rtl8169.c revision 1.40 1 /* $NetBSD: rtl8169.c,v 1.40 2006/10/20 16:31:08 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 uint32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 uint32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 uint16_t rval = 0;
254 uint16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 uint16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev __unused)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 uint16_t status;
423 uint32_t rxstat;
424 int total_len, i, s, error = 0;
425 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
454 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
492 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
493 BUS_DMASYNC_POSTREAD);
494 bus_dmamap_unload(sc->sc_dmat,
495 sc->rtk_ldata.rtk_rx_dmamap[0]);
496
497 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
498 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
499 eh = mtod(m0, struct ether_header *);
500
501 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
502 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
503 rxstat = le32toh(cur_rx->rtk_cmdstat);
504 total_len = rxstat & sc->rtk_rxlenmask;
505
506 if (total_len != ETHER_MIN_LEN) {
507 aprint_error("%s: diagnostic failed, received short packet\n",
508 sc->sc_dev.dv_xname);
509 error = EIO;
510 goto done;
511 }
512
513 /* Test that the received packet data matches what we sent. */
514
515 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
516 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
517 ntohs(eh->ether_type) != ETHERTYPE_IP) {
518 aprint_error("%s: WARNING, DMA FAILURE!\n",
519 sc->sc_dev.dv_xname);
520 aprint_error("%s: expected TX data: %s",
521 sc->sc_dev.dv_xname, ether_sprintf(dst));
522 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
523 aprint_error("%s: received RX data: %s",
524 sc->sc_dev.dv_xname,
525 ether_sprintf(eh->ether_dhost));
526 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
527 ntohs(eh->ether_type));
528 aprint_error("%s: You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
530 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Read the re(4) man page for more details.\n",
533 sc->sc_dev.dv_xname);
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->rtk_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 u_char eaddr[ETHER_ADDR_LEN];
558 uint16_t val;
559 struct ifnet *ifp;
560 int error = 0, i, addr_len;
561
562
563 /* XXX JRS: bus-attach-independent code begins approximately here */
564
565 /* Reset the adapter. */
566 re_reset(sc);
567
568 if (sc->rtk_type == RTK_8169) {
569 uint32_t hwrev;
570
571 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
572 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
573 if (hwrev == (0x1 << 28)) {
574 sc->sc_rev = 4;
575 } else if (hwrev == (0x1 << 26)) {
576 sc->sc_rev = 3;
577 } else if (hwrev == (0x1 << 23)) {
578 sc->sc_rev = 2;
579 } else
580 sc->sc_rev = 1;
581
582 /* Set RX length mask */
583
584 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
585
586 /* Force station address autoload from the EEPROM */
587
588 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
589 for (i = 0; i < RTK_TIMEOUT; i++) {
590 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
591 break;
592 DELAY(100);
593 }
594 if (i == RTK_TIMEOUT)
595 aprint_error("%s: eeprom autoload timed out\n",
596 sc->sc_dev.dv_xname);
597
598 for (i = 0; i < ETHER_ADDR_LEN; i++)
599 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
600
601 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
602 } else {
603
604 /* Set RX length mask */
605
606 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
607
608 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
609 addr_len = RTK_EEADDR_LEN1;
610 else
611 addr_len = RTK_EEADDR_LEN0;
612
613 /*
614 * Get station address from the EEPROM.
615 */
616 for (i = 0; i < 3; i++) {
617 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
618 eaddr[(i * 2) + 0] = val & 0xff;
619 eaddr[(i * 2) + 1] = val >> 8;
620 }
621
622 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
623 }
624
625 aprint_normal("%s: Ethernet address %s\n",
626 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
627
628 if (sc->rtk_ldata.rtk_tx_desc_cnt >
629 PAGE_SIZE / sizeof(struct rtk_desc)) {
630 sc->rtk_ldata.rtk_tx_desc_cnt =
631 PAGE_SIZE / sizeof(struct rtk_desc);
632 }
633
634 aprint_verbose("%s: using %d tx descriptors\n",
635 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
636
637 /* Allocate DMA'able memory for the TX ring */
638 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
639 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
640 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
641 aprint_error("%s: can't allocate tx listseg, error = %d\n",
642 sc->sc_dev.dv_xname, error);
643 goto fail_0;
644 }
645
646 /* Load the map for the TX ring. */
647 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
648 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
649 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
650 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
651 aprint_error("%s: can't map tx list, error = %d\n",
652 sc->sc_dev.dv_xname, error);
653 goto fail_1;
654 }
655 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
656
657 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
658 RTK_TX_LIST_SZ(sc), 0, 0,
659 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
660 aprint_error("%s: can't create tx list map, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_2;
663 }
664
665
666 if ((error = bus_dmamap_load(sc->sc_dmat,
667 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
668 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
669 aprint_error("%s: can't load tx list, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_3;
672 }
673
674 /* Create DMA maps for TX buffers */
675 for (i = 0; i < RTK_TX_QLEN; i++) {
676 error = bus_dmamap_create(sc->sc_dmat,
677 round_page(IP_MAXPACKET),
678 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
679 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
680 if (error) {
681 aprint_error("%s: can't create DMA map for TX\n",
682 sc->sc_dev.dv_xname);
683 goto fail_4;
684 }
685 }
686
687 /* Allocate DMA'able memory for the RX ring */
688 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
689 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
690 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
691 aprint_error("%s: can't allocate rx listseg, error = %d\n",
692 sc->sc_dev.dv_xname, error);
693 goto fail_4;
694 }
695
696 /* Load the map for the RX ring. */
697 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
698 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
699 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
700 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
701 aprint_error("%s: can't map rx list, error = %d\n",
702 sc->sc_dev.dv_xname, error);
703 goto fail_5;
704 }
705 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
706
707 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
708 RTK_RX_LIST_SZ, 0, 0,
709 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
710 aprint_error("%s: can't create rx list map, error = %d\n",
711 sc->sc_dev.dv_xname, error);
712 goto fail_6;
713 }
714
715 if ((error = bus_dmamap_load(sc->sc_dmat,
716 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
717 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
718 aprint_error("%s: can't load rx list, error = %d\n",
719 sc->sc_dev.dv_xname, error);
720 goto fail_7;
721 }
722
723 /* Create DMA maps for RX buffers */
724 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
725 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
726 0, 0, &sc->rtk_ldata.rtk_rx_dmamap[i]);
727 if (error) {
728 aprint_error("%s: can't create DMA map for RX\n",
729 sc->sc_dev.dv_xname);
730 goto fail_8;
731 }
732 }
733
734 /*
735 * Record interface as attached. From here, we should not fail.
736 */
737 sc->sc_flags |= RTK_ATTACHED;
738
739 ifp = &sc->ethercom.ec_if;
740 ifp->if_softc = sc;
741 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
742 ifp->if_mtu = ETHERMTU;
743 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
744 ifp->if_ioctl = re_ioctl;
745 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
746
747 /*
748 * This is a way to disable hw VLAN tagging by default
749 * (RE_VLAN is undefined), as it is problematic. PR 32643
750 */
751
752 #ifdef RE_VLAN
753 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
754 #endif
755 ifp->if_start = re_start;
756 ifp->if_stop = re_stop;
757
758 /*
759 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
760 */
761
762 ifp->if_capabilities |=
763 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
764 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
765 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
766 IFCAP_TSOv4;
767 ifp->if_watchdog = re_watchdog;
768 ifp->if_init = re_init;
769 if (sc->rtk_type == RTK_8169)
770 ifp->if_baudrate = 1000000000;
771 else
772 ifp->if_baudrate = 100000000;
773 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
774 ifp->if_capenable = ifp->if_capabilities;
775 IFQ_SET_READY(&ifp->if_snd);
776
777 callout_init(&sc->rtk_tick_ch);
778
779 /* Do MII setup */
780 sc->mii.mii_ifp = ifp;
781 sc->mii.mii_readreg = re_miibus_readreg;
782 sc->mii.mii_writereg = re_miibus_writereg;
783 sc->mii.mii_statchg = re_miibus_statchg;
784 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
785 re_ifmedia_sts);
786 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
787 MII_OFFSET_ANY, 0);
788 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
789
790 /*
791 * Call MI attach routine.
792 */
793 if_attach(ifp);
794 ether_ifattach(ifp, eaddr);
795
796
797 /*
798 * Make sure the interface is shutdown during reboot.
799 */
800 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
801 if (sc->sc_sdhook == NULL)
802 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
803 sc->sc_dev.dv_xname);
804 /*
805 * Add a suspend hook to make sure we come back up after a
806 * resume.
807 */
808 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
809 re_power, sc);
810 if (sc->sc_powerhook == NULL)
811 aprint_error("%s: WARNING: unable to establish power hook\n",
812 sc->sc_dev.dv_xname);
813
814
815 return;
816
817 fail_8:
818 /* Destroy DMA maps for RX buffers. */
819 for (i = 0; i < RTK_RX_DESC_CNT; i++)
820 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
821 bus_dmamap_destroy(sc->sc_dmat,
822 sc->rtk_ldata.rtk_rx_dmamap[i]);
823
824 /* Free DMA'able memory for the RX ring. */
825 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
826 fail_7:
827 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
828 fail_6:
829 bus_dmamem_unmap(sc->sc_dmat,
830 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
831 fail_5:
832 bus_dmamem_free(sc->sc_dmat,
833 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
834
835 fail_4:
836 /* Destroy DMA maps for TX buffers. */
837 for (i = 0; i < RTK_TX_QLEN; i++)
838 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
839 bus_dmamap_destroy(sc->sc_dmat,
840 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
841
842 /* Free DMA'able memory for the TX ring. */
843 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
844 fail_3:
845 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
846 fail_2:
847 bus_dmamem_unmap(sc->sc_dmat,
848 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
849 fail_1:
850 bus_dmamem_free(sc->sc_dmat,
851 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
852 fail_0:
853 return;
854 }
855
856
857 /*
858 * re_activate:
859 * Handle device activation/deactivation requests.
860 */
861 int
862 re_activate(struct device *self, enum devact act)
863 {
864 struct rtk_softc *sc = (void *) self;
865 int s, error = 0;
866
867 s = splnet();
868 switch (act) {
869 case DVACT_ACTIVATE:
870 error = EOPNOTSUPP;
871 break;
872 case DVACT_DEACTIVATE:
873 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
874 if_deactivate(&sc->ethercom.ec_if);
875 break;
876 }
877 splx(s);
878
879 return error;
880 }
881
882 /*
883 * re_detach:
884 * Detach a rtk interface.
885 */
886 int
887 re_detach(struct rtk_softc *sc)
888 {
889 struct ifnet *ifp = &sc->ethercom.ec_if;
890 int i;
891
892 /*
893 * Succeed now if there isn't any work to do.
894 */
895 if ((sc->sc_flags & RTK_ATTACHED) == 0)
896 return 0;
897
898 /* Unhook our tick handler. */
899 callout_stop(&sc->rtk_tick_ch);
900
901 /* Detach all PHYs. */
902 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
903
904 /* Delete all remaining media. */
905 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
906
907 ether_ifdetach(ifp);
908 if_detach(ifp);
909
910 /* XXX undo re_allocmem() */
911
912 /* Destroy DMA maps for RX buffers. */
913 for (i = 0; i < RTK_RX_DESC_CNT; i++)
914 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
915 bus_dmamap_destroy(sc->sc_dmat,
916 sc->rtk_ldata.rtk_rx_dmamap[i]);
917
918 /* Free DMA'able memory for the RX ring. */
919 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
920 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
921 bus_dmamem_unmap(sc->sc_dmat,
922 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
923 bus_dmamem_free(sc->sc_dmat,
924 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
925
926 /* Destroy DMA maps for TX buffers. */
927 for (i = 0; i < RTK_TX_QLEN; i++)
928 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
929 bus_dmamap_destroy(sc->sc_dmat,
930 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
931
932 /* Free DMA'able memory for the TX ring. */
933 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
934 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
935 bus_dmamem_unmap(sc->sc_dmat,
936 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
937 bus_dmamem_free(sc->sc_dmat,
938 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
939
940
941 shutdownhook_disestablish(sc->sc_sdhook);
942 powerhook_disestablish(sc->sc_powerhook);
943
944 return 0;
945 }
946
947 /*
948 * re_enable:
949 * Enable the RTL81X9 chip.
950 */
951 static int
952 re_enable(struct rtk_softc *sc)
953 {
954 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
955 if ((*sc->sc_enable)(sc) != 0) {
956 aprint_error("%s: device enable failed\n",
957 sc->sc_dev.dv_xname);
958 return EIO;
959 }
960 sc->sc_flags |= RTK_ENABLED;
961 }
962 return 0;
963 }
964
965 /*
966 * re_disable:
967 * Disable the RTL81X9 chip.
968 */
969 static void
970 re_disable(struct rtk_softc *sc)
971 {
972
973 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
974 (*sc->sc_disable)(sc);
975 sc->sc_flags &= ~RTK_ENABLED;
976 }
977 }
978
979 /*
980 * re_power:
981 * Power management (suspend/resume) hook.
982 */
983 void
984 re_power(int why, void *arg)
985 {
986 struct rtk_softc *sc = (void *) arg;
987 struct ifnet *ifp = &sc->ethercom.ec_if;
988 int s;
989
990 s = splnet();
991 switch (why) {
992 case PWR_SUSPEND:
993 case PWR_STANDBY:
994 re_stop(ifp, 0);
995 if (sc->sc_power != NULL)
996 (*sc->sc_power)(sc, why);
997 break;
998 case PWR_RESUME:
999 if (ifp->if_flags & IFF_UP) {
1000 if (sc->sc_power != NULL)
1001 (*sc->sc_power)(sc, why);
1002 re_init(ifp);
1003 }
1004 break;
1005 case PWR_SOFTSUSPEND:
1006 case PWR_SOFTSTANDBY:
1007 case PWR_SOFTRESUME:
1008 break;
1009 }
1010 splx(s);
1011 }
1012
1013
1014 static int
1015 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1016 {
1017 struct mbuf *n = NULL;
1018 bus_dmamap_t map;
1019 struct rtk_desc *d;
1020 uint32_t cmdstat;
1021 int error;
1022
1023 if (m == NULL) {
1024 MGETHDR(n, M_DONTWAIT, MT_DATA);
1025 if (n == NULL)
1026 return ENOBUFS;
1027 m = n;
1028
1029 MCLGET(m, M_DONTWAIT);
1030 if (!(m->m_flags & M_EXT)) {
1031 m_freem(m);
1032 return ENOBUFS;
1033 }
1034 } else
1035 m->m_data = m->m_ext.ext_buf;
1036
1037 /*
1038 * Initialize mbuf length fields and fixup
1039 * alignment so that the frame payload is
1040 * longword aligned.
1041 */
1042 m->m_len = m->m_pkthdr.len = MCLBYTES;
1043 m_adj(m, RTK_ETHER_ALIGN);
1044
1045 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1046 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1047 BUS_DMA_READ|BUS_DMA_NOWAIT);
1048
1049 if (error)
1050 goto out;
1051
1052 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1053 BUS_DMASYNC_PREREAD);
1054
1055 d = &sc->rtk_ldata.rtk_rx_list[idx];
1056 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1057 cmdstat = le32toh(d->rtk_cmdstat);
1058 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1059 if (cmdstat & RTK_RDESC_STAT_OWN) {
1060 printf("%s: tried to map busy RX descriptor\n",
1061 sc->sc_dev.dv_xname);
1062 goto out;
1063 }
1064
1065 cmdstat = map->dm_segs[0].ds_len;
1066 if (idx == (RTK_RX_DESC_CNT - 1))
1067 cmdstat |= RTK_RDESC_CMD_EOR;
1068 cmdstat |= RTK_RDESC_CMD_OWN;
1069 d->rtk_cmdstat = htole32(cmdstat);
1070 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1071 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1072 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1073
1074 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1075
1076 return 0;
1077 out:
1078 if (n != NULL)
1079 m_freem(n);
1080 return ENOMEM;
1081 }
1082
1083 static int
1084 re_tx_list_init(struct rtk_softc *sc)
1085 {
1086 int i;
1087
1088 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1089 for (i = 0; i < RTK_TX_QLEN; i++) {
1090 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1091 }
1092
1093 bus_dmamap_sync(sc->sc_dmat,
1094 sc->rtk_ldata.rtk_tx_list_map, 0,
1095 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1096 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097 sc->rtk_ldata.rtk_txq_prodidx = 0;
1098 sc->rtk_ldata.rtk_txq_considx = 0;
1099 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1100 sc->rtk_ldata.rtk_tx_nextfree = 0;
1101
1102 return 0;
1103 }
1104
1105 static int
1106 re_rx_list_init(struct rtk_softc *sc)
1107 {
1108 int i;
1109
1110 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1111 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1112 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1113
1114 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1115 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1116 return ENOBUFS;
1117 }
1118
1119 sc->rtk_ldata.rtk_rx_prodidx = 0;
1120 sc->rtk_head = sc->rtk_tail = NULL;
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * RX handler for C+ and 8169. For the gigE chips, we support
1127 * the reception of jumbo frames that have been fragmented
1128 * across multiple 2K mbuf cluster buffers.
1129 */
1130 static void
1131 re_rxeof(struct rtk_softc *sc)
1132 {
1133 struct mbuf *m;
1134 struct ifnet *ifp;
1135 int i, total_len;
1136 struct rtk_desc *cur_rx;
1137 uint32_t rxstat, rxvlan;
1138
1139 ifp = &sc->ethercom.ec_if;
1140
1141 for (i = sc->rtk_ldata.rtk_rx_prodidx;; RTK_RX_DESC_INC(sc, i)) {
1142 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1143 RTK_RXDESCSYNC(sc, i,
1144 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1145 rxstat = le32toh(cur_rx->rtk_cmdstat);
1146 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1147 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1148 break;
1149 }
1150 total_len = rxstat & sc->rtk_rxlenmask;
1151 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1152 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1153
1154 /* Invalidate the RX mbuf and unload its map */
1155
1156 bus_dmamap_sync(sc->sc_dmat,
1157 sc->rtk_ldata.rtk_rx_dmamap[i],
1158 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1159 BUS_DMASYNC_POSTREAD);
1160 bus_dmamap_unload(sc->sc_dmat,
1161 sc->rtk_ldata.rtk_rx_dmamap[i]);
1162
1163 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1164 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1165 if (sc->rtk_head == NULL)
1166 sc->rtk_head = sc->rtk_tail = m;
1167 else {
1168 m->m_flags &= ~M_PKTHDR;
1169 sc->rtk_tail->m_next = m;
1170 sc->rtk_tail = m;
1171 }
1172 re_newbuf(sc, i, NULL);
1173 continue;
1174 }
1175
1176 /*
1177 * NOTE: for the 8139C+, the frame length field
1178 * is always 12 bits in size, but for the gigE chips,
1179 * it is 13 bits (since the max RX frame length is 16K).
1180 * Unfortunately, all 32 bits in the status word
1181 * were already used, so to make room for the extra
1182 * length bit, RealTek took out the 'frame alignment
1183 * error' bit and shifted the other status bits
1184 * over one slot. The OWN, EOR, FS and LS bits are
1185 * still in the same places. We have already extracted
1186 * the frame length and checked the OWN bit, so rather
1187 * than using an alternate bit mapping, we shift the
1188 * status bits one space to the right so we can evaluate
1189 * them using the 8169 status as though it was in the
1190 * same format as that of the 8139C+.
1191 */
1192 if (sc->rtk_type == RTK_8169)
1193 rxstat >>= 1;
1194
1195 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1196 ifp->if_ierrors++;
1197 /*
1198 * If this is part of a multi-fragment packet,
1199 * discard all the pieces.
1200 */
1201 if (sc->rtk_head != NULL) {
1202 m_freem(sc->rtk_head);
1203 sc->rtk_head = sc->rtk_tail = NULL;
1204 }
1205 re_newbuf(sc, i, m);
1206 continue;
1207 }
1208
1209 /*
1210 * If allocating a replacement mbuf fails,
1211 * reload the current one.
1212 */
1213
1214 if (re_newbuf(sc, i, NULL)) {
1215 ifp->if_ierrors++;
1216 if (sc->rtk_head != NULL) {
1217 m_freem(sc->rtk_head);
1218 sc->rtk_head = sc->rtk_tail = NULL;
1219 }
1220 re_newbuf(sc, i, m);
1221 continue;
1222 }
1223
1224 if (sc->rtk_head != NULL) {
1225 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1226 /*
1227 * Special case: if there's 4 bytes or less
1228 * in this buffer, the mbuf can be discarded:
1229 * the last 4 bytes is the CRC, which we don't
1230 * care about anyway.
1231 */
1232 if (m->m_len <= ETHER_CRC_LEN) {
1233 sc->rtk_tail->m_len -=
1234 (ETHER_CRC_LEN - m->m_len);
1235 m_freem(m);
1236 } else {
1237 m->m_len -= ETHER_CRC_LEN;
1238 m->m_flags &= ~M_PKTHDR;
1239 sc->rtk_tail->m_next = m;
1240 }
1241 m = sc->rtk_head;
1242 sc->rtk_head = sc->rtk_tail = NULL;
1243 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1244 } else
1245 m->m_pkthdr.len = m->m_len =
1246 (total_len - ETHER_CRC_LEN);
1247
1248 ifp->if_ipackets++;
1249 m->m_pkthdr.rcvif = ifp;
1250
1251 /* Do RX checksumming if enabled */
1252
1253 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1254
1255 /* Check IP header checksum */
1256 if (rxstat & RTK_RDESC_STAT_PROTOID)
1257 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1258 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1259 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1260 }
1261
1262 /* Check TCP/UDP checksum */
1263 if (RTK_TCPPKT(rxstat) &&
1264 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1265 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1266 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1267 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1268 }
1269 if (RTK_UDPPKT(rxstat) &&
1270 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1271 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1272 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1273 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1274 }
1275
1276 #ifdef RE_VLAN
1277 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1278 VLAN_INPUT_TAG(ifp, m,
1279 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1280 continue);
1281 }
1282 #endif
1283 #if NBPFILTER > 0
1284 if (ifp->if_bpf)
1285 bpf_mtap(ifp->if_bpf, m);
1286 #endif
1287 (*ifp->if_input)(ifp, m);
1288 }
1289
1290 sc->rtk_ldata.rtk_rx_prodidx = i;
1291
1292 return;
1293 }
1294
1295 static void
1296 re_txeof(struct rtk_softc *sc)
1297 {
1298 struct ifnet *ifp;
1299 int idx;
1300 boolean_t done = FALSE;
1301
1302 ifp = &sc->ethercom.ec_if;
1303 idx = sc->rtk_ldata.rtk_txq_considx;
1304
1305 for (;;) {
1306 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1307 int descidx;
1308 uint32_t txstat;
1309
1310 if (txq->txq_mbuf == NULL) {
1311 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1312 break;
1313 }
1314
1315 descidx = txq->txq_descidx;
1316 RTK_TXDESCSYNC(sc, descidx,
1317 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1318 txstat =
1319 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1320 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1321 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1322 if (txstat & RTK_TDESC_CMD_OWN) {
1323 break;
1324 }
1325
1326 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1327 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1328 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1329 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1330 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1331 m_freem(txq->txq_mbuf);
1332 txq->txq_mbuf = NULL;
1333
1334 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1335 ifp->if_collisions++;
1336 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1337 ifp->if_oerrors++;
1338 else
1339 ifp->if_opackets++;
1340
1341 idx = (idx + 1) % RTK_TX_QLEN;
1342 done = TRUE;
1343 }
1344
1345 /* No changes made to the TX ring, so no flush needed */
1346
1347 if (done) {
1348 sc->rtk_ldata.rtk_txq_considx = idx;
1349 ifp->if_flags &= ~IFF_OACTIVE;
1350 ifp->if_timer = 0;
1351 }
1352
1353 /*
1354 * If not all descriptors have been released reaped yet,
1355 * reload the timer so that we will eventually get another
1356 * interrupt that will cause us to re-enter this routine.
1357 * This is done in case the transmitter has gone idle.
1358 */
1359 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1360 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1361
1362 return;
1363 }
1364
1365 /*
1366 * Stop all chip I/O so that the kernel's probe routines don't
1367 * get confused by errant DMAs when rebooting.
1368 */
1369 static void
1370 re_shutdown(void *vsc)
1371
1372 {
1373 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1374
1375 re_stop(&sc->ethercom.ec_if, 0);
1376 }
1377
1378
1379 static void
1380 re_tick(void *xsc)
1381 {
1382 struct rtk_softc *sc = xsc;
1383 int s;
1384
1385 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1386 s = splnet();
1387
1388 mii_tick(&sc->mii);
1389 splx(s);
1390
1391 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1392 }
1393
1394 #ifdef DEVICE_POLLING
1395 static void
1396 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1397 {
1398 struct rtk_softc *sc = ifp->if_softc;
1399
1400 RTK_LOCK(sc);
1401 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1402 ether_poll_deregister(ifp);
1403 cmd = POLL_DEREGISTER;
1404 }
1405 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1406 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1407 goto done;
1408 }
1409
1410 sc->rxcycles = count;
1411 re_rxeof(sc);
1412 re_txeof(sc);
1413
1414 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1415 (*ifp->if_start)(ifp);
1416
1417 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1418 uint16_t status;
1419
1420 status = CSR_READ_2(sc, RTK_ISR);
1421 if (status == 0xffff)
1422 goto done;
1423 if (status)
1424 CSR_WRITE_2(sc, RTK_ISR, status);
1425
1426 /*
1427 * XXX check behaviour on receiver stalls.
1428 */
1429
1430 if (status & RTK_ISR_SYSTEM_ERR) {
1431 re_reset(sc);
1432 re_init(sc);
1433 }
1434 }
1435 done:
1436 RTK_UNLOCK(sc);
1437 }
1438 #endif /* DEVICE_POLLING */
1439
1440 int
1441 re_intr(void *arg)
1442 {
1443 struct rtk_softc *sc = arg;
1444 struct ifnet *ifp;
1445 uint16_t status;
1446 int handled = 0;
1447
1448 ifp = &sc->ethercom.ec_if;
1449
1450 if (!(ifp->if_flags & IFF_UP))
1451 return 0;
1452
1453 #ifdef DEVICE_POLLING
1454 if (ifp->if_flags & IFF_POLLING)
1455 goto done;
1456 if ((ifp->if_capenable & IFCAP_POLLING) &&
1457 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1458 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1459 re_poll(ifp, 0, 1);
1460 goto done;
1461 }
1462 #endif /* DEVICE_POLLING */
1463
1464 for (;;) {
1465
1466 status = CSR_READ_2(sc, RTK_ISR);
1467 /* If the card has gone away the read returns 0xffff. */
1468 if (status == 0xffff)
1469 break;
1470 if (status) {
1471 handled = 1;
1472 CSR_WRITE_2(sc, RTK_ISR, status);
1473 }
1474
1475 if ((status & RTK_INTRS_CPLUS) == 0)
1476 break;
1477
1478 if ((status & RTK_ISR_RX_OK) ||
1479 (status & RTK_ISR_RX_ERR))
1480 re_rxeof(sc);
1481
1482 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1483 (status & RTK_ISR_TX_ERR) ||
1484 (status & RTK_ISR_TX_DESC_UNAVAIL))
1485 re_txeof(sc);
1486
1487 if (status & RTK_ISR_SYSTEM_ERR) {
1488 re_reset(sc);
1489 re_init(ifp);
1490 }
1491
1492 if (status & RTK_ISR_LINKCHG) {
1493 callout_stop(&sc->rtk_tick_ch);
1494 re_tick(sc);
1495 }
1496 }
1497
1498 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1499 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1500 (*ifp->if_start)(ifp);
1501
1502 #ifdef DEVICE_POLLING
1503 done:
1504 #endif
1505
1506 return handled;
1507 }
1508
1509 static int
1510 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1511 {
1512 bus_dmamap_t map;
1513 int error, i, uidx, startidx, curidx;
1514 #ifdef RE_VLAN
1515 struct m_tag *mtag;
1516 #endif
1517 struct rtk_desc *d;
1518 uint32_t cmdstat, rtk_flags;
1519 struct rtk_txq *txq;
1520
1521 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1522 return EFBIG;
1523 }
1524
1525 /*
1526 * Set up checksum offload. Note: checksum offload bits must
1527 * appear in all descriptors of a multi-descriptor transmit
1528 * attempt. (This is according to testing done with an 8169
1529 * chip. I'm not sure if this is a requirement or a bug.)
1530 */
1531
1532 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1533 uint32_t segsz = m->m_pkthdr.segsz;
1534
1535 rtk_flags = RTK_TDESC_CMD_LGSEND |
1536 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1537 } else {
1538
1539 /*
1540 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1541 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1542 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1543 */
1544
1545 rtk_flags = 0;
1546 if ((m->m_pkthdr.csum_flags &
1547 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1548 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1549 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1550 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1551 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1552 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1553 }
1554 }
1555 }
1556
1557 txq = &sc->rtk_ldata.rtk_txq[*idx];
1558 map = txq->txq_dmamap;
1559 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1560 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1561
1562 if (error) {
1563 /* XXX try to defrag if EFBIG? */
1564
1565 aprint_error("%s: can't map mbuf (error %d)\n",
1566 sc->sc_dev.dv_xname, error);
1567
1568 return error;
1569 }
1570
1571 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1572 error = EFBIG;
1573 goto fail_unload;
1574 }
1575
1576 /*
1577 * Make sure that the caches are synchronized before we
1578 * ask the chip to start DMA for the packet data.
1579 */
1580 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1581 BUS_DMASYNC_PREWRITE);
1582
1583 /*
1584 * Map the segment array into descriptors. Note that we set the
1585 * start-of-frame and end-of-frame markers for either TX or RX, but
1586 * they really only have meaning in the TX case. (In the RX case,
1587 * it's the chip that tells us where packets begin and end.)
1588 * We also keep track of the end of the ring and set the
1589 * end-of-ring bits as needed, and we set the ownership bits
1590 * in all except the very first descriptor. (The caller will
1591 * set this descriptor later when it start transmission or
1592 * reception.)
1593 */
1594 i = 0;
1595 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1596 for (;;) {
1597 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1598 RTK_TXDESCSYNC(sc, curidx,
1599 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1600 cmdstat = le32toh(d->rtk_cmdstat);
1601 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1602 if (cmdstat & RTK_TDESC_STAT_OWN) {
1603 printf("%s: tried to map busy TX descriptor\n",
1604 sc->sc_dev.dv_xname);
1605 while (i > 0) {
1606 uidx = (curidx + RTK_TX_DESC_CNT(sc) - i) %
1607 RTK_TX_DESC_CNT(sc);
1608 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1609 RTK_TXDESCSYNC(sc, uidx,
1610 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1611 i--;
1612 }
1613 error = ENOBUFS;
1614 goto fail_unload;
1615 }
1616
1617 cmdstat = map->dm_segs[i].ds_len;
1618 if (i == 0)
1619 cmdstat |= RTK_TDESC_CMD_SOF;
1620 else
1621 cmdstat |= RTK_TDESC_CMD_OWN;
1622 if (i == map->dm_nsegs - 1)
1623 cmdstat |= RTK_TDESC_CMD_EOF;
1624 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1625 cmdstat |= RTK_TDESC_CMD_EOR;
1626 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1627 d->rtk_bufaddr_lo =
1628 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1629 d->rtk_bufaddr_hi =
1630 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1631 RTK_TXDESCSYNC(sc, curidx,
1632 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1633 i++;
1634 if (i == map->dm_nsegs)
1635 break;
1636 RTK_TX_DESC_INC(sc, curidx);
1637 }
1638
1639 txq->txq_mbuf = m;
1640 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1641
1642 /*
1643 * Set up hardware VLAN tagging. Note: vlan tag info must
1644 * appear in the first descriptor of a multi-descriptor
1645 * transmission attempt.
1646 */
1647
1648 #ifdef RE_VLAN
1649 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1650 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1651 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1652 RTK_TDESC_VLANCTL_TAG);
1653 }
1654 #endif
1655
1656 /* Transfer ownership of packet to the chip. */
1657
1658 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1659 htole32(RTK_TDESC_CMD_OWN);
1660 RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661
1662 txq->txq_descidx = curidx;
1663 RTK_TX_DESC_INC(sc, curidx);
1664 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1665 *idx = (*idx + 1) % RTK_TX_QLEN;
1666
1667 return 0;
1668
1669 fail_unload:
1670 bus_dmamap_unload(sc->sc_dmat, map);
1671
1672 return error;
1673 }
1674
1675 /*
1676 * Main transmit routine for C+ and gigE NICs.
1677 */
1678
1679 static void
1680 re_start(struct ifnet *ifp)
1681 {
1682 struct rtk_softc *sc;
1683 int idx;
1684 boolean_t done = FALSE;
1685
1686 sc = ifp->if_softc;
1687
1688 idx = sc->rtk_ldata.rtk_txq_prodidx;
1689 for (;;) {
1690 struct mbuf *m;
1691 int error;
1692
1693 IFQ_POLL(&ifp->if_snd, m);
1694 if (m == NULL)
1695 break;
1696
1697 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1698 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1699 ifp->if_flags |= IFF_OACTIVE;
1700 break;
1701 }
1702
1703 error = re_encap(sc, m, &idx);
1704 if (error == EFBIG &&
1705 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1706 IFQ_DEQUEUE(&ifp->if_snd, m);
1707 m_freem(m);
1708 ifp->if_oerrors++;
1709 continue;
1710 }
1711 if (error) {
1712 ifp->if_flags |= IFF_OACTIVE;
1713 break;
1714 }
1715
1716 IFQ_DEQUEUE(&ifp->if_snd, m);
1717
1718 #if NBPFILTER > 0
1719 /*
1720 * If there's a BPF listener, bounce a copy of this frame
1721 * to him.
1722 */
1723 if (ifp->if_bpf)
1724 bpf_mtap(ifp->if_bpf, m);
1725 #endif
1726
1727 done = TRUE;
1728 }
1729
1730 if (!done) {
1731 return;
1732 }
1733 sc->rtk_ldata.rtk_txq_prodidx = idx;
1734
1735 /*
1736 * RealTek put the TX poll request register in a different
1737 * location on the 8169 gigE chip. I don't know why.
1738 */
1739
1740 if (sc->rtk_type == RTK_8169)
1741 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1742 else
1743 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1744
1745 /*
1746 * Use the countdown timer for interrupt moderation.
1747 * 'TX done' interrupts are disabled. Instead, we reset the
1748 * countdown timer, which will begin counting until it hits
1749 * the value in the TIMERINT register, and then trigger an
1750 * interrupt. Each time we write to the TIMERCNT register,
1751 * the timer count is reset to 0.
1752 */
1753 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1754
1755 /*
1756 * Set a timeout in case the chip goes out to lunch.
1757 */
1758 ifp->if_timer = 5;
1759
1760 return;
1761 }
1762
1763 static int
1764 re_init(struct ifnet *ifp)
1765 {
1766 struct rtk_softc *sc = ifp->if_softc;
1767 uint32_t rxcfg = 0;
1768 uint32_t reg;
1769 int error;
1770
1771 if ((error = re_enable(sc)) != 0)
1772 goto out;
1773
1774 /*
1775 * Cancel pending I/O and free all RX/TX buffers.
1776 */
1777 re_stop(ifp, 0);
1778
1779 /*
1780 * Enable C+ RX and TX mode, as well as VLAN stripping and
1781 * RX checksum offload. We must configure the C+ register
1782 * before all others.
1783 */
1784 reg = 0;
1785
1786 /*
1787 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1788 * FreeBSD drivers set these bits anyway (for 8139C+?).
1789 * So far, it works.
1790 */
1791
1792 /*
1793 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1794 * For 8169S/8110S rev 2 and above, do not set bit 14.
1795 */
1796 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1797 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1798
1799 if (1) {/* not for 8169S ? */
1800 reg |=
1801 #ifdef RE_VLAN
1802 RTK_CPLUSCMD_VLANSTRIP |
1803 #endif
1804 (ifp->if_capenable &
1805 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1806 IFCAP_CSUM_UDPv4_Rx) ?
1807 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1808 }
1809
1810 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1811 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1812
1813 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1814 if (sc->rtk_type == RTK_8169)
1815 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1816
1817 DELAY(10000);
1818
1819 /*
1820 * Init our MAC address. Even though the chipset
1821 * documentation doesn't mention it, we need to enter "Config
1822 * register write enable" mode to modify the ID registers.
1823 */
1824 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1825 memcpy(®, LLADDR(ifp->if_sadl), 4);
1826 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1827 reg = 0;
1828 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1829 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1830 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1831
1832 /*
1833 * For C+ mode, initialize the RX descriptors and mbufs.
1834 */
1835 re_rx_list_init(sc);
1836 re_tx_list_init(sc);
1837
1838 /*
1839 * Enable transmit and receive.
1840 */
1841 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1842
1843 /*
1844 * Set the initial TX and RX configuration.
1845 */
1846 if (sc->rtk_testmode) {
1847 if (sc->rtk_type == RTK_8169)
1848 CSR_WRITE_4(sc, RTK_TXCFG,
1849 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1850 else
1851 CSR_WRITE_4(sc, RTK_TXCFG,
1852 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1853 } else
1854 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1855 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1856
1857 /* Set the individual bit to receive frames for this host only. */
1858 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1859 rxcfg |= RTK_RXCFG_RX_INDIV;
1860
1861 /* If we want promiscuous mode, set the allframes bit. */
1862 if (ifp->if_flags & IFF_PROMISC)
1863 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1864 else
1865 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1866 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1867
1868 /*
1869 * Set capture broadcast bit to capture broadcast frames.
1870 */
1871 if (ifp->if_flags & IFF_BROADCAST)
1872 rxcfg |= RTK_RXCFG_RX_BROAD;
1873 else
1874 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1875 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1876
1877 /*
1878 * Program the multicast filter, if necessary.
1879 */
1880 rtk_setmulti(sc);
1881
1882 #ifdef DEVICE_POLLING
1883 /*
1884 * Disable interrupts if we are polling.
1885 */
1886 if (ifp->if_flags & IFF_POLLING)
1887 CSR_WRITE_2(sc, RTK_IMR, 0);
1888 else /* otherwise ... */
1889 #endif /* DEVICE_POLLING */
1890 /*
1891 * Enable interrupts.
1892 */
1893 if (sc->rtk_testmode)
1894 CSR_WRITE_2(sc, RTK_IMR, 0);
1895 else
1896 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1897
1898 /* Start RX/TX process. */
1899 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1900 #ifdef notdef
1901 /* Enable receiver and transmitter. */
1902 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1903 #endif
1904 /*
1905 * Load the addresses of the RX and TX lists into the chip.
1906 */
1907
1908 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1909 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1910 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1911 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1912
1913 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1914 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1915 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1916 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1917
1918 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1919
1920 /*
1921 * Initialize the timer interrupt register so that
1922 * a timer interrupt will be generated once the timer
1923 * reaches a certain number of ticks. The timer is
1924 * reloaded on each transmit. This gives us TX interrupt
1925 * moderation, which dramatically improves TX frame rate.
1926 */
1927
1928 if (sc->rtk_type == RTK_8169)
1929 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1930 else
1931 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1932
1933 /*
1934 * For 8169 gigE NICs, set the max allowed RX packet
1935 * size so we can receive jumbo frames.
1936 */
1937 if (sc->rtk_type == RTK_8169)
1938 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1939
1940 if (sc->rtk_testmode)
1941 return 0;
1942
1943 mii_mediachg(&sc->mii);
1944
1945 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1946
1947 ifp->if_flags |= IFF_RUNNING;
1948 ifp->if_flags &= ~IFF_OACTIVE;
1949
1950 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1951
1952 out:
1953 if (error) {
1954 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1955 ifp->if_timer = 0;
1956 aprint_error("%s: interface not running\n",
1957 sc->sc_dev.dv_xname);
1958 }
1959
1960 return error;
1961
1962 }
1963
1964 /*
1965 * Set media options.
1966 */
1967 static int
1968 re_ifmedia_upd(struct ifnet *ifp)
1969 {
1970 struct rtk_softc *sc;
1971
1972 sc = ifp->if_softc;
1973
1974 return mii_mediachg(&sc->mii);
1975 }
1976
1977 /*
1978 * Report current media status.
1979 */
1980 static void
1981 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1982 {
1983 struct rtk_softc *sc;
1984
1985 sc = ifp->if_softc;
1986
1987 mii_pollstat(&sc->mii);
1988 ifmr->ifm_active = sc->mii.mii_media_active;
1989 ifmr->ifm_status = sc->mii.mii_media_status;
1990
1991 return;
1992 }
1993
1994 static int
1995 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1996 {
1997 struct rtk_softc *sc = ifp->if_softc;
1998 struct ifreq *ifr = (struct ifreq *) data;
1999 int s, error = 0;
2000
2001 s = splnet();
2002
2003 switch (command) {
2004 case SIOCSIFMTU:
2005 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2006 error = EINVAL;
2007 ifp->if_mtu = ifr->ifr_mtu;
2008 break;
2009 case SIOCGIFMEDIA:
2010 case SIOCSIFMEDIA:
2011 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2012 break;
2013 default:
2014 error = ether_ioctl(ifp, command, data);
2015 if (error == ENETRESET) {
2016 if (ifp->if_flags & IFF_RUNNING)
2017 rtk_setmulti(sc);
2018 error = 0;
2019 }
2020 break;
2021 }
2022
2023 splx(s);
2024
2025 return error;
2026 }
2027
2028 static void
2029 re_watchdog(struct ifnet *ifp)
2030 {
2031 struct rtk_softc *sc;
2032 int s;
2033
2034 sc = ifp->if_softc;
2035 s = splnet();
2036 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2037 ifp->if_oerrors++;
2038
2039 re_txeof(sc);
2040 re_rxeof(sc);
2041
2042 re_init(ifp);
2043
2044 splx(s);
2045 }
2046
2047 /*
2048 * Stop the adapter and free any mbufs allocated to the
2049 * RX and TX lists.
2050 */
2051 static void
2052 re_stop(struct ifnet *ifp, int disable)
2053 {
2054 register int i;
2055 struct rtk_softc *sc = ifp->if_softc;
2056
2057 callout_stop(&sc->rtk_tick_ch);
2058
2059 #ifdef DEVICE_POLLING
2060 ether_poll_deregister(ifp);
2061 #endif /* DEVICE_POLLING */
2062
2063 mii_down(&sc->mii);
2064
2065 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2066 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2067
2068 if (sc->rtk_head != NULL) {
2069 m_freem(sc->rtk_head);
2070 sc->rtk_head = sc->rtk_tail = NULL;
2071 }
2072
2073 /* Free the TX list buffers. */
2074 for (i = 0; i < RTK_TX_QLEN; i++) {
2075 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2076 bus_dmamap_unload(sc->sc_dmat,
2077 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2078 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2079 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2080 }
2081 }
2082
2083 /* Free the RX list buffers. */
2084 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2085 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2086 bus_dmamap_unload(sc->sc_dmat,
2087 sc->rtk_ldata.rtk_rx_dmamap[i]);
2088 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2089 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2090 }
2091 }
2092
2093 if (disable)
2094 re_disable(sc);
2095
2096 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2097 ifp->if_timer = 0;
2098
2099 return;
2100 }
2101