek put the TX poll request register in a different
1733 * location on the 8169 gigE chip. I don't know why.
1734 */
1735 if (sc->rtk_type == RTK_8169)
1736 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1737 else
1738 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1739
1740 /*
1741 * Use the countdown timer for interrupt moderation.
1742 * 'TX done' interrupts are disabled. Instead, we reset the
1743 * countdown timer, which will begin counting until it hits
1744 * the value in the TIMERINT register, and then trigger an
1745 * interrupt. Each time we write to the TIMERCNT register,
1746 * the timer count is reset to 0.
1747 */
1748 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1749
1750 /*
1751 * Set a timeout in case the chip goes out to lunch.
1752 */
1753 ifp->if_timer = 5;
1754 }
1755 }
1756
1757 static int
1758 re_init(struct ifnet *ifp)
1759 {
1760 struct rtk_softc *sc = ifp->if_softc;
1761 uint8_t *enaddr;
1762 uint32_t rxcfg = 0;
1763 uint32_t reg;
1764 int error;
1765
1766 if ((error = re_enable(sc)) != 0)
1767 goto out;
1768
1769 /*
1770 * Cancel pending I/O and free all RX/TX buffers.
1771 */
1772 re_stop(ifp, 0);
1773
1774 re_reset(sc);
1775
1776 /*
1777 * Enable C+ RX and TX mode, as well as VLAN stripping and
1778 * RX checksum offload. We must configure the C+ register
1779 * before all others.
1780 */
1781 reg = 0;
1782
1783 /*
1784 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1785 * FreeBSD drivers set these bits anyway (for 8139C+?).
1786 * So far, it works.
1787 */
1788
1789 /*
1790 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1791 * For 8169S/8110S rev 2 and above, do not set bit 14.
1792 */
1793 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1794 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1795
1796 if (1) {/* not for 8169S ? */
1797 reg |=
1798 RTK_CPLUSCMD_VLANSTRIP |
1799 (ifp->if_capenable &
1800 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1801 IFCAP_CSUM_UDPv4_Rx) ?
1802 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1803 }
1804
1805 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1806 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1807
1808 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1809 if (sc->rtk_type == RTK_8169)
1810 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1811
1812 DELAY(10000);
1813
1814 /*
1815 * Init our MAC address. Even though the chipset
1816 * documentation doesn't mention it, we need to enter "Config
1817 * register write enable" mode to modify the ID registers.
1818 */
1819 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1820 enaddr = LLADDR(ifp->if_sadl);
1821 reg = enaddr[0] | (enaddr[1] << 8) |
1822 (enaddr[2] << 16) | (enaddr[3] << 24);
1823 CSR_WRITE_4(sc, RTK_IDR0, reg);
1824 reg = enaddr[4] | (enaddr[5] << 8);
1825 CSR_WRITE_4(sc, RTK_IDR4, reg);
1826 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1827
1828 /*
1829 * For C+ mode, initialize the RX descriptors and mbufs.
1830 */
1831 re_rx_list_init(sc);
1832 re_tx_list_init(sc);
1833
1834 /*
1835 * Load the addresses of the RX and TX lists into the chip.
1836 */
1837 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1838 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1839 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1840 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1841
1842 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1843 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1844 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1845 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1846
1847 /*
1848 * Enable transmit and receive.
1849 */
1850 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1851
1852 /*
1853 * Set the initial TX and RX configuration.
1854 */
1855 if (sc->re_testmode) {
1856 if (sc->rtk_type == RTK_8169)
1857 CSR_WRITE_4(sc, RTK_TXCFG,
1858 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1859 else
1860 CSR_WRITE_4(sc, RTK_TXCFG,
1861 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1862 } else
1863 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1864
1865 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1866
1867 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1868
1869 /* Set the individual bit to receive frames for this host only. */
1870 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1871 rxcfg |= RTK_RXCFG_RX_INDIV;
1872
1873 /* If we want promiscuous mode, set the allframes bit. */
1874 if (ifp->if_flags & IFF_PROMISC)
1875 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1876 else
1877 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1878 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1879
1880 /*
1881 * Set capture broadcast bit to capture broadcast frames.
1882 */
1883 if (ifp->if_flags & IFF_BROADCAST)
1884 rxcfg |= RTK_RXCFG_RX_BROAD;
1885 else
1886 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1887 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1888
1889 /*
1890 * Program the multicast filter, if necessary.
1891 */
1892 rtk_setmulti(sc);
1893
1894 #ifdef DEVICE_POLLING
1895 /*
1896 * Disable interrupts if we are polling.
1897 */
1898 if (ifp->if_flags & IFF_POLLING)
1899 CSR_WRITE_2(sc, RTK_IMR, 0);
1900 else /* otherwise ... */
1901 #endif /* DEVICE_POLLING */
1902 /*
1903 * Enable interrupts.
1904 */
1905 if (sc->re_testmode)
1906 CSR_WRITE_2(sc, RTK_IMR, 0);
1907 else
1908 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1909
1910 /* Start RX/TX process. */
1911 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1912 #ifdef notdef
1913 /* Enable receiver and transmitter. */
1914 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1915 #endif
1916
1917 /*
1918 * Initialize the timer interrupt register so that
1919 * a timer interrupt will be generated once the timer
1920 * reaches a certain number of ticks. The timer is
1921 * reloaded on each transmit. This gives us TX interrupt
1922 * moderation, which dramatically improves TX frame rate.
1923 */
1924
1925 if (sc->rtk_type == RTK_8169)
1926 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1927 else
1928 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1929
1930 /*
1931 * For 8169 gigE NICs, set the max allowed RX packet
1932 * size so we can receive jumbo frames.
1933 */
1934 if (sc->rtk_type == RTK_8169)
1935 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1936
1937 if (sc->re_testmode)
1938 return 0;
1939
1940 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1941
1942 ifp->if_flags |= IFF_RUNNING;
1943 ifp->if_flags &= ~IFF_OACTIVE;
1944
1945 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1946
1947 out:
1948 if (error) {
1949 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1950 ifp->if_timer = 0;
1951 aprint_error("%s: interface not running\n",
1952 sc->sc_dev.dv_xname);
1953 }
1954
1955 return error;
1956 }
1957
1958 /*
1959 * Set media options.
1960 */
1961 static int
1962 re_ifmedia_upd(struct ifnet *ifp)
1963 {
1964 struct rtk_softc *sc;
1965
1966 sc = ifp->if_softc;
1967
1968 return mii_mediachg(&sc->mii);
1969 }
1970
1971 /*
1972 * Report current media status.
1973 */
1974 static void
1975 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1976 {
1977 struct rtk_softc *sc;
1978
1979 sc = ifp->if_softc;
1980
1981 mii_pollstat(&sc->mii);
1982 ifmr->ifm_active = sc->mii.mii_media_active;
1983 ifmr->ifm_status = sc->mii.mii_media_status;
1984 }
1985
1986 static int
1987 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1988 {
1989 struct rtk_softc *sc = ifp->if_softc;
1990 struct ifreq *ifr = (struct ifreq *) data;
1991 int s, error = 0;
1992
1993 s = splnet();
1994
1995 switch (command) {
1996 case SIOCSIFMTU:
1997 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1998 error = EINVAL;
1999 ifp->if_mtu = ifr->ifr_mtu;
2000 break;
2001 case SIOCGIFMEDIA:
2002 case SIOCSIFMEDIA:
2003 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2004 break;
2005 default:
2006 error = ether_ioctl(ifp, command, data);
2007 if (error == ENETRESET) {
2008 if (ifp->if_flags & IFF_RUNNING)
2009 rtk_setmulti(sc);
2010 error = 0;
2011 }
2012 break;
2013 }
2014
2015 splx(s);
2016
2017 return error;
2018 }
2019
2020 static void
2021 re_watchdog(struct ifnet *ifp)
2022 {
2023 struct rtk_softc *sc;
2024 int s;
2025
2026 sc = ifp->if_softc;
2027 s = splnet();
2028 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2029 ifp->if_oerrors++;
2030
2031 re_txeof(sc);
2032 re_rxeof(sc);
2033
2034 re_init(ifp);
2035
2036 splx(s);
2037 }
2038
2039 /*
2040 * Stop the adapter and free any mbufs allocated to the
2041 * RX and TX lists.
2042 */
2043 static void
2044 re_stop(struct ifnet *ifp, int disable)
2045 {
2046 int i;
2047 struct rtk_softc *sc = ifp->if_softc;
2048
2049 callout_stop(&sc->rtk_tick_ch);
2050
2051 #ifdef DEVICE_POLLING
2052 ether_poll_deregister(ifp);
2053 #endif /* DEVICE_POLLING */
2054
2055 mii_down(&sc->mii);
2056
2057 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2058 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2059
2060 if (sc->re_head != NULL) {
2061 m_freem(sc->re_head);
2062 sc->re_head = sc->re_tail = NULL;
2063 }
2064
2065 /* Free the TX list buffers. */
2066 for (i = 0; i < RE_TX_QLEN; i++) {
2067 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2068 bus_dmamap_unload(sc->sc_dmat,
2069 sc->re_ldata.re_txq[i].txq_dmamap);
2070 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2071 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2072 }
2073 }
2074
2075 /* Free the RX list buffers. */
2076 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2077 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2078 bus_dmamap_unload(sc->sc_dmat,
2079 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2080 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2081 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2082 }
2083 }
2084
2085 if (disable)
2086 re_disable(sc);
2087
2088 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2089 ifp->if_timer = 0;
2090 }
2091