rtl8169.c revision 1.32 1 /* $NetBSD: rtl8169.c,v 1.32 2006/10/20 11:30:54 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev __unused)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 static const u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 static const u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
492 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
493 BUS_DMASYNC_POSTREAD);
494 bus_dmamap_unload(sc->sc_dmat,
495 sc->rtk_ldata.rtk_rx_dmamap[0]);
496
497 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
498 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
499 eh = mtod(m0, struct ether_header *);
500
501 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
502 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
503 rxstat = le32toh(cur_rx->rtk_cmdstat);
504 total_len = rxstat & sc->rtk_rxlenmask;
505
506 if (total_len != ETHER_MIN_LEN) {
507 aprint_error("%s: diagnostic failed, received short packet\n",
508 sc->sc_dev.dv_xname);
509 error = EIO;
510 goto done;
511 }
512
513 /* Test that the received packet data matches what we sent. */
514
515 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
516 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
517 ntohs(eh->ether_type) != ETHERTYPE_IP) {
518 aprint_error("%s: WARNING, DMA FAILURE!\n",
519 sc->sc_dev.dv_xname);
520 aprint_error("%s: expected TX data: %s",
521 sc->sc_dev.dv_xname, ether_sprintf(dst));
522 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
523 aprint_error("%s: received RX data: %s",
524 sc->sc_dev.dv_xname,
525 ether_sprintf(eh->ether_dhost));
526 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
527 ntohs(eh->ether_type));
528 aprint_error("%s: You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
530 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Read the re(4) man page for more details.\n",
533 sc->sc_dev.dv_xname);
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->rtk_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 u_char eaddr[ETHER_ADDR_LEN];
558 u_int16_t val;
559 struct ifnet *ifp;
560 int error = 0, i, addr_len;
561
562
563 /* XXX JRS: bus-attach-independent code begins approximately here */
564
565 /* Reset the adapter. */
566 re_reset(sc);
567
568 if (sc->rtk_type == RTK_8169) {
569 uint32_t hwrev;
570
571 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
572 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
573 if (hwrev == (0x1 << 28)) {
574 sc->sc_rev = 4;
575 } else if (hwrev == (0x1 << 26)) {
576 sc->sc_rev = 3;
577 } else if (hwrev == (0x1 << 23)) {
578 sc->sc_rev = 2;
579 } else
580 sc->sc_rev = 1;
581
582 /* Set RX length mask */
583
584 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
585
586 /* Force station address autoload from the EEPROM */
587
588 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
589 for (i = 0; i < RTK_TIMEOUT; i++) {
590 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
591 break;
592 DELAY(100);
593 }
594 if (i == RTK_TIMEOUT)
595 aprint_error("%s: eeprom autoload timed out\n",
596 sc->sc_dev.dv_xname);
597
598 for (i = 0; i < ETHER_ADDR_LEN; i++)
599 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
600
601 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
602 } else {
603
604 /* Set RX length mask */
605
606 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
607
608 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
609 addr_len = RTK_EEADDR_LEN1;
610 else
611 addr_len = RTK_EEADDR_LEN0;
612
613 /*
614 * Get station address from the EEPROM.
615 */
616 for (i = 0; i < 3; i++) {
617 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
618 eaddr[(i * 2) + 0] = val & 0xff;
619 eaddr[(i * 2) + 1] = val >> 8;
620 }
621
622 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
623 }
624
625 aprint_normal("%s: Ethernet address %s\n",
626 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
627
628 if (sc->rtk_ldata.rtk_tx_desc_cnt >
629 PAGE_SIZE / sizeof(struct rtk_desc)) {
630 sc->rtk_ldata.rtk_tx_desc_cnt =
631 PAGE_SIZE / sizeof(struct rtk_desc);
632 }
633
634 aprint_verbose("%s: using %d tx descriptors\n",
635 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
636
637 /* Allocate DMA'able memory for the TX ring */
638 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
639 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
640 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
641 aprint_error("%s: can't allocate tx listseg, error = %d\n",
642 sc->sc_dev.dv_xname, error);
643 goto fail_0;
644 }
645
646 /* Load the map for the TX ring. */
647 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
648 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
649 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
650 BUS_DMA_NOWAIT)) != 0) {
651 aprint_error("%s: can't map tx list, error = %d\n",
652 sc->sc_dev.dv_xname, error);
653 goto fail_1;
654 }
655 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
656
657 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
658 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
659 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
660 aprint_error("%s: can't create tx list map, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_2;
663 }
664
665
666 if ((error = bus_dmamap_load(sc->sc_dmat,
667 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
668 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
669 aprint_error("%s: can't load tx list, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_3;
672 }
673
674 /* Create DMA maps for TX buffers */
675 for (i = 0; i < RTK_TX_QLEN; i++) {
676 error = bus_dmamap_create(sc->sc_dmat,
677 round_page(IP_MAXPACKET),
678 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
679 0, BUS_DMA_ALLOCNOW,
680 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
681 if (error) {
682 aprint_error("%s: can't create DMA map for TX\n",
683 sc->sc_dev.dv_xname);
684 goto fail_4;
685 }
686 }
687
688 /* Allocate DMA'able memory for the RX ring */
689 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
690 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
691 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
692 aprint_error("%s: can't allocate rx listseg, error = %d\n",
693 sc->sc_dev.dv_xname, error);
694 goto fail_4;
695 }
696
697 /* Load the map for the RX ring. */
698 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
699 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
700 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
701 BUS_DMA_NOWAIT)) != 0) {
702 aprint_error("%s: can't map rx list, error = %d\n",
703 sc->sc_dev.dv_xname, error);
704 goto fail_5;
705 }
706 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
707
708 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
709 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
710 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
711 aprint_error("%s: can't create rx list map, error = %d\n",
712 sc->sc_dev.dv_xname, error);
713 goto fail_6;
714 }
715
716 if ((error = bus_dmamap_load(sc->sc_dmat,
717 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
718 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
719 aprint_error("%s: can't load rx list, error = %d\n",
720 sc->sc_dev.dv_xname, error);
721 goto fail_7;
722 }
723
724 /* Create DMA maps for RX buffers */
725 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
726 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
727 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
728 if (error) {
729 aprint_error("%s: can't create DMA map for RX\n",
730 sc->sc_dev.dv_xname);
731 goto fail_8;
732 }
733 }
734
735 /*
736 * Record interface as attached. From here, we should not fail.
737 */
738 sc->sc_flags |= RTK_ATTACHED;
739
740 ifp = &sc->ethercom.ec_if;
741 ifp->if_softc = sc;
742 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
743 ifp->if_mtu = ETHERMTU;
744 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
745 ifp->if_ioctl = re_ioctl;
746 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
747
748 /*
749 * This is a way to disable hw VLAN tagging by default
750 * (RE_VLAN is undefined), as it is problematic. PR 32643
751 */
752
753 #ifdef RE_VLAN
754 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
755 #endif
756 ifp->if_start = re_start;
757 ifp->if_stop = re_stop;
758
759 /*
760 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
761 */
762
763 ifp->if_capabilities |=
764 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
765 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
766 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
767 IFCAP_TSOv4;
768 ifp->if_watchdog = re_watchdog;
769 ifp->if_init = re_init;
770 if (sc->rtk_type == RTK_8169)
771 ifp->if_baudrate = 1000000000;
772 else
773 ifp->if_baudrate = 100000000;
774 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
775 ifp->if_capenable = ifp->if_capabilities;
776 IFQ_SET_READY(&ifp->if_snd);
777
778 callout_init(&sc->rtk_tick_ch);
779
780 /* Do MII setup */
781 sc->mii.mii_ifp = ifp;
782 sc->mii.mii_readreg = re_miibus_readreg;
783 sc->mii.mii_writereg = re_miibus_writereg;
784 sc->mii.mii_statchg = re_miibus_statchg;
785 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
786 re_ifmedia_sts);
787 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
788 MII_OFFSET_ANY, 0);
789 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
790
791 /*
792 * Call MI attach routine.
793 */
794 if_attach(ifp);
795 ether_ifattach(ifp, eaddr);
796
797
798 /*
799 * Make sure the interface is shutdown during reboot.
800 */
801 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
802 if (sc->sc_sdhook == NULL)
803 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
804 sc->sc_dev.dv_xname);
805 /*
806 * Add a suspend hook to make sure we come back up after a
807 * resume.
808 */
809 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
810 re_power, sc);
811 if (sc->sc_powerhook == NULL)
812 aprint_error("%s: WARNING: unable to establish power hook\n",
813 sc->sc_dev.dv_xname);
814
815
816 return;
817
818 fail_8:
819 /* Destroy DMA maps for RX buffers. */
820 for (i = 0; i < RTK_RX_DESC_CNT; i++)
821 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
822 bus_dmamap_destroy(sc->sc_dmat,
823 sc->rtk_ldata.rtk_rx_dmamap[i]);
824
825 /* Free DMA'able memory for the RX ring. */
826 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
827 fail_7:
828 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
829 fail_6:
830 bus_dmamem_unmap(sc->sc_dmat,
831 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
832 fail_5:
833 bus_dmamem_free(sc->sc_dmat,
834 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
835
836 fail_4:
837 /* Destroy DMA maps for TX buffers. */
838 for (i = 0; i < RTK_TX_QLEN; i++)
839 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
840 bus_dmamap_destroy(sc->sc_dmat,
841 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
842
843 /* Free DMA'able memory for the TX ring. */
844 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
845 fail_3:
846 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
847 fail_2:
848 bus_dmamem_unmap(sc->sc_dmat,
849 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
850 fail_1:
851 bus_dmamem_free(sc->sc_dmat,
852 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
853 fail_0:
854 return;
855 }
856
857
858 /*
859 * re_activate:
860 * Handle device activation/deactivation requests.
861 */
862 int
863 re_activate(struct device *self, enum devact act)
864 {
865 struct rtk_softc *sc = (void *) self;
866 int s, error = 0;
867
868 s = splnet();
869 switch (act) {
870 case DVACT_ACTIVATE:
871 error = EOPNOTSUPP;
872 break;
873 case DVACT_DEACTIVATE:
874 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
875 if_deactivate(&sc->ethercom.ec_if);
876 break;
877 }
878 splx(s);
879
880 return error;
881 }
882
883 /*
884 * re_detach:
885 * Detach a rtk interface.
886 */
887 int
888 re_detach(struct rtk_softc *sc)
889 {
890 struct ifnet *ifp = &sc->ethercom.ec_if;
891 int i;
892
893 /*
894 * Succeed now if there isn't any work to do.
895 */
896 if ((sc->sc_flags & RTK_ATTACHED) == 0)
897 return 0;
898
899 /* Unhook our tick handler. */
900 callout_stop(&sc->rtk_tick_ch);
901
902 /* Detach all PHYs. */
903 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
904
905 /* Delete all remaining media. */
906 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
907
908 ether_ifdetach(ifp);
909 if_detach(ifp);
910
911 /* XXX undo re_allocmem() */
912
913 /* Destroy DMA maps for RX buffers. */
914 for (i = 0; i < RTK_RX_DESC_CNT; i++)
915 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
916 bus_dmamap_destroy(sc->sc_dmat,
917 sc->rtk_ldata.rtk_rx_dmamap[i]);
918
919 /* Free DMA'able memory for the RX ring. */
920 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
921 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
922 bus_dmamem_unmap(sc->sc_dmat,
923 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
924 bus_dmamem_free(sc->sc_dmat,
925 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
926
927 /* Destroy DMA maps for TX buffers. */
928 for (i = 0; i < RTK_TX_QLEN; i++)
929 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
932
933 /* Free DMA'able memory for the TX ring. */
934 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
935 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
936 bus_dmamem_unmap(sc->sc_dmat,
937 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
938 bus_dmamem_free(sc->sc_dmat,
939 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
940
941
942 shutdownhook_disestablish(sc->sc_sdhook);
943 powerhook_disestablish(sc->sc_powerhook);
944
945 return 0;
946 }
947
948 /*
949 * re_enable:
950 * Enable the RTL81X9 chip.
951 */
952 static int
953 re_enable(struct rtk_softc *sc)
954 {
955 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
956 if ((*sc->sc_enable)(sc) != 0) {
957 aprint_error("%s: device enable failed\n",
958 sc->sc_dev.dv_xname);
959 return EIO;
960 }
961 sc->sc_flags |= RTK_ENABLED;
962 }
963 return 0;
964 }
965
966 /*
967 * re_disable:
968 * Disable the RTL81X9 chip.
969 */
970 static void
971 re_disable(struct rtk_softc *sc)
972 {
973
974 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
975 (*sc->sc_disable)(sc);
976 sc->sc_flags &= ~RTK_ENABLED;
977 }
978 }
979
980 /*
981 * re_power:
982 * Power management (suspend/resume) hook.
983 */
984 void
985 re_power(int why, void *arg)
986 {
987 struct rtk_softc *sc = (void *) arg;
988 struct ifnet *ifp = &sc->ethercom.ec_if;
989 int s;
990
991 s = splnet();
992 switch (why) {
993 case PWR_SUSPEND:
994 case PWR_STANDBY:
995 re_stop(ifp, 0);
996 if (sc->sc_power != NULL)
997 (*sc->sc_power)(sc, why);
998 break;
999 case PWR_RESUME:
1000 if (ifp->if_flags & IFF_UP) {
1001 if (sc->sc_power != NULL)
1002 (*sc->sc_power)(sc, why);
1003 re_init(ifp);
1004 }
1005 break;
1006 case PWR_SOFTSUSPEND:
1007 case PWR_SOFTSTANDBY:
1008 case PWR_SOFTRESUME:
1009 break;
1010 }
1011 splx(s);
1012 }
1013
1014
1015 static int
1016 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1017 {
1018 struct mbuf *n = NULL;
1019 bus_dmamap_t map;
1020 struct rtk_desc *d;
1021 u_int32_t cmdstat;
1022 int error;
1023
1024 if (m == NULL) {
1025 MGETHDR(n, M_DONTWAIT, MT_DATA);
1026 if (n == NULL)
1027 return ENOBUFS;
1028 m = n;
1029
1030 MCLGET(m, M_DONTWAIT);
1031 if (!(m->m_flags & M_EXT)) {
1032 m_freem(m);
1033 return ENOBUFS;
1034 }
1035 } else
1036 m->m_data = m->m_ext.ext_buf;
1037
1038 /*
1039 * Initialize mbuf length fields and fixup
1040 * alignment so that the frame payload is
1041 * longword aligned.
1042 */
1043 m->m_len = m->m_pkthdr.len = MCLBYTES;
1044 m_adj(m, RTK_ETHER_ALIGN);
1045
1046 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1047 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1048 BUS_DMA_READ|BUS_DMA_NOWAIT);
1049
1050 if (error)
1051 goto out;
1052
1053 d = &sc->rtk_ldata.rtk_rx_list[idx];
1054 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1055 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) {
1056 printf("%s: tried to map busy RX descriptor\n",
1057 sc->sc_dev.dv_xname);
1058 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1059 goto out;
1060 }
1061
1062 cmdstat = map->dm_segs[0].ds_len;
1063 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1064 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1065 if (idx == (RTK_RX_DESC_CNT - 1))
1066 cmdstat |= RTK_RDESC_CMD_EOR;
1067 cmdstat |= RTK_RDESC_CMD_OWN;
1068 d->rtk_cmdstat = htole32(cmdstat);
1069 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1070
1071 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1072
1073 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1074 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1075 BUS_DMASYNC_PREREAD);
1076
1077 return 0;
1078 out:
1079 if (n != NULL)
1080 m_freem(n);
1081 return ENOMEM;
1082 }
1083
1084 static int
1085 re_tx_list_init(struct rtk_softc *sc)
1086 {
1087 int i;
1088
1089 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1090 for (i = 0; i < RTK_TX_QLEN; i++) {
1091 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1092 }
1093
1094 bus_dmamap_sync(sc->sc_dmat,
1095 sc->rtk_ldata.rtk_tx_list_map, 0,
1096 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1097 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1098 sc->rtk_ldata.rtk_txq_prodidx = 0;
1099 sc->rtk_ldata.rtk_txq_considx = 0;
1100 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1101 sc->rtk_ldata.rtk_tx_nextfree = 0;
1102
1103 return 0;
1104 }
1105
1106 static int
1107 re_rx_list_init(struct rtk_softc *sc)
1108 {
1109 int i;
1110
1111 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1112 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1113 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1114
1115 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1116 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1117 return ENOBUFS;
1118 }
1119
1120 sc->rtk_ldata.rtk_rx_prodidx = 0;
1121 sc->rtk_head = sc->rtk_tail = NULL;
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * RX handler for C+ and 8169. For the gigE chips, we support
1128 * the reception of jumbo frames that have been fragmented
1129 * across multiple 2K mbuf cluster buffers.
1130 */
1131 static void
1132 re_rxeof(struct rtk_softc *sc)
1133 {
1134 struct mbuf *m;
1135 struct ifnet *ifp;
1136 int i, total_len;
1137 struct rtk_desc *cur_rx;
1138 u_int32_t rxstat, rxvlan;
1139
1140 ifp = &sc->ethercom.ec_if;
1141 i = sc->rtk_ldata.rtk_rx_prodidx;
1142
1143 for (;;) {
1144 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1145 RTK_RXDESCSYNC(sc, i,
1146 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1147 rxstat = le32toh(cur_rx->rtk_cmdstat);
1148 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1149 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1150 break;
1151 }
1152 total_len = rxstat & sc->rtk_rxlenmask;
1153 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1154 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1155
1156 /* Invalidate the RX mbuf and unload its map */
1157
1158 bus_dmamap_sync(sc->sc_dmat,
1159 sc->rtk_ldata.rtk_rx_dmamap[i],
1160 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1161 BUS_DMASYNC_POSTREAD);
1162 bus_dmamap_unload(sc->sc_dmat,
1163 sc->rtk_ldata.rtk_rx_dmamap[i]);
1164
1165 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1166 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1167 if (sc->rtk_head == NULL)
1168 sc->rtk_head = sc->rtk_tail = m;
1169 else {
1170 m->m_flags &= ~M_PKTHDR;
1171 sc->rtk_tail->m_next = m;
1172 sc->rtk_tail = m;
1173 }
1174 re_newbuf(sc, i, NULL);
1175 RTK_RX_DESC_INC(sc, i);
1176 continue;
1177 }
1178
1179 /*
1180 * NOTE: for the 8139C+, the frame length field
1181 * is always 12 bits in size, but for the gigE chips,
1182 * it is 13 bits (since the max RX frame length is 16K).
1183 * Unfortunately, all 32 bits in the status word
1184 * were already used, so to make room for the extra
1185 * length bit, RealTek took out the 'frame alignment
1186 * error' bit and shifted the other status bits
1187 * over one slot. The OWN, EOR, FS and LS bits are
1188 * still in the same places. We have already extracted
1189 * the frame length and checked the OWN bit, so rather
1190 * than using an alternate bit mapping, we shift the
1191 * status bits one space to the right so we can evaluate
1192 * them using the 8169 status as though it was in the
1193 * same format as that of the 8139C+.
1194 */
1195 if (sc->rtk_type == RTK_8169)
1196 rxstat >>= 1;
1197
1198 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1199 ifp->if_ierrors++;
1200 /*
1201 * If this is part of a multi-fragment packet,
1202 * discard all the pieces.
1203 */
1204 if (sc->rtk_head != NULL) {
1205 m_freem(sc->rtk_head);
1206 sc->rtk_head = sc->rtk_tail = NULL;
1207 }
1208 re_newbuf(sc, i, m);
1209 RTK_RX_DESC_INC(sc, i);
1210 continue;
1211 }
1212
1213 /*
1214 * If allocating a replacement mbuf fails,
1215 * reload the current one.
1216 */
1217
1218 if (re_newbuf(sc, i, NULL)) {
1219 ifp->if_ierrors++;
1220 if (sc->rtk_head != NULL) {
1221 m_freem(sc->rtk_head);
1222 sc->rtk_head = sc->rtk_tail = NULL;
1223 }
1224 re_newbuf(sc, i, m);
1225 RTK_RX_DESC_INC(sc, i);
1226 continue;
1227 }
1228
1229 RTK_RX_DESC_INC(sc, i);
1230
1231 if (sc->rtk_head != NULL) {
1232 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1233 /*
1234 * Special case: if there's 4 bytes or less
1235 * in this buffer, the mbuf can be discarded:
1236 * the last 4 bytes is the CRC, which we don't
1237 * care about anyway.
1238 */
1239 if (m->m_len <= ETHER_CRC_LEN) {
1240 sc->rtk_tail->m_len -=
1241 (ETHER_CRC_LEN - m->m_len);
1242 m_freem(m);
1243 } else {
1244 m->m_len -= ETHER_CRC_LEN;
1245 m->m_flags &= ~M_PKTHDR;
1246 sc->rtk_tail->m_next = m;
1247 }
1248 m = sc->rtk_head;
1249 sc->rtk_head = sc->rtk_tail = NULL;
1250 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1251 } else
1252 m->m_pkthdr.len = m->m_len =
1253 (total_len - ETHER_CRC_LEN);
1254
1255 ifp->if_ipackets++;
1256 m->m_pkthdr.rcvif = ifp;
1257
1258 /* Do RX checksumming if enabled */
1259
1260 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1261
1262 /* Check IP header checksum */
1263 if (rxstat & RTK_RDESC_STAT_PROTOID)
1264 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1265 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1266 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1267 }
1268
1269 /* Check TCP/UDP checksum */
1270 if (RTK_TCPPKT(rxstat) &&
1271 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1273 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1274 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1275 }
1276 if (RTK_UDPPKT(rxstat) &&
1277 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1278 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1279 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1280 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1281 }
1282
1283 #ifdef RE_VLAN
1284 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1285 VLAN_INPUT_TAG(ifp, m,
1286 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1287 continue);
1288 }
1289 #endif
1290 #if NBPFILTER > 0
1291 if (ifp->if_bpf)
1292 bpf_mtap(ifp->if_bpf, m);
1293 #endif
1294 (*ifp->if_input)(ifp, m);
1295 }
1296
1297 sc->rtk_ldata.rtk_rx_prodidx = i;
1298
1299 return;
1300 }
1301
1302 static void
1303 re_txeof(struct rtk_softc *sc)
1304 {
1305 struct ifnet *ifp;
1306 int idx;
1307 boolean_t done = FALSE;
1308
1309 ifp = &sc->ethercom.ec_if;
1310 idx = sc->rtk_ldata.rtk_txq_considx;
1311
1312 while (/* CONSTCOND */ 1) {
1313 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1314 int descidx;
1315 u_int32_t txstat;
1316
1317 if (txq->txq_mbuf == NULL) {
1318 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1319 break;
1320 }
1321
1322 descidx = txq->txq_descidx;
1323 RTK_TXDESCSYNC(sc, descidx,
1324 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1325 txstat =
1326 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1327 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1328 if (txstat & RTK_TDESC_CMD_OWN) {
1329 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1330 break;
1331 }
1332
1333 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1334 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1335 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1336 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1337 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1338 m_freem(txq->txq_mbuf);
1339 txq->txq_mbuf = NULL;
1340
1341 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1342 ifp->if_collisions++;
1343 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1344 ifp->if_oerrors++;
1345 else
1346 ifp->if_opackets++;
1347
1348 idx = (idx + 1) % RTK_TX_QLEN;
1349 done = TRUE;
1350 }
1351
1352 /* No changes made to the TX ring, so no flush needed */
1353
1354 if (done) {
1355 sc->rtk_ldata.rtk_txq_considx = idx;
1356 ifp->if_flags &= ~IFF_OACTIVE;
1357 ifp->if_timer = 0;
1358 }
1359
1360 /*
1361 * If not all descriptors have been released reaped yet,
1362 * reload the timer so that we will eventually get another
1363 * interrupt that will cause us to re-enter this routine.
1364 * This is done in case the transmitter has gone idle.
1365 */
1366 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1367 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1368
1369 return;
1370 }
1371
1372 /*
1373 * Stop all chip I/O so that the kernel's probe routines don't
1374 * get confused by errant DMAs when rebooting.
1375 */
1376 static void
1377 re_shutdown(void *vsc)
1378
1379 {
1380 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1381
1382 re_stop(&sc->ethercom.ec_if, 0);
1383 }
1384
1385
1386 static void
1387 re_tick(void *xsc)
1388 {
1389 struct rtk_softc *sc = xsc;
1390 int s;
1391
1392 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1393 s = splnet();
1394
1395 mii_tick(&sc->mii);
1396 splx(s);
1397
1398 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1399 }
1400
1401 #ifdef DEVICE_POLLING
1402 static void
1403 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1404 {
1405 struct rtk_softc *sc = ifp->if_softc;
1406
1407 RTK_LOCK(sc);
1408 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1409 ether_poll_deregister(ifp);
1410 cmd = POLL_DEREGISTER;
1411 }
1412 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1413 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1414 goto done;
1415 }
1416
1417 sc->rxcycles = count;
1418 re_rxeof(sc);
1419 re_txeof(sc);
1420
1421 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1422 (*ifp->if_start)(ifp);
1423
1424 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1425 u_int16_t status;
1426
1427 status = CSR_READ_2(sc, RTK_ISR);
1428 if (status == 0xffff)
1429 goto done;
1430 if (status)
1431 CSR_WRITE_2(sc, RTK_ISR, status);
1432
1433 /*
1434 * XXX check behaviour on receiver stalls.
1435 */
1436
1437 if (status & RTK_ISR_SYSTEM_ERR) {
1438 re_reset(sc);
1439 re_init(sc);
1440 }
1441 }
1442 done:
1443 RTK_UNLOCK(sc);
1444 }
1445 #endif /* DEVICE_POLLING */
1446
1447 int
1448 re_intr(void *arg)
1449 {
1450 struct rtk_softc *sc = arg;
1451 struct ifnet *ifp;
1452 u_int16_t status;
1453 int handled = 0;
1454
1455 ifp = &sc->ethercom.ec_if;
1456
1457 if (!(ifp->if_flags & IFF_UP))
1458 return 0;
1459
1460 #ifdef DEVICE_POLLING
1461 if (ifp->if_flags & IFF_POLLING)
1462 goto done;
1463 if ((ifp->if_capenable & IFCAP_POLLING) &&
1464 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1465 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1466 re_poll(ifp, 0, 1);
1467 goto done;
1468 }
1469 #endif /* DEVICE_POLLING */
1470
1471 for (;;) {
1472
1473 status = CSR_READ_2(sc, RTK_ISR);
1474 /* If the card has gone away the read returns 0xffff. */
1475 if (status == 0xffff)
1476 break;
1477 if (status) {
1478 handled = 1;
1479 CSR_WRITE_2(sc, RTK_ISR, status);
1480 }
1481
1482 if ((status & RTK_INTRS_CPLUS) == 0)
1483 break;
1484
1485 if ((status & RTK_ISR_RX_OK) ||
1486 (status & RTK_ISR_RX_ERR))
1487 re_rxeof(sc);
1488
1489 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1490 (status & RTK_ISR_TX_ERR) ||
1491 (status & RTK_ISR_TX_DESC_UNAVAIL))
1492 re_txeof(sc);
1493
1494 if (status & RTK_ISR_SYSTEM_ERR) {
1495 re_reset(sc);
1496 re_init(ifp);
1497 }
1498
1499 if (status & RTK_ISR_LINKCHG) {
1500 callout_stop(&sc->rtk_tick_ch);
1501 re_tick(sc);
1502 }
1503 }
1504
1505 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1506 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1507 (*ifp->if_start)(ifp);
1508
1509 #ifdef DEVICE_POLLING
1510 done:
1511 #endif
1512
1513 return handled;
1514 }
1515
1516 static int
1517 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1518 {
1519 bus_dmamap_t map;
1520 int error, i, uidx, startidx, curidx;
1521 #ifdef RE_VLAN
1522 struct m_tag *mtag;
1523 #endif
1524 struct rtk_desc *d;
1525 u_int32_t cmdstat, rtk_flags;
1526 struct rtk_txq *txq;
1527
1528 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1529 return EFBIG;
1530 }
1531
1532 /*
1533 * Set up checksum offload. Note: checksum offload bits must
1534 * appear in all descriptors of a multi-descriptor transmit
1535 * attempt. (This is according to testing done with an 8169
1536 * chip. I'm not sure if this is a requirement or a bug.)
1537 */
1538
1539 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1540 u_int32_t segsz = m->m_pkthdr.segsz;
1541
1542 rtk_flags = RTK_TDESC_CMD_LGSEND |
1543 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1544 } else {
1545
1546 /*
1547 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1548 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1549 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1550 */
1551
1552 rtk_flags = 0;
1553 if ((m->m_pkthdr.csum_flags &
1554 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1555 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1556 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1557 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1558 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1559 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1560 }
1561 }
1562 }
1563
1564 txq = &sc->rtk_ldata.rtk_txq[*idx];
1565 map = txq->txq_dmamap;
1566 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1567 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1568
1569 if (error) {
1570 /* XXX try to defrag if EFBIG? */
1571
1572 aprint_error("%s: can't map mbuf (error %d)\n",
1573 sc->sc_dev.dv_xname, error);
1574
1575 return error;
1576 }
1577
1578 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1579 error = EFBIG;
1580 goto fail_unload;
1581 }
1582
1583 /*
1584 * Make sure that the caches are synchronized before we
1585 * ask the chip to start DMA for the packet data.
1586 */
1587 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1588 BUS_DMASYNC_PREWRITE);
1589
1590 /*
1591 * Map the segment array into descriptors. Note that we set the
1592 * start-of-frame and end-of-frame markers for either TX or RX, but
1593 * they really only have meaning in the TX case. (In the RX case,
1594 * it's the chip that tells us where packets begin and end.)
1595 * We also keep track of the end of the ring and set the
1596 * end-of-ring bits as needed, and we set the ownership bits
1597 * in all except the very first descriptor. (The caller will
1598 * set this descriptor later when it start transmission or
1599 * reception.)
1600 */
1601 i = 0;
1602 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1603 while (1) {
1604 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1605 RTK_TXDESCSYNC(sc, curidx,
1606 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1607 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1608 printf("%s: tried to map busy TX descriptor\n",
1609 sc->sc_dev.dv_xname);
1610 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1611 while (i > 0) {
1612 uidx = (curidx + RTK_TX_DESC_CNT(sc) - i) %
1613 RTK_TX_DESC_CNT(sc);
1614 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1615 RTK_TXDESCSYNC(sc, uidx,
1616 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1617 i--;
1618 }
1619 error = ENOBUFS;
1620 goto fail_unload;
1621 }
1622
1623 cmdstat = map->dm_segs[i].ds_len;
1624 d->rtk_bufaddr_lo =
1625 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1626 d->rtk_bufaddr_hi =
1627 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1628 if (i == 0)
1629 cmdstat |= RTK_TDESC_CMD_SOF;
1630 else
1631 cmdstat |= RTK_TDESC_CMD_OWN;
1632 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1633 cmdstat |= RTK_TDESC_CMD_EOR;
1634 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1635 RTK_TXDESCSYNC(sc, curidx,
1636 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1637 i++;
1638 if (i == map->dm_nsegs)
1639 break;
1640 RTK_TX_DESC_INC(sc, curidx);
1641 }
1642
1643 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1644
1645 txq->txq_mbuf = m;
1646 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1647
1648 /*
1649 * Set up hardware VLAN tagging. Note: vlan tag info must
1650 * appear in the first descriptor of a multi-descriptor
1651 * transmission attempt.
1652 */
1653
1654 #ifdef RE_VLAN
1655 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1656 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1657 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1658 RTK_TDESC_VLANCTL_TAG);
1659 RTK_TXDESCSYNC(sc, startidx,
1660 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661 }
1662 #endif
1663
1664 /* Transfer ownership of packet to the chip. */
1665
1666 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1667 htole32(RTK_TDESC_CMD_OWN);
1668 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1669 if (startidx != curidx) {
1670 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1671 htole32(RTK_TDESC_CMD_OWN);
1672 RTK_TXDESCSYNC(sc, startidx,
1673 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1674 }
1675
1676 txq->txq_descidx = curidx;
1677 RTK_TX_DESC_INC(sc, curidx);
1678 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1679 *idx = (*idx + 1) % RTK_TX_QLEN;
1680
1681 return 0;
1682
1683 fail_unload:
1684 bus_dmamap_unload(sc->sc_dmat, map);
1685
1686 return error;
1687 }
1688
1689 /*
1690 * Main transmit routine for C+ and gigE NICs.
1691 */
1692
1693 static void
1694 re_start(struct ifnet *ifp)
1695 {
1696 struct rtk_softc *sc;
1697 int idx;
1698 boolean_t done = FALSE;
1699
1700 sc = ifp->if_softc;
1701
1702 idx = sc->rtk_ldata.rtk_txq_prodidx;
1703 while (/* CONSTCOND */ 1) {
1704 struct mbuf *m;
1705 int error;
1706
1707 IFQ_POLL(&ifp->if_snd, m);
1708 if (m == NULL)
1709 break;
1710
1711 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1712 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1713 ifp->if_flags |= IFF_OACTIVE;
1714 break;
1715 }
1716
1717 error = re_encap(sc, m, &idx);
1718 if (error == EFBIG &&
1719 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1720 IFQ_DEQUEUE(&ifp->if_snd, m);
1721 m_freem(m);
1722 ifp->if_oerrors++;
1723 continue;
1724 }
1725 if (error) {
1726 ifp->if_flags |= IFF_OACTIVE;
1727 break;
1728 }
1729
1730 IFQ_DEQUEUE(&ifp->if_snd, m);
1731
1732 #if NBPFILTER > 0
1733 /*
1734 * If there's a BPF listener, bounce a copy of this frame
1735 * to him.
1736 */
1737 if (ifp->if_bpf)
1738 bpf_mtap(ifp->if_bpf, m);
1739 #endif
1740
1741 done = TRUE;
1742 }
1743
1744 if (!done) {
1745 return;
1746 }
1747 sc->rtk_ldata.rtk_txq_prodidx = idx;
1748
1749 /*
1750 * RealTek put the TX poll request register in a different
1751 * location on the 8169 gigE chip. I don't know why.
1752 */
1753
1754 if (sc->rtk_type == RTK_8169)
1755 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1756 else
1757 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1758
1759 /*
1760 * Use the countdown timer for interrupt moderation.
1761 * 'TX done' interrupts are disabled. Instead, we reset the
1762 * countdown timer, which will begin counting until it hits
1763 * the value in the TIMERINT register, and then trigger an
1764 * interrupt. Each time we write to the TIMERCNT register,
1765 * the timer count is reset to 0.
1766 */
1767 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1768
1769 /*
1770 * Set a timeout in case the chip goes out to lunch.
1771 */
1772 ifp->if_timer = 5;
1773
1774 return;
1775 }
1776
1777 static int
1778 re_init(struct ifnet *ifp)
1779 {
1780 struct rtk_softc *sc = ifp->if_softc;
1781 u_int32_t rxcfg = 0;
1782 u_int32_t reg;
1783 int error;
1784
1785 if ((error = re_enable(sc)) != 0)
1786 goto out;
1787
1788 /*
1789 * Cancel pending I/O and free all RX/TX buffers.
1790 */
1791 re_stop(ifp, 0);
1792
1793 /*
1794 * Enable C+ RX and TX mode, as well as VLAN stripping and
1795 * RX checksum offload. We must configure the C+ register
1796 * before all others.
1797 */
1798 reg = 0;
1799
1800 /*
1801 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1802 * FreeBSD drivers set these bits anyway (for 8139C+?).
1803 * So far, it works.
1804 */
1805
1806 /*
1807 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1808 * For 8169S/8110S rev 2 and above, do not set bit 14.
1809 */
1810 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1811 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1812
1813 if (1) {/* not for 8169S ? */
1814 reg |=
1815 #ifdef RE_VLAN
1816 RTK_CPLUSCMD_VLANSTRIP |
1817 #endif
1818 (ifp->if_capenable &
1819 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1820 IFCAP_CSUM_UDPv4_Rx) ?
1821 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1822 }
1823
1824 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1825 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1826
1827 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1828 if (sc->rtk_type == RTK_8169)
1829 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1830
1831 DELAY(10000);
1832
1833 /*
1834 * Init our MAC address. Even though the chipset
1835 * documentation doesn't mention it, we need to enter "Config
1836 * register write enable" mode to modify the ID registers.
1837 */
1838 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1839 memcpy(®, LLADDR(ifp->if_sadl), 4);
1840 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1841 reg = 0;
1842 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1843 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1844 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1845
1846 /*
1847 * For C+ mode, initialize the RX descriptors and mbufs.
1848 */
1849 re_rx_list_init(sc);
1850 re_tx_list_init(sc);
1851
1852 /*
1853 * Enable transmit and receive.
1854 */
1855 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1856
1857 /*
1858 * Set the initial TX and RX configuration.
1859 */
1860 if (sc->rtk_testmode) {
1861 if (sc->rtk_type == RTK_8169)
1862 CSR_WRITE_4(sc, RTK_TXCFG,
1863 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1864 else
1865 CSR_WRITE_4(sc, RTK_TXCFG,
1866 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1867 } else
1868 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1869 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1870
1871 /* Set the individual bit to receive frames for this host only. */
1872 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1873 rxcfg |= RTK_RXCFG_RX_INDIV;
1874
1875 /* If we want promiscuous mode, set the allframes bit. */
1876 if (ifp->if_flags & IFF_PROMISC)
1877 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1878 else
1879 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1880 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1881
1882 /*
1883 * Set capture broadcast bit to capture broadcast frames.
1884 */
1885 if (ifp->if_flags & IFF_BROADCAST)
1886 rxcfg |= RTK_RXCFG_RX_BROAD;
1887 else
1888 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1889 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1890
1891 /*
1892 * Program the multicast filter, if necessary.
1893 */
1894 rtk_setmulti(sc);
1895
1896 #ifdef DEVICE_POLLING
1897 /*
1898 * Disable interrupts if we are polling.
1899 */
1900 if (ifp->if_flags & IFF_POLLING)
1901 CSR_WRITE_2(sc, RTK_IMR, 0);
1902 else /* otherwise ... */
1903 #endif /* DEVICE_POLLING */
1904 /*
1905 * Enable interrupts.
1906 */
1907 if (sc->rtk_testmode)
1908 CSR_WRITE_2(sc, RTK_IMR, 0);
1909 else
1910 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1911
1912 /* Start RX/TX process. */
1913 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1914 #ifdef notdef
1915 /* Enable receiver and transmitter. */
1916 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1917 #endif
1918 /*
1919 * Load the addresses of the RX and TX lists into the chip.
1920 */
1921
1922 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1923 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1924 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1925 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1926
1927 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1928 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1929 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1930 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1931
1932 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1933
1934 /*
1935 * Initialize the timer interrupt register so that
1936 * a timer interrupt will be generated once the timer
1937 * reaches a certain number of ticks. The timer is
1938 * reloaded on each transmit. This gives us TX interrupt
1939 * moderation, which dramatically improves TX frame rate.
1940 */
1941
1942 if (sc->rtk_type == RTK_8169)
1943 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1944 else
1945 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1946
1947 /*
1948 * For 8169 gigE NICs, set the max allowed RX packet
1949 * size so we can receive jumbo frames.
1950 */
1951 if (sc->rtk_type == RTK_8169)
1952 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1953
1954 if (sc->rtk_testmode)
1955 return 0;
1956
1957 mii_mediachg(&sc->mii);
1958
1959 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1960
1961 ifp->if_flags |= IFF_RUNNING;
1962 ifp->if_flags &= ~IFF_OACTIVE;
1963
1964 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1965
1966 out:
1967 if (error) {
1968 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1969 ifp->if_timer = 0;
1970 aprint_error("%s: interface not running\n",
1971 sc->sc_dev.dv_xname);
1972 }
1973
1974 return error;
1975
1976 }
1977
1978 /*
1979 * Set media options.
1980 */
1981 static int
1982 re_ifmedia_upd(struct ifnet *ifp)
1983 {
1984 struct rtk_softc *sc;
1985
1986 sc = ifp->if_softc;
1987
1988 return mii_mediachg(&sc->mii);
1989 }
1990
1991 /*
1992 * Report current media status.
1993 */
1994 static void
1995 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1996 {
1997 struct rtk_softc *sc;
1998
1999 sc = ifp->if_softc;
2000
2001 mii_pollstat(&sc->mii);
2002 ifmr->ifm_active = sc->mii.mii_media_active;
2003 ifmr->ifm_status = sc->mii.mii_media_status;
2004
2005 return;
2006 }
2007
2008 static int
2009 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2010 {
2011 struct rtk_softc *sc = ifp->if_softc;
2012 struct ifreq *ifr = (struct ifreq *) data;
2013 int s, error = 0;
2014
2015 s = splnet();
2016
2017 switch (command) {
2018 case SIOCSIFMTU:
2019 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2020 error = EINVAL;
2021 ifp->if_mtu = ifr->ifr_mtu;
2022 break;
2023 case SIOCGIFMEDIA:
2024 case SIOCSIFMEDIA:
2025 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2026 break;
2027 default:
2028 error = ether_ioctl(ifp, command, data);
2029 if (error == ENETRESET) {
2030 if (ifp->if_flags & IFF_RUNNING)
2031 rtk_setmulti(sc);
2032 error = 0;
2033 }
2034 break;
2035 }
2036
2037 splx(s);
2038
2039 return error;
2040 }
2041
2042 static void
2043 re_watchdog(struct ifnet *ifp)
2044 {
2045 struct rtk_softc *sc;
2046 int s;
2047
2048 sc = ifp->if_softc;
2049 s = splnet();
2050 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2051 ifp->if_oerrors++;
2052
2053 re_txeof(sc);
2054 re_rxeof(sc);
2055
2056 re_init(ifp);
2057
2058 splx(s);
2059 }
2060
2061 /*
2062 * Stop the adapter and free any mbufs allocated to the
2063 * RX and TX lists.
2064 */
2065 static void
2066 re_stop(struct ifnet *ifp, int disable)
2067 {
2068 register int i;
2069 struct rtk_softc *sc = ifp->if_softc;
2070
2071 callout_stop(&sc->rtk_tick_ch);
2072
2073 #ifdef DEVICE_POLLING
2074 ether_poll_deregister(ifp);
2075 #endif /* DEVICE_POLLING */
2076
2077 mii_down(&sc->mii);
2078
2079 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2080 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2081
2082 if (sc->rtk_head != NULL) {
2083 m_freem(sc->rtk_head);
2084 sc->rtk_head = sc->rtk_tail = NULL;
2085 }
2086
2087 /* Free the TX list buffers. */
2088 for (i = 0; i < RTK_TX_QLEN; i++) {
2089 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2090 bus_dmamap_unload(sc->sc_dmat,
2091 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2092 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2093 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2094 }
2095 }
2096
2097 /* Free the RX list buffers. */
2098 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2099 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2100 bus_dmamap_unload(sc->sc_dmat,
2101 sc->rtk_ldata.rtk_rx_dmamap[i]);
2102 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2103 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2104 }
2105 }
2106
2107 if (disable)
2108 re_disable(sc);
2109
2110 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2111 ifp->if_timer = 0;
2112
2113 return;
2114 }
2115