rtl8169.c revision 1.37 1 /* $NetBSD: rtl8169.c,v 1.37 2006/10/20 14:51:06 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev __unused)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 static const u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 static const u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
454 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
492 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
493 BUS_DMASYNC_POSTREAD);
494 bus_dmamap_unload(sc->sc_dmat,
495 sc->rtk_ldata.rtk_rx_dmamap[0]);
496
497 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
498 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
499 eh = mtod(m0, struct ether_header *);
500
501 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
502 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
503 rxstat = le32toh(cur_rx->rtk_cmdstat);
504 total_len = rxstat & sc->rtk_rxlenmask;
505
506 if (total_len != ETHER_MIN_LEN) {
507 aprint_error("%s: diagnostic failed, received short packet\n",
508 sc->sc_dev.dv_xname);
509 error = EIO;
510 goto done;
511 }
512
513 /* Test that the received packet data matches what we sent. */
514
515 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
516 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
517 ntohs(eh->ether_type) != ETHERTYPE_IP) {
518 aprint_error("%s: WARNING, DMA FAILURE!\n",
519 sc->sc_dev.dv_xname);
520 aprint_error("%s: expected TX data: %s",
521 sc->sc_dev.dv_xname, ether_sprintf(dst));
522 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
523 aprint_error("%s: received RX data: %s",
524 sc->sc_dev.dv_xname,
525 ether_sprintf(eh->ether_dhost));
526 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
527 ntohs(eh->ether_type));
528 aprint_error("%s: You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
530 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Read the re(4) man page for more details.\n",
533 sc->sc_dev.dv_xname);
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->rtk_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 u_char eaddr[ETHER_ADDR_LEN];
558 u_int16_t val;
559 struct ifnet *ifp;
560 int error = 0, i, addr_len;
561
562
563 /* XXX JRS: bus-attach-independent code begins approximately here */
564
565 /* Reset the adapter. */
566 re_reset(sc);
567
568 if (sc->rtk_type == RTK_8169) {
569 uint32_t hwrev;
570
571 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
572 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
573 if (hwrev == (0x1 << 28)) {
574 sc->sc_rev = 4;
575 } else if (hwrev == (0x1 << 26)) {
576 sc->sc_rev = 3;
577 } else if (hwrev == (0x1 << 23)) {
578 sc->sc_rev = 2;
579 } else
580 sc->sc_rev = 1;
581
582 /* Set RX length mask */
583
584 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
585
586 /* Force station address autoload from the EEPROM */
587
588 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
589 for (i = 0; i < RTK_TIMEOUT; i++) {
590 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
591 break;
592 DELAY(100);
593 }
594 if (i == RTK_TIMEOUT)
595 aprint_error("%s: eeprom autoload timed out\n",
596 sc->sc_dev.dv_xname);
597
598 for (i = 0; i < ETHER_ADDR_LEN; i++)
599 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
600
601 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
602 } else {
603
604 /* Set RX length mask */
605
606 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
607
608 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
609 addr_len = RTK_EEADDR_LEN1;
610 else
611 addr_len = RTK_EEADDR_LEN0;
612
613 /*
614 * Get station address from the EEPROM.
615 */
616 for (i = 0; i < 3; i++) {
617 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
618 eaddr[(i * 2) + 0] = val & 0xff;
619 eaddr[(i * 2) + 1] = val >> 8;
620 }
621
622 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
623 }
624
625 aprint_normal("%s: Ethernet address %s\n",
626 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
627
628 if (sc->rtk_ldata.rtk_tx_desc_cnt >
629 PAGE_SIZE / sizeof(struct rtk_desc)) {
630 sc->rtk_ldata.rtk_tx_desc_cnt =
631 PAGE_SIZE / sizeof(struct rtk_desc);
632 }
633
634 aprint_verbose("%s: using %d tx descriptors\n",
635 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
636
637 /* Allocate DMA'able memory for the TX ring */
638 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
639 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
640 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
641 aprint_error("%s: can't allocate tx listseg, error = %d\n",
642 sc->sc_dev.dv_xname, error);
643 goto fail_0;
644 }
645
646 /* Load the map for the TX ring. */
647 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
648 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
649 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
650 BUS_DMA_NOWAIT)) != 0) {
651 aprint_error("%s: can't map tx list, error = %d\n",
652 sc->sc_dev.dv_xname, error);
653 goto fail_1;
654 }
655 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
656
657 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
658 RTK_TX_LIST_SZ(sc), 0, 0,
659 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
660 aprint_error("%s: can't create tx list map, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_2;
663 }
664
665
666 if ((error = bus_dmamap_load(sc->sc_dmat,
667 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
668 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
669 aprint_error("%s: can't load tx list, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_3;
672 }
673
674 /* Create DMA maps for TX buffers */
675 for (i = 0; i < RTK_TX_QLEN; i++) {
676 error = bus_dmamap_create(sc->sc_dmat,
677 round_page(IP_MAXPACKET),
678 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
679 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
680 if (error) {
681 aprint_error("%s: can't create DMA map for TX\n",
682 sc->sc_dev.dv_xname);
683 goto fail_4;
684 }
685 }
686
687 /* Allocate DMA'able memory for the RX ring */
688 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
689 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
690 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
691 aprint_error("%s: can't allocate rx listseg, error = %d\n",
692 sc->sc_dev.dv_xname, error);
693 goto fail_4;
694 }
695
696 /* Load the map for the RX ring. */
697 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
698 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
699 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
700 BUS_DMA_NOWAIT)) != 0) {
701 aprint_error("%s: can't map rx list, error = %d\n",
702 sc->sc_dev.dv_xname, error);
703 goto fail_5;
704 }
705 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
706
707 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
708 RTK_RX_LIST_SZ, 0, 0,
709 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
710 aprint_error("%s: can't create rx list map, error = %d\n",
711 sc->sc_dev.dv_xname, error);
712 goto fail_6;
713 }
714
715 if ((error = bus_dmamap_load(sc->sc_dmat,
716 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
717 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
718 aprint_error("%s: can't load rx list, error = %d\n",
719 sc->sc_dev.dv_xname, error);
720 goto fail_7;
721 }
722
723 /* Create DMA maps for RX buffers */
724 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
725 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
726 0, 0, &sc->rtk_ldata.rtk_rx_dmamap[i]);
727 if (error) {
728 aprint_error("%s: can't create DMA map for RX\n",
729 sc->sc_dev.dv_xname);
730 goto fail_8;
731 }
732 }
733
734 /*
735 * Record interface as attached. From here, we should not fail.
736 */
737 sc->sc_flags |= RTK_ATTACHED;
738
739 ifp = &sc->ethercom.ec_if;
740 ifp->if_softc = sc;
741 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
742 ifp->if_mtu = ETHERMTU;
743 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
744 ifp->if_ioctl = re_ioctl;
745 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
746
747 /*
748 * This is a way to disable hw VLAN tagging by default
749 * (RE_VLAN is undefined), as it is problematic. PR 32643
750 */
751
752 #ifdef RE_VLAN
753 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
754 #endif
755 ifp->if_start = re_start;
756 ifp->if_stop = re_stop;
757
758 /*
759 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
760 */
761
762 ifp->if_capabilities |=
763 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
764 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
765 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
766 IFCAP_TSOv4;
767 ifp->if_watchdog = re_watchdog;
768 ifp->if_init = re_init;
769 if (sc->rtk_type == RTK_8169)
770 ifp->if_baudrate = 1000000000;
771 else
772 ifp->if_baudrate = 100000000;
773 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
774 ifp->if_capenable = ifp->if_capabilities;
775 IFQ_SET_READY(&ifp->if_snd);
776
777 callout_init(&sc->rtk_tick_ch);
778
779 /* Do MII setup */
780 sc->mii.mii_ifp = ifp;
781 sc->mii.mii_readreg = re_miibus_readreg;
782 sc->mii.mii_writereg = re_miibus_writereg;
783 sc->mii.mii_statchg = re_miibus_statchg;
784 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
785 re_ifmedia_sts);
786 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
787 MII_OFFSET_ANY, 0);
788 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
789
790 /*
791 * Call MI attach routine.
792 */
793 if_attach(ifp);
794 ether_ifattach(ifp, eaddr);
795
796
797 /*
798 * Make sure the interface is shutdown during reboot.
799 */
800 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
801 if (sc->sc_sdhook == NULL)
802 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
803 sc->sc_dev.dv_xname);
804 /*
805 * Add a suspend hook to make sure we come back up after a
806 * resume.
807 */
808 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
809 re_power, sc);
810 if (sc->sc_powerhook == NULL)
811 aprint_error("%s: WARNING: unable to establish power hook\n",
812 sc->sc_dev.dv_xname);
813
814
815 return;
816
817 fail_8:
818 /* Destroy DMA maps for RX buffers. */
819 for (i = 0; i < RTK_RX_DESC_CNT; i++)
820 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
821 bus_dmamap_destroy(sc->sc_dmat,
822 sc->rtk_ldata.rtk_rx_dmamap[i]);
823
824 /* Free DMA'able memory for the RX ring. */
825 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
826 fail_7:
827 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
828 fail_6:
829 bus_dmamem_unmap(sc->sc_dmat,
830 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
831 fail_5:
832 bus_dmamem_free(sc->sc_dmat,
833 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
834
835 fail_4:
836 /* Destroy DMA maps for TX buffers. */
837 for (i = 0; i < RTK_TX_QLEN; i++)
838 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
839 bus_dmamap_destroy(sc->sc_dmat,
840 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
841
842 /* Free DMA'able memory for the TX ring. */
843 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
844 fail_3:
845 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
846 fail_2:
847 bus_dmamem_unmap(sc->sc_dmat,
848 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
849 fail_1:
850 bus_dmamem_free(sc->sc_dmat,
851 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
852 fail_0:
853 return;
854 }
855
856
857 /*
858 * re_activate:
859 * Handle device activation/deactivation requests.
860 */
861 int
862 re_activate(struct device *self, enum devact act)
863 {
864 struct rtk_softc *sc = (void *) self;
865 int s, error = 0;
866
867 s = splnet();
868 switch (act) {
869 case DVACT_ACTIVATE:
870 error = EOPNOTSUPP;
871 break;
872 case DVACT_DEACTIVATE:
873 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
874 if_deactivate(&sc->ethercom.ec_if);
875 break;
876 }
877 splx(s);
878
879 return error;
880 }
881
882 /*
883 * re_detach:
884 * Detach a rtk interface.
885 */
886 int
887 re_detach(struct rtk_softc *sc)
888 {
889 struct ifnet *ifp = &sc->ethercom.ec_if;
890 int i;
891
892 /*
893 * Succeed now if there isn't any work to do.
894 */
895 if ((sc->sc_flags & RTK_ATTACHED) == 0)
896 return 0;
897
898 /* Unhook our tick handler. */
899 callout_stop(&sc->rtk_tick_ch);
900
901 /* Detach all PHYs. */
902 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
903
904 /* Delete all remaining media. */
905 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
906
907 ether_ifdetach(ifp);
908 if_detach(ifp);
909
910 /* XXX undo re_allocmem() */
911
912 /* Destroy DMA maps for RX buffers. */
913 for (i = 0; i < RTK_RX_DESC_CNT; i++)
914 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
915 bus_dmamap_destroy(sc->sc_dmat,
916 sc->rtk_ldata.rtk_rx_dmamap[i]);
917
918 /* Free DMA'able memory for the RX ring. */
919 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
920 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
921 bus_dmamem_unmap(sc->sc_dmat,
922 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
923 bus_dmamem_free(sc->sc_dmat,
924 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
925
926 /* Destroy DMA maps for TX buffers. */
927 for (i = 0; i < RTK_TX_QLEN; i++)
928 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
929 bus_dmamap_destroy(sc->sc_dmat,
930 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
931
932 /* Free DMA'able memory for the TX ring. */
933 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
934 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
935 bus_dmamem_unmap(sc->sc_dmat,
936 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
937 bus_dmamem_free(sc->sc_dmat,
938 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
939
940
941 shutdownhook_disestablish(sc->sc_sdhook);
942 powerhook_disestablish(sc->sc_powerhook);
943
944 return 0;
945 }
946
947 /*
948 * re_enable:
949 * Enable the RTL81X9 chip.
950 */
951 static int
952 re_enable(struct rtk_softc *sc)
953 {
954 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
955 if ((*sc->sc_enable)(sc) != 0) {
956 aprint_error("%s: device enable failed\n",
957 sc->sc_dev.dv_xname);
958 return EIO;
959 }
960 sc->sc_flags |= RTK_ENABLED;
961 }
962 return 0;
963 }
964
965 /*
966 * re_disable:
967 * Disable the RTL81X9 chip.
968 */
969 static void
970 re_disable(struct rtk_softc *sc)
971 {
972
973 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
974 (*sc->sc_disable)(sc);
975 sc->sc_flags &= ~RTK_ENABLED;
976 }
977 }
978
979 /*
980 * re_power:
981 * Power management (suspend/resume) hook.
982 */
983 void
984 re_power(int why, void *arg)
985 {
986 struct rtk_softc *sc = (void *) arg;
987 struct ifnet *ifp = &sc->ethercom.ec_if;
988 int s;
989
990 s = splnet();
991 switch (why) {
992 case PWR_SUSPEND:
993 case PWR_STANDBY:
994 re_stop(ifp, 0);
995 if (sc->sc_power != NULL)
996 (*sc->sc_power)(sc, why);
997 break;
998 case PWR_RESUME:
999 if (ifp->if_flags & IFF_UP) {
1000 if (sc->sc_power != NULL)
1001 (*sc->sc_power)(sc, why);
1002 re_init(ifp);
1003 }
1004 break;
1005 case PWR_SOFTSUSPEND:
1006 case PWR_SOFTSTANDBY:
1007 case PWR_SOFTRESUME:
1008 break;
1009 }
1010 splx(s);
1011 }
1012
1013
1014 static int
1015 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1016 {
1017 struct mbuf *n = NULL;
1018 bus_dmamap_t map;
1019 struct rtk_desc *d;
1020 u_int32_t cmdstat;
1021 int error;
1022
1023 if (m == NULL) {
1024 MGETHDR(n, M_DONTWAIT, MT_DATA);
1025 if (n == NULL)
1026 return ENOBUFS;
1027 m = n;
1028
1029 MCLGET(m, M_DONTWAIT);
1030 if (!(m->m_flags & M_EXT)) {
1031 m_freem(m);
1032 return ENOBUFS;
1033 }
1034 } else
1035 m->m_data = m->m_ext.ext_buf;
1036
1037 /*
1038 * Initialize mbuf length fields and fixup
1039 * alignment so that the frame payload is
1040 * longword aligned.
1041 */
1042 m->m_len = m->m_pkthdr.len = MCLBYTES;
1043 m_adj(m, RTK_ETHER_ALIGN);
1044
1045 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1046 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1047 BUS_DMA_READ|BUS_DMA_NOWAIT);
1048
1049 if (error)
1050 goto out;
1051
1052 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1053 BUS_DMASYNC_PREREAD);
1054
1055 d = &sc->rtk_ldata.rtk_rx_list[idx];
1056 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1057 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) {
1058 printf("%s: tried to map busy RX descriptor\n",
1059 sc->sc_dev.dv_xname);
1060 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1061 goto out;
1062 }
1063
1064 cmdstat = map->dm_segs[0].ds_len;
1065 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1066 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1067 if (idx == (RTK_RX_DESC_CNT - 1))
1068 cmdstat |= RTK_RDESC_CMD_EOR;
1069 cmdstat |= RTK_RDESC_CMD_OWN;
1070 d->rtk_cmdstat = htole32(cmdstat);
1071 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072
1073 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1074
1075 return 0;
1076 out:
1077 if (n != NULL)
1078 m_freem(n);
1079 return ENOMEM;
1080 }
1081
1082 static int
1083 re_tx_list_init(struct rtk_softc *sc)
1084 {
1085 int i;
1086
1087 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1088 for (i = 0; i < RTK_TX_QLEN; i++) {
1089 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1090 }
1091
1092 bus_dmamap_sync(sc->sc_dmat,
1093 sc->rtk_ldata.rtk_tx_list_map, 0,
1094 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1095 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1096 sc->rtk_ldata.rtk_txq_prodidx = 0;
1097 sc->rtk_ldata.rtk_txq_considx = 0;
1098 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1099 sc->rtk_ldata.rtk_tx_nextfree = 0;
1100
1101 return 0;
1102 }
1103
1104 static int
1105 re_rx_list_init(struct rtk_softc *sc)
1106 {
1107 int i;
1108
1109 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1110 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1111 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1112
1113 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1114 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1115 return ENOBUFS;
1116 }
1117
1118 sc->rtk_ldata.rtk_rx_prodidx = 0;
1119 sc->rtk_head = sc->rtk_tail = NULL;
1120
1121 return 0;
1122 }
1123
1124 /*
1125 * RX handler for C+ and 8169. For the gigE chips, we support
1126 * the reception of jumbo frames that have been fragmented
1127 * across multiple 2K mbuf cluster buffers.
1128 */
1129 static void
1130 re_rxeof(struct rtk_softc *sc)
1131 {
1132 struct mbuf *m;
1133 struct ifnet *ifp;
1134 int i, total_len;
1135 struct rtk_desc *cur_rx;
1136 u_int32_t rxstat, rxvlan;
1137
1138 ifp = &sc->ethercom.ec_if;
1139
1140 for (i = sc->rtk_ldata.rtk_rx_prodidx;; RTK_RX_DESC_INC(sc, i)) {
1141 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1142 RTK_RXDESCSYNC(sc, i,
1143 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1144 rxstat = le32toh(cur_rx->rtk_cmdstat);
1145 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1146 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1147 break;
1148 }
1149 total_len = rxstat & sc->rtk_rxlenmask;
1150 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1151 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1152
1153 /* Invalidate the RX mbuf and unload its map */
1154
1155 bus_dmamap_sync(sc->sc_dmat,
1156 sc->rtk_ldata.rtk_rx_dmamap[i],
1157 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1158 BUS_DMASYNC_POSTREAD);
1159 bus_dmamap_unload(sc->sc_dmat,
1160 sc->rtk_ldata.rtk_rx_dmamap[i]);
1161
1162 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1163 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1164 if (sc->rtk_head == NULL)
1165 sc->rtk_head = sc->rtk_tail = m;
1166 else {
1167 m->m_flags &= ~M_PKTHDR;
1168 sc->rtk_tail->m_next = m;
1169 sc->rtk_tail = m;
1170 }
1171 re_newbuf(sc, i, NULL);
1172 continue;
1173 }
1174
1175 /*
1176 * NOTE: for the 8139C+, the frame length field
1177 * is always 12 bits in size, but for the gigE chips,
1178 * it is 13 bits (since the max RX frame length is 16K).
1179 * Unfortunately, all 32 bits in the status word
1180 * were already used, so to make room for the extra
1181 * length bit, RealTek took out the 'frame alignment
1182 * error' bit and shifted the other status bits
1183 * over one slot. The OWN, EOR, FS and LS bits are
1184 * still in the same places. We have already extracted
1185 * the frame length and checked the OWN bit, so rather
1186 * than using an alternate bit mapping, we shift the
1187 * status bits one space to the right so we can evaluate
1188 * them using the 8169 status as though it was in the
1189 * same format as that of the 8139C+.
1190 */
1191 if (sc->rtk_type == RTK_8169)
1192 rxstat >>= 1;
1193
1194 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1195 ifp->if_ierrors++;
1196 /*
1197 * If this is part of a multi-fragment packet,
1198 * discard all the pieces.
1199 */
1200 if (sc->rtk_head != NULL) {
1201 m_freem(sc->rtk_head);
1202 sc->rtk_head = sc->rtk_tail = NULL;
1203 }
1204 re_newbuf(sc, i, m);
1205 continue;
1206 }
1207
1208 /*
1209 * If allocating a replacement mbuf fails,
1210 * reload the current one.
1211 */
1212
1213 if (re_newbuf(sc, i, NULL)) {
1214 ifp->if_ierrors++;
1215 if (sc->rtk_head != NULL) {
1216 m_freem(sc->rtk_head);
1217 sc->rtk_head = sc->rtk_tail = NULL;
1218 }
1219 re_newbuf(sc, i, m);
1220 continue;
1221 }
1222
1223 if (sc->rtk_head != NULL) {
1224 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1225 /*
1226 * Special case: if there's 4 bytes or less
1227 * in this buffer, the mbuf can be discarded:
1228 * the last 4 bytes is the CRC, which we don't
1229 * care about anyway.
1230 */
1231 if (m->m_len <= ETHER_CRC_LEN) {
1232 sc->rtk_tail->m_len -=
1233 (ETHER_CRC_LEN - m->m_len);
1234 m_freem(m);
1235 } else {
1236 m->m_len -= ETHER_CRC_LEN;
1237 m->m_flags &= ~M_PKTHDR;
1238 sc->rtk_tail->m_next = m;
1239 }
1240 m = sc->rtk_head;
1241 sc->rtk_head = sc->rtk_tail = NULL;
1242 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1243 } else
1244 m->m_pkthdr.len = m->m_len =
1245 (total_len - ETHER_CRC_LEN);
1246
1247 ifp->if_ipackets++;
1248 m->m_pkthdr.rcvif = ifp;
1249
1250 /* Do RX checksumming if enabled */
1251
1252 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1253
1254 /* Check IP header checksum */
1255 if (rxstat & RTK_RDESC_STAT_PROTOID)
1256 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1257 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1258 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1259 }
1260
1261 /* Check TCP/UDP checksum */
1262 if (RTK_TCPPKT(rxstat) &&
1263 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1264 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1265 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1266 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1267 }
1268 if (RTK_UDPPKT(rxstat) &&
1269 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1270 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1271 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1273 }
1274
1275 #ifdef RE_VLAN
1276 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1277 VLAN_INPUT_TAG(ifp, m,
1278 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1279 continue);
1280 }
1281 #endif
1282 #if NBPFILTER > 0
1283 if (ifp->if_bpf)
1284 bpf_mtap(ifp->if_bpf, m);
1285 #endif
1286 (*ifp->if_input)(ifp, m);
1287 }
1288
1289 sc->rtk_ldata.rtk_rx_prodidx = i;
1290
1291 return;
1292 }
1293
1294 static void
1295 re_txeof(struct rtk_softc *sc)
1296 {
1297 struct ifnet *ifp;
1298 int idx;
1299 boolean_t done = FALSE;
1300
1301 ifp = &sc->ethercom.ec_if;
1302 idx = sc->rtk_ldata.rtk_txq_considx;
1303
1304 for (;;) {
1305 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1306 int descidx;
1307 u_int32_t txstat;
1308
1309 if (txq->txq_mbuf == NULL) {
1310 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1311 break;
1312 }
1313
1314 descidx = txq->txq_descidx;
1315 RTK_TXDESCSYNC(sc, descidx,
1316 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1317 txstat =
1318 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1319 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1320 if (txstat & RTK_TDESC_CMD_OWN) {
1321 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1322 break;
1323 }
1324
1325 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1326 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1327 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1328 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1329 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1330 m_freem(txq->txq_mbuf);
1331 txq->txq_mbuf = NULL;
1332
1333 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1334 ifp->if_collisions++;
1335 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1336 ifp->if_oerrors++;
1337 else
1338 ifp->if_opackets++;
1339
1340 idx = (idx + 1) % RTK_TX_QLEN;
1341 done = TRUE;
1342 }
1343
1344 /* No changes made to the TX ring, so no flush needed */
1345
1346 if (done) {
1347 sc->rtk_ldata.rtk_txq_considx = idx;
1348 ifp->if_flags &= ~IFF_OACTIVE;
1349 ifp->if_timer = 0;
1350 }
1351
1352 /*
1353 * If not all descriptors have been released reaped yet,
1354 * reload the timer so that we will eventually get another
1355 * interrupt that will cause us to re-enter this routine.
1356 * This is done in case the transmitter has gone idle.
1357 */
1358 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1359 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1360
1361 return;
1362 }
1363
1364 /*
1365 * Stop all chip I/O so that the kernel's probe routines don't
1366 * get confused by errant DMAs when rebooting.
1367 */
1368 static void
1369 re_shutdown(void *vsc)
1370
1371 {
1372 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1373
1374 re_stop(&sc->ethercom.ec_if, 0);
1375 }
1376
1377
1378 static void
1379 re_tick(void *xsc)
1380 {
1381 struct rtk_softc *sc = xsc;
1382 int s;
1383
1384 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1385 s = splnet();
1386
1387 mii_tick(&sc->mii);
1388 splx(s);
1389
1390 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1391 }
1392
1393 #ifdef DEVICE_POLLING
1394 static void
1395 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1396 {
1397 struct rtk_softc *sc = ifp->if_softc;
1398
1399 RTK_LOCK(sc);
1400 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1401 ether_poll_deregister(ifp);
1402 cmd = POLL_DEREGISTER;
1403 }
1404 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1405 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1406 goto done;
1407 }
1408
1409 sc->rxcycles = count;
1410 re_rxeof(sc);
1411 re_txeof(sc);
1412
1413 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1414 (*ifp->if_start)(ifp);
1415
1416 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1417 u_int16_t status;
1418
1419 status = CSR_READ_2(sc, RTK_ISR);
1420 if (status == 0xffff)
1421 goto done;
1422 if (status)
1423 CSR_WRITE_2(sc, RTK_ISR, status);
1424
1425 /*
1426 * XXX check behaviour on receiver stalls.
1427 */
1428
1429 if (status & RTK_ISR_SYSTEM_ERR) {
1430 re_reset(sc);
1431 re_init(sc);
1432 }
1433 }
1434 done:
1435 RTK_UNLOCK(sc);
1436 }
1437 #endif /* DEVICE_POLLING */
1438
1439 int
1440 re_intr(void *arg)
1441 {
1442 struct rtk_softc *sc = arg;
1443 struct ifnet *ifp;
1444 u_int16_t status;
1445 int handled = 0;
1446
1447 ifp = &sc->ethercom.ec_if;
1448
1449 if (!(ifp->if_flags & IFF_UP))
1450 return 0;
1451
1452 #ifdef DEVICE_POLLING
1453 if (ifp->if_flags & IFF_POLLING)
1454 goto done;
1455 if ((ifp->if_capenable & IFCAP_POLLING) &&
1456 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1457 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1458 re_poll(ifp, 0, 1);
1459 goto done;
1460 }
1461 #endif /* DEVICE_POLLING */
1462
1463 for (;;) {
1464
1465 status = CSR_READ_2(sc, RTK_ISR);
1466 /* If the card has gone away the read returns 0xffff. */
1467 if (status == 0xffff)
1468 break;
1469 if (status) {
1470 handled = 1;
1471 CSR_WRITE_2(sc, RTK_ISR, status);
1472 }
1473
1474 if ((status & RTK_INTRS_CPLUS) == 0)
1475 break;
1476
1477 if ((status & RTK_ISR_RX_OK) ||
1478 (status & RTK_ISR_RX_ERR))
1479 re_rxeof(sc);
1480
1481 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1482 (status & RTK_ISR_TX_ERR) ||
1483 (status & RTK_ISR_TX_DESC_UNAVAIL))
1484 re_txeof(sc);
1485
1486 if (status & RTK_ISR_SYSTEM_ERR) {
1487 re_reset(sc);
1488 re_init(ifp);
1489 }
1490
1491 if (status & RTK_ISR_LINKCHG) {
1492 callout_stop(&sc->rtk_tick_ch);
1493 re_tick(sc);
1494 }
1495 }
1496
1497 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1498 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1499 (*ifp->if_start)(ifp);
1500
1501 #ifdef DEVICE_POLLING
1502 done:
1503 #endif
1504
1505 return handled;
1506 }
1507
1508 static int
1509 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1510 {
1511 bus_dmamap_t map;
1512 int error, i, uidx, startidx, curidx;
1513 #ifdef RE_VLAN
1514 struct m_tag *mtag;
1515 #endif
1516 struct rtk_desc *d;
1517 u_int32_t cmdstat, rtk_flags;
1518 struct rtk_txq *txq;
1519
1520 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1521 return EFBIG;
1522 }
1523
1524 /*
1525 * Set up checksum offload. Note: checksum offload bits must
1526 * appear in all descriptors of a multi-descriptor transmit
1527 * attempt. (This is according to testing done with an 8169
1528 * chip. I'm not sure if this is a requirement or a bug.)
1529 */
1530
1531 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1532 u_int32_t segsz = m->m_pkthdr.segsz;
1533
1534 rtk_flags = RTK_TDESC_CMD_LGSEND |
1535 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1536 } else {
1537
1538 /*
1539 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1540 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1541 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1542 */
1543
1544 rtk_flags = 0;
1545 if ((m->m_pkthdr.csum_flags &
1546 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1547 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1548 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1549 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1550 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1551 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1552 }
1553 }
1554 }
1555
1556 txq = &sc->rtk_ldata.rtk_txq[*idx];
1557 map = txq->txq_dmamap;
1558 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1559 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1560
1561 if (error) {
1562 /* XXX try to defrag if EFBIG? */
1563
1564 aprint_error("%s: can't map mbuf (error %d)\n",
1565 sc->sc_dev.dv_xname, error);
1566
1567 return error;
1568 }
1569
1570 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1571 error = EFBIG;
1572 goto fail_unload;
1573 }
1574
1575 /*
1576 * Make sure that the caches are synchronized before we
1577 * ask the chip to start DMA for the packet data.
1578 */
1579 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1580 BUS_DMASYNC_PREWRITE);
1581
1582 /*
1583 * Map the segment array into descriptors. Note that we set the
1584 * start-of-frame and end-of-frame markers for either TX or RX, but
1585 * they really only have meaning in the TX case. (In the RX case,
1586 * it's the chip that tells us where packets begin and end.)
1587 * We also keep track of the end of the ring and set the
1588 * end-of-ring bits as needed, and we set the ownership bits
1589 * in all except the very first descriptor. (The caller will
1590 * set this descriptor later when it start transmission or
1591 * reception.)
1592 */
1593 i = 0;
1594 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1595 for (;;) {
1596 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1597 RTK_TXDESCSYNC(sc, curidx,
1598 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1599 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1600 printf("%s: tried to map busy TX descriptor\n",
1601 sc->sc_dev.dv_xname);
1602 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1603 while (i > 0) {
1604 uidx = (curidx + RTK_TX_DESC_CNT(sc) - i) %
1605 RTK_TX_DESC_CNT(sc);
1606 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1607 RTK_TXDESCSYNC(sc, uidx,
1608 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1609 i--;
1610 }
1611 error = ENOBUFS;
1612 goto fail_unload;
1613 }
1614
1615 cmdstat = map->dm_segs[i].ds_len;
1616 d->rtk_bufaddr_lo =
1617 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1618 d->rtk_bufaddr_hi =
1619 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1620 if (i == 0)
1621 cmdstat |= RTK_TDESC_CMD_SOF;
1622 else
1623 cmdstat |= RTK_TDESC_CMD_OWN;
1624 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1625 cmdstat |= RTK_TDESC_CMD_EOR;
1626 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1627 RTK_TXDESCSYNC(sc, curidx,
1628 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629 i++;
1630 if (i == map->dm_nsegs)
1631 break;
1632 RTK_TX_DESC_INC(sc, curidx);
1633 }
1634
1635 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1636
1637 txq->txq_mbuf = m;
1638 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1639
1640 /*
1641 * Set up hardware VLAN tagging. Note: vlan tag info must
1642 * appear in the first descriptor of a multi-descriptor
1643 * transmission attempt.
1644 */
1645
1646 #ifdef RE_VLAN
1647 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1648 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1649 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1650 RTK_TDESC_VLANCTL_TAG);
1651 RTK_TXDESCSYNC(sc, startidx,
1652 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1653 }
1654 #endif
1655
1656 /* Transfer ownership of packet to the chip. */
1657
1658 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1659 htole32(RTK_TDESC_CMD_OWN);
1660 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661 if (startidx != curidx) {
1662 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1663 htole32(RTK_TDESC_CMD_OWN);
1664 RTK_TXDESCSYNC(sc, startidx,
1665 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1666 }
1667
1668 txq->txq_descidx = curidx;
1669 RTK_TX_DESC_INC(sc, curidx);
1670 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1671 *idx = (*idx + 1) % RTK_TX_QLEN;
1672
1673 return 0;
1674
1675 fail_unload:
1676 bus_dmamap_unload(sc->sc_dmat, map);
1677
1678 return error;
1679 }
1680
1681 /*
1682 * Main transmit routine for C+ and gigE NICs.
1683 */
1684
1685 static void
1686 re_start(struct ifnet *ifp)
1687 {
1688 struct rtk_softc *sc;
1689 int idx;
1690 boolean_t done = FALSE;
1691
1692 sc = ifp->if_softc;
1693
1694 idx = sc->rtk_ldata.rtk_txq_prodidx;
1695 for (;;) {
1696 struct mbuf *m;
1697 int error;
1698
1699 IFQ_POLL(&ifp->if_snd, m);
1700 if (m == NULL)
1701 break;
1702
1703 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1704 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1705 ifp->if_flags |= IFF_OACTIVE;
1706 break;
1707 }
1708
1709 error = re_encap(sc, m, &idx);
1710 if (error == EFBIG &&
1711 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1712 IFQ_DEQUEUE(&ifp->if_snd, m);
1713 m_freem(m);
1714 ifp->if_oerrors++;
1715 continue;
1716 }
1717 if (error) {
1718 ifp->if_flags |= IFF_OACTIVE;
1719 break;
1720 }
1721
1722 IFQ_DEQUEUE(&ifp->if_snd, m);
1723
1724 #if NBPFILTER > 0
1725 /*
1726 * If there's a BPF listener, bounce a copy of this frame
1727 * to him.
1728 */
1729 if (ifp->if_bpf)
1730 bpf_mtap(ifp->if_bpf, m);
1731 #endif
1732
1733 done = TRUE;
1734 }
1735
1736 if (!done) {
1737 return;
1738 }
1739 sc->rtk_ldata.rtk_txq_prodidx = idx;
1740
1741 /*
1742 * RealTek put the TX poll request register in a different
1743 * location on the 8169 gigE chip. I don't know why.
1744 */
1745
1746 if (sc->rtk_type == RTK_8169)
1747 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1748 else
1749 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1750
1751 /*
1752 * Use the countdown timer for interrupt moderation.
1753 * 'TX done' interrupts are disabled. Instead, we reset the
1754 * countdown timer, which will begin counting until it hits
1755 * the value in the TIMERINT register, and then trigger an
1756 * interrupt. Each time we write to the TIMERCNT register,
1757 * the timer count is reset to 0.
1758 */
1759 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1760
1761 /*
1762 * Set a timeout in case the chip goes out to lunch.
1763 */
1764 ifp->if_timer = 5;
1765
1766 return;
1767 }
1768
1769 static int
1770 re_init(struct ifnet *ifp)
1771 {
1772 struct rtk_softc *sc = ifp->if_softc;
1773 u_int32_t rxcfg = 0;
1774 u_int32_t reg;
1775 int error;
1776
1777 if ((error = re_enable(sc)) != 0)
1778 goto out;
1779
1780 /*
1781 * Cancel pending I/O and free all RX/TX buffers.
1782 */
1783 re_stop(ifp, 0);
1784
1785 /*
1786 * Enable C+ RX and TX mode, as well as VLAN stripping and
1787 * RX checksum offload. We must configure the C+ register
1788 * before all others.
1789 */
1790 reg = 0;
1791
1792 /*
1793 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1794 * FreeBSD drivers set these bits anyway (for 8139C+?).
1795 * So far, it works.
1796 */
1797
1798 /*
1799 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1800 * For 8169S/8110S rev 2 and above, do not set bit 14.
1801 */
1802 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1803 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1804
1805 if (1) {/* not for 8169S ? */
1806 reg |=
1807 #ifdef RE_VLAN
1808 RTK_CPLUSCMD_VLANSTRIP |
1809 #endif
1810 (ifp->if_capenable &
1811 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1812 IFCAP_CSUM_UDPv4_Rx) ?
1813 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1814 }
1815
1816 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1817 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1818
1819 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1820 if (sc->rtk_type == RTK_8169)
1821 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1822
1823 DELAY(10000);
1824
1825 /*
1826 * Init our MAC address. Even though the chipset
1827 * documentation doesn't mention it, we need to enter "Config
1828 * register write enable" mode to modify the ID registers.
1829 */
1830 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1831 memcpy(®, LLADDR(ifp->if_sadl), 4);
1832 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1833 reg = 0;
1834 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1835 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1836 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1837
1838 /*
1839 * For C+ mode, initialize the RX descriptors and mbufs.
1840 */
1841 re_rx_list_init(sc);
1842 re_tx_list_init(sc);
1843
1844 /*
1845 * Enable transmit and receive.
1846 */
1847 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1848
1849 /*
1850 * Set the initial TX and RX configuration.
1851 */
1852 if (sc->rtk_testmode) {
1853 if (sc->rtk_type == RTK_8169)
1854 CSR_WRITE_4(sc, RTK_TXCFG,
1855 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1856 else
1857 CSR_WRITE_4(sc, RTK_TXCFG,
1858 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1859 } else
1860 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1861 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1862
1863 /* Set the individual bit to receive frames for this host only. */
1864 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1865 rxcfg |= RTK_RXCFG_RX_INDIV;
1866
1867 /* If we want promiscuous mode, set the allframes bit. */
1868 if (ifp->if_flags & IFF_PROMISC)
1869 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1870 else
1871 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1872 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1873
1874 /*
1875 * Set capture broadcast bit to capture broadcast frames.
1876 */
1877 if (ifp->if_flags & IFF_BROADCAST)
1878 rxcfg |= RTK_RXCFG_RX_BROAD;
1879 else
1880 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1881 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1882
1883 /*
1884 * Program the multicast filter, if necessary.
1885 */
1886 rtk_setmulti(sc);
1887
1888 #ifdef DEVICE_POLLING
1889 /*
1890 * Disable interrupts if we are polling.
1891 */
1892 if (ifp->if_flags & IFF_POLLING)
1893 CSR_WRITE_2(sc, RTK_IMR, 0);
1894 else /* otherwise ... */
1895 #endif /* DEVICE_POLLING */
1896 /*
1897 * Enable interrupts.
1898 */
1899 if (sc->rtk_testmode)
1900 CSR_WRITE_2(sc, RTK_IMR, 0);
1901 else
1902 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1903
1904 /* Start RX/TX process. */
1905 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1906 #ifdef notdef
1907 /* Enable receiver and transmitter. */
1908 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1909 #endif
1910 /*
1911 * Load the addresses of the RX and TX lists into the chip.
1912 */
1913
1914 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1915 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1916 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1917 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1918
1919 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1920 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1921 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1922 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1923
1924 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1925
1926 /*
1927 * Initialize the timer interrupt register so that
1928 * a timer interrupt will be generated once the timer
1929 * reaches a certain number of ticks. The timer is
1930 * reloaded on each transmit. This gives us TX interrupt
1931 * moderation, which dramatically improves TX frame rate.
1932 */
1933
1934 if (sc->rtk_type == RTK_8169)
1935 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1936 else
1937 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1938
1939 /*
1940 * For 8169 gigE NICs, set the max allowed RX packet
1941 * size so we can receive jumbo frames.
1942 */
1943 if (sc->rtk_type == RTK_8169)
1944 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1945
1946 if (sc->rtk_testmode)
1947 return 0;
1948
1949 mii_mediachg(&sc->mii);
1950
1951 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1952
1953 ifp->if_flags |= IFF_RUNNING;
1954 ifp->if_flags &= ~IFF_OACTIVE;
1955
1956 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1957
1958 out:
1959 if (error) {
1960 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1961 ifp->if_timer = 0;
1962 aprint_error("%s: interface not running\n",
1963 sc->sc_dev.dv_xname);
1964 }
1965
1966 return error;
1967
1968 }
1969
1970 /*
1971 * Set media options.
1972 */
1973 static int
1974 re_ifmedia_upd(struct ifnet *ifp)
1975 {
1976 struct rtk_softc *sc;
1977
1978 sc = ifp->if_softc;
1979
1980 return mii_mediachg(&sc->mii);
1981 }
1982
1983 /*
1984 * Report current media status.
1985 */
1986 static void
1987 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1988 {
1989 struct rtk_softc *sc;
1990
1991 sc = ifp->if_softc;
1992
1993 mii_pollstat(&sc->mii);
1994 ifmr->ifm_active = sc->mii.mii_media_active;
1995 ifmr->ifm_status = sc->mii.mii_media_status;
1996
1997 return;
1998 }
1999
2000 static int
2001 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2002 {
2003 struct rtk_softc *sc = ifp->if_softc;
2004 struct ifreq *ifr = (struct ifreq *) data;
2005 int s, error = 0;
2006
2007 s = splnet();
2008
2009 switch (command) {
2010 case SIOCSIFMTU:
2011 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2012 error = EINVAL;
2013 ifp->if_mtu = ifr->ifr_mtu;
2014 break;
2015 case SIOCGIFMEDIA:
2016 case SIOCSIFMEDIA:
2017 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2018 break;
2019 default:
2020 error = ether_ioctl(ifp, command, data);
2021 if (error == ENETRESET) {
2022 if (ifp->if_flags & IFF_RUNNING)
2023 rtk_setmulti(sc);
2024 error = 0;
2025 }
2026 break;
2027 }
2028
2029 splx(s);
2030
2031 return error;
2032 }
2033
2034 static void
2035 re_watchdog(struct ifnet *ifp)
2036 {
2037 struct rtk_softc *sc;
2038 int s;
2039
2040 sc = ifp->if_softc;
2041 s = splnet();
2042 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2043 ifp->if_oerrors++;
2044
2045 re_txeof(sc);
2046 re_rxeof(sc);
2047
2048 re_init(ifp);
2049
2050 splx(s);
2051 }
2052
2053 /*
2054 * Stop the adapter and free any mbufs allocated to the
2055 * RX and TX lists.
2056 */
2057 static void
2058 re_stop(struct ifnet *ifp, int disable)
2059 {
2060 register int i;
2061 struct rtk_softc *sc = ifp->if_softc;
2062
2063 callout_stop(&sc->rtk_tick_ch);
2064
2065 #ifdef DEVICE_POLLING
2066 ether_poll_deregister(ifp);
2067 #endif /* DEVICE_POLLING */
2068
2069 mii_down(&sc->mii);
2070
2071 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2072 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2073
2074 if (sc->rtk_head != NULL) {
2075 m_freem(sc->rtk_head);
2076 sc->rtk_head = sc->rtk_tail = NULL;
2077 }
2078
2079 /* Free the TX list buffers. */
2080 for (i = 0; i < RTK_TX_QLEN; i++) {
2081 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2082 bus_dmamap_unload(sc->sc_dmat,
2083 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2084 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2085 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2086 }
2087 }
2088
2089 /* Free the RX list buffers. */
2090 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2091 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2092 bus_dmamap_unload(sc->sc_dmat,
2093 sc->rtk_ldata.rtk_rx_dmamap[i]);
2094 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2095 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2096 }
2097 }
2098
2099 if (disable)
2100 re_disable(sc);
2101
2102 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2103 ifp->if_timer = 0;
2104
2105 return;
2106 }
2107