Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.32
      1 /*	$NetBSD: rtl8169.c,v 1.32 2006/10/20 11:30:54 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <machine/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/ic/rtl81x9reg.h>
    151 #include <dev/ic/rtl81x9var.h>
    152 
    153 #include <dev/ic/rtl8169var.h>
    154 
    155 
    156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    157 
    158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    159 static int re_rx_list_init(struct rtk_softc *);
    160 static int re_tx_list_init(struct rtk_softc *);
    161 static void re_rxeof(struct rtk_softc *);
    162 static void re_txeof(struct rtk_softc *);
    163 static void re_tick(void *);
    164 static void re_start(struct ifnet *);
    165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    166 static int re_init(struct ifnet *);
    167 static void re_stop(struct ifnet *, int);
    168 static void re_watchdog(struct ifnet *);
    169 
    170 static void re_shutdown(void *);
    171 static int re_enable(struct rtk_softc *);
    172 static void re_disable(struct rtk_softc *);
    173 static void re_power(int, void *);
    174 
    175 static int re_ifmedia_upd(struct ifnet *);
    176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    177 
    178 static int re_gmii_readreg(struct device *, int, int);
    179 static void re_gmii_writereg(struct device *, int, int, int);
    180 
    181 static int re_miibus_readreg(struct device *, int, int);
    182 static void re_miibus_writereg(struct device *, int, int, int);
    183 static void re_miibus_statchg(struct device *);
    184 
    185 static void re_reset(struct rtk_softc *);
    186 
    187 static int
    188 re_gmii_readreg(struct device *self, int phy, int reg)
    189 {
    190 	struct rtk_softc	*sc = (void *)self;
    191 	u_int32_t		rval;
    192 	int			i;
    193 
    194 	if (phy != 7)
    195 		return 0;
    196 
    197 	/* Let the rgephy driver read the GMEDIASTAT register */
    198 
    199 	if (reg == RTK_GMEDIASTAT) {
    200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    201 		return rval;
    202 	}
    203 
    204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    205 	DELAY(1000);
    206 
    207 	for (i = 0; i < RTK_TIMEOUT; i++) {
    208 		rval = CSR_READ_4(sc, RTK_PHYAR);
    209 		if (rval & RTK_PHYAR_BUSY)
    210 			break;
    211 		DELAY(100);
    212 	}
    213 
    214 	if (i == RTK_TIMEOUT) {
    215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    216 		return 0;
    217 	}
    218 
    219 	return rval & RTK_PHYAR_PHYDATA;
    220 }
    221 
    222 static void
    223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
    224 {
    225 	struct rtk_softc	*sc = (void *)dev;
    226 	u_int32_t		rval;
    227 	int			i;
    228 
    229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    231 	DELAY(1000);
    232 
    233 	for (i = 0; i < RTK_TIMEOUT; i++) {
    234 		rval = CSR_READ_4(sc, RTK_PHYAR);
    235 		if (!(rval & RTK_PHYAR_BUSY))
    236 			break;
    237 		DELAY(100);
    238 	}
    239 
    240 	if (i == RTK_TIMEOUT) {
    241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    242 		    sc->sc_dev.dv_xname, reg, data);
    243 		return;
    244 	}
    245 
    246 	return;
    247 }
    248 
    249 static int
    250 re_miibus_readreg(struct device *dev, int phy, int reg)
    251 {
    252 	struct rtk_softc	*sc = (void *)dev;
    253 	u_int16_t		rval = 0;
    254 	u_int16_t		re8139_reg = 0;
    255 	int			s;
    256 
    257 	s = splnet();
    258 
    259 	if (sc->rtk_type == RTK_8169) {
    260 		rval = re_gmii_readreg(dev, phy, reg);
    261 		splx(s);
    262 		return rval;
    263 	}
    264 
    265 	/* Pretend the internal PHY is only at address 0 */
    266 	if (phy) {
    267 		splx(s);
    268 		return 0;
    269 	}
    270 	switch (reg) {
    271 	case MII_BMCR:
    272 		re8139_reg = RTK_BMCR;
    273 		break;
    274 	case MII_BMSR:
    275 		re8139_reg = RTK_BMSR;
    276 		break;
    277 	case MII_ANAR:
    278 		re8139_reg = RTK_ANAR;
    279 		break;
    280 	case MII_ANER:
    281 		re8139_reg = RTK_ANER;
    282 		break;
    283 	case MII_ANLPAR:
    284 		re8139_reg = RTK_LPAR;
    285 		break;
    286 	case MII_PHYIDR1:
    287 	case MII_PHYIDR2:
    288 		splx(s);
    289 		return 0;
    290 	/*
    291 	 * Allow the rlphy driver to read the media status
    292 	 * register. If we have a link partner which does not
    293 	 * support NWAY, this is the register which will tell
    294 	 * us the results of parallel detection.
    295 	 */
    296 	case RTK_MEDIASTAT:
    297 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    298 		splx(s);
    299 		return rval;
    300 	default:
    301 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    302 		splx(s);
    303 		return 0;
    304 	}
    305 	rval = CSR_READ_2(sc, re8139_reg);
    306 	splx(s);
    307 	return rval;
    308 }
    309 
    310 static void
    311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    312 {
    313 	struct rtk_softc	*sc = (void *)dev;
    314 	u_int16_t		re8139_reg = 0;
    315 	int			s;
    316 
    317 	s = splnet();
    318 
    319 	if (sc->rtk_type == RTK_8169) {
    320 		re_gmii_writereg(dev, phy, reg, data);
    321 		splx(s);
    322 		return;
    323 	}
    324 
    325 	/* Pretend the internal PHY is only at address 0 */
    326 	if (phy) {
    327 		splx(s);
    328 		return;
    329 	}
    330 	switch (reg) {
    331 	case MII_BMCR:
    332 		re8139_reg = RTK_BMCR;
    333 		break;
    334 	case MII_BMSR:
    335 		re8139_reg = RTK_BMSR;
    336 		break;
    337 	case MII_ANAR:
    338 		re8139_reg = RTK_ANAR;
    339 		break;
    340 	case MII_ANER:
    341 		re8139_reg = RTK_ANER;
    342 		break;
    343 	case MII_ANLPAR:
    344 		re8139_reg = RTK_LPAR;
    345 		break;
    346 	case MII_PHYIDR1:
    347 	case MII_PHYIDR2:
    348 		splx(s);
    349 		return;
    350 		break;
    351 	default:
    352 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    353 		splx(s);
    354 		return;
    355 	}
    356 	CSR_WRITE_2(sc, re8139_reg, data);
    357 	splx(s);
    358 	return;
    359 }
    360 
    361 static void
    362 re_miibus_statchg(struct device *dev __unused)
    363 {
    364 
    365 	return;
    366 }
    367 
    368 static void
    369 re_reset(struct rtk_softc *sc)
    370 {
    371 	register int		i;
    372 
    373 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    374 
    375 	for (i = 0; i < RTK_TIMEOUT; i++) {
    376 		DELAY(10);
    377 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
    378 			break;
    379 	}
    380 	if (i == RTK_TIMEOUT)
    381 		aprint_error("%s: reset never completed!\n",
    382 		    sc->sc_dev.dv_xname);
    383 
    384 	/*
    385 	 * NB: Realtek-supplied Linux driver does this only for
    386 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    387 	 */
    388 	if (1) /* XXX check softc flag for 8169s version */
    389 		CSR_WRITE_1(sc, 0x82, 1);
    390 
    391 	return;
    392 }
    393 
    394 /*
    395  * The following routine is designed to test for a defect on some
    396  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    397  * lines connected to the bus, however for a 32-bit only card, they
    398  * should be pulled high. The result of this defect is that the
    399  * NIC will not work right if you plug it into a 64-bit slot: DMA
    400  * operations will be done with 64-bit transfers, which will fail
    401  * because the 64-bit data lines aren't connected.
    402  *
    403  * There's no way to work around this (short of talking a soldering
    404  * iron to the board), however we can detect it. The method we use
    405  * here is to put the NIC into digital loopback mode, set the receiver
    406  * to promiscuous mode, and then try to send a frame. We then compare
    407  * the frame data we sent to what was received. If the data matches,
    408  * then the NIC is working correctly, otherwise we know the user has
    409  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    410  * slot. In the latter case, there's no way the NIC can work correctly,
    411  * so we print out a message on the console and abort the device attach.
    412  */
    413 
    414 int
    415 re_diag(struct rtk_softc *sc)
    416 {
    417 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    418 	struct mbuf		*m0;
    419 	struct ether_header	*eh;
    420 	struct rtk_desc		*cur_rx;
    421 	bus_dmamap_t		dmamap;
    422 	u_int16_t		status;
    423 	u_int32_t		rxstat;
    424 	int			total_len, i, s, error = 0;
    425 	static const u_int8_t	dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    426 	static const u_int8_t	src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    427 
    428 	/* Allocate a single mbuf */
    429 
    430 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    431 	if (m0 == NULL)
    432 		return ENOBUFS;
    433 
    434 	/*
    435 	 * Initialize the NIC in test mode. This sets the chip up
    436 	 * so that it can send and receive frames, but performs the
    437 	 * following special functions:
    438 	 * - Puts receiver in promiscuous mode
    439 	 * - Enables digital loopback mode
    440 	 * - Leaves interrupts turned off
    441 	 */
    442 
    443 	ifp->if_flags |= IFF_PROMISC;
    444 	sc->rtk_testmode = 1;
    445 	re_init(ifp);
    446 	re_stop(ifp, 0);
    447 	DELAY(100000);
    448 	re_init(ifp);
    449 
    450 	/* Put some data in the mbuf */
    451 
    452 	eh = mtod(m0, struct ether_header *);
    453 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
    454 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
    455 	eh->ether_type = htons(ETHERTYPE_IP);
    456 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    457 
    458 	/*
    459 	 * Queue the packet, start transmission.
    460 	 */
    461 
    462 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    463 	s = splnet();
    464 	IF_ENQUEUE(&ifp->if_snd, m0);
    465 	re_start(ifp);
    466 	splx(s);
    467 	m0 = NULL;
    468 
    469 	/* Wait for it to propagate through the chip */
    470 
    471 	DELAY(100000);
    472 	for (i = 0; i < RTK_TIMEOUT; i++) {
    473 		status = CSR_READ_2(sc, RTK_ISR);
    474 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    475 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    476 			break;
    477 		DELAY(10);
    478 	}
    479 	if (i == RTK_TIMEOUT) {
    480 		aprint_error("%s: diagnostic failed, failed to receive packet "
    481 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    482 		error = EIO;
    483 		goto done;
    484 	}
    485 
    486 	/*
    487 	 * The packet should have been dumped into the first
    488 	 * entry in the RX DMA ring. Grab it from there.
    489 	 */
    490 
    491 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    492 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    493 	    BUS_DMASYNC_POSTREAD);
    494 	bus_dmamap_unload(sc->sc_dmat,
    495 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    496 
    497 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    498 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    499 	eh = mtod(m0, struct ether_header *);
    500 
    501 	RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    502 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    503 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    504 	total_len = rxstat & sc->rtk_rxlenmask;
    505 
    506 	if (total_len != ETHER_MIN_LEN) {
    507 		aprint_error("%s: diagnostic failed, received short packet\n",
    508 		    sc->sc_dev.dv_xname);
    509 		error = EIO;
    510 		goto done;
    511 	}
    512 
    513 	/* Test that the received packet data matches what we sent. */
    514 
    515 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    516 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    517 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    518 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    519 		    sc->sc_dev.dv_xname);
    520 		aprint_error("%s: expected TX data: %s",
    521 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    522 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    523 		aprint_error("%s: received RX data: %s",
    524 		    sc->sc_dev.dv_xname,
    525 		    ether_sprintf(eh->ether_dhost));
    526 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    527 		    ntohs(eh->ether_type));
    528 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    529 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    530 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    531 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    532 		aprint_error("%s: Read the re(4) man page for more details.\n",
    533 		    sc->sc_dev.dv_xname);
    534 		error = EIO;
    535 	}
    536 
    537 done:
    538 	/* Turn interface off, release resources */
    539 
    540 	sc->rtk_testmode = 0;
    541 	ifp->if_flags &= ~IFF_PROMISC;
    542 	re_stop(ifp, 0);
    543 	if (m0 != NULL)
    544 		m_freem(m0);
    545 
    546 	return error;
    547 }
    548 
    549 
    550 /*
    551  * Attach the interface. Allocate softc structures, do ifmedia
    552  * setup and ethernet/BPF attach.
    553  */
    554 void
    555 re_attach(struct rtk_softc *sc)
    556 {
    557 	u_char			eaddr[ETHER_ADDR_LEN];
    558 	u_int16_t		val;
    559 	struct ifnet		*ifp;
    560 	int			error = 0, i, addr_len;
    561 
    562 
    563 	/* XXX JRS: bus-attach-independent code begins approximately here */
    564 
    565 	/* Reset the adapter. */
    566 	re_reset(sc);
    567 
    568 	if (sc->rtk_type == RTK_8169) {
    569 		uint32_t hwrev;
    570 
    571 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    572 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    573 		if (hwrev == (0x1 << 28)) {
    574 			sc->sc_rev = 4;
    575 		} else if (hwrev == (0x1 << 26)) {
    576 			sc->sc_rev = 3;
    577 		} else if (hwrev == (0x1 << 23)) {
    578 			sc->sc_rev = 2;
    579 		} else
    580 			sc->sc_rev = 1;
    581 
    582 		/* Set RX length mask */
    583 
    584 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    585 
    586 		/* Force station address autoload from the EEPROM */
    587 
    588 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    589 		for (i = 0; i < RTK_TIMEOUT; i++) {
    590 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
    591 				break;
    592 			DELAY(100);
    593 		}
    594 		if (i == RTK_TIMEOUT)
    595 			aprint_error("%s: eeprom autoload timed out\n",
    596 			    sc->sc_dev.dv_xname);
    597 
    598 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    599 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    600 
    601 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
    602 	} else {
    603 
    604 		/* Set RX length mask */
    605 
    606 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    607 
    608 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    609 			addr_len = RTK_EEADDR_LEN1;
    610 		else
    611 			addr_len = RTK_EEADDR_LEN0;
    612 
    613 		/*
    614 		 * Get station address from the EEPROM.
    615 		 */
    616 		for (i = 0; i < 3; i++) {
    617 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    618 			eaddr[(i * 2) + 0] = val & 0xff;
    619 			eaddr[(i * 2) + 1] = val >> 8;
    620 		}
    621 
    622 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
    623 	}
    624 
    625 	aprint_normal("%s: Ethernet address %s\n",
    626 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    627 
    628 	if (sc->rtk_ldata.rtk_tx_desc_cnt >
    629 	    PAGE_SIZE / sizeof(struct rtk_desc)) {
    630 		sc->rtk_ldata.rtk_tx_desc_cnt =
    631 		    PAGE_SIZE / sizeof(struct rtk_desc);
    632 	}
    633 
    634 	aprint_verbose("%s: using %d tx descriptors\n",
    635 	    sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
    636 
    637 	/* Allocate DMA'able memory for the TX ring */
    638 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
    639 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
    640 		    &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    641 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    642 		    sc->sc_dev.dv_xname, error);
    643 		goto fail_0;
    644 	}
    645 
    646 	/* Load the map for the TX ring. */
    647 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    648 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
    649 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    650 		    BUS_DMA_NOWAIT)) != 0) {
    651 		aprint_error("%s: can't map tx list, error = %d\n",
    652 		    sc->sc_dev.dv_xname, error);
    653 	  	goto fail_1;
    654 	}
    655 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
    656 
    657 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
    658 		    RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
    659 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    660 		aprint_error("%s: can't create tx list map, error = %d\n",
    661 		    sc->sc_dev.dv_xname, error);
    662 		goto fail_2;
    663 	}
    664 
    665 
    666 	if ((error = bus_dmamap_load(sc->sc_dmat,
    667 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    668 		    RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    669 		aprint_error("%s: can't load tx list, error = %d\n",
    670 		    sc->sc_dev.dv_xname, error);
    671 		goto fail_3;
    672 	}
    673 
    674 	/* Create DMA maps for TX buffers */
    675 	for (i = 0; i < RTK_TX_QLEN; i++) {
    676 		error = bus_dmamap_create(sc->sc_dmat,
    677 		    round_page(IP_MAXPACKET),
    678 		    RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
    679 		    0, BUS_DMA_ALLOCNOW,
    680 		    &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    681 		if (error) {
    682 			aprint_error("%s: can't create DMA map for TX\n",
    683 			    sc->sc_dev.dv_xname);
    684 			goto fail_4;
    685 		}
    686 	}
    687 
    688 	/* Allocate DMA'able memory for the RX ring */
    689         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    690 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    691 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    692 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    693 		    sc->sc_dev.dv_xname, error);
    694 		goto fail_4;
    695 	}
    696 
    697 	/* Load the map for the RX ring. */
    698 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    699 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    700 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    701 		    BUS_DMA_NOWAIT)) != 0) {
    702 		aprint_error("%s: can't map rx list, error = %d\n",
    703 		    sc->sc_dev.dv_xname, error);
    704 		goto fail_5;
    705 	}
    706 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
    707 
    708 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    709 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    710 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    711 		aprint_error("%s: can't create rx list map, error = %d\n",
    712 		    sc->sc_dev.dv_xname, error);
    713 		goto fail_6;
    714 	}
    715 
    716 	if ((error = bus_dmamap_load(sc->sc_dmat,
    717 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    718 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    719 		aprint_error("%s: can't load rx list, error = %d\n",
    720 		    sc->sc_dev.dv_xname, error);
    721 		goto fail_7;
    722 	}
    723 
    724 	/* Create DMA maps for RX buffers */
    725 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    726 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    727 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
    728 		if (error) {
    729 			aprint_error("%s: can't create DMA map for RX\n",
    730 			    sc->sc_dev.dv_xname);
    731 			goto fail_8;
    732 		}
    733 	}
    734 
    735 	/*
    736 	 * Record interface as attached. From here, we should not fail.
    737 	 */
    738 	sc->sc_flags |= RTK_ATTACHED;
    739 
    740 	ifp = &sc->ethercom.ec_if;
    741 	ifp->if_softc = sc;
    742 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    743 	ifp->if_mtu = ETHERMTU;
    744 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    745 	ifp->if_ioctl = re_ioctl;
    746 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    747 
    748 	/*
    749 	 * This is a way to disable hw VLAN tagging by default
    750 	 * (RE_VLAN is undefined), as it is problematic. PR 32643
    751 	 */
    752 
    753 #ifdef RE_VLAN
    754 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    755 #endif
    756 	ifp->if_start = re_start;
    757 	ifp->if_stop = re_stop;
    758 
    759 	/*
    760 	 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
    761 	 */
    762 
    763 	ifp->if_capabilities |=
    764 	    /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
    765 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    766 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    767 	    IFCAP_TSOv4;
    768 	ifp->if_watchdog = re_watchdog;
    769 	ifp->if_init = re_init;
    770 	if (sc->rtk_type == RTK_8169)
    771 		ifp->if_baudrate = 1000000000;
    772 	else
    773 		ifp->if_baudrate = 100000000;
    774 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    775 	ifp->if_capenable = ifp->if_capabilities;
    776 	IFQ_SET_READY(&ifp->if_snd);
    777 
    778 	callout_init(&sc->rtk_tick_ch);
    779 
    780 	/* Do MII setup */
    781 	sc->mii.mii_ifp = ifp;
    782 	sc->mii.mii_readreg = re_miibus_readreg;
    783 	sc->mii.mii_writereg = re_miibus_writereg;
    784 	sc->mii.mii_statchg = re_miibus_statchg;
    785 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    786 	    re_ifmedia_sts);
    787 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    788 	    MII_OFFSET_ANY, 0);
    789 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    790 
    791 	/*
    792 	 * Call MI attach routine.
    793 	 */
    794 	if_attach(ifp);
    795 	ether_ifattach(ifp, eaddr);
    796 
    797 
    798 	/*
    799 	 * Make sure the interface is shutdown during reboot.
    800 	 */
    801 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    802 	if (sc->sc_sdhook == NULL)
    803 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    804 		    sc->sc_dev.dv_xname);
    805 	/*
    806 	 * Add a suspend hook to make sure we come back up after a
    807 	 * resume.
    808 	 */
    809 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    810 	    re_power, sc);
    811 	if (sc->sc_powerhook == NULL)
    812 		aprint_error("%s: WARNING: unable to establish power hook\n",
    813 		    sc->sc_dev.dv_xname);
    814 
    815 
    816 	return;
    817 
    818 fail_8:
    819 	/* Destroy DMA maps for RX buffers. */
    820 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    821 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    822 			bus_dmamap_destroy(sc->sc_dmat,
    823 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    824 
    825 	/* Free DMA'able memory for the RX ring. */
    826 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    827 fail_7:
    828 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    829 fail_6:
    830 	bus_dmamem_unmap(sc->sc_dmat,
    831 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    832 fail_5:
    833 	bus_dmamem_free(sc->sc_dmat,
    834 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    835 
    836 fail_4:
    837 	/* Destroy DMA maps for TX buffers. */
    838 	for (i = 0; i < RTK_TX_QLEN; i++)
    839 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    840 			bus_dmamap_destroy(sc->sc_dmat,
    841 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    842 
    843 	/* Free DMA'able memory for the TX ring. */
    844 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    845 fail_3:
    846 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    847 fail_2:
    848 	bus_dmamem_unmap(sc->sc_dmat,
    849 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    850 fail_1:
    851 	bus_dmamem_free(sc->sc_dmat,
    852 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    853 fail_0:
    854 	return;
    855 }
    856 
    857 
    858 /*
    859  * re_activate:
    860  *     Handle device activation/deactivation requests.
    861  */
    862 int
    863 re_activate(struct device *self, enum devact act)
    864 {
    865 	struct rtk_softc *sc = (void *) self;
    866 	int s, error = 0;
    867 
    868 	s = splnet();
    869 	switch (act) {
    870 	case DVACT_ACTIVATE:
    871 		error = EOPNOTSUPP;
    872 		break;
    873 	case DVACT_DEACTIVATE:
    874 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    875 		if_deactivate(&sc->ethercom.ec_if);
    876 		break;
    877 	}
    878 	splx(s);
    879 
    880 	return error;
    881 }
    882 
    883 /*
    884  * re_detach:
    885  *     Detach a rtk interface.
    886  */
    887 int
    888 re_detach(struct rtk_softc *sc)
    889 {
    890 	struct ifnet *ifp = &sc->ethercom.ec_if;
    891 	int i;
    892 
    893 	/*
    894 	 * Succeed now if there isn't any work to do.
    895 	 */
    896 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    897 		return 0;
    898 
    899 	/* Unhook our tick handler. */
    900 	callout_stop(&sc->rtk_tick_ch);
    901 
    902 	/* Detach all PHYs. */
    903 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    904 
    905 	/* Delete all remaining media. */
    906 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    907 
    908 	ether_ifdetach(ifp);
    909 	if_detach(ifp);
    910 
    911 	/* XXX undo re_allocmem() */
    912 
    913 	/* Destroy DMA maps for RX buffers. */
    914 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    915 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    916 			bus_dmamap_destroy(sc->sc_dmat,
    917 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    918 
    919 	/* Free DMA'able memory for the RX ring. */
    920 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    921 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    922 	bus_dmamem_unmap(sc->sc_dmat,
    923 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    924 	bus_dmamem_free(sc->sc_dmat,
    925 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    926 
    927 	/* Destroy DMA maps for TX buffers. */
    928 	for (i = 0; i < RTK_TX_QLEN; i++)
    929 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    930 			bus_dmamap_destroy(sc->sc_dmat,
    931 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    932 
    933 	/* Free DMA'able memory for the TX ring. */
    934 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    935 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    936 	bus_dmamem_unmap(sc->sc_dmat,
    937 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    938 	bus_dmamem_free(sc->sc_dmat,
    939 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    940 
    941 
    942 	shutdownhook_disestablish(sc->sc_sdhook);
    943 	powerhook_disestablish(sc->sc_powerhook);
    944 
    945 	return 0;
    946 }
    947 
    948 /*
    949  * re_enable:
    950  *     Enable the RTL81X9 chip.
    951  */
    952 static int
    953 re_enable(struct rtk_softc *sc)
    954 {
    955 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    956 		if ((*sc->sc_enable)(sc) != 0) {
    957 			aprint_error("%s: device enable failed\n",
    958 			    sc->sc_dev.dv_xname);
    959 			return EIO;
    960 		}
    961 		sc->sc_flags |= RTK_ENABLED;
    962 	}
    963 	return 0;
    964 }
    965 
    966 /*
    967  * re_disable:
    968  *     Disable the RTL81X9 chip.
    969  */
    970 static void
    971 re_disable(struct rtk_softc *sc)
    972 {
    973 
    974 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    975 		(*sc->sc_disable)(sc);
    976 		sc->sc_flags &= ~RTK_ENABLED;
    977 	}
    978 }
    979 
    980 /*
    981  * re_power:
    982  *     Power management (suspend/resume) hook.
    983  */
    984 void
    985 re_power(int why, void *arg)
    986 {
    987 	struct rtk_softc *sc = (void *) arg;
    988 	struct ifnet *ifp = &sc->ethercom.ec_if;
    989 	int s;
    990 
    991 	s = splnet();
    992 	switch (why) {
    993 	case PWR_SUSPEND:
    994 	case PWR_STANDBY:
    995 		re_stop(ifp, 0);
    996 		if (sc->sc_power != NULL)
    997 			(*sc->sc_power)(sc, why);
    998 		break;
    999 	case PWR_RESUME:
   1000 		if (ifp->if_flags & IFF_UP) {
   1001 			if (sc->sc_power != NULL)
   1002 				(*sc->sc_power)(sc, why);
   1003 			re_init(ifp);
   1004 		}
   1005 		break;
   1006 	case PWR_SOFTSUSPEND:
   1007 	case PWR_SOFTSTANDBY:
   1008 	case PWR_SOFTRESUME:
   1009 		break;
   1010 	}
   1011 	splx(s);
   1012 }
   1013 
   1014 
   1015 static int
   1016 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1017 {
   1018 	struct mbuf		*n = NULL;
   1019 	bus_dmamap_t		map;
   1020 	struct rtk_desc		*d;
   1021 	u_int32_t		cmdstat;
   1022 	int			error;
   1023 
   1024 	if (m == NULL) {
   1025 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1026 		if (n == NULL)
   1027 			return ENOBUFS;
   1028 		m = n;
   1029 
   1030 		MCLGET(m, M_DONTWAIT);
   1031 		if (!(m->m_flags & M_EXT)) {
   1032 			m_freem(m);
   1033 			return ENOBUFS;
   1034 		}
   1035 	} else
   1036 		m->m_data = m->m_ext.ext_buf;
   1037 
   1038 	/*
   1039 	 * Initialize mbuf length fields and fixup
   1040 	 * alignment so that the frame payload is
   1041 	 * longword aligned.
   1042 	 */
   1043 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1044 	m_adj(m, RTK_ETHER_ALIGN);
   1045 
   1046 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
   1047 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1048 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1049 
   1050 	if (error)
   1051 		goto out;
   1052 
   1053 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1054 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1055 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) {
   1056 		printf("%s: tried to map busy RX descriptor\n",
   1057 		    sc->sc_dev.dv_xname);
   1058 		RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1059 		goto out;
   1060 	}
   1061 
   1062 	cmdstat = map->dm_segs[0].ds_len;
   1063 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1064 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1065 	if (idx == (RTK_RX_DESC_CNT - 1))
   1066 		cmdstat |= RTK_RDESC_CMD_EOR;
   1067 	cmdstat |= RTK_RDESC_CMD_OWN;
   1068 	d->rtk_cmdstat = htole32(cmdstat);
   1069 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1070 
   1071 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1072 
   1073 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
   1074 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
   1075 	    BUS_DMASYNC_PREREAD);
   1076 
   1077 	return 0;
   1078 out:
   1079 	if (n != NULL)
   1080 		m_freem(n);
   1081 	return ENOMEM;
   1082 }
   1083 
   1084 static int
   1085 re_tx_list_init(struct rtk_softc *sc)
   1086 {
   1087 	int i;
   1088 
   1089 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
   1090 	for (i = 0; i < RTK_TX_QLEN; i++) {
   1091 		sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   1092 	}
   1093 
   1094 	bus_dmamap_sync(sc->sc_dmat,
   1095 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1096 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1097 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1098 	sc->rtk_ldata.rtk_txq_prodidx = 0;
   1099 	sc->rtk_ldata.rtk_txq_considx = 0;
   1100 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
   1101 	sc->rtk_ldata.rtk_tx_nextfree = 0;
   1102 
   1103 	return 0;
   1104 }
   1105 
   1106 static int
   1107 re_rx_list_init(struct rtk_softc *sc)
   1108 {
   1109 	int			i;
   1110 
   1111 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1112 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1113 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1114 
   1115 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1116 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1117 			return ENOBUFS;
   1118 	}
   1119 
   1120 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1121 	sc->rtk_head = sc->rtk_tail = NULL;
   1122 
   1123 	return 0;
   1124 }
   1125 
   1126 /*
   1127  * RX handler for C+ and 8169. For the gigE chips, we support
   1128  * the reception of jumbo frames that have been fragmented
   1129  * across multiple 2K mbuf cluster buffers.
   1130  */
   1131 static void
   1132 re_rxeof(struct rtk_softc *sc)
   1133 {
   1134 	struct mbuf		*m;
   1135 	struct ifnet		*ifp;
   1136 	int			i, total_len;
   1137 	struct rtk_desc		*cur_rx;
   1138 	u_int32_t		rxstat, rxvlan;
   1139 
   1140 	ifp = &sc->ethercom.ec_if;
   1141 	i = sc->rtk_ldata.rtk_rx_prodidx;
   1142 
   1143 	for (;;) {
   1144 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1145 		RTK_RXDESCSYNC(sc, i,
   1146 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1147 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1148 		if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
   1149 			RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1150 			break;
   1151 		}
   1152 		total_len = rxstat & sc->rtk_rxlenmask;
   1153 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1154 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1155 
   1156 		/* Invalidate the RX mbuf and unload its map */
   1157 
   1158 		bus_dmamap_sync(sc->sc_dmat,
   1159 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1160 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1161 		    BUS_DMASYNC_POSTREAD);
   1162 		bus_dmamap_unload(sc->sc_dmat,
   1163 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1164 
   1165 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
   1166 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1167 			if (sc->rtk_head == NULL)
   1168 				sc->rtk_head = sc->rtk_tail = m;
   1169 			else {
   1170 				m->m_flags &= ~M_PKTHDR;
   1171 				sc->rtk_tail->m_next = m;
   1172 				sc->rtk_tail = m;
   1173 			}
   1174 			re_newbuf(sc, i, NULL);
   1175 			RTK_RX_DESC_INC(sc, i);
   1176 			continue;
   1177 		}
   1178 
   1179 		/*
   1180 		 * NOTE: for the 8139C+, the frame length field
   1181 		 * is always 12 bits in size, but for the gigE chips,
   1182 		 * it is 13 bits (since the max RX frame length is 16K).
   1183 		 * Unfortunately, all 32 bits in the status word
   1184 		 * were already used, so to make room for the extra
   1185 		 * length bit, RealTek took out the 'frame alignment
   1186 		 * error' bit and shifted the other status bits
   1187 		 * over one slot. The OWN, EOR, FS and LS bits are
   1188 		 * still in the same places. We have already extracted
   1189 		 * the frame length and checked the OWN bit, so rather
   1190 		 * than using an alternate bit mapping, we shift the
   1191 		 * status bits one space to the right so we can evaluate
   1192 		 * them using the 8169 status as though it was in the
   1193 		 * same format as that of the 8139C+.
   1194 		 */
   1195 		if (sc->rtk_type == RTK_8169)
   1196 			rxstat >>= 1;
   1197 
   1198 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
   1199 			ifp->if_ierrors++;
   1200 			/*
   1201 			 * If this is part of a multi-fragment packet,
   1202 			 * discard all the pieces.
   1203 			 */
   1204 			if (sc->rtk_head != NULL) {
   1205 				m_freem(sc->rtk_head);
   1206 				sc->rtk_head = sc->rtk_tail = NULL;
   1207 			}
   1208 			re_newbuf(sc, i, m);
   1209 			RTK_RX_DESC_INC(sc, i);
   1210 			continue;
   1211 		}
   1212 
   1213 		/*
   1214 		 * If allocating a replacement mbuf fails,
   1215 		 * reload the current one.
   1216 		 */
   1217 
   1218 		if (re_newbuf(sc, i, NULL)) {
   1219 			ifp->if_ierrors++;
   1220 			if (sc->rtk_head != NULL) {
   1221 				m_freem(sc->rtk_head);
   1222 				sc->rtk_head = sc->rtk_tail = NULL;
   1223 			}
   1224 			re_newbuf(sc, i, m);
   1225 			RTK_RX_DESC_INC(sc, i);
   1226 			continue;
   1227 		}
   1228 
   1229 		RTK_RX_DESC_INC(sc, i);
   1230 
   1231 		if (sc->rtk_head != NULL) {
   1232 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1233 			/*
   1234 			 * Special case: if there's 4 bytes or less
   1235 			 * in this buffer, the mbuf can be discarded:
   1236 			 * the last 4 bytes is the CRC, which we don't
   1237 			 * care about anyway.
   1238 			 */
   1239 			if (m->m_len <= ETHER_CRC_LEN) {
   1240 				sc->rtk_tail->m_len -=
   1241 				    (ETHER_CRC_LEN - m->m_len);
   1242 				m_freem(m);
   1243 			} else {
   1244 				m->m_len -= ETHER_CRC_LEN;
   1245 				m->m_flags &= ~M_PKTHDR;
   1246 				sc->rtk_tail->m_next = m;
   1247 			}
   1248 			m = sc->rtk_head;
   1249 			sc->rtk_head = sc->rtk_tail = NULL;
   1250 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1251 		} else
   1252 			m->m_pkthdr.len = m->m_len =
   1253 			    (total_len - ETHER_CRC_LEN);
   1254 
   1255 		ifp->if_ipackets++;
   1256 		m->m_pkthdr.rcvif = ifp;
   1257 
   1258 		/* Do RX checksumming if enabled */
   1259 
   1260 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   1261 
   1262 			/* Check IP header checksum */
   1263 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1264 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1265 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1266 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1267 		}
   1268 
   1269 		/* Check TCP/UDP checksum */
   1270 		if (RTK_TCPPKT(rxstat) &&
   1271 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
   1272 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1273 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1274 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1275 		}
   1276 		if (RTK_UDPPKT(rxstat) &&
   1277 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
   1278 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1279 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1280 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1281 		}
   1282 
   1283 #ifdef RE_VLAN
   1284 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1285 			VLAN_INPUT_TAG(ifp, m,
   1286 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
   1287 			     continue);
   1288 		}
   1289 #endif
   1290 #if NBPFILTER > 0
   1291 		if (ifp->if_bpf)
   1292 			bpf_mtap(ifp->if_bpf, m);
   1293 #endif
   1294 		(*ifp->if_input)(ifp, m);
   1295 	}
   1296 
   1297 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1298 
   1299 	return;
   1300 }
   1301 
   1302 static void
   1303 re_txeof(struct rtk_softc *sc)
   1304 {
   1305 	struct ifnet		*ifp;
   1306 	int			idx;
   1307 	boolean_t		done = FALSE;
   1308 
   1309 	ifp = &sc->ethercom.ec_if;
   1310 	idx = sc->rtk_ldata.rtk_txq_considx;
   1311 
   1312 	while (/* CONSTCOND */ 1) {
   1313 		struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
   1314 		int descidx;
   1315 		u_int32_t txstat;
   1316 
   1317 		if (txq->txq_mbuf == NULL) {
   1318 			KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
   1319 			break;
   1320 		}
   1321 
   1322 		descidx = txq->txq_descidx;
   1323 		RTK_TXDESCSYNC(sc, descidx,
   1324 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1325 		txstat =
   1326 		    le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
   1327 		KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
   1328 		if (txstat & RTK_TDESC_CMD_OWN) {
   1329 			RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1330 			break;
   1331 		}
   1332 
   1333 		sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
   1334 		KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
   1335 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1336 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1337 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1338 		m_freem(txq->txq_mbuf);
   1339 		txq->txq_mbuf = NULL;
   1340 
   1341 		if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
   1342 			ifp->if_collisions++;
   1343 		if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1344 			ifp->if_oerrors++;
   1345 		else
   1346 			ifp->if_opackets++;
   1347 
   1348 		idx = (idx + 1) % RTK_TX_QLEN;
   1349 		done = TRUE;
   1350 	}
   1351 
   1352 	/* No changes made to the TX ring, so no flush needed */
   1353 
   1354 	if (done) {
   1355 		sc->rtk_ldata.rtk_txq_considx = idx;
   1356 		ifp->if_flags &= ~IFF_OACTIVE;
   1357 		ifp->if_timer = 0;
   1358 	}
   1359 
   1360 	/*
   1361 	 * If not all descriptors have been released reaped yet,
   1362 	 * reload the timer so that we will eventually get another
   1363 	 * interrupt that will cause us to re-enter this routine.
   1364 	 * This is done in case the transmitter has gone idle.
   1365 	 */
   1366 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
   1367 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1368 
   1369 	return;
   1370 }
   1371 
   1372 /*
   1373  * Stop all chip I/O so that the kernel's probe routines don't
   1374  * get confused by errant DMAs when rebooting.
   1375  */
   1376 static void
   1377 re_shutdown(void *vsc)
   1378 
   1379 {
   1380 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1381 
   1382 	re_stop(&sc->ethercom.ec_if, 0);
   1383 }
   1384 
   1385 
   1386 static void
   1387 re_tick(void *xsc)
   1388 {
   1389 	struct rtk_softc	*sc = xsc;
   1390 	int s;
   1391 
   1392 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1393 	s = splnet();
   1394 
   1395 	mii_tick(&sc->mii);
   1396 	splx(s);
   1397 
   1398 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1399 }
   1400 
   1401 #ifdef DEVICE_POLLING
   1402 static void
   1403 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1404 {
   1405 	struct rtk_softc *sc = ifp->if_softc;
   1406 
   1407 	RTK_LOCK(sc);
   1408 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1409 		ether_poll_deregister(ifp);
   1410 		cmd = POLL_DEREGISTER;
   1411 	}
   1412 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1413 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1414 		goto done;
   1415 	}
   1416 
   1417 	sc->rxcycles = count;
   1418 	re_rxeof(sc);
   1419 	re_txeof(sc);
   1420 
   1421 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1422 		(*ifp->if_start)(ifp);
   1423 
   1424 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1425 		u_int16_t       status;
   1426 
   1427 		status = CSR_READ_2(sc, RTK_ISR);
   1428 		if (status == 0xffff)
   1429 			goto done;
   1430 		if (status)
   1431 			CSR_WRITE_2(sc, RTK_ISR, status);
   1432 
   1433 		/*
   1434 		 * XXX check behaviour on receiver stalls.
   1435 		 */
   1436 
   1437 		if (status & RTK_ISR_SYSTEM_ERR) {
   1438 			re_reset(sc);
   1439 			re_init(sc);
   1440 		}
   1441 	}
   1442 done:
   1443 	RTK_UNLOCK(sc);
   1444 }
   1445 #endif /* DEVICE_POLLING */
   1446 
   1447 int
   1448 re_intr(void *arg)
   1449 {
   1450 	struct rtk_softc	*sc = arg;
   1451 	struct ifnet		*ifp;
   1452 	u_int16_t		status;
   1453 	int			handled = 0;
   1454 
   1455 	ifp = &sc->ethercom.ec_if;
   1456 
   1457 	if (!(ifp->if_flags & IFF_UP))
   1458 		return 0;
   1459 
   1460 #ifdef DEVICE_POLLING
   1461 	if (ifp->if_flags & IFF_POLLING)
   1462 		goto done;
   1463 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1464 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1465 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1466 		re_poll(ifp, 0, 1);
   1467 		goto done;
   1468 	}
   1469 #endif /* DEVICE_POLLING */
   1470 
   1471 	for (;;) {
   1472 
   1473 		status = CSR_READ_2(sc, RTK_ISR);
   1474 		/* If the card has gone away the read returns 0xffff. */
   1475 		if (status == 0xffff)
   1476 			break;
   1477 		if (status) {
   1478 			handled = 1;
   1479 			CSR_WRITE_2(sc, RTK_ISR, status);
   1480 		}
   1481 
   1482 		if ((status & RTK_INTRS_CPLUS) == 0)
   1483 			break;
   1484 
   1485 		if ((status & RTK_ISR_RX_OK) ||
   1486 		    (status & RTK_ISR_RX_ERR))
   1487 			re_rxeof(sc);
   1488 
   1489 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1490 		    (status & RTK_ISR_TX_ERR) ||
   1491 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1492 			re_txeof(sc);
   1493 
   1494 		if (status & RTK_ISR_SYSTEM_ERR) {
   1495 			re_reset(sc);
   1496 			re_init(ifp);
   1497 		}
   1498 
   1499 		if (status & RTK_ISR_LINKCHG) {
   1500 			callout_stop(&sc->rtk_tick_ch);
   1501 			re_tick(sc);
   1502 		}
   1503 	}
   1504 
   1505 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1506 		if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1507 			(*ifp->if_start)(ifp);
   1508 
   1509 #ifdef DEVICE_POLLING
   1510 done:
   1511 #endif
   1512 
   1513 	return handled;
   1514 }
   1515 
   1516 static int
   1517 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
   1518 {
   1519 	bus_dmamap_t		map;
   1520 	int			error, i, uidx, startidx, curidx;
   1521 #ifdef RE_VLAN
   1522 	struct m_tag		*mtag;
   1523 #endif
   1524 	struct rtk_desc		*d;
   1525 	u_int32_t		cmdstat, rtk_flags;
   1526 	struct rtk_txq		*txq;
   1527 
   1528 	if (sc->rtk_ldata.rtk_tx_free <= 4) {
   1529 		return EFBIG;
   1530 	}
   1531 
   1532 	/*
   1533 	 * Set up checksum offload. Note: checksum offload bits must
   1534 	 * appear in all descriptors of a multi-descriptor transmit
   1535 	 * attempt. (This is according to testing done with an 8169
   1536 	 * chip. I'm not sure if this is a requirement or a bug.)
   1537 	 */
   1538 
   1539 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1540 		u_int32_t segsz = m->m_pkthdr.segsz;
   1541 
   1542 		rtk_flags = RTK_TDESC_CMD_LGSEND |
   1543 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
   1544 	} else {
   1545 
   1546 		/*
   1547 		 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
   1548 		 * is requested.  otherwise, RTK_TDESC_CMD_TCPCSUM/
   1549 		 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
   1550 		 */
   1551 
   1552 		rtk_flags = 0;
   1553 		if ((m->m_pkthdr.csum_flags &
   1554 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
   1555 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1556 			if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1557 				rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1558 			} else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1559 				rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1560 			}
   1561 		}
   1562 	}
   1563 
   1564 	txq = &sc->rtk_ldata.rtk_txq[*idx];
   1565 	map = txq->txq_dmamap;
   1566 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1567 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1568 
   1569 	if (error) {
   1570 		/* XXX try to defrag if EFBIG? */
   1571 
   1572 		aprint_error("%s: can't map mbuf (error %d)\n",
   1573 		    sc->sc_dev.dv_xname, error);
   1574 
   1575 		return error;
   1576 	}
   1577 
   1578 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
   1579 		error = EFBIG;
   1580 		goto fail_unload;
   1581 	}
   1582 
   1583 	/*
   1584 	 * Make sure that the caches are synchronized before we
   1585 	 * ask the chip to start DMA for the packet data.
   1586 	 */
   1587 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1588 		BUS_DMASYNC_PREWRITE);
   1589 
   1590 	/*
   1591 	 * Map the segment array into descriptors. Note that we set the
   1592 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1593 	 * they really only have meaning in the TX case. (In the RX case,
   1594 	 * it's the chip that tells us where packets begin and end.)
   1595 	 * We also keep track of the end of the ring and set the
   1596 	 * end-of-ring bits as needed, and we set the ownership bits
   1597 	 * in all except the very first descriptor. (The caller will
   1598 	 * set this descriptor later when it start transmission or
   1599 	 * reception.)
   1600 	 */
   1601 	i = 0;
   1602 	curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
   1603 	while (1) {
   1604 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1605 		RTK_TXDESCSYNC(sc, curidx,
   1606 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1607 		if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
   1608 			printf("%s: tried to map busy TX descriptor\n",
   1609 			    sc->sc_dev.dv_xname);
   1610 			RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
   1611 			while (i > 0) {
   1612 				uidx = (curidx + RTK_TX_DESC_CNT(sc) - i) %
   1613 				    RTK_TX_DESC_CNT(sc);
   1614 				sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
   1615 				RTK_TXDESCSYNC(sc, uidx,
   1616 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1617 				i--;
   1618 			}
   1619 			error = ENOBUFS;
   1620 			goto fail_unload;
   1621 		}
   1622 
   1623 		cmdstat = map->dm_segs[i].ds_len;
   1624 		d->rtk_bufaddr_lo =
   1625 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
   1626 		d->rtk_bufaddr_hi =
   1627 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
   1628 		if (i == 0)
   1629 			cmdstat |= RTK_TDESC_CMD_SOF;
   1630 		else
   1631 			cmdstat |= RTK_TDESC_CMD_OWN;
   1632 		if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
   1633 			cmdstat |= RTK_TDESC_CMD_EOR;
   1634 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1635 		RTK_TXDESCSYNC(sc, curidx,
   1636 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1637 		i++;
   1638 		if (i == map->dm_nsegs)
   1639 			break;
   1640 		RTK_TX_DESC_INC(sc, curidx);
   1641 	}
   1642 
   1643 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1644 
   1645 	txq->txq_mbuf = m;
   1646 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1647 
   1648 	/*
   1649 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1650 	 * appear in the first descriptor of a multi-descriptor
   1651 	 * transmission attempt.
   1652 	 */
   1653 
   1654 #ifdef RE_VLAN
   1655 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1656 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
   1657 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1658 		    RTK_TDESC_VLANCTL_TAG);
   1659 		RTK_TXDESCSYNC(sc, startidx,
   1660 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1661 	}
   1662 #endif
   1663 
   1664 	/* Transfer ownership of packet to the chip. */
   1665 
   1666 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
   1667 	    htole32(RTK_TDESC_CMD_OWN);
   1668 	RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1669 	if (startidx != curidx) {
   1670 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
   1671 		    htole32(RTK_TDESC_CMD_OWN);
   1672 		RTK_TXDESCSYNC(sc, startidx,
   1673 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1674 	}
   1675 
   1676 	txq->txq_descidx = curidx;
   1677 	RTK_TX_DESC_INC(sc, curidx);
   1678 	sc->rtk_ldata.rtk_tx_nextfree = curidx;
   1679 	*idx = (*idx + 1) % RTK_TX_QLEN;
   1680 
   1681 	return 0;
   1682 
   1683 fail_unload:
   1684 	bus_dmamap_unload(sc->sc_dmat, map);
   1685 
   1686 	return error;
   1687 }
   1688 
   1689 /*
   1690  * Main transmit routine for C+ and gigE NICs.
   1691  */
   1692 
   1693 static void
   1694 re_start(struct ifnet *ifp)
   1695 {
   1696 	struct rtk_softc	*sc;
   1697 	int			idx;
   1698 	boolean_t		done = FALSE;
   1699 
   1700 	sc = ifp->if_softc;
   1701 
   1702 	idx = sc->rtk_ldata.rtk_txq_prodidx;
   1703 	while (/* CONSTCOND */ 1) {
   1704 		struct mbuf *m;
   1705 		int error;
   1706 
   1707 		IFQ_POLL(&ifp->if_snd, m);
   1708 		if (m == NULL)
   1709 			break;
   1710 
   1711 		if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
   1712 			KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
   1713 			ifp->if_flags |= IFF_OACTIVE;
   1714 			break;
   1715 		}
   1716 
   1717 		error = re_encap(sc, m, &idx);
   1718 		if (error == EFBIG &&
   1719 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
   1720 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1721 			m_freem(m);
   1722 			ifp->if_oerrors++;
   1723 			continue;
   1724 		}
   1725 		if (error) {
   1726 			ifp->if_flags |= IFF_OACTIVE;
   1727 			break;
   1728 		}
   1729 
   1730 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1731 
   1732 #if NBPFILTER > 0
   1733 		/*
   1734 		 * If there's a BPF listener, bounce a copy of this frame
   1735 		 * to him.
   1736 		 */
   1737 		if (ifp->if_bpf)
   1738 			bpf_mtap(ifp->if_bpf, m);
   1739 #endif
   1740 
   1741 		done = TRUE;
   1742 	}
   1743 
   1744 	if (!done) {
   1745 		return;
   1746 	}
   1747 	sc->rtk_ldata.rtk_txq_prodidx = idx;
   1748 
   1749 	/*
   1750 	 * RealTek put the TX poll request register in a different
   1751 	 * location on the 8169 gigE chip. I don't know why.
   1752 	 */
   1753 
   1754 	if (sc->rtk_type == RTK_8169)
   1755 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1756 	else
   1757 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
   1758 
   1759 	/*
   1760 	 * Use the countdown timer for interrupt moderation.
   1761 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1762 	 * countdown timer, which will begin counting until it hits
   1763 	 * the value in the TIMERINT register, and then trigger an
   1764 	 * interrupt. Each time we write to the TIMERCNT register,
   1765 	 * the timer count is reset to 0.
   1766 	 */
   1767 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1768 
   1769 	/*
   1770 	 * Set a timeout in case the chip goes out to lunch.
   1771 	 */
   1772 	ifp->if_timer = 5;
   1773 
   1774 	return;
   1775 }
   1776 
   1777 static int
   1778 re_init(struct ifnet *ifp)
   1779 {
   1780 	struct rtk_softc	*sc = ifp->if_softc;
   1781 	u_int32_t		rxcfg = 0;
   1782 	u_int32_t		reg;
   1783 	int error;
   1784 
   1785 	if ((error = re_enable(sc)) != 0)
   1786 		goto out;
   1787 
   1788 	/*
   1789 	 * Cancel pending I/O and free all RX/TX buffers.
   1790 	 */
   1791 	re_stop(ifp, 0);
   1792 
   1793 	/*
   1794 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1795 	 * RX checksum offload. We must configure the C+ register
   1796 	 * before all others.
   1797 	 */
   1798 	reg = 0;
   1799 
   1800 	/*
   1801 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1802 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1803 	 * So far, it works.
   1804 	 */
   1805 
   1806 	/*
   1807 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1808 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1809 	 */
   1810 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1811 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1812 
   1813 	if (1)  {/* not for 8169S ? */
   1814 		reg |=
   1815 #ifdef RE_VLAN
   1816 		    RTK_CPLUSCMD_VLANSTRIP |
   1817 #endif
   1818 		    (ifp->if_capenable &
   1819 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
   1820 		     IFCAP_CSUM_UDPv4_Rx) ?
   1821 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1822 	}
   1823 
   1824 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1825 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1826 
   1827 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1828 	if (sc->rtk_type == RTK_8169)
   1829 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1830 
   1831 	DELAY(10000);
   1832 
   1833 	/*
   1834 	 * Init our MAC address.  Even though the chipset
   1835 	 * documentation doesn't mention it, we need to enter "Config
   1836 	 * register write enable" mode to modify the ID registers.
   1837 	 */
   1838 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1839 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
   1840 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
   1841 	reg = 0;
   1842 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
   1843 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
   1844 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1845 
   1846 	/*
   1847 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1848 	 */
   1849 	re_rx_list_init(sc);
   1850 	re_tx_list_init(sc);
   1851 
   1852 	/*
   1853 	 * Enable transmit and receive.
   1854 	 */
   1855 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1856 
   1857 	/*
   1858 	 * Set the initial TX and RX configuration.
   1859 	 */
   1860 	if (sc->rtk_testmode) {
   1861 		if (sc->rtk_type == RTK_8169)
   1862 			CSR_WRITE_4(sc, RTK_TXCFG,
   1863 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1864 		else
   1865 			CSR_WRITE_4(sc, RTK_TXCFG,
   1866 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1867 	} else
   1868 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1869 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1870 
   1871 	/* Set the individual bit to receive frames for this host only. */
   1872 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1873 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1874 
   1875 	/* If we want promiscuous mode, set the allframes bit. */
   1876 	if (ifp->if_flags & IFF_PROMISC)
   1877 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1878 	else
   1879 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1880 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1881 
   1882 	/*
   1883 	 * Set capture broadcast bit to capture broadcast frames.
   1884 	 */
   1885 	if (ifp->if_flags & IFF_BROADCAST)
   1886 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1887 	else
   1888 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1889 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1890 
   1891 	/*
   1892 	 * Program the multicast filter, if necessary.
   1893 	 */
   1894 	rtk_setmulti(sc);
   1895 
   1896 #ifdef DEVICE_POLLING
   1897 	/*
   1898 	 * Disable interrupts if we are polling.
   1899 	 */
   1900 	if (ifp->if_flags & IFF_POLLING)
   1901 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1902 	else	/* otherwise ... */
   1903 #endif /* DEVICE_POLLING */
   1904 	/*
   1905 	 * Enable interrupts.
   1906 	 */
   1907 	if (sc->rtk_testmode)
   1908 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1909 	else
   1910 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1911 
   1912 	/* Start RX/TX process. */
   1913 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1914 #ifdef notdef
   1915 	/* Enable receiver and transmitter. */
   1916 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1917 #endif
   1918 	/*
   1919 	 * Load the addresses of the RX and TX lists into the chip.
   1920 	 */
   1921 
   1922 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1923 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1924 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1925 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1926 
   1927 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1928 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1929 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1930 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1931 
   1932 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1933 
   1934 	/*
   1935 	 * Initialize the timer interrupt register so that
   1936 	 * a timer interrupt will be generated once the timer
   1937 	 * reaches a certain number of ticks. The timer is
   1938 	 * reloaded on each transmit. This gives us TX interrupt
   1939 	 * moderation, which dramatically improves TX frame rate.
   1940 	 */
   1941 
   1942 	if (sc->rtk_type == RTK_8169)
   1943 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1944 	else
   1945 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1946 
   1947 	/*
   1948 	 * For 8169 gigE NICs, set the max allowed RX packet
   1949 	 * size so we can receive jumbo frames.
   1950 	 */
   1951 	if (sc->rtk_type == RTK_8169)
   1952 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1953 
   1954 	if (sc->rtk_testmode)
   1955 		return 0;
   1956 
   1957 	mii_mediachg(&sc->mii);
   1958 
   1959 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1960 
   1961 	ifp->if_flags |= IFF_RUNNING;
   1962 	ifp->if_flags &= ~IFF_OACTIVE;
   1963 
   1964 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1965 
   1966 out:
   1967 	if (error) {
   1968 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1969 		ifp->if_timer = 0;
   1970 		aprint_error("%s: interface not running\n",
   1971 		    sc->sc_dev.dv_xname);
   1972 	}
   1973 
   1974 	return error;
   1975 
   1976 }
   1977 
   1978 /*
   1979  * Set media options.
   1980  */
   1981 static int
   1982 re_ifmedia_upd(struct ifnet *ifp)
   1983 {
   1984 	struct rtk_softc	*sc;
   1985 
   1986 	sc = ifp->if_softc;
   1987 
   1988 	return mii_mediachg(&sc->mii);
   1989 }
   1990 
   1991 /*
   1992  * Report current media status.
   1993  */
   1994 static void
   1995 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1996 {
   1997 	struct rtk_softc	*sc;
   1998 
   1999 	sc = ifp->if_softc;
   2000 
   2001 	mii_pollstat(&sc->mii);
   2002 	ifmr->ifm_active = sc->mii.mii_media_active;
   2003 	ifmr->ifm_status = sc->mii.mii_media_status;
   2004 
   2005 	return;
   2006 }
   2007 
   2008 static int
   2009 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   2010 {
   2011 	struct rtk_softc	*sc = ifp->if_softc;
   2012 	struct ifreq		*ifr = (struct ifreq *) data;
   2013 	int			s, error = 0;
   2014 
   2015 	s = splnet();
   2016 
   2017 	switch (command) {
   2018 	case SIOCSIFMTU:
   2019 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   2020 			error = EINVAL;
   2021 		ifp->if_mtu = ifr->ifr_mtu;
   2022 		break;
   2023 	case SIOCGIFMEDIA:
   2024 	case SIOCSIFMEDIA:
   2025 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   2026 		break;
   2027 	default:
   2028 		error = ether_ioctl(ifp, command, data);
   2029 		if (error == ENETRESET) {
   2030 			if (ifp->if_flags & IFF_RUNNING)
   2031 				rtk_setmulti(sc);
   2032 			error = 0;
   2033 		}
   2034 		break;
   2035 	}
   2036 
   2037 	splx(s);
   2038 
   2039 	return error;
   2040 }
   2041 
   2042 static void
   2043 re_watchdog(struct ifnet *ifp)
   2044 {
   2045 	struct rtk_softc	*sc;
   2046 	int			s;
   2047 
   2048 	sc = ifp->if_softc;
   2049 	s = splnet();
   2050 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2051 	ifp->if_oerrors++;
   2052 
   2053 	re_txeof(sc);
   2054 	re_rxeof(sc);
   2055 
   2056 	re_init(ifp);
   2057 
   2058 	splx(s);
   2059 }
   2060 
   2061 /*
   2062  * Stop the adapter and free any mbufs allocated to the
   2063  * RX and TX lists.
   2064  */
   2065 static void
   2066 re_stop(struct ifnet *ifp, int disable)
   2067 {
   2068 	register int		i;
   2069 	struct rtk_softc *sc = ifp->if_softc;
   2070 
   2071 	callout_stop(&sc->rtk_tick_ch);
   2072 
   2073 #ifdef DEVICE_POLLING
   2074 	ether_poll_deregister(ifp);
   2075 #endif /* DEVICE_POLLING */
   2076 
   2077 	mii_down(&sc->mii);
   2078 
   2079 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2080 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2081 
   2082 	if (sc->rtk_head != NULL) {
   2083 		m_freem(sc->rtk_head);
   2084 		sc->rtk_head = sc->rtk_tail = NULL;
   2085 	}
   2086 
   2087 	/* Free the TX list buffers. */
   2088 	for (i = 0; i < RTK_TX_QLEN; i++) {
   2089 		if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
   2090 			bus_dmamap_unload(sc->sc_dmat,
   2091 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
   2092 			m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
   2093 			sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   2094 		}
   2095 	}
   2096 
   2097 	/* Free the RX list buffers. */
   2098 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2099 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   2100 			bus_dmamap_unload(sc->sc_dmat,
   2101 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   2102 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   2103 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   2104 		}
   2105 	}
   2106 
   2107 	if (disable)
   2108 		re_disable(sc);
   2109 
   2110 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2111 	ifp->if_timer = 0;
   2112 
   2113 	return;
   2114 }
   2115