rtl8169.c revision 1.4 1 /* $NetBSD: rtl8169.c,v 1.4 2005/01/09 12:15:36 kanaoka Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #if NBPFILTER > 0
134 #include <net/bpf.h>
135 #endif
136
137 #include <machine/bus.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 #include <dev/pci/pcidevs.h>
145
146 /*
147 * Default to using PIO access for this driver.
148 */
149 #define RE_USEIOSPACE
150
151 #include <dev/ic/rtl81x9reg.h>
152 #include <dev/ic/rtl81x9var.h>
153
154 #include <dev/ic/rtl8169var.h>
155
156
157 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
158
159 static int re_allocmem(struct rtk_softc *);
160 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
161 static int re_rx_list_init(struct rtk_softc *);
162 static int re_tx_list_init(struct rtk_softc *);
163 static void re_rxeof(struct rtk_softc *);
164 static void re_txeof(struct rtk_softc *);
165 static void re_tick(void *);
166 static void re_start(struct ifnet *);
167 static int re_ioctl(struct ifnet *, u_long, caddr_t);
168 static int re_init(struct ifnet *);
169 static void re_stop(struct ifnet *, int);
170 static void re_watchdog(struct ifnet *);
171
172 static void re_shutdown(void *);
173 static int re_enable(struct rtk_softc *);
174 static void re_disable(struct rtk_softc *);
175 static void re_power(int, void *);
176
177 static int re_ifmedia_upd(struct ifnet *);
178 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
179
180 static int re_gmii_readreg(struct device *, int, int);
181 static void re_gmii_writereg(struct device *, int, int, int);
182
183 static int re_miibus_readreg(struct device *, int, int);
184 static void re_miibus_writereg(struct device *, int, int, int);
185 static void re_miibus_statchg(struct device *);
186
187 static void re_reset(struct rtk_softc *);
188
189 static int re_diag(struct rtk_softc *);
190
191 #ifdef RE_USEIOSPACE
192 #define RTK_RES SYS_RES_IOPORT
193 #define RTK_RID RTK_PCI_LOIO
194 #else
195 #define RTK_RES SYS_RES_MEMORY
196 #define RTK_RID RTK_PCI_LOMEM
197 #endif
198
199 #define EE_SET(x) \
200 CSR_WRITE_1(sc, RTK_EECMD, \
201 CSR_READ_1(sc, RTK_EECMD) | x)
202
203 #define EE_CLR(x) \
204 CSR_WRITE_1(sc, RTK_EECMD, \
205 CSR_READ_1(sc, RTK_EECMD) & ~x)
206
207 static int
208 re_gmii_readreg(struct device *self, int phy, int reg)
209 {
210 struct rtk_softc *sc = (void *)self;
211 u_int32_t rval;
212 int i;
213
214 if (phy != 7)
215 return 0;
216
217 /* Let the rgephy driver read the GMEDIASTAT register */
218
219 if (reg == RTK_GMEDIASTAT) {
220 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
221 return rval;
222 }
223
224 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
225 DELAY(1000);
226
227 for (i = 0; i < RTK_TIMEOUT; i++) {
228 rval = CSR_READ_4(sc, RTK_PHYAR);
229 if (rval & RTK_PHYAR_BUSY)
230 break;
231 DELAY(100);
232 }
233
234 if (i == RTK_TIMEOUT) {
235 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
236 return 0;
237 }
238
239 return rval & RTK_PHYAR_PHYDATA;
240 }
241
242 static void
243 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
244 {
245 struct rtk_softc *sc = (void *)dev;
246 u_int32_t rval;
247 int i;
248
249 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
250 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
251 DELAY(1000);
252
253 for (i = 0; i < RTK_TIMEOUT; i++) {
254 rval = CSR_READ_4(sc, RTK_PHYAR);
255 if (!(rval & RTK_PHYAR_BUSY))
256 break;
257 DELAY(100);
258 }
259
260 if (i == RTK_TIMEOUT) {
261 aprint_error("%s: PHY write reg %x <- %x failed\n",
262 sc->sc_dev.dv_xname, reg, data);
263 return;
264 }
265
266 return;
267 }
268
269 static int
270 re_miibus_readreg(struct device *dev, int phy, int reg)
271 {
272 struct rtk_softc *sc = (void *)dev;
273 u_int16_t rval = 0;
274 u_int16_t re8139_reg = 0;
275 int s;
276
277 s = splnet();
278
279 if (sc->rtk_type == RTK_8169) {
280 rval = re_gmii_readreg(dev, phy, reg);
281 splx(s);
282 return rval;
283 }
284
285 /* Pretend the internal PHY is only at address 0 */
286 if (phy) {
287 splx(s);
288 return 0;
289 }
290 switch (reg) {
291 case MII_BMCR:
292 re8139_reg = RTK_BMCR;
293 break;
294 case MII_BMSR:
295 re8139_reg = RTK_BMSR;
296 break;
297 case MII_ANAR:
298 re8139_reg = RTK_ANAR;
299 break;
300 case MII_ANER:
301 re8139_reg = RTK_ANER;
302 break;
303 case MII_ANLPAR:
304 re8139_reg = RTK_LPAR;
305 break;
306 case MII_PHYIDR1:
307 case MII_PHYIDR2:
308 splx(s);
309 return 0;
310 /*
311 * Allow the rlphy driver to read the media status
312 * register. If we have a link partner which does not
313 * support NWAY, this is the register which will tell
314 * us the results of parallel detection.
315 */
316 case RTK_MEDIASTAT:
317 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
318 splx(s);
319 return rval;
320 default:
321 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
322 splx(s);
323 return 0;
324 }
325 rval = CSR_READ_2(sc, re8139_reg);
326 splx(s);
327 return rval;
328 }
329
330 static void
331 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
332 {
333 struct rtk_softc *sc = (void *)dev;
334 u_int16_t re8139_reg = 0;
335 int s;
336
337 s = splnet();
338
339 if (sc->rtk_type == RTK_8169) {
340 re_gmii_writereg(dev, phy, reg, data);
341 splx(s);
342 return;
343 }
344
345 /* Pretend the internal PHY is only at address 0 */
346 if (phy) {
347 splx(s);
348 return;
349 }
350 switch (reg) {
351 case MII_BMCR:
352 re8139_reg = RTK_BMCR;
353 break;
354 case MII_BMSR:
355 re8139_reg = RTK_BMSR;
356 break;
357 case MII_ANAR:
358 re8139_reg = RTK_ANAR;
359 break;
360 case MII_ANER:
361 re8139_reg = RTK_ANER;
362 break;
363 case MII_ANLPAR:
364 re8139_reg = RTK_LPAR;
365 break;
366 case MII_PHYIDR1:
367 case MII_PHYIDR2:
368 splx(s);
369 return;
370 break;
371 default:
372 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
373 splx(s);
374 return;
375 }
376 CSR_WRITE_2(sc, re8139_reg, data);
377 splx(s);
378 return;
379 }
380
381 static void
382 re_miibus_statchg(struct device *dev)
383 {
384
385 return;
386 }
387
388 static void
389 re_reset(struct rtk_softc *sc)
390 {
391 register int i;
392
393 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
394
395 for (i = 0; i < RTK_TIMEOUT; i++) {
396 DELAY(10);
397 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
398 break;
399 }
400 if (i == RTK_TIMEOUT)
401 aprint_error("%s: reset never completed!\n",
402 sc->sc_dev.dv_xname);
403
404 /*
405 * NB: Realtek-supplied Linux driver does this only for
406 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
407 */
408 if (1) /* XXX check softc flag for 8169s version */
409 CSR_WRITE_1(sc, 0x82, 1);
410
411 return;
412 }
413
414 /*
415 * The following routine is designed to test for a defect on some
416 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
417 * lines connected to the bus, however for a 32-bit only card, they
418 * should be pulled high. The result of this defect is that the
419 * NIC will not work right if you plug it into a 64-bit slot: DMA
420 * operations will be done with 64-bit transfers, which will fail
421 * because the 64-bit data lines aren't connected.
422 *
423 * There's no way to work around this (short of talking a soldering
424 * iron to the board), however we can detect it. The method we use
425 * here is to put the NIC into digital loopback mode, set the receiver
426 * to promiscuous mode, and then try to send a frame. We then compare
427 * the frame data we sent to what was received. If the data matches,
428 * then the NIC is working correctly, otherwise we know the user has
429 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
430 * slot. In the latter case, there's no way the NIC can work correctly,
431 * so we print out a message on the console and abort the device attach.
432 */
433
434 static int
435 re_diag(struct rtk_softc *sc)
436 {
437 struct ifnet *ifp = &sc->ethercom.ec_if;
438 struct mbuf *m0;
439 struct ether_header *eh;
440 struct rtk_desc *cur_rx;
441 bus_dmamap_t dmamap;
442 u_int16_t status;
443 u_int32_t rxstat;
444 int total_len, i, s, error = 0;
445 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
446 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
447
448 /* Allocate a single mbuf */
449
450 MGETHDR(m0, M_DONTWAIT, MT_DATA);
451 if (m0 == NULL)
452 return ENOBUFS;
453
454 /*
455 * Initialize the NIC in test mode. This sets the chip up
456 * so that it can send and receive frames, but performs the
457 * following special functions:
458 * - Puts receiver in promiscuous mode
459 * - Enables digital loopback mode
460 * - Leaves interrupts turned off
461 */
462
463 ifp->if_flags |= IFF_PROMISC;
464 sc->rtk_testmode = 1;
465 re_init(ifp);
466 re_stop(ifp, 1);
467 DELAY(100000);
468 re_init(ifp);
469
470 /* Put some data in the mbuf */
471
472 eh = mtod(m0, struct ether_header *);
473 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
474 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
475 eh->ether_type = htons(ETHERTYPE_IP);
476 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
477
478 /*
479 * Queue the packet, start transmission.
480 */
481
482 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
483 s = splnet();
484 IF_ENQUEUE(&ifp->if_snd, m0);
485 re_start(ifp);
486 splx(s);
487 m0 = NULL;
488
489 /* Wait for it to propagate through the chip */
490
491 DELAY(100000);
492 for (i = 0; i < RTK_TIMEOUT; i++) {
493 status = CSR_READ_2(sc, RTK_ISR);
494 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
495 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
496 break;
497 DELAY(10);
498 }
499 if (i == RTK_TIMEOUT) {
500 aprint_error("%s: diagnostic failed, failed to receive packet "
501 "in loopback mode\n", sc->sc_dev.dv_xname);
502 error = EIO;
503 goto done;
504 }
505
506 /*
507 * The packet should have been dumped into the first
508 * entry in the RX DMA ring. Grab it from there.
509 */
510
511 dmamap = sc->rtk_ldata.rtk_rx_list_map;
512 bus_dmamap_sync(sc->sc_dmat,
513 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
514 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
515 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
516 BUS_DMASYNC_POSTWRITE);
517 bus_dmamap_unload(sc->sc_dmat,
518 sc->rtk_ldata.rtk_rx_dmamap[0]);
519
520 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
521 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
522 eh = mtod(m0, struct ether_header *);
523
524 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
525 total_len = RTK_RXBYTES(cur_rx);
526 rxstat = le32toh(cur_rx->rtk_cmdstat);
527
528 if (total_len != ETHER_MIN_LEN) {
529 aprint_error("%s: diagnostic failed, received short packet\n",
530 sc->sc_dev.dv_xname);
531 error = EIO;
532 goto done;
533 }
534
535 /* Test that the received packet data matches what we sent. */
536
537 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
538 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
539 ntohs(eh->ether_type) != ETHERTYPE_IP) {
540 aprint_error("%s: WARNING, DMA FAILURE!\n",
541 sc->sc_dev.dv_xname);
542 aprint_error("%s: expected TX data: %s",
543 sc->sc_dev.dv_xname, ether_sprintf(dst));
544 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
545 aprint_error("%s: received RX data: %s",
546 sc->sc_dev.dv_xname,
547 ether_sprintf(eh->ether_dhost));
548 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
549 ntohs(eh->ether_type));
550 aprint_error("%s: You may have a defective 32-bit NIC plugged "
551 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
552 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
553 "for proper operation.\n", sc->sc_dev.dv_xname);
554 aprint_error("%s: Read the re(4) man page for more details.\n",
555 sc->sc_dev.dv_xname);
556 error = EIO;
557 }
558
559 done:
560 /* Turn interface off, release resources */
561
562 sc->rtk_testmode = 0;
563 ifp->if_flags &= ~IFF_PROMISC;
564 re_stop(ifp, 1);
565 if (m0 != NULL)
566 m_freem(m0);
567
568 return error;
569 }
570
571 static int
572 re_allocmem(struct rtk_softc *sc)
573 {
574 int error;
575 int nseg, rseg;
576 int i;
577
578 nseg = 32;
579
580 /* Allocate DMA'able memory for the TX ring */
581
582 error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
583 RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
584 &sc->rtk_ldata.rtk_tx_list_map);
585 error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
586 RTK_ETHER_ALIGN, 0,
587 &sc->rtk_ldata.rtk_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
588 if (error)
589 return ENOMEM;
590
591 /* Load the map for the TX ring. */
592 error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
593 1, RTK_TX_LIST_SZ,
594 (caddr_t *)&sc->rtk_ldata.rtk_tx_list, BUS_DMA_NOWAIT);
595 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
596
597 error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map,
598 sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
599
600 /* Create DMA maps for TX buffers */
601
602 for (i = 0; i < RTK_TX_DESC_CNT; i++) {
603 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
604 MCLBYTES, 0, BUS_DMA_ALLOCNOW,
605 &sc->rtk_ldata.rtk_tx_dmamap[i]);
606 if (error) {
607 aprint_error("%s: can't create DMA map for TX\n",
608 sc->sc_dev.dv_xname);
609 return ENOMEM;
610 }
611 }
612
613 /* Allocate DMA'able memory for the RX ring */
614
615 error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
616 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
617 &sc->rtk_ldata.rtk_rx_list_map);
618 error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ, RTK_RING_ALIGN,
619 0, &sc->rtk_ldata.rtk_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
620 if (error)
621 return ENOMEM;
622
623 /* Load the map for the RX ring. */
624 error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
625 1, RTK_RX_LIST_SZ,
626 (caddr_t *)&sc->rtk_ldata.rtk_rx_list, BUS_DMA_NOWAIT);
627 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
628
629 error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map,
630 sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
631
632 /* Create DMA maps for RX buffers */
633
634 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
635 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
636 MCLBYTES, 0, BUS_DMA_ALLOCNOW,
637 &sc->rtk_ldata.rtk_rx_dmamap[i]);
638 if (error) {
639 aprint_error("%s: can't create DMA map for RX\n",
640 sc->sc_dev.dv_xname);
641 return ENOMEM;
642 }
643 }
644
645 return 0;
646 }
647
648 /*
649 * Attach the interface. Allocate softc structures, do ifmedia
650 * setup and ethernet/BPF attach.
651 */
652 void
653 re_attach(struct rtk_softc *sc)
654 {
655 u_char eaddr[ETHER_ADDR_LEN];
656 u_int16_t val;
657 struct ifnet *ifp;
658 int error = 0, i, addr_len;
659
660 /* XXX JRS: bus-attach-independent code begins approximately here */
661
662 /* Reset the adapter. */
663 re_reset(sc);
664
665 if (sc->rtk_type == RTK_8169) {
666 uint32_t hwrev;
667
668 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
669 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
670 if (hwrev == (0x1 << 28)) {
671 sc->sc_rev = 4;
672 } else if (hwrev == (0x1 << 26)) {
673 sc->sc_rev = 3;
674 } else if (hwrev == (0x1 << 23)) {
675 sc->sc_rev = 2;
676 } else
677 sc->sc_rev = 1;
678 #if defined(DEBUG) || 1
679 aprint_normal("re_attach: MAC chip hwrev 0x%x softc %d\n",
680 hwrev, sc->sc_rev);
681 #endif
682
683 /* Set RX length mask */
684
685 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
686
687 /* Force station address autoload from the EEPROM */
688
689 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
690 for (i = 0; i < RTK_TIMEOUT; i++) {
691 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
692 break;
693 DELAY(100);
694 }
695 if (i == RTK_TIMEOUT)
696 aprint_error("%s: eeprom autoload timed out\n",
697 sc->sc_dev.dv_xname);
698
699 for (i = 0; i < ETHER_ADDR_LEN; i++)
700 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
701 } else {
702
703 /* Set RX length mask */
704
705 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
706
707 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
708 addr_len = RTK_EEADDR_LEN1;
709 else
710 addr_len = RTK_EEADDR_LEN0;
711
712 /*
713 * Get station address from the EEPROM.
714 */
715 for (i = 0; i < 3; i++) {
716 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
717 eaddr[(i * 2) + 0] = val & 0xff;
718 eaddr[(i * 2) + 1] = val >> 8;
719 }
720 }
721
722 aprint_normal("%s: Ethernet address %s\n",
723 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
724
725 error = re_allocmem(sc);
726
727 if (error) {
728 aprint_error("%s: attach aborted, re_allocmem() failure\n",
729 sc->sc_dev.dv_xname);
730 goto fail;
731 }
732
733 ifp = &sc->ethercom.ec_if;
734 ifp->if_softc = sc;
735 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
736 ifp->if_mtu = ETHERMTU;
737 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
738 ifp->if_ioctl = re_ioctl;
739 sc->ethercom.ec_capabilities |=
740 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
741 ifp->if_start = re_start;
742 ifp->if_stop = re_stop;
743 ifp->if_capabilities |=
744 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
745 ifp->if_watchdog = re_watchdog;
746 ifp->if_init = re_init;
747 if (sc->rtk_type == RTK_8169)
748 ifp->if_baudrate = 1000000000;
749 else
750 ifp->if_baudrate = 100000000;
751 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
752 ifp->if_capenable = ifp->if_capabilities;
753 IFQ_SET_READY(&ifp->if_snd);
754
755 callout_init(&sc->rtk_tick_ch);
756
757 /* Do MII setup */
758 sc->mii.mii_ifp = ifp;
759 sc->mii.mii_readreg = re_miibus_readreg;
760 sc->mii.mii_writereg = re_miibus_writereg;
761 sc->mii.mii_statchg = re_miibus_statchg;
762 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
763 re_ifmedia_sts);
764 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
765 MII_OFFSET_ANY, 0);
766 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
767
768 /*
769 * Call MI attach routine.
770 */
771 if_attach(ifp);
772 ether_ifattach(ifp, eaddr);
773
774 /*
775 * Perform hardware diagnostic.
776 * XXX: this diagnostic only makes sense for attachemnts with 64-bit
777 * busses: PCI, but not CardBus.
778 */
779 error = re_diag(sc);
780
781 if (error) {
782 aprint_error(
783 "%s: attach aborted due to hardware diag failure\n",
784 sc->sc_dev.dv_xname);
785 ether_ifdetach(ifp);
786 if_detach(ifp);
787 goto fail;
788 }
789
790 /*
791 * Record interface as attached. From here, we should not fail.
792 */
793
794 /*
795 * Make sure the interface is shutdown during reboot.
796 */
797 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
798 if (sc->sc_sdhook == NULL)
799 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
800 sc->sc_dev.dv_xname);
801 /*
802 * Add a suspend hook to make sure we come back up after a
803 * resume.
804 */
805 sc->sc_powerhook = powerhook_establish(re_power, sc);
806 if (sc->sc_powerhook == NULL)
807 aprint_error("%s: WARNING: unable to establish power hook\n",
808 sc->sc_dev.dv_xname);
809
810 sc->sc_flags |= RTK_ATTACHED;
811
812 fail:
813 return;
814 }
815
816
817 /*
818 * re_activate:
819 * Handle device activation/deactivation requests.
820 */
821 int
822 re_activate(struct device *self, enum devact act)
823 {
824 struct rtk_softc *sc = (void *) self;
825 int s, error = 0;
826
827 s = splnet();
828 switch (act) {
829 case DVACT_ACTIVATE:
830 error = EOPNOTSUPP;
831 break;
832 case DVACT_DEACTIVATE:
833 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
834 if_deactivate(&sc->ethercom.ec_if);
835 break;
836 }
837 splx(s);
838
839 return error;
840 }
841
842 /*
843 * re_detach:
844 * Detach a rtk interface.
845 */
846 int
847 re_detach(struct rtk_softc *sc)
848 {
849 struct ifnet *ifp = &sc->ethercom.ec_if;
850
851 /*
852 * Succeed now if there isn't any work to do.
853 */
854 if ((sc->sc_flags & RTK_ATTACHED) == 0)
855 return 0;
856
857 /* Unhook our tick handler. */
858 callout_stop(&sc->rtk_tick_ch);
859
860 /* Detach all PHYs. */
861 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
862
863 /* Delete all remaining media. */
864 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
865
866 ether_ifdetach(ifp);
867 if_detach(ifp);
868
869 /* XXX undo re_allocmem() */
870 #if 0 /* bogus cut-and-paste from rtl81x9.c */
871 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
872 txd = &sc->rtk_tx_descs[i];
873 if (txd->txd_dmamap != NULL)
874 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
875 }
876 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
877 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
878 RTK_RXBUFLEN + 16);
879 /* XXX TX ring, Tx buffer, Rx ring, Rx buffer */
880 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
881 #endif
882
883 shutdownhook_disestablish(sc->sc_sdhook);
884 powerhook_disestablish(sc->sc_powerhook);
885
886 return 0;
887 }
888
889 /*
890 * re_enable:
891 * Enable the RTL81X9 chip.
892 */
893 static int
894 re_enable(struct rtk_softc *sc)
895 {
896 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
897 if ((*sc->sc_enable)(sc) != 0) {
898 aprint_error("%s: device enable failed\n",
899 sc->sc_dev.dv_xname);
900 return EIO;
901 }
902 sc->sc_flags |= RTK_ENABLED;
903 }
904 return 0;
905 }
906
907 /*
908 * re_disable:
909 * Disable the RTL81X9 chip.
910 */
911 static void
912 re_disable(struct rtk_softc *sc)
913 {
914
915 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
916 (*sc->sc_disable)(sc);
917 sc->sc_flags &= ~RTK_ENABLED;
918 }
919 }
920
921 /*
922 * re_power:
923 * Power management (suspend/resume) hook.
924 */
925 void
926 re_power(int why, void *arg)
927 {
928 struct rtk_softc *sc = (void *) arg;
929 struct ifnet *ifp = &sc->ethercom.ec_if;
930 int s;
931
932 s = splnet();
933 switch (why) {
934 case PWR_SUSPEND:
935 case PWR_STANDBY:
936 re_stop(ifp, 0);
937 if (sc->sc_power != NULL)
938 (*sc->sc_power)(sc, why);
939 break;
940 case PWR_RESUME:
941 if (ifp->if_flags & IFF_UP) {
942 if (sc->sc_power != NULL)
943 (*sc->sc_power)(sc, why);
944 re_init(ifp);
945 }
946 break;
947 case PWR_SOFTSUSPEND:
948 case PWR_SOFTSTANDBY:
949 case PWR_SOFTRESUME:
950 break;
951 }
952 splx(s);
953 }
954
955
956 static int
957 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
958 {
959 struct mbuf *n = NULL;
960 bus_dmamap_t map;
961 struct rtk_desc *d;
962 u_int32_t cmdstat;
963 int error;
964
965 if (m == NULL) {
966 MGETHDR(n, M_DONTWAIT, MT_DATA);
967 if (n == NULL)
968 return ENOBUFS;
969 m = n;
970
971 MCLGET(m, M_DONTWAIT);
972 if (!(m->m_flags & M_EXT)) {
973 m_freem(m);
974 return ENOBUFS;
975 }
976 } else
977 m->m_data = m->m_ext.ext_buf;
978
979 /*
980 * Initialize mbuf length fields and fixup
981 * alignment so that the frame payload is
982 * longword aligned.
983 */
984 m->m_len = m->m_pkthdr.len = MCLBYTES;
985 m_adj(m, RTK_ETHER_ALIGN);
986
987 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
988 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
989
990 if (map->dm_nsegs > 1)
991 goto out;
992 if (error)
993 goto out;
994
995 d = &sc->rtk_ldata.rtk_rx_list[idx];
996 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
997 goto out;
998
999 cmdstat = map->dm_segs[0].ds_len;
1000 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1001 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1002 cmdstat |= RTK_TDESC_CMD_SOF;
1003 if (idx == (RTK_RX_DESC_CNT - 1))
1004 cmdstat |= RTK_TDESC_CMD_EOR;
1005 d->rtk_cmdstat = htole32(cmdstat);
1006
1007 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1008
1009
1010 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1011 htole32(RTK_RDESC_CMD_OWN);
1012 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1013
1014 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1015 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1016 BUS_DMASYNC_PREREAD);
1017
1018 return 0;
1019 out:
1020 if (n != NULL)
1021 m_freem(n);
1022 return ENOMEM;
1023 }
1024
1025 static int
1026 re_tx_list_init(struct rtk_softc *sc)
1027 {
1028 memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
1029 memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
1030 (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
1031
1032 bus_dmamap_sync(sc->sc_dmat,
1033 sc->rtk_ldata.rtk_tx_list_map, 0,
1034 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1035 sc->rtk_ldata.rtk_tx_prodidx = 0;
1036 sc->rtk_ldata.rtk_tx_considx = 0;
1037 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
1038
1039 return 0;
1040 }
1041
1042 static int
1043 re_rx_list_init(struct rtk_softc *sc)
1044 {
1045 int i;
1046
1047 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1048 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1049 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1050
1051 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1052 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1053 return ENOBUFS;
1054 }
1055
1056 /* Flush the RX descriptors */
1057
1058 bus_dmamap_sync(sc->sc_dmat,
1059 sc->rtk_ldata.rtk_rx_list_map,
1060 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1061 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1062
1063 sc->rtk_ldata.rtk_rx_prodidx = 0;
1064 sc->rtk_head = sc->rtk_tail = NULL;
1065
1066 return 0;
1067 }
1068
1069 /*
1070 * RX handler for C+ and 8169. For the gigE chips, we support
1071 * the reception of jumbo frames that have been fragmented
1072 * across multiple 2K mbuf cluster buffers.
1073 */
1074 static void
1075 re_rxeof(struct rtk_softc *sc)
1076 {
1077 struct mbuf *m;
1078 struct ifnet *ifp;
1079 int i, total_len;
1080 struct rtk_desc *cur_rx;
1081 struct m_tag *mtag;
1082 u_int32_t rxstat, rxvlan;
1083
1084 ifp = &sc->ethercom.ec_if;
1085 i = sc->rtk_ldata.rtk_rx_prodidx;
1086
1087 /* Invalidate the descriptor memory */
1088
1089 bus_dmamap_sync(sc->sc_dmat,
1090 sc->rtk_ldata.rtk_rx_list_map,
1091 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1092 BUS_DMASYNC_POSTREAD);
1093
1094 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1095
1096 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1097 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1098 total_len = RTK_RXBYTES(cur_rx);
1099 rxstat = le32toh(cur_rx->rtk_cmdstat);
1100 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1101
1102 /* Invalidate the RX mbuf and unload its map */
1103
1104 bus_dmamap_sync(sc->sc_dmat,
1105 sc->rtk_ldata.rtk_rx_dmamap[i],
1106 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1107 BUS_DMASYNC_POSTWRITE);
1108 bus_dmamap_unload(sc->sc_dmat,
1109 sc->rtk_ldata.rtk_rx_dmamap[i]);
1110
1111 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1112 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1113 if (sc->rtk_head == NULL)
1114 sc->rtk_head = sc->rtk_tail = m;
1115 else {
1116 m->m_flags &= ~M_PKTHDR;
1117 sc->rtk_tail->m_next = m;
1118 sc->rtk_tail = m;
1119 }
1120 re_newbuf(sc, i, NULL);
1121 RTK_DESC_INC(i);
1122 continue;
1123 }
1124
1125 /*
1126 * NOTE: for the 8139C+, the frame length field
1127 * is always 12 bits in size, but for the gigE chips,
1128 * it is 13 bits (since the max RX frame length is 16K).
1129 * Unfortunately, all 32 bits in the status word
1130 * were already used, so to make room for the extra
1131 * length bit, RealTek took out the 'frame alignment
1132 * error' bit and shifted the other status bits
1133 * over one slot. The OWN, EOR, FS and LS bits are
1134 * still in the same places. We have already extracted
1135 * the frame length and checked the OWN bit, so rather
1136 * than using an alternate bit mapping, we shift the
1137 * status bits one space to the right so we can evaluate
1138 * them using the 8169 status as though it was in the
1139 * same format as that of the 8139C+.
1140 */
1141 if (sc->rtk_type == RTK_8169)
1142 rxstat >>= 1;
1143
1144 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1145 ifp->if_ierrors++;
1146 /*
1147 * If this is part of a multi-fragment packet,
1148 * discard all the pieces.
1149 */
1150 if (sc->rtk_head != NULL) {
1151 m_freem(sc->rtk_head);
1152 sc->rtk_head = sc->rtk_tail = NULL;
1153 }
1154 re_newbuf(sc, i, m);
1155 RTK_DESC_INC(i);
1156 continue;
1157 }
1158
1159 /*
1160 * If allocating a replacement mbuf fails,
1161 * reload the current one.
1162 */
1163
1164 if (re_newbuf(sc, i, NULL)) {
1165 ifp->if_ierrors++;
1166 if (sc->rtk_head != NULL) {
1167 m_freem(sc->rtk_head);
1168 sc->rtk_head = sc->rtk_tail = NULL;
1169 }
1170 re_newbuf(sc, i, m);
1171 RTK_DESC_INC(i);
1172 continue;
1173 }
1174
1175 RTK_DESC_INC(i);
1176
1177 if (sc->rtk_head != NULL) {
1178 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1179 /*
1180 * Special case: if there's 4 bytes or less
1181 * in this buffer, the mbuf can be discarded:
1182 * the last 4 bytes is the CRC, which we don't
1183 * care about anyway.
1184 */
1185 if (m->m_len <= ETHER_CRC_LEN) {
1186 sc->rtk_tail->m_len -=
1187 (ETHER_CRC_LEN - m->m_len);
1188 m_freem(m);
1189 } else {
1190 m->m_len -= ETHER_CRC_LEN;
1191 m->m_flags &= ~M_PKTHDR;
1192 sc->rtk_tail->m_next = m;
1193 }
1194 m = sc->rtk_head;
1195 sc->rtk_head = sc->rtk_tail = NULL;
1196 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1197 } else
1198 m->m_pkthdr.len = m->m_len =
1199 (total_len - ETHER_CRC_LEN);
1200
1201 ifp->if_ipackets++;
1202 m->m_pkthdr.rcvif = ifp;
1203
1204 /* Do RX checksumming if enabled */
1205
1206 if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1207
1208 /* Check IP header checksum */
1209 if (rxstat & RTK_RDESC_STAT_PROTOID)
1210 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1211 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1212 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1213 }
1214
1215 /* Check TCP/UDP checksum */
1216 if (RTK_TCPPKT(rxstat) &&
1217 (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1218 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1219 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1220 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1221 }
1222 if (RTK_UDPPKT(rxstat) &&
1223 (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1224 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1225 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1226 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1227 }
1228
1229 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1230 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1231 M_NOWAIT);
1232 if (mtag == NULL) {
1233 ifp->if_ierrors++;
1234 m_freem(m);
1235 continue;
1236 }
1237 *(u_int *)(mtag + 1) =
1238 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA);
1239 m_tag_prepend(m, mtag);
1240 }
1241 #if NBPFILTER > 0
1242 if (ifp->if_bpf)
1243 bpf_mtap(ifp->if_bpf, m);
1244 #endif
1245 (*ifp->if_input)(ifp, m);
1246 }
1247
1248 /* Flush the RX DMA ring */
1249
1250 bus_dmamap_sync(sc->sc_dmat,
1251 sc->rtk_ldata.rtk_rx_list_map,
1252 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1253 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1254
1255 sc->rtk_ldata.rtk_rx_prodidx = i;
1256
1257 return;
1258 }
1259
1260 static void
1261 re_txeof(struct rtk_softc *sc)
1262 {
1263 struct ifnet *ifp;
1264 u_int32_t txstat;
1265 int idx;
1266
1267 ifp = &sc->ethercom.ec_if;
1268 idx = sc->rtk_ldata.rtk_tx_considx;
1269
1270 /* Invalidate the TX descriptor list */
1271
1272 bus_dmamap_sync(sc->sc_dmat,
1273 sc->rtk_ldata.rtk_tx_list_map,
1274 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1275 BUS_DMASYNC_POSTREAD);
1276
1277 while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
1278
1279 txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
1280 if (txstat & RTK_TDESC_CMD_OWN)
1281 break;
1282
1283 /*
1284 * We only stash mbufs in the last descriptor
1285 * in a fragment chain, which also happens to
1286 * be the only place where the TX status bits
1287 * are valid.
1288 */
1289
1290 if (txstat & RTK_TDESC_CMD_EOF) {
1291 m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
1292 sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
1293 bus_dmamap_unload(sc->sc_dmat,
1294 sc->rtk_ldata.rtk_tx_dmamap[idx]);
1295 if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
1296 RTK_TDESC_STAT_COLCNT))
1297 ifp->if_collisions++;
1298 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1299 ifp->if_oerrors++;
1300 else
1301 ifp->if_opackets++;
1302 }
1303 sc->rtk_ldata.rtk_tx_free++;
1304 RTK_DESC_INC(idx);
1305 }
1306
1307 /* No changes made to the TX ring, so no flush needed */
1308
1309 if (idx != sc->rtk_ldata.rtk_tx_considx) {
1310 sc->rtk_ldata.rtk_tx_considx = idx;
1311 ifp->if_flags &= ~IFF_OACTIVE;
1312 ifp->if_timer = 0;
1313 }
1314
1315 /*
1316 * If not all descriptors have been released reaped yet,
1317 * reload the timer so that we will eventually get another
1318 * interrupt that will cause us to re-enter this routine.
1319 * This is done in case the transmitter has gone idle.
1320 */
1321 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
1322 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1323
1324 return;
1325 }
1326
1327 /*
1328 * Stop all chip I/O so that the kernel's probe routines don't
1329 * get confused by errant DMAs when rebooting.
1330 */
1331 static void
1332 re_shutdown(void *vsc)
1333
1334 {
1335 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1336
1337 re_stop(&sc->ethercom.ec_if, 0);
1338 }
1339
1340
1341 static void
1342 re_tick(void *xsc)
1343 {
1344 struct rtk_softc *sc = xsc;
1345 int s;
1346
1347 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1348 s = splnet();
1349
1350 mii_tick(&sc->mii);
1351 splx(s);
1352
1353 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1354 }
1355
1356 #ifdef DEVICE_POLLING
1357 static void
1358 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1359 {
1360 struct rtk_softc *sc = ifp->if_softc;
1361
1362 RTK_LOCK(sc);
1363 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1364 ether_poll_deregister(ifp);
1365 cmd = POLL_DEREGISTER;
1366 }
1367 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1368 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1369 goto done;
1370 }
1371
1372 sc->rxcycles = count;
1373 re_rxeof(sc);
1374 re_txeof(sc);
1375
1376 if (ifp->if_snd.ifq_head != NULL)
1377 (*ifp->if_start)(ifp);
1378
1379 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1380 u_int16_t status;
1381
1382 status = CSR_READ_2(sc, RTK_ISR);
1383 if (status == 0xffff)
1384 goto done;
1385 if (status)
1386 CSR_WRITE_2(sc, RTK_ISR, status);
1387
1388 /*
1389 * XXX check behaviour on receiver stalls.
1390 */
1391
1392 if (status & RTK_ISR_SYSTEM_ERR) {
1393 re_reset(sc);
1394 re_init(sc);
1395 }
1396 }
1397 done:
1398 RTK_UNLOCK(sc);
1399 }
1400 #endif /* DEVICE_POLLING */
1401
1402 int
1403 re_intr(void *arg)
1404 {
1405 struct rtk_softc *sc = arg;
1406 struct ifnet *ifp;
1407 u_int16_t status;
1408 int handled = 0;
1409
1410 ifp = &sc->ethercom.ec_if;
1411
1412 if (!(ifp->if_flags & IFF_UP))
1413 return 0;
1414
1415 #ifdef DEVICE_POLLING
1416 if (ifp->if_flags & IFF_POLLING)
1417 goto done;
1418 if ((ifp->if_capenable & IFCAP_POLLING) &&
1419 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1420 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1421 re_poll(ifp, 0, 1);
1422 goto done;
1423 }
1424 #endif /* DEVICE_POLLING */
1425
1426 for (;;) {
1427
1428 status = CSR_READ_2(sc, RTK_ISR);
1429 /* If the card has gone away the read returns 0xffff. */
1430 if (status == 0xffff)
1431 break;
1432 if (status) {
1433 handled = 1;
1434 CSR_WRITE_2(sc, RTK_ISR, status);
1435 }
1436
1437 if ((status & RTK_INTRS_CPLUS) == 0)
1438 break;
1439
1440 if (status & RTK_ISR_RX_OK)
1441 re_rxeof(sc);
1442
1443 if (status & RTK_ISR_RX_ERR)
1444 re_rxeof(sc);
1445
1446 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1447 (status & RTK_ISR_TX_ERR) ||
1448 (status & RTK_ISR_TX_DESC_UNAVAIL))
1449 re_txeof(sc);
1450
1451 if (status & RTK_ISR_SYSTEM_ERR) {
1452 re_reset(sc);
1453 re_init(ifp);
1454 }
1455
1456 if (status & RTK_ISR_LINKCHG) {
1457 callout_stop(&sc->rtk_tick_ch);
1458 re_tick(sc);
1459 }
1460 }
1461
1462 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1463 if (ifp->if_snd.ifq_head != NULL)
1464 (*ifp->if_start)(ifp);
1465
1466 #ifdef DEVICE_POLLING
1467 done:
1468 #endif
1469
1470 return handled;
1471 }
1472
1473 static int
1474 re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
1475 {
1476 bus_dmamap_t map;
1477 int error, i, curidx;
1478 struct m_tag *mtag;
1479 struct rtk_desc *d;
1480 u_int32_t cmdstat, rtk_flags;
1481
1482 if (sc->rtk_ldata.rtk_tx_free <= 4)
1483 return EFBIG;
1484
1485 /*
1486 * Set up checksum offload. Note: checksum offload bits must
1487 * appear in all descriptors of a multi-descriptor transmit
1488 * attempt. (This is according to testing done with an 8169
1489 * chip. I'm not sure if this is a requirement or a bug.)
1490 */
1491
1492 rtk_flags = 0;
1493
1494 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1495 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1496 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1497 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1498 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1499 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1500
1501 map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
1502 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1503 m_head, BUS_DMA_NOWAIT);
1504
1505 if (error) {
1506 aprint_error("%s: can't map mbuf (error %d)\n",
1507 sc->sc_dev.dv_xname, error);
1508 return ENOBUFS;
1509 }
1510
1511 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
1512 return ENOBUFS;
1513 /*
1514 * Map the segment array into descriptors. Note that we set the
1515 * start-of-frame and end-of-frame markers for either TX or RX, but
1516 * they really only have meaning in the TX case. (In the RX case,
1517 * it's the chip that tells us where packets begin and end.)
1518 * We also keep track of the end of the ring and set the
1519 * end-of-ring bits as needed, and we set the ownership bits
1520 * in all except the very first descriptor. (The caller will
1521 * set this descriptor later when it start transmission or
1522 * reception.)
1523 */
1524 i = 0;
1525 curidx = *idx;
1526 while (1) {
1527 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1528 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1529 return ENOBUFS;
1530
1531 cmdstat = map->dm_segs[i].ds_len;
1532 d->rtk_bufaddr_lo =
1533 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1534 d->rtk_bufaddr_hi =
1535 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1536 if (i == 0)
1537 cmdstat |= RTK_TDESC_CMD_SOF;
1538 else
1539 cmdstat |= RTK_TDESC_CMD_OWN;
1540 if (curidx == (RTK_RX_DESC_CNT - 1))
1541 cmdstat |= RTK_TDESC_CMD_EOR;
1542 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1543 i++;
1544 if (i == map->dm_nsegs)
1545 break;
1546 RTK_DESC_INC(curidx);
1547 }
1548
1549 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1550
1551 /*
1552 * Insure that the map for this transmission
1553 * is placed at the array index of the last descriptor
1554 * in this chain.
1555 */
1556 sc->rtk_ldata.rtk_tx_dmamap[*idx] =
1557 sc->rtk_ldata.rtk_tx_dmamap[curidx];
1558 sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
1559 sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
1560 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1561
1562 /*
1563 * Set up hardware VLAN tagging. Note: vlan tag info must
1564 * appear in the first descriptor of a multi-descriptor
1565 * transmission attempt.
1566 */
1567
1568 if (sc->ethercom.ec_nvlans &&
1569 (mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL)
1570 sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
1571 htole32(htons(*(u_int *)(mtag + 1)) |
1572 RTK_TDESC_VLANCTL_TAG);
1573
1574 /* Transfer ownership of packet to the chip. */
1575
1576 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1577 htole32(RTK_TDESC_CMD_OWN);
1578 if (*idx != curidx)
1579 sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
1580 htole32(RTK_TDESC_CMD_OWN);
1581
1582 RTK_DESC_INC(curidx);
1583 *idx = curidx;
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * Main transmit routine for C+ and gigE NICs.
1590 */
1591
1592 static void
1593 re_start(struct ifnet *ifp)
1594 {
1595 struct rtk_softc *sc;
1596 struct mbuf *m_head = NULL;
1597 int idx;
1598
1599 sc = ifp->if_softc;
1600
1601 idx = sc->rtk_ldata.rtk_tx_prodidx;
1602 while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
1603 IF_DEQUEUE(&ifp->if_snd, m_head);
1604 if (m_head == NULL)
1605 break;
1606
1607 if (re_encap(sc, m_head, &idx)) {
1608 IF_PREPEND(&ifp->if_snd, m_head);
1609 ifp->if_flags |= IFF_OACTIVE;
1610 break;
1611 }
1612 #if NBPFILTER > 0
1613 /*
1614 * If there's a BPF listener, bounce a copy of this frame
1615 * to him.
1616 */
1617 if (ifp->if_bpf)
1618 bpf_mtap(ifp->if_bpf, m_head);
1619 #endif
1620 }
1621
1622 /* Flush the TX descriptors */
1623
1624 bus_dmamap_sync(sc->sc_dmat,
1625 sc->rtk_ldata.rtk_tx_list_map,
1626 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1627 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1628
1629 sc->rtk_ldata.rtk_tx_prodidx = idx;
1630
1631 /*
1632 * RealTek put the TX poll request register in a different
1633 * location on the 8169 gigE chip. I don't know why.
1634 */
1635
1636 if (sc->rtk_type == RTK_8169)
1637 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1638 else
1639 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1640
1641 /*
1642 * Use the countdown timer for interrupt moderation.
1643 * 'TX done' interrupts are disabled. Instead, we reset the
1644 * countdown timer, which will begin counting until it hits
1645 * the value in the TIMERINT register, and then trigger an
1646 * interrupt. Each time we write to the TIMERCNT register,
1647 * the timer count is reset to 0.
1648 */
1649 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1650
1651 /*
1652 * Set a timeout in case the chip goes out to lunch.
1653 */
1654 ifp->if_timer = 5;
1655
1656 return;
1657 }
1658
1659 static int
1660 re_init(struct ifnet *ifp)
1661 {
1662 struct rtk_softc *sc = ifp->if_softc;
1663 u_int32_t rxcfg = 0;
1664 u_int32_t reg;
1665 int error;
1666
1667 if ((error = re_enable(sc)) != 0)
1668 goto out;
1669
1670 /*
1671 * Cancel pending I/O and free all RX/TX buffers.
1672 */
1673 re_stop(ifp, 0);
1674
1675 /*
1676 * Enable C+ RX and TX mode, as well as VLAN stripping and
1677 * RX checksum offload. We must configure the C+ register
1678 * before all others.
1679 */
1680 reg = 0;
1681
1682 /*
1683 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1684 * FreeBSD drivers set these bits anyway (for 8139C+?).
1685 * So far, it works.
1686 */
1687
1688 /*
1689 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1690 * For 8169S/8110S rev 2 and above, do not set bit 14.
1691 */
1692 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1693 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1694
1695 if (1) {/* not for 8169S ? */
1696 reg |= RTK_CPLUSCMD_VLANSTRIP |
1697 (ifp->if_capenable &
1698 (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1699 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1700 }
1701
1702 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1703 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1704
1705 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1706 if (sc->rtk_type == RTK_8169)
1707 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1708
1709 DELAY(10000);
1710
1711 /*
1712 * Init our MAC address. Even though the chipset
1713 * documentation doesn't mention it, we need to enter "Config
1714 * register write enable" mode to modify the ID registers.
1715 */
1716 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1717 memcpy(®, LLADDR(ifp->if_sadl), 4);
1718 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1719 reg = 0;
1720 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1721 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1722 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1723
1724 /*
1725 * For C+ mode, initialize the RX descriptors and mbufs.
1726 */
1727 re_rx_list_init(sc);
1728 re_tx_list_init(sc);
1729
1730 /*
1731 * Enable transmit and receive.
1732 */
1733 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1734
1735 /*
1736 * Set the initial TX and RX configuration.
1737 */
1738 if (sc->rtk_testmode) {
1739 if (sc->rtk_type == RTK_8169)
1740 CSR_WRITE_4(sc, RTK_TXCFG,
1741 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1742 else
1743 CSR_WRITE_4(sc, RTK_TXCFG,
1744 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1745 } else
1746 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1747 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1748
1749 /* Set the individual bit to receive frames for this host only. */
1750 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1751 rxcfg |= RTK_RXCFG_RX_INDIV;
1752
1753 /* If we want promiscuous mode, set the allframes bit. */
1754 if (ifp->if_flags & IFF_PROMISC) {
1755 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1756 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1757 } else {
1758 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1759 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1760 }
1761
1762 /*
1763 * Set capture broadcast bit to capture broadcast frames.
1764 */
1765 if (ifp->if_flags & IFF_BROADCAST) {
1766 rxcfg |= RTK_RXCFG_RX_BROAD;
1767 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1768 } else {
1769 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1770 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1771 }
1772
1773 /*
1774 * Program the multicast filter, if necessary.
1775 */
1776 rtk_setmulti(sc);
1777
1778 #ifdef DEVICE_POLLING
1779 /*
1780 * Disable interrupts if we are polling.
1781 */
1782 if (ifp->if_flags & IFF_POLLING)
1783 CSR_WRITE_2(sc, RTK_IMR, 0);
1784 else /* otherwise ... */
1785 #endif /* DEVICE_POLLING */
1786 /*
1787 * Enable interrupts.
1788 */
1789 if (sc->rtk_testmode)
1790 CSR_WRITE_2(sc, RTK_IMR, 0);
1791 else
1792 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1793
1794 /* Start RX/TX process. */
1795 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1796 #ifdef notdef
1797 /* Enable receiver and transmitter. */
1798 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1799 #endif
1800 /*
1801 * Load the addresses of the RX and TX lists into the chip.
1802 */
1803
1804 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1805 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
1806 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1807 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
1808
1809 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1810 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
1811 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1812 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
1813
1814 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1815
1816 /*
1817 * Initialize the timer interrupt register so that
1818 * a timer interrupt will be generated once the timer
1819 * reaches a certain number of ticks. The timer is
1820 * reloaded on each transmit. This gives us TX interrupt
1821 * moderation, which dramatically improves TX frame rate.
1822 */
1823
1824 if (sc->rtk_type == RTK_8169)
1825 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1826 else
1827 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1828
1829 /*
1830 * For 8169 gigE NICs, set the max allowed RX packet
1831 * size so we can receive jumbo frames.
1832 */
1833 if (sc->rtk_type == RTK_8169)
1834 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1835
1836 if (sc->rtk_testmode)
1837 return 0;
1838
1839 mii_mediachg(&sc->mii);
1840
1841 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1842
1843 ifp->if_flags |= IFF_RUNNING;
1844 ifp->if_flags &= ~IFF_OACTIVE;
1845
1846 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1847
1848 out:
1849 if (error) {
1850 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1851 ifp->if_timer = 0;
1852 aprint_error("%s: interface not running\n",
1853 sc->sc_dev.dv_xname);
1854 }
1855
1856 return error;
1857
1858 }
1859
1860 /*
1861 * Set media options.
1862 */
1863 static int
1864 re_ifmedia_upd(struct ifnet *ifp)
1865 {
1866 struct rtk_softc *sc;
1867
1868 sc = ifp->if_softc;
1869
1870 return mii_mediachg(&sc->mii);
1871 }
1872
1873 /*
1874 * Report current media status.
1875 */
1876 static void
1877 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1878 {
1879 struct rtk_softc *sc;
1880
1881 sc = ifp->if_softc;
1882
1883 mii_pollstat(&sc->mii);
1884 ifmr->ifm_active = sc->mii.mii_media_active;
1885 ifmr->ifm_status = sc->mii.mii_media_status;
1886
1887 return;
1888 }
1889
1890 static int
1891 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1892 {
1893 struct rtk_softc *sc = ifp->if_softc;
1894 struct ifreq *ifr = (struct ifreq *) data;
1895 int s, error = 0;
1896
1897 s = splnet();
1898
1899 switch (command) {
1900 case SIOCSIFMTU:
1901 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1902 error = EINVAL;
1903 ifp->if_mtu = ifr->ifr_mtu;
1904 break;
1905 case SIOCGIFMEDIA:
1906 case SIOCSIFMEDIA:
1907 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1908 break;
1909 default:
1910 error = ether_ioctl(ifp, command, data);
1911 if (error == ENETRESET) {
1912 if (ifp->if_flags & IFF_RUNNING)
1913 rtk_setmulti(sc);
1914 error = 0;
1915 }
1916 break;
1917 }
1918
1919 splx(s);
1920
1921 return error;
1922 }
1923
1924 static void
1925 re_watchdog(struct ifnet *ifp)
1926 {
1927 struct rtk_softc *sc;
1928 int s;
1929
1930 sc = ifp->if_softc;
1931 s = splnet();
1932 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1933 ifp->if_oerrors++;
1934
1935 re_txeof(sc);
1936 re_rxeof(sc);
1937
1938 re_init(ifp);
1939
1940 splx(s);
1941 }
1942
1943 /*
1944 * Stop the adapter and free any mbufs allocated to the
1945 * RX and TX lists.
1946 */
1947 static void
1948 re_stop(struct ifnet *ifp, int disable)
1949 {
1950 register int i;
1951 struct rtk_softc *sc = ifp->if_softc;
1952
1953 callout_stop(&sc->rtk_tick_ch);
1954
1955 #ifdef DEVICE_POLLING
1956 ether_poll_deregister(ifp);
1957 #endif /* DEVICE_POLLING */
1958
1959 mii_down(&sc->mii);
1960
1961 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1962 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1963
1964 if (sc->rtk_head != NULL) {
1965 m_freem(sc->rtk_head);
1966 sc->rtk_head = sc->rtk_tail = NULL;
1967 }
1968
1969 /* Free the TX list buffers. */
1970 for (i = 0; i < RTK_TX_DESC_CNT; i++) {
1971 if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
1972 bus_dmamap_unload(sc->sc_dmat,
1973 sc->rtk_ldata.rtk_tx_dmamap[i]);
1974 m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
1975 sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
1976 }
1977 }
1978
1979 /* Free the RX list buffers. */
1980 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1981 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
1982 bus_dmamap_unload(sc->sc_dmat,
1983 sc->rtk_ldata.rtk_rx_dmamap[i]);
1984 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
1985 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
1986 }
1987 }
1988
1989 if (disable)
1990 re_disable(sc);
1991
1992 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1993 ifp->if_timer = 0;
1994
1995 return;
1996 }
1997