rtl8169.c revision 1.33 1 /* $NetBSD: rtl8169.c,v 1.33 2006/10/20 13:39:47 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev __unused)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 static const u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 static const u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
492 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
493 BUS_DMASYNC_POSTREAD);
494 bus_dmamap_unload(sc->sc_dmat,
495 sc->rtk_ldata.rtk_rx_dmamap[0]);
496
497 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
498 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
499 eh = mtod(m0, struct ether_header *);
500
501 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
502 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
503 rxstat = le32toh(cur_rx->rtk_cmdstat);
504 total_len = rxstat & sc->rtk_rxlenmask;
505
506 if (total_len != ETHER_MIN_LEN) {
507 aprint_error("%s: diagnostic failed, received short packet\n",
508 sc->sc_dev.dv_xname);
509 error = EIO;
510 goto done;
511 }
512
513 /* Test that the received packet data matches what we sent. */
514
515 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
516 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
517 ntohs(eh->ether_type) != ETHERTYPE_IP) {
518 aprint_error("%s: WARNING, DMA FAILURE!\n",
519 sc->sc_dev.dv_xname);
520 aprint_error("%s: expected TX data: %s",
521 sc->sc_dev.dv_xname, ether_sprintf(dst));
522 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
523 aprint_error("%s: received RX data: %s",
524 sc->sc_dev.dv_xname,
525 ether_sprintf(eh->ether_dhost));
526 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
527 ntohs(eh->ether_type));
528 aprint_error("%s: You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
530 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Read the re(4) man page for more details.\n",
533 sc->sc_dev.dv_xname);
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->rtk_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 u_char eaddr[ETHER_ADDR_LEN];
558 u_int16_t val;
559 struct ifnet *ifp;
560 int error = 0, i, addr_len;
561
562
563 /* XXX JRS: bus-attach-independent code begins approximately here */
564
565 /* Reset the adapter. */
566 re_reset(sc);
567
568 if (sc->rtk_type == RTK_8169) {
569 uint32_t hwrev;
570
571 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
572 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
573 if (hwrev == (0x1 << 28)) {
574 sc->sc_rev = 4;
575 } else if (hwrev == (0x1 << 26)) {
576 sc->sc_rev = 3;
577 } else if (hwrev == (0x1 << 23)) {
578 sc->sc_rev = 2;
579 } else
580 sc->sc_rev = 1;
581
582 /* Set RX length mask */
583
584 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
585
586 /* Force station address autoload from the EEPROM */
587
588 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
589 for (i = 0; i < RTK_TIMEOUT; i++) {
590 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
591 break;
592 DELAY(100);
593 }
594 if (i == RTK_TIMEOUT)
595 aprint_error("%s: eeprom autoload timed out\n",
596 sc->sc_dev.dv_xname);
597
598 for (i = 0; i < ETHER_ADDR_LEN; i++)
599 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
600
601 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
602 } else {
603
604 /* Set RX length mask */
605
606 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
607
608 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
609 addr_len = RTK_EEADDR_LEN1;
610 else
611 addr_len = RTK_EEADDR_LEN0;
612
613 /*
614 * Get station address from the EEPROM.
615 */
616 for (i = 0; i < 3; i++) {
617 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
618 eaddr[(i * 2) + 0] = val & 0xff;
619 eaddr[(i * 2) + 1] = val >> 8;
620 }
621
622 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
623 }
624
625 aprint_normal("%s: Ethernet address %s\n",
626 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
627
628 if (sc->rtk_ldata.rtk_tx_desc_cnt >
629 PAGE_SIZE / sizeof(struct rtk_desc)) {
630 sc->rtk_ldata.rtk_tx_desc_cnt =
631 PAGE_SIZE / sizeof(struct rtk_desc);
632 }
633
634 aprint_verbose("%s: using %d tx descriptors\n",
635 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
636
637 /* Allocate DMA'able memory for the TX ring */
638 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
639 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
640 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
641 aprint_error("%s: can't allocate tx listseg, error = %d\n",
642 sc->sc_dev.dv_xname, error);
643 goto fail_0;
644 }
645
646 /* Load the map for the TX ring. */
647 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
648 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
649 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
650 BUS_DMA_NOWAIT)) != 0) {
651 aprint_error("%s: can't map tx list, error = %d\n",
652 sc->sc_dev.dv_xname, error);
653 goto fail_1;
654 }
655 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
656
657 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
658 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
659 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
660 aprint_error("%s: can't create tx list map, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_2;
663 }
664
665
666 if ((error = bus_dmamap_load(sc->sc_dmat,
667 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
668 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
669 aprint_error("%s: can't load tx list, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_3;
672 }
673
674 /* Create DMA maps for TX buffers */
675 for (i = 0; i < RTK_TX_QLEN; i++) {
676 error = bus_dmamap_create(sc->sc_dmat,
677 round_page(IP_MAXPACKET),
678 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
679 0, BUS_DMA_ALLOCNOW,
680 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
681 if (error) {
682 aprint_error("%s: can't create DMA map for TX\n",
683 sc->sc_dev.dv_xname);
684 goto fail_4;
685 }
686 }
687
688 /* Allocate DMA'able memory for the RX ring */
689 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
690 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
691 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
692 aprint_error("%s: can't allocate rx listseg, error = %d\n",
693 sc->sc_dev.dv_xname, error);
694 goto fail_4;
695 }
696
697 /* Load the map for the RX ring. */
698 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
699 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
700 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
701 BUS_DMA_NOWAIT)) != 0) {
702 aprint_error("%s: can't map rx list, error = %d\n",
703 sc->sc_dev.dv_xname, error);
704 goto fail_5;
705 }
706 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
707
708 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
709 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
710 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
711 aprint_error("%s: can't create rx list map, error = %d\n",
712 sc->sc_dev.dv_xname, error);
713 goto fail_6;
714 }
715
716 if ((error = bus_dmamap_load(sc->sc_dmat,
717 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
718 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
719 aprint_error("%s: can't load rx list, error = %d\n",
720 sc->sc_dev.dv_xname, error);
721 goto fail_7;
722 }
723
724 /* Create DMA maps for RX buffers */
725 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
726 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
727 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
728 if (error) {
729 aprint_error("%s: can't create DMA map for RX\n",
730 sc->sc_dev.dv_xname);
731 goto fail_8;
732 }
733 }
734
735 /*
736 * Record interface as attached. From here, we should not fail.
737 */
738 sc->sc_flags |= RTK_ATTACHED;
739
740 ifp = &sc->ethercom.ec_if;
741 ifp->if_softc = sc;
742 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
743 ifp->if_mtu = ETHERMTU;
744 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
745 ifp->if_ioctl = re_ioctl;
746 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
747
748 /*
749 * This is a way to disable hw VLAN tagging by default
750 * (RE_VLAN is undefined), as it is problematic. PR 32643
751 */
752
753 #ifdef RE_VLAN
754 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
755 #endif
756 ifp->if_start = re_start;
757 ifp->if_stop = re_stop;
758
759 /*
760 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
761 */
762
763 ifp->if_capabilities |=
764 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
765 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
766 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
767 IFCAP_TSOv4;
768 ifp->if_watchdog = re_watchdog;
769 ifp->if_init = re_init;
770 if (sc->rtk_type == RTK_8169)
771 ifp->if_baudrate = 1000000000;
772 else
773 ifp->if_baudrate = 100000000;
774 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
775 ifp->if_capenable = ifp->if_capabilities;
776 IFQ_SET_READY(&ifp->if_snd);
777
778 callout_init(&sc->rtk_tick_ch);
779
780 /* Do MII setup */
781 sc->mii.mii_ifp = ifp;
782 sc->mii.mii_readreg = re_miibus_readreg;
783 sc->mii.mii_writereg = re_miibus_writereg;
784 sc->mii.mii_statchg = re_miibus_statchg;
785 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
786 re_ifmedia_sts);
787 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
788 MII_OFFSET_ANY, 0);
789 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
790
791 /*
792 * Call MI attach routine.
793 */
794 if_attach(ifp);
795 ether_ifattach(ifp, eaddr);
796
797
798 /*
799 * Make sure the interface is shutdown during reboot.
800 */
801 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
802 if (sc->sc_sdhook == NULL)
803 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
804 sc->sc_dev.dv_xname);
805 /*
806 * Add a suspend hook to make sure we come back up after a
807 * resume.
808 */
809 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
810 re_power, sc);
811 if (sc->sc_powerhook == NULL)
812 aprint_error("%s: WARNING: unable to establish power hook\n",
813 sc->sc_dev.dv_xname);
814
815
816 return;
817
818 fail_8:
819 /* Destroy DMA maps for RX buffers. */
820 for (i = 0; i < RTK_RX_DESC_CNT; i++)
821 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
822 bus_dmamap_destroy(sc->sc_dmat,
823 sc->rtk_ldata.rtk_rx_dmamap[i]);
824
825 /* Free DMA'able memory for the RX ring. */
826 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
827 fail_7:
828 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
829 fail_6:
830 bus_dmamem_unmap(sc->sc_dmat,
831 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
832 fail_5:
833 bus_dmamem_free(sc->sc_dmat,
834 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
835
836 fail_4:
837 /* Destroy DMA maps for TX buffers. */
838 for (i = 0; i < RTK_TX_QLEN; i++)
839 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
840 bus_dmamap_destroy(sc->sc_dmat,
841 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
842
843 /* Free DMA'able memory for the TX ring. */
844 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
845 fail_3:
846 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
847 fail_2:
848 bus_dmamem_unmap(sc->sc_dmat,
849 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
850 fail_1:
851 bus_dmamem_free(sc->sc_dmat,
852 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
853 fail_0:
854 return;
855 }
856
857
858 /*
859 * re_activate:
860 * Handle device activation/deactivation requests.
861 */
862 int
863 re_activate(struct device *self, enum devact act)
864 {
865 struct rtk_softc *sc = (void *) self;
866 int s, error = 0;
867
868 s = splnet();
869 switch (act) {
870 case DVACT_ACTIVATE:
871 error = EOPNOTSUPP;
872 break;
873 case DVACT_DEACTIVATE:
874 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
875 if_deactivate(&sc->ethercom.ec_if);
876 break;
877 }
878 splx(s);
879
880 return error;
881 }
882
883 /*
884 * re_detach:
885 * Detach a rtk interface.
886 */
887 int
888 re_detach(struct rtk_softc *sc)
889 {
890 struct ifnet *ifp = &sc->ethercom.ec_if;
891 int i;
892
893 /*
894 * Succeed now if there isn't any work to do.
895 */
896 if ((sc->sc_flags & RTK_ATTACHED) == 0)
897 return 0;
898
899 /* Unhook our tick handler. */
900 callout_stop(&sc->rtk_tick_ch);
901
902 /* Detach all PHYs. */
903 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
904
905 /* Delete all remaining media. */
906 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
907
908 ether_ifdetach(ifp);
909 if_detach(ifp);
910
911 /* XXX undo re_allocmem() */
912
913 /* Destroy DMA maps for RX buffers. */
914 for (i = 0; i < RTK_RX_DESC_CNT; i++)
915 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
916 bus_dmamap_destroy(sc->sc_dmat,
917 sc->rtk_ldata.rtk_rx_dmamap[i]);
918
919 /* Free DMA'able memory for the RX ring. */
920 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
921 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
922 bus_dmamem_unmap(sc->sc_dmat,
923 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
924 bus_dmamem_free(sc->sc_dmat,
925 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
926
927 /* Destroy DMA maps for TX buffers. */
928 for (i = 0; i < RTK_TX_QLEN; i++)
929 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
932
933 /* Free DMA'able memory for the TX ring. */
934 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
935 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
936 bus_dmamem_unmap(sc->sc_dmat,
937 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
938 bus_dmamem_free(sc->sc_dmat,
939 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
940
941
942 shutdownhook_disestablish(sc->sc_sdhook);
943 powerhook_disestablish(sc->sc_powerhook);
944
945 return 0;
946 }
947
948 /*
949 * re_enable:
950 * Enable the RTL81X9 chip.
951 */
952 static int
953 re_enable(struct rtk_softc *sc)
954 {
955 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
956 if ((*sc->sc_enable)(sc) != 0) {
957 aprint_error("%s: device enable failed\n",
958 sc->sc_dev.dv_xname);
959 return EIO;
960 }
961 sc->sc_flags |= RTK_ENABLED;
962 }
963 return 0;
964 }
965
966 /*
967 * re_disable:
968 * Disable the RTL81X9 chip.
969 */
970 static void
971 re_disable(struct rtk_softc *sc)
972 {
973
974 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
975 (*sc->sc_disable)(sc);
976 sc->sc_flags &= ~RTK_ENABLED;
977 }
978 }
979
980 /*
981 * re_power:
982 * Power management (suspend/resume) hook.
983 */
984 void
985 re_power(int why, void *arg)
986 {
987 struct rtk_softc *sc = (void *) arg;
988 struct ifnet *ifp = &sc->ethercom.ec_if;
989 int s;
990
991 s = splnet();
992 switch (why) {
993 case PWR_SUSPEND:
994 case PWR_STANDBY:
995 re_stop(ifp, 0);
996 if (sc->sc_power != NULL)
997 (*sc->sc_power)(sc, why);
998 break;
999 case PWR_RESUME:
1000 if (ifp->if_flags & IFF_UP) {
1001 if (sc->sc_power != NULL)
1002 (*sc->sc_power)(sc, why);
1003 re_init(ifp);
1004 }
1005 break;
1006 case PWR_SOFTSUSPEND:
1007 case PWR_SOFTSTANDBY:
1008 case PWR_SOFTRESUME:
1009 break;
1010 }
1011 splx(s);
1012 }
1013
1014
1015 static int
1016 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1017 {
1018 struct mbuf *n = NULL;
1019 bus_dmamap_t map;
1020 struct rtk_desc *d;
1021 u_int32_t cmdstat;
1022 int error;
1023
1024 if (m == NULL) {
1025 MGETHDR(n, M_DONTWAIT, MT_DATA);
1026 if (n == NULL)
1027 return ENOBUFS;
1028 m = n;
1029
1030 MCLGET(m, M_DONTWAIT);
1031 if (!(m->m_flags & M_EXT)) {
1032 m_freem(m);
1033 return ENOBUFS;
1034 }
1035 } else
1036 m->m_data = m->m_ext.ext_buf;
1037
1038 /*
1039 * Initialize mbuf length fields and fixup
1040 * alignment so that the frame payload is
1041 * longword aligned.
1042 */
1043 m->m_len = m->m_pkthdr.len = MCLBYTES;
1044 m_adj(m, RTK_ETHER_ALIGN);
1045
1046 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1047 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1048 BUS_DMA_READ|BUS_DMA_NOWAIT);
1049
1050 if (error)
1051 goto out;
1052
1053 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1054 BUS_DMASYNC_PREREAD);
1055
1056 d = &sc->rtk_ldata.rtk_rx_list[idx];
1057 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1058 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) {
1059 printf("%s: tried to map busy RX descriptor\n",
1060 sc->sc_dev.dv_xname);
1061 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1062 goto out;
1063 }
1064
1065 cmdstat = map->dm_segs[0].ds_len;
1066 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1067 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1068 if (idx == (RTK_RX_DESC_CNT - 1))
1069 cmdstat |= RTK_RDESC_CMD_EOR;
1070 cmdstat |= RTK_RDESC_CMD_OWN;
1071 d->rtk_cmdstat = htole32(cmdstat);
1072 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1073
1074 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1075
1076 return 0;
1077 out:
1078 if (n != NULL)
1079 m_freem(n);
1080 return ENOMEM;
1081 }
1082
1083 static int
1084 re_tx_list_init(struct rtk_softc *sc)
1085 {
1086 int i;
1087
1088 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1089 for (i = 0; i < RTK_TX_QLEN; i++) {
1090 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1091 }
1092
1093 bus_dmamap_sync(sc->sc_dmat,
1094 sc->rtk_ldata.rtk_tx_list_map, 0,
1095 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1096 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097 sc->rtk_ldata.rtk_txq_prodidx = 0;
1098 sc->rtk_ldata.rtk_txq_considx = 0;
1099 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1100 sc->rtk_ldata.rtk_tx_nextfree = 0;
1101
1102 return 0;
1103 }
1104
1105 static int
1106 re_rx_list_init(struct rtk_softc *sc)
1107 {
1108 int i;
1109
1110 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1111 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1112 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1113
1114 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1115 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1116 return ENOBUFS;
1117 }
1118
1119 sc->rtk_ldata.rtk_rx_prodidx = 0;
1120 sc->rtk_head = sc->rtk_tail = NULL;
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * RX handler for C+ and 8169. For the gigE chips, we support
1127 * the reception of jumbo frames that have been fragmented
1128 * across multiple 2K mbuf cluster buffers.
1129 */
1130 static void
1131 re_rxeof(struct rtk_softc *sc)
1132 {
1133 struct mbuf *m;
1134 struct ifnet *ifp;
1135 int i, total_len;
1136 struct rtk_desc *cur_rx;
1137 u_int32_t rxstat, rxvlan;
1138
1139 ifp = &sc->ethercom.ec_if;
1140 i = sc->rtk_ldata.rtk_rx_prodidx;
1141
1142 for (;;) {
1143 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1144 RTK_RXDESCSYNC(sc, i,
1145 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1146 rxstat = le32toh(cur_rx->rtk_cmdstat);
1147 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1148 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1149 break;
1150 }
1151 total_len = rxstat & sc->rtk_rxlenmask;
1152 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1153 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1154
1155 /* Invalidate the RX mbuf and unload its map */
1156
1157 bus_dmamap_sync(sc->sc_dmat,
1158 sc->rtk_ldata.rtk_rx_dmamap[i],
1159 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1160 BUS_DMASYNC_POSTREAD);
1161 bus_dmamap_unload(sc->sc_dmat,
1162 sc->rtk_ldata.rtk_rx_dmamap[i]);
1163
1164 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1165 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1166 if (sc->rtk_head == NULL)
1167 sc->rtk_head = sc->rtk_tail = m;
1168 else {
1169 m->m_flags &= ~M_PKTHDR;
1170 sc->rtk_tail->m_next = m;
1171 sc->rtk_tail = m;
1172 }
1173 re_newbuf(sc, i, NULL);
1174 RTK_RX_DESC_INC(sc, i);
1175 continue;
1176 }
1177
1178 /*
1179 * NOTE: for the 8139C+, the frame length field
1180 * is always 12 bits in size, but for the gigE chips,
1181 * it is 13 bits (since the max RX frame length is 16K).
1182 * Unfortunately, all 32 bits in the status word
1183 * were already used, so to make room for the extra
1184 * length bit, RealTek took out the 'frame alignment
1185 * error' bit and shifted the other status bits
1186 * over one slot. The OWN, EOR, FS and LS bits are
1187 * still in the same places. We have already extracted
1188 * the frame length and checked the OWN bit, so rather
1189 * than using an alternate bit mapping, we shift the
1190 * status bits one space to the right so we can evaluate
1191 * them using the 8169 status as though it was in the
1192 * same format as that of the 8139C+.
1193 */
1194 if (sc->rtk_type == RTK_8169)
1195 rxstat >>= 1;
1196
1197 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1198 ifp->if_ierrors++;
1199 /*
1200 * If this is part of a multi-fragment packet,
1201 * discard all the pieces.
1202 */
1203 if (sc->rtk_head != NULL) {
1204 m_freem(sc->rtk_head);
1205 sc->rtk_head = sc->rtk_tail = NULL;
1206 }
1207 re_newbuf(sc, i, m);
1208 RTK_RX_DESC_INC(sc, i);
1209 continue;
1210 }
1211
1212 /*
1213 * If allocating a replacement mbuf fails,
1214 * reload the current one.
1215 */
1216
1217 if (re_newbuf(sc, i, NULL)) {
1218 ifp->if_ierrors++;
1219 if (sc->rtk_head != NULL) {
1220 m_freem(sc->rtk_head);
1221 sc->rtk_head = sc->rtk_tail = NULL;
1222 }
1223 re_newbuf(sc, i, m);
1224 RTK_RX_DESC_INC(sc, i);
1225 continue;
1226 }
1227
1228 RTK_RX_DESC_INC(sc, i);
1229
1230 if (sc->rtk_head != NULL) {
1231 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1232 /*
1233 * Special case: if there's 4 bytes or less
1234 * in this buffer, the mbuf can be discarded:
1235 * the last 4 bytes is the CRC, which we don't
1236 * care about anyway.
1237 */
1238 if (m->m_len <= ETHER_CRC_LEN) {
1239 sc->rtk_tail->m_len -=
1240 (ETHER_CRC_LEN - m->m_len);
1241 m_freem(m);
1242 } else {
1243 m->m_len -= ETHER_CRC_LEN;
1244 m->m_flags &= ~M_PKTHDR;
1245 sc->rtk_tail->m_next = m;
1246 }
1247 m = sc->rtk_head;
1248 sc->rtk_head = sc->rtk_tail = NULL;
1249 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1250 } else
1251 m->m_pkthdr.len = m->m_len =
1252 (total_len - ETHER_CRC_LEN);
1253
1254 ifp->if_ipackets++;
1255 m->m_pkthdr.rcvif = ifp;
1256
1257 /* Do RX checksumming if enabled */
1258
1259 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1260
1261 /* Check IP header checksum */
1262 if (rxstat & RTK_RDESC_STAT_PROTOID)
1263 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1264 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1265 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1266 }
1267
1268 /* Check TCP/UDP checksum */
1269 if (RTK_TCPPKT(rxstat) &&
1270 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1271 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1272 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1273 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1274 }
1275 if (RTK_UDPPKT(rxstat) &&
1276 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1277 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1278 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1279 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1280 }
1281
1282 #ifdef RE_VLAN
1283 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1284 VLAN_INPUT_TAG(ifp, m,
1285 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1286 continue);
1287 }
1288 #endif
1289 #if NBPFILTER > 0
1290 if (ifp->if_bpf)
1291 bpf_mtap(ifp->if_bpf, m);
1292 #endif
1293 (*ifp->if_input)(ifp, m);
1294 }
1295
1296 sc->rtk_ldata.rtk_rx_prodidx = i;
1297
1298 return;
1299 }
1300
1301 static void
1302 re_txeof(struct rtk_softc *sc)
1303 {
1304 struct ifnet *ifp;
1305 int idx;
1306 boolean_t done = FALSE;
1307
1308 ifp = &sc->ethercom.ec_if;
1309 idx = sc->rtk_ldata.rtk_txq_considx;
1310
1311 while (/* CONSTCOND */ 1) {
1312 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1313 int descidx;
1314 u_int32_t txstat;
1315
1316 if (txq->txq_mbuf == NULL) {
1317 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1318 break;
1319 }
1320
1321 descidx = txq->txq_descidx;
1322 RTK_TXDESCSYNC(sc, descidx,
1323 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1324 txstat =
1325 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1326 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1327 if (txstat & RTK_TDESC_CMD_OWN) {
1328 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1329 break;
1330 }
1331
1332 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1333 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1334 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1335 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1336 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1337 m_freem(txq->txq_mbuf);
1338 txq->txq_mbuf = NULL;
1339
1340 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1341 ifp->if_collisions++;
1342 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1343 ifp->if_oerrors++;
1344 else
1345 ifp->if_opackets++;
1346
1347 idx = (idx + 1) % RTK_TX_QLEN;
1348 done = TRUE;
1349 }
1350
1351 /* No changes made to the TX ring, so no flush needed */
1352
1353 if (done) {
1354 sc->rtk_ldata.rtk_txq_considx = idx;
1355 ifp->if_flags &= ~IFF_OACTIVE;
1356 ifp->if_timer = 0;
1357 }
1358
1359 /*
1360 * If not all descriptors have been released reaped yet,
1361 * reload the timer so that we will eventually get another
1362 * interrupt that will cause us to re-enter this routine.
1363 * This is done in case the transmitter has gone idle.
1364 */
1365 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1366 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367
1368 return;
1369 }
1370
1371 /*
1372 * Stop all chip I/O so that the kernel's probe routines don't
1373 * get confused by errant DMAs when rebooting.
1374 */
1375 static void
1376 re_shutdown(void *vsc)
1377
1378 {
1379 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1380
1381 re_stop(&sc->ethercom.ec_if, 0);
1382 }
1383
1384
1385 static void
1386 re_tick(void *xsc)
1387 {
1388 struct rtk_softc *sc = xsc;
1389 int s;
1390
1391 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1392 s = splnet();
1393
1394 mii_tick(&sc->mii);
1395 splx(s);
1396
1397 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1398 }
1399
1400 #ifdef DEVICE_POLLING
1401 static void
1402 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1403 {
1404 struct rtk_softc *sc = ifp->if_softc;
1405
1406 RTK_LOCK(sc);
1407 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1408 ether_poll_deregister(ifp);
1409 cmd = POLL_DEREGISTER;
1410 }
1411 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1412 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1413 goto done;
1414 }
1415
1416 sc->rxcycles = count;
1417 re_rxeof(sc);
1418 re_txeof(sc);
1419
1420 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1421 (*ifp->if_start)(ifp);
1422
1423 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1424 u_int16_t status;
1425
1426 status = CSR_READ_2(sc, RTK_ISR);
1427 if (status == 0xffff)
1428 goto done;
1429 if (status)
1430 CSR_WRITE_2(sc, RTK_ISR, status);
1431
1432 /*
1433 * XXX check behaviour on receiver stalls.
1434 */
1435
1436 if (status & RTK_ISR_SYSTEM_ERR) {
1437 re_reset(sc);
1438 re_init(sc);
1439 }
1440 }
1441 done:
1442 RTK_UNLOCK(sc);
1443 }
1444 #endif /* DEVICE_POLLING */
1445
1446 int
1447 re_intr(void *arg)
1448 {
1449 struct rtk_softc *sc = arg;
1450 struct ifnet *ifp;
1451 u_int16_t status;
1452 int handled = 0;
1453
1454 ifp = &sc->ethercom.ec_if;
1455
1456 if (!(ifp->if_flags & IFF_UP))
1457 return 0;
1458
1459 #ifdef DEVICE_POLLING
1460 if (ifp->if_flags & IFF_POLLING)
1461 goto done;
1462 if ((ifp->if_capenable & IFCAP_POLLING) &&
1463 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1464 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1465 re_poll(ifp, 0, 1);
1466 goto done;
1467 }
1468 #endif /* DEVICE_POLLING */
1469
1470 for (;;) {
1471
1472 status = CSR_READ_2(sc, RTK_ISR);
1473 /* If the card has gone away the read returns 0xffff. */
1474 if (status == 0xffff)
1475 break;
1476 if (status) {
1477 handled = 1;
1478 CSR_WRITE_2(sc, RTK_ISR, status);
1479 }
1480
1481 if ((status & RTK_INTRS_CPLUS) == 0)
1482 break;
1483
1484 if ((status & RTK_ISR_RX_OK) ||
1485 (status & RTK_ISR_RX_ERR))
1486 re_rxeof(sc);
1487
1488 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1489 (status & RTK_ISR_TX_ERR) ||
1490 (status & RTK_ISR_TX_DESC_UNAVAIL))
1491 re_txeof(sc);
1492
1493 if (status & RTK_ISR_SYSTEM_ERR) {
1494 re_reset(sc);
1495 re_init(ifp);
1496 }
1497
1498 if (status & RTK_ISR_LINKCHG) {
1499 callout_stop(&sc->rtk_tick_ch);
1500 re_tick(sc);
1501 }
1502 }
1503
1504 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1505 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1506 (*ifp->if_start)(ifp);
1507
1508 #ifdef DEVICE_POLLING
1509 done:
1510 #endif
1511
1512 return handled;
1513 }
1514
1515 static int
1516 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1517 {
1518 bus_dmamap_t map;
1519 int error, i, uidx, startidx, curidx;
1520 #ifdef RE_VLAN
1521 struct m_tag *mtag;
1522 #endif
1523 struct rtk_desc *d;
1524 u_int32_t cmdstat, rtk_flags;
1525 struct rtk_txq *txq;
1526
1527 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1528 return EFBIG;
1529 }
1530
1531 /*
1532 * Set up checksum offload. Note: checksum offload bits must
1533 * appear in all descriptors of a multi-descriptor transmit
1534 * attempt. (This is according to testing done with an 8169
1535 * chip. I'm not sure if this is a requirement or a bug.)
1536 */
1537
1538 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1539 u_int32_t segsz = m->m_pkthdr.segsz;
1540
1541 rtk_flags = RTK_TDESC_CMD_LGSEND |
1542 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1543 } else {
1544
1545 /*
1546 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1547 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1548 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1549 */
1550
1551 rtk_flags = 0;
1552 if ((m->m_pkthdr.csum_flags &
1553 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1554 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1555 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1556 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1557 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1558 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1559 }
1560 }
1561 }
1562
1563 txq = &sc->rtk_ldata.rtk_txq[*idx];
1564 map = txq->txq_dmamap;
1565 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1566 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1567
1568 if (error) {
1569 /* XXX try to defrag if EFBIG? */
1570
1571 aprint_error("%s: can't map mbuf (error %d)\n",
1572 sc->sc_dev.dv_xname, error);
1573
1574 return error;
1575 }
1576
1577 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1578 error = EFBIG;
1579 goto fail_unload;
1580 }
1581
1582 /*
1583 * Make sure that the caches are synchronized before we
1584 * ask the chip to start DMA for the packet data.
1585 */
1586 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1587 BUS_DMASYNC_PREWRITE);
1588
1589 /*
1590 * Map the segment array into descriptors. Note that we set the
1591 * start-of-frame and end-of-frame markers for either TX or RX, but
1592 * they really only have meaning in the TX case. (In the RX case,
1593 * it's the chip that tells us where packets begin and end.)
1594 * We also keep track of the end of the ring and set the
1595 * end-of-ring bits as needed, and we set the ownership bits
1596 * in all except the very first descriptor. (The caller will
1597 * set this descriptor later when it start transmission or
1598 * reception.)
1599 */
1600 i = 0;
1601 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1602 while (1) {
1603 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1604 RTK_TXDESCSYNC(sc, curidx,
1605 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1606 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1607 printf("%s: tried to map busy TX descriptor\n",
1608 sc->sc_dev.dv_xname);
1609 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1610 while (i > 0) {
1611 uidx = (curidx + RTK_TX_DESC_CNT(sc) - i) %
1612 RTK_TX_DESC_CNT(sc);
1613 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1614 RTK_TXDESCSYNC(sc, uidx,
1615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1616 i--;
1617 }
1618 error = ENOBUFS;
1619 goto fail_unload;
1620 }
1621
1622 cmdstat = map->dm_segs[i].ds_len;
1623 d->rtk_bufaddr_lo =
1624 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1625 d->rtk_bufaddr_hi =
1626 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1627 if (i == 0)
1628 cmdstat |= RTK_TDESC_CMD_SOF;
1629 else
1630 cmdstat |= RTK_TDESC_CMD_OWN;
1631 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1632 cmdstat |= RTK_TDESC_CMD_EOR;
1633 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1634 RTK_TXDESCSYNC(sc, curidx,
1635 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1636 i++;
1637 if (i == map->dm_nsegs)
1638 break;
1639 RTK_TX_DESC_INC(sc, curidx);
1640 }
1641
1642 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1643
1644 txq->txq_mbuf = m;
1645 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1646
1647 /*
1648 * Set up hardware VLAN tagging. Note: vlan tag info must
1649 * appear in the first descriptor of a multi-descriptor
1650 * transmission attempt.
1651 */
1652
1653 #ifdef RE_VLAN
1654 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1655 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1656 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1657 RTK_TDESC_VLANCTL_TAG);
1658 RTK_TXDESCSYNC(sc, startidx,
1659 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1660 }
1661 #endif
1662
1663 /* Transfer ownership of packet to the chip. */
1664
1665 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1666 htole32(RTK_TDESC_CMD_OWN);
1667 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1668 if (startidx != curidx) {
1669 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1670 htole32(RTK_TDESC_CMD_OWN);
1671 RTK_TXDESCSYNC(sc, startidx,
1672 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673 }
1674
1675 txq->txq_descidx = curidx;
1676 RTK_TX_DESC_INC(sc, curidx);
1677 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1678 *idx = (*idx + 1) % RTK_TX_QLEN;
1679
1680 return 0;
1681
1682 fail_unload:
1683 bus_dmamap_unload(sc->sc_dmat, map);
1684
1685 return error;
1686 }
1687
1688 /*
1689 * Main transmit routine for C+ and gigE NICs.
1690 */
1691
1692 static void
1693 re_start(struct ifnet *ifp)
1694 {
1695 struct rtk_softc *sc;
1696 int idx;
1697 boolean_t done = FALSE;
1698
1699 sc = ifp->if_softc;
1700
1701 idx = sc->rtk_ldata.rtk_txq_prodidx;
1702 while (/* CONSTCOND */ 1) {
1703 struct mbuf *m;
1704 int error;
1705
1706 IFQ_POLL(&ifp->if_snd, m);
1707 if (m == NULL)
1708 break;
1709
1710 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1711 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1712 ifp->if_flags |= IFF_OACTIVE;
1713 break;
1714 }
1715
1716 error = re_encap(sc, m, &idx);
1717 if (error == EFBIG &&
1718 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1719 IFQ_DEQUEUE(&ifp->if_snd, m);
1720 m_freem(m);
1721 ifp->if_oerrors++;
1722 continue;
1723 }
1724 if (error) {
1725 ifp->if_flags |= IFF_OACTIVE;
1726 break;
1727 }
1728
1729 IFQ_DEQUEUE(&ifp->if_snd, m);
1730
1731 #if NBPFILTER > 0
1732 /*
1733 * If there's a BPF listener, bounce a copy of this frame
1734 * to him.
1735 */
1736 if (ifp->if_bpf)
1737 bpf_mtap(ifp->if_bpf, m);
1738 #endif
1739
1740 done = TRUE;
1741 }
1742
1743 if (!done) {
1744 return;
1745 }
1746 sc->rtk_ldata.rtk_txq_prodidx = idx;
1747
1748 /*
1749 * RealTek put the TX poll request register in a different
1750 * location on the 8169 gigE chip. I don't know why.
1751 */
1752
1753 if (sc->rtk_type == RTK_8169)
1754 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1755 else
1756 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1757
1758 /*
1759 * Use the countdown timer for interrupt moderation.
1760 * 'TX done' interrupts are disabled. Instead, we reset the
1761 * countdown timer, which will begin counting until it hits
1762 * the value in the TIMERINT register, and then trigger an
1763 * interrupt. Each time we write to the TIMERCNT register,
1764 * the timer count is reset to 0.
1765 */
1766 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1767
1768 /*
1769 * Set a timeout in case the chip goes out to lunch.
1770 */
1771 ifp->if_timer = 5;
1772
1773 return;
1774 }
1775
1776 static int
1777 re_init(struct ifnet *ifp)
1778 {
1779 struct rtk_softc *sc = ifp->if_softc;
1780 u_int32_t rxcfg = 0;
1781 u_int32_t reg;
1782 int error;
1783
1784 if ((error = re_enable(sc)) != 0)
1785 goto out;
1786
1787 /*
1788 * Cancel pending I/O and free all RX/TX buffers.
1789 */
1790 re_stop(ifp, 0);
1791
1792 /*
1793 * Enable C+ RX and TX mode, as well as VLAN stripping and
1794 * RX checksum offload. We must configure the C+ register
1795 * before all others.
1796 */
1797 reg = 0;
1798
1799 /*
1800 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1801 * FreeBSD drivers set these bits anyway (for 8139C+?).
1802 * So far, it works.
1803 */
1804
1805 /*
1806 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1807 * For 8169S/8110S rev 2 and above, do not set bit 14.
1808 */
1809 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1810 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1811
1812 if (1) {/* not for 8169S ? */
1813 reg |=
1814 #ifdef RE_VLAN
1815 RTK_CPLUSCMD_VLANSTRIP |
1816 #endif
1817 (ifp->if_capenable &
1818 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1819 IFCAP_CSUM_UDPv4_Rx) ?
1820 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1821 }
1822
1823 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1824 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1825
1826 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1827 if (sc->rtk_type == RTK_8169)
1828 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1829
1830 DELAY(10000);
1831
1832 /*
1833 * Init our MAC address. Even though the chipset
1834 * documentation doesn't mention it, we need to enter "Config
1835 * register write enable" mode to modify the ID registers.
1836 */
1837 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1838 memcpy(®, LLADDR(ifp->if_sadl), 4);
1839 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1840 reg = 0;
1841 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1842 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1843 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1844
1845 /*
1846 * For C+ mode, initialize the RX descriptors and mbufs.
1847 */
1848 re_rx_list_init(sc);
1849 re_tx_list_init(sc);
1850
1851 /*
1852 * Enable transmit and receive.
1853 */
1854 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1855
1856 /*
1857 * Set the initial TX and RX configuration.
1858 */
1859 if (sc->rtk_testmode) {
1860 if (sc->rtk_type == RTK_8169)
1861 CSR_WRITE_4(sc, RTK_TXCFG,
1862 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1863 else
1864 CSR_WRITE_4(sc, RTK_TXCFG,
1865 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1866 } else
1867 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1868 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1869
1870 /* Set the individual bit to receive frames for this host only. */
1871 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1872 rxcfg |= RTK_RXCFG_RX_INDIV;
1873
1874 /* If we want promiscuous mode, set the allframes bit. */
1875 if (ifp->if_flags & IFF_PROMISC)
1876 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1877 else
1878 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1879 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1880
1881 /*
1882 * Set capture broadcast bit to capture broadcast frames.
1883 */
1884 if (ifp->if_flags & IFF_BROADCAST)
1885 rxcfg |= RTK_RXCFG_RX_BROAD;
1886 else
1887 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1888 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1889
1890 /*
1891 * Program the multicast filter, if necessary.
1892 */
1893 rtk_setmulti(sc);
1894
1895 #ifdef DEVICE_POLLING
1896 /*
1897 * Disable interrupts if we are polling.
1898 */
1899 if (ifp->if_flags & IFF_POLLING)
1900 CSR_WRITE_2(sc, RTK_IMR, 0);
1901 else /* otherwise ... */
1902 #endif /* DEVICE_POLLING */
1903 /*
1904 * Enable interrupts.
1905 */
1906 if (sc->rtk_testmode)
1907 CSR_WRITE_2(sc, RTK_IMR, 0);
1908 else
1909 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1910
1911 /* Start RX/TX process. */
1912 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1913 #ifdef notdef
1914 /* Enable receiver and transmitter. */
1915 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1916 #endif
1917 /*
1918 * Load the addresses of the RX and TX lists into the chip.
1919 */
1920
1921 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1922 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1923 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1924 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1925
1926 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1927 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1928 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1929 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1930
1931 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1932
1933 /*
1934 * Initialize the timer interrupt register so that
1935 * a timer interrupt will be generated once the timer
1936 * reaches a certain number of ticks. The timer is
1937 * reloaded on each transmit. This gives us TX interrupt
1938 * moderation, which dramatically improves TX frame rate.
1939 */
1940
1941 if (sc->rtk_type == RTK_8169)
1942 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1943 else
1944 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1945
1946 /*
1947 * For 8169 gigE NICs, set the max allowed RX packet
1948 * size so we can receive jumbo frames.
1949 */
1950 if (sc->rtk_type == RTK_8169)
1951 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1952
1953 if (sc->rtk_testmode)
1954 return 0;
1955
1956 mii_mediachg(&sc->mii);
1957
1958 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1959
1960 ifp->if_flags |= IFF_RUNNING;
1961 ifp->if_flags &= ~IFF_OACTIVE;
1962
1963 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1964
1965 out:
1966 if (error) {
1967 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1968 ifp->if_timer = 0;
1969 aprint_error("%s: interface not running\n",
1970 sc->sc_dev.dv_xname);
1971 }
1972
1973 return error;
1974
1975 }
1976
1977 /*
1978 * Set media options.
1979 */
1980 static int
1981 re_ifmedia_upd(struct ifnet *ifp)
1982 {
1983 struct rtk_softc *sc;
1984
1985 sc = ifp->if_softc;
1986
1987 return mii_mediachg(&sc->mii);
1988 }
1989
1990 /*
1991 * Report current media status.
1992 */
1993 static void
1994 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1995 {
1996 struct rtk_softc *sc;
1997
1998 sc = ifp->if_softc;
1999
2000 mii_pollstat(&sc->mii);
2001 ifmr->ifm_active = sc->mii.mii_media_active;
2002 ifmr->ifm_status = sc->mii.mii_media_status;
2003
2004 return;
2005 }
2006
2007 static int
2008 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2009 {
2010 struct rtk_softc *sc = ifp->if_softc;
2011 struct ifreq *ifr = (struct ifreq *) data;
2012 int s, error = 0;
2013
2014 s = splnet();
2015
2016 switch (command) {
2017 case SIOCSIFMTU:
2018 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2019 error = EINVAL;
2020 ifp->if_mtu = ifr->ifr_mtu;
2021 break;
2022 case SIOCGIFMEDIA:
2023 case SIOCSIFMEDIA:
2024 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2025 break;
2026 default:
2027 error = ether_ioctl(ifp, command, data);
2028 if (error == ENETRESET) {
2029 if (ifp->if_flags & IFF_RUNNING)
2030 rtk_setmulti(sc);
2031 error = 0;
2032 }
2033 break;
2034 }
2035
2036 splx(s);
2037
2038 return error;
2039 }
2040
2041 static void
2042 re_watchdog(struct ifnet *ifp)
2043 {
2044 struct rtk_softc *sc;
2045 int s;
2046
2047 sc = ifp->if_softc;
2048 s = splnet();
2049 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2050 ifp->if_oerrors++;
2051
2052 re_txeof(sc);
2053 re_rxeof(sc);
2054
2055 re_init(ifp);
2056
2057 splx(s);
2058 }
2059
2060 /*
2061 * Stop the adapter and free any mbufs allocated to the
2062 * RX and TX lists.
2063 */
2064 static void
2065 re_stop(struct ifnet *ifp, int disable)
2066 {
2067 register int i;
2068 struct rtk_softc *sc = ifp->if_softc;
2069
2070 callout_stop(&sc->rtk_tick_ch);
2071
2072 #ifdef DEVICE_POLLING
2073 ether_poll_deregister(ifp);
2074 #endif /* DEVICE_POLLING */
2075
2076 mii_down(&sc->mii);
2077
2078 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2079 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2080
2081 if (sc->rtk_head != NULL) {
2082 m_freem(sc->rtk_head);
2083 sc->rtk_head = sc->rtk_tail = NULL;
2084 }
2085
2086 /* Free the TX list buffers. */
2087 for (i = 0; i < RTK_TX_QLEN; i++) {
2088 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2089 bus_dmamap_unload(sc->sc_dmat,
2090 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2091 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2092 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2093 }
2094 }
2095
2096 /* Free the RX list buffers. */
2097 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2098 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2099 bus_dmamap_unload(sc->sc_dmat,
2100 sc->rtk_ldata.rtk_rx_dmamap[i]);
2101 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2102 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2103 }
2104 }
2105
2106 if (disable)
2107 re_disable(sc);
2108
2109 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2110 ifp->if_timer = 0;
2111
2112 return;
2113 }
2114