rtl8169.c revision 1.49 1 /* $NetBSD: rtl8169.c,v 1.49 2006/10/27 13:26:34 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 uint32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 uint32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 }
244 }
245
246 static int
247 re_miibus_readreg(struct device *dev, int phy, int reg)
248 {
249 struct rtk_softc *sc = (void *)dev;
250 uint16_t rval = 0;
251 uint16_t re8139_reg = 0;
252 int s;
253
254 s = splnet();
255
256 if (sc->rtk_type == RTK_8169) {
257 rval = re_gmii_readreg(dev, phy, reg);
258 splx(s);
259 return rval;
260 }
261
262 /* Pretend the internal PHY is only at address 0 */
263 if (phy) {
264 splx(s);
265 return 0;
266 }
267 switch (reg) {
268 case MII_BMCR:
269 re8139_reg = RTK_BMCR;
270 break;
271 case MII_BMSR:
272 re8139_reg = RTK_BMSR;
273 break;
274 case MII_ANAR:
275 re8139_reg = RTK_ANAR;
276 break;
277 case MII_ANER:
278 re8139_reg = RTK_ANER;
279 break;
280 case MII_ANLPAR:
281 re8139_reg = RTK_LPAR;
282 break;
283 case MII_PHYIDR1:
284 case MII_PHYIDR2:
285 splx(s);
286 return 0;
287 /*
288 * Allow the rlphy driver to read the media status
289 * register. If we have a link partner which does not
290 * support NWAY, this is the register which will tell
291 * us the results of parallel detection.
292 */
293 case RTK_MEDIASTAT:
294 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
295 splx(s);
296 return rval;
297 default:
298 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
299 splx(s);
300 return 0;
301 }
302 rval = CSR_READ_2(sc, re8139_reg);
303 splx(s);
304 return rval;
305 }
306
307 static void
308 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
309 {
310 struct rtk_softc *sc = (void *)dev;
311 uint16_t re8139_reg = 0;
312 int s;
313
314 s = splnet();
315
316 if (sc->rtk_type == RTK_8169) {
317 re_gmii_writereg(dev, phy, reg, data);
318 splx(s);
319 return;
320 }
321
322 /* Pretend the internal PHY is only at address 0 */
323 if (phy) {
324 splx(s);
325 return;
326 }
327 switch (reg) {
328 case MII_BMCR:
329 re8139_reg = RTK_BMCR;
330 break;
331 case MII_BMSR:
332 re8139_reg = RTK_BMSR;
333 break;
334 case MII_ANAR:
335 re8139_reg = RTK_ANAR;
336 break;
337 case MII_ANER:
338 re8139_reg = RTK_ANER;
339 break;
340 case MII_ANLPAR:
341 re8139_reg = RTK_LPAR;
342 break;
343 case MII_PHYIDR1:
344 case MII_PHYIDR2:
345 splx(s);
346 return;
347 break;
348 default:
349 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
350 splx(s);
351 return;
352 }
353 CSR_WRITE_2(sc, re8139_reg, data);
354 splx(s);
355 return;
356 }
357
358 static void
359 re_miibus_statchg(struct device *dev __unused)
360 {
361
362 return;
363 }
364
365 static void
366 re_reset(struct rtk_softc *sc)
367 {
368 int i;
369
370 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
371
372 for (i = 0; i < RTK_TIMEOUT; i++) {
373 DELAY(10);
374 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
375 break;
376 }
377 if (i == RTK_TIMEOUT)
378 aprint_error("%s: reset never completed!\n",
379 sc->sc_dev.dv_xname);
380
381 /*
382 * NB: Realtek-supplied Linux driver does this only for
383 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
384 */
385 if (1) /* XXX check softc flag for 8169s version */
386 CSR_WRITE_1(sc, 0x82, 1);
387
388 return;
389 }
390
391 /*
392 * The following routine is designed to test for a defect on some
393 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
394 * lines connected to the bus, however for a 32-bit only card, they
395 * should be pulled high. The result of this defect is that the
396 * NIC will not work right if you plug it into a 64-bit slot: DMA
397 * operations will be done with 64-bit transfers, which will fail
398 * because the 64-bit data lines aren't connected.
399 *
400 * There's no way to work around this (short of talking a soldering
401 * iron to the board), however we can detect it. The method we use
402 * here is to put the NIC into digital loopback mode, set the receiver
403 * to promiscuous mode, and then try to send a frame. We then compare
404 * the frame data we sent to what was received. If the data matches,
405 * then the NIC is working correctly, otherwise we know the user has
406 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
407 * slot. In the latter case, there's no way the NIC can work correctly,
408 * so we print out a message on the console and abort the device attach.
409 */
410
411 int
412 re_diag(struct rtk_softc *sc)
413 {
414 struct ifnet *ifp = &sc->ethercom.ec_if;
415 struct mbuf *m0;
416 struct ether_header *eh;
417 struct rtk_desc *cur_rx;
418 bus_dmamap_t dmamap;
419 uint16_t status;
420 uint32_t rxstat;
421 int total_len, i, s, error = 0;
422 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
423 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
424
425 /* Allocate a single mbuf */
426
427 MGETHDR(m0, M_DONTWAIT, MT_DATA);
428 if (m0 == NULL)
429 return ENOBUFS;
430
431 /*
432 * Initialize the NIC in test mode. This sets the chip up
433 * so that it can send and receive frames, but performs the
434 * following special functions:
435 * - Puts receiver in promiscuous mode
436 * - Enables digital loopback mode
437 * - Leaves interrupts turned off
438 */
439
440 ifp->if_flags |= IFF_PROMISC;
441 sc->rtk_testmode = 1;
442 re_init(ifp);
443 re_stop(ifp, 0);
444 DELAY(100000);
445 re_init(ifp);
446
447 /* Put some data in the mbuf */
448
449 eh = mtod(m0, struct ether_header *);
450 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
451 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
452 eh->ether_type = htons(ETHERTYPE_IP);
453 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
454
455 /*
456 * Queue the packet, start transmission.
457 */
458
459 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
460 s = splnet();
461 IF_ENQUEUE(&ifp->if_snd, m0);
462 re_start(ifp);
463 splx(s);
464 m0 = NULL;
465
466 /* Wait for it to propagate through the chip */
467
468 DELAY(100000);
469 for (i = 0; i < RTK_TIMEOUT; i++) {
470 status = CSR_READ_2(sc, RTK_ISR);
471 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
472 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
473 break;
474 DELAY(10);
475 }
476 if (i == RTK_TIMEOUT) {
477 aprint_error("%s: diagnostic failed, failed to receive packet "
478 "in loopback mode\n", sc->sc_dev.dv_xname);
479 error = EIO;
480 goto done;
481 }
482
483 /*
484 * The packet should have been dumped into the first
485 * entry in the RX DMA ring. Grab it from there.
486 */
487
488 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
489 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
490 BUS_DMASYNC_POSTREAD);
491 bus_dmamap_unload(sc->sc_dmat,
492 sc->rtk_ldata.rtk_rx_dmamap[0]);
493
494 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
495 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
496 eh = mtod(m0, struct ether_header *);
497
498 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
499 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
500 rxstat = le32toh(cur_rx->rtk_cmdstat);
501 total_len = rxstat & sc->rtk_rxlenmask;
502
503 if (total_len != ETHER_MIN_LEN) {
504 aprint_error("%s: diagnostic failed, received short packet\n",
505 sc->sc_dev.dv_xname);
506 error = EIO;
507 goto done;
508 }
509
510 /* Test that the received packet data matches what we sent. */
511
512 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
513 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
514 ntohs(eh->ether_type) != ETHERTYPE_IP) {
515 aprint_error("%s: WARNING, DMA FAILURE!\n",
516 sc->sc_dev.dv_xname);
517 aprint_error("%s: expected TX data: %s",
518 sc->sc_dev.dv_xname, ether_sprintf(dst));
519 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
520 aprint_error("%s: received RX data: %s",
521 sc->sc_dev.dv_xname,
522 ether_sprintf(eh->ether_dhost));
523 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
524 ntohs(eh->ether_type));
525 aprint_error("%s: You may have a defective 32-bit NIC plugged "
526 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
527 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
528 "for proper operation.\n", sc->sc_dev.dv_xname);
529 aprint_error("%s: Read the re(4) man page for more details.\n",
530 sc->sc_dev.dv_xname);
531 error = EIO;
532 }
533
534 done:
535 /* Turn interface off, release resources */
536
537 sc->rtk_testmode = 0;
538 ifp->if_flags &= ~IFF_PROMISC;
539 re_stop(ifp, 0);
540 if (m0 != NULL)
541 m_freem(m0);
542
543 return error;
544 }
545
546
547 /*
548 * Attach the interface. Allocate softc structures, do ifmedia
549 * setup and ethernet/BPF attach.
550 */
551 void
552 re_attach(struct rtk_softc *sc)
553 {
554 u_char eaddr[ETHER_ADDR_LEN];
555 uint16_t val;
556 struct ifnet *ifp;
557 int error = 0, i, addr_len;
558
559
560 /* XXX JRS: bus-attach-independent code begins approximately here */
561
562 /* Reset the adapter. */
563 re_reset(sc);
564
565 if (sc->rtk_type == RTK_8169) {
566 uint32_t hwrev;
567
568 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
570 if (hwrev == (0x1 << 28)) {
571 sc->sc_rev = 4;
572 } else if (hwrev == (0x1 << 26)) {
573 sc->sc_rev = 3;
574 } else if (hwrev == (0x1 << 23)) {
575 sc->sc_rev = 2;
576 } else
577 sc->sc_rev = 1;
578
579 /* Set RX length mask */
580
581 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
582
583 /* Force station address autoload from the EEPROM */
584
585 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
586 for (i = 0; i < RTK_TIMEOUT; i++) {
587 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
588 == 0)
589 break;
590 DELAY(100);
591 }
592 if (i == RTK_TIMEOUT)
593 aprint_error("%s: eeprom autoload timed out\n",
594 sc->sc_dev.dv_xname);
595
596 for (i = 0; i < ETHER_ADDR_LEN; i++)
597 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
598
599 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
600 } else {
601
602 /* Set RX length mask */
603
604 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
605
606 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
607 addr_len = RTK_EEADDR_LEN1;
608 else
609 addr_len = RTK_EEADDR_LEN0;
610
611 /*
612 * Get station address from the EEPROM.
613 */
614 for (i = 0; i < 3; i++) {
615 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
616 eaddr[(i * 2) + 0] = val & 0xff;
617 eaddr[(i * 2) + 1] = val >> 8;
618 }
619
620 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
621 }
622
623 aprint_normal("%s: Ethernet address %s\n",
624 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
625
626 if (sc->rtk_ldata.rtk_tx_desc_cnt >
627 PAGE_SIZE / sizeof(struct rtk_desc)) {
628 sc->rtk_ldata.rtk_tx_desc_cnt =
629 PAGE_SIZE / sizeof(struct rtk_desc);
630 }
631
632 aprint_verbose("%s: using %d tx descriptors\n",
633 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
634
635 /* Allocate DMA'able memory for the TX ring */
636 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
637 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
638 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
639 aprint_error("%s: can't allocate tx listseg, error = %d\n",
640 sc->sc_dev.dv_xname, error);
641 goto fail_0;
642 }
643
644 /* Load the map for the TX ring. */
645 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
646 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
647 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
648 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
649 aprint_error("%s: can't map tx list, error = %d\n",
650 sc->sc_dev.dv_xname, error);
651 goto fail_1;
652 }
653 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
654
655 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
656 RTK_TX_LIST_SZ(sc), 0, 0,
657 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
658 aprint_error("%s: can't create tx list map, error = %d\n",
659 sc->sc_dev.dv_xname, error);
660 goto fail_2;
661 }
662
663
664 if ((error = bus_dmamap_load(sc->sc_dmat,
665 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
666 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
667 aprint_error("%s: can't load tx list, error = %d\n",
668 sc->sc_dev.dv_xname, error);
669 goto fail_3;
670 }
671
672 /* Create DMA maps for TX buffers */
673 for (i = 0; i < RTK_TX_QLEN; i++) {
674 error = bus_dmamap_create(sc->sc_dmat,
675 round_page(IP_MAXPACKET),
676 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
677 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
678 if (error) {
679 aprint_error("%s: can't create DMA map for TX\n",
680 sc->sc_dev.dv_xname);
681 goto fail_4;
682 }
683 }
684
685 /* Allocate DMA'able memory for the RX ring */
686 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
687 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
688 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
689 aprint_error("%s: can't allocate rx listseg, error = %d\n",
690 sc->sc_dev.dv_xname, error);
691 goto fail_4;
692 }
693
694 /* Load the map for the RX ring. */
695 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
696 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
697 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
698 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
699 aprint_error("%s: can't map rx list, error = %d\n",
700 sc->sc_dev.dv_xname, error);
701 goto fail_5;
702 }
703 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
704
705 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
706 RTK_RX_LIST_SZ, 0, 0,
707 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
708 aprint_error("%s: can't create rx list map, error = %d\n",
709 sc->sc_dev.dv_xname, error);
710 goto fail_6;
711 }
712
713 if ((error = bus_dmamap_load(sc->sc_dmat,
714 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
715 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
716 aprint_error("%s: can't load rx list, error = %d\n",
717 sc->sc_dev.dv_xname, error);
718 goto fail_7;
719 }
720
721 /* Create DMA maps for RX buffers */
722 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
723 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
724 0, 0, &sc->rtk_ldata.rtk_rx_dmamap[i]);
725 if (error) {
726 aprint_error("%s: can't create DMA map for RX\n",
727 sc->sc_dev.dv_xname);
728 goto fail_8;
729 }
730 }
731
732 /*
733 * Record interface as attached. From here, we should not fail.
734 */
735 sc->sc_flags |= RTK_ATTACHED;
736
737 ifp = &sc->ethercom.ec_if;
738 ifp->if_softc = sc;
739 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
740 ifp->if_mtu = ETHERMTU;
741 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
742 ifp->if_ioctl = re_ioctl;
743 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
744
745 /*
746 * This is a way to disable hw VLAN tagging by default
747 * (RE_VLAN is undefined), as it is problematic. PR 32643
748 */
749
750 #ifdef RE_VLAN
751 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
752 #endif
753 ifp->if_start = re_start;
754 ifp->if_stop = re_stop;
755
756 /*
757 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
758 */
759
760 ifp->if_capabilities |=
761 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
762 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
763 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
764 IFCAP_TSOv4;
765 ifp->if_watchdog = re_watchdog;
766 ifp->if_init = re_init;
767 if (sc->rtk_type == RTK_8169)
768 ifp->if_baudrate = 1000000000;
769 else
770 ifp->if_baudrate = 100000000;
771 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
772 ifp->if_capenable = ifp->if_capabilities;
773 IFQ_SET_READY(&ifp->if_snd);
774
775 callout_init(&sc->rtk_tick_ch);
776
777 /* Do MII setup */
778 sc->mii.mii_ifp = ifp;
779 sc->mii.mii_readreg = re_miibus_readreg;
780 sc->mii.mii_writereg = re_miibus_writereg;
781 sc->mii.mii_statchg = re_miibus_statchg;
782 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
783 re_ifmedia_sts);
784 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
785 MII_OFFSET_ANY, 0);
786 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
787
788 /*
789 * Call MI attach routine.
790 */
791 if_attach(ifp);
792 ether_ifattach(ifp, eaddr);
793
794
795 /*
796 * Make sure the interface is shutdown during reboot.
797 */
798 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
799 if (sc->sc_sdhook == NULL)
800 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
801 sc->sc_dev.dv_xname);
802 /*
803 * Add a suspend hook to make sure we come back up after a
804 * resume.
805 */
806 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
807 re_power, sc);
808 if (sc->sc_powerhook == NULL)
809 aprint_error("%s: WARNING: unable to establish power hook\n",
810 sc->sc_dev.dv_xname);
811
812
813 return;
814
815 fail_8:
816 /* Destroy DMA maps for RX buffers. */
817 for (i = 0; i < RTK_RX_DESC_CNT; i++)
818 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
819 bus_dmamap_destroy(sc->sc_dmat,
820 sc->rtk_ldata.rtk_rx_dmamap[i]);
821
822 /* Free DMA'able memory for the RX ring. */
823 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
824 fail_7:
825 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
826 fail_6:
827 bus_dmamem_unmap(sc->sc_dmat,
828 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
829 fail_5:
830 bus_dmamem_free(sc->sc_dmat,
831 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
832
833 fail_4:
834 /* Destroy DMA maps for TX buffers. */
835 for (i = 0; i < RTK_TX_QLEN; i++)
836 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
837 bus_dmamap_destroy(sc->sc_dmat,
838 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
839
840 /* Free DMA'able memory for the TX ring. */
841 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
842 fail_3:
843 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
844 fail_2:
845 bus_dmamem_unmap(sc->sc_dmat,
846 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
847 fail_1:
848 bus_dmamem_free(sc->sc_dmat,
849 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
850 fail_0:
851 return;
852 }
853
854
855 /*
856 * re_activate:
857 * Handle device activation/deactivation requests.
858 */
859 int
860 re_activate(struct device *self, enum devact act)
861 {
862 struct rtk_softc *sc = (void *)self;
863 int s, error = 0;
864
865 s = splnet();
866 switch (act) {
867 case DVACT_ACTIVATE:
868 error = EOPNOTSUPP;
869 break;
870 case DVACT_DEACTIVATE:
871 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
872 if_deactivate(&sc->ethercom.ec_if);
873 break;
874 }
875 splx(s);
876
877 return error;
878 }
879
880 /*
881 * re_detach:
882 * Detach a rtk interface.
883 */
884 int
885 re_detach(struct rtk_softc *sc)
886 {
887 struct ifnet *ifp = &sc->ethercom.ec_if;
888 int i;
889
890 /*
891 * Succeed now if there isn't any work to do.
892 */
893 if ((sc->sc_flags & RTK_ATTACHED) == 0)
894 return 0;
895
896 /* Unhook our tick handler. */
897 callout_stop(&sc->rtk_tick_ch);
898
899 /* Detach all PHYs. */
900 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
901
902 /* Delete all remaining media. */
903 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
904
905 ether_ifdetach(ifp);
906 if_detach(ifp);
907
908 /* Destroy DMA maps for RX buffers. */
909 for (i = 0; i < RTK_RX_DESC_CNT; i++)
910 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
911 bus_dmamap_destroy(sc->sc_dmat,
912 sc->rtk_ldata.rtk_rx_dmamap[i]);
913
914 /* Free DMA'able memory for the RX ring. */
915 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
916 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
917 bus_dmamem_unmap(sc->sc_dmat,
918 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
919 bus_dmamem_free(sc->sc_dmat,
920 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
921
922 /* Destroy DMA maps for TX buffers. */
923 for (i = 0; i < RTK_TX_QLEN; i++)
924 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
925 bus_dmamap_destroy(sc->sc_dmat,
926 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
927
928 /* Free DMA'able memory for the TX ring. */
929 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
930 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
931 bus_dmamem_unmap(sc->sc_dmat,
932 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
933 bus_dmamem_free(sc->sc_dmat,
934 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
935
936
937 shutdownhook_disestablish(sc->sc_sdhook);
938 powerhook_disestablish(sc->sc_powerhook);
939
940 return 0;
941 }
942
943 /*
944 * re_enable:
945 * Enable the RTL81X9 chip.
946 */
947 static int
948 re_enable(struct rtk_softc *sc)
949 {
950
951 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
952 if ((*sc->sc_enable)(sc) != 0) {
953 aprint_error("%s: device enable failed\n",
954 sc->sc_dev.dv_xname);
955 return EIO;
956 }
957 sc->sc_flags |= RTK_ENABLED;
958 }
959 return 0;
960 }
961
962 /*
963 * re_disable:
964 * Disable the RTL81X9 chip.
965 */
966 static void
967 re_disable(struct rtk_softc *sc)
968 {
969
970 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
971 (*sc->sc_disable)(sc);
972 sc->sc_flags &= ~RTK_ENABLED;
973 }
974 }
975
976 /*
977 * re_power:
978 * Power management (suspend/resume) hook.
979 */
980 void
981 re_power(int why, void *arg)
982 {
983 struct rtk_softc *sc = (void *)arg;
984 struct ifnet *ifp = &sc->ethercom.ec_if;
985 int s;
986
987 s = splnet();
988 switch (why) {
989 case PWR_SUSPEND:
990 case PWR_STANDBY:
991 re_stop(ifp, 0);
992 if (sc->sc_power != NULL)
993 (*sc->sc_power)(sc, why);
994 break;
995 case PWR_RESUME:
996 if (ifp->if_flags & IFF_UP) {
997 if (sc->sc_power != NULL)
998 (*sc->sc_power)(sc, why);
999 re_init(ifp);
1000 }
1001 break;
1002 case PWR_SOFTSUSPEND:
1003 case PWR_SOFTSTANDBY:
1004 case PWR_SOFTRESUME:
1005 break;
1006 }
1007 splx(s);
1008 }
1009
1010
1011 static int
1012 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1013 {
1014 struct mbuf *n = NULL;
1015 bus_dmamap_t map;
1016 struct rtk_desc *d;
1017 uint32_t cmdstat;
1018 int error;
1019
1020 if (m == NULL) {
1021 MGETHDR(n, M_DONTWAIT, MT_DATA);
1022 if (n == NULL)
1023 return ENOBUFS;
1024
1025 MCLGET(n, M_DONTWAIT);
1026 if ((n->m_flags & M_EXT) == 0) {
1027 m_freem(n);
1028 return ENOBUFS;
1029 }
1030 m = n;
1031 } else
1032 m->m_data = m->m_ext.ext_buf;
1033
1034 /*
1035 * Initialize mbuf length fields and fixup
1036 * alignment so that the frame payload is
1037 * longword aligned.
1038 */
1039 m->m_len = m->m_pkthdr.len = MCLBYTES - RTK_ETHER_ALIGN;
1040 m->m_data += RTK_ETHER_ALIGN;
1041
1042 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1043 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1044 BUS_DMA_READ|BUS_DMA_NOWAIT);
1045
1046 if (error)
1047 goto out;
1048
1049 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1050 BUS_DMASYNC_PREREAD);
1051
1052 d = &sc->rtk_ldata.rtk_rx_list[idx];
1053 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1054 cmdstat = le32toh(d->rtk_cmdstat);
1055 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1056 if (cmdstat & RTK_RDESC_STAT_OWN) {
1057 aprint_error("%s: tried to map busy RX descriptor\n",
1058 sc->sc_dev.dv_xname);
1059 goto out;
1060 }
1061
1062 cmdstat = map->dm_segs[0].ds_len;
1063 if (idx == (RTK_RX_DESC_CNT - 1))
1064 cmdstat |= RTK_RDESC_CMD_EOR;
1065 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1066 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1067 d->rtk_cmdstat = htole32(cmdstat);
1068 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1069 cmdstat |= RTK_RDESC_CMD_OWN;
1070 d->rtk_cmdstat = htole32(cmdstat);
1071 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072
1073 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1074
1075 return 0;
1076 out:
1077 if (n != NULL)
1078 m_freem(n);
1079 return ENOMEM;
1080 }
1081
1082 static int
1083 re_tx_list_init(struct rtk_softc *sc)
1084 {
1085 int i;
1086
1087 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1088 for (i = 0; i < RTK_TX_QLEN; i++) {
1089 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1090 }
1091
1092 bus_dmamap_sync(sc->sc_dmat,
1093 sc->rtk_ldata.rtk_tx_list_map, 0,
1094 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1095 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1096 sc->rtk_ldata.rtk_txq_prodidx = 0;
1097 sc->rtk_ldata.rtk_txq_considx = 0;
1098 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1099 sc->rtk_ldata.rtk_tx_nextfree = 0;
1100
1101 return 0;
1102 }
1103
1104 static int
1105 re_rx_list_init(struct rtk_softc *sc)
1106 {
1107 int i;
1108
1109 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1110 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1111 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1112
1113 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1114 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1115 return ENOBUFS;
1116 }
1117
1118 sc->rtk_ldata.rtk_rx_prodidx = 0;
1119 sc->rtk_head = sc->rtk_tail = NULL;
1120
1121 return 0;
1122 }
1123
1124 /*
1125 * RX handler for C+ and 8169. For the gigE chips, we support
1126 * the reception of jumbo frames that have been fragmented
1127 * across multiple 2K mbuf cluster buffers.
1128 */
1129 static void
1130 re_rxeof(struct rtk_softc *sc)
1131 {
1132 struct mbuf *m;
1133 struct ifnet *ifp;
1134 int i, total_len;
1135 struct rtk_desc *cur_rx;
1136 uint32_t rxstat, rxvlan;
1137
1138 ifp = &sc->ethercom.ec_if;
1139
1140 for (i = sc->rtk_ldata.rtk_rx_prodidx;; i = RTK_NEXT_RX_DESC(sc, i)) {
1141 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1142 RTK_RXDESCSYNC(sc, i,
1143 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1144 rxstat = le32toh(cur_rx->rtk_cmdstat);
1145 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1146 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1147 break;
1148 }
1149 total_len = rxstat & sc->rtk_rxlenmask;
1150 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1151 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1152
1153 /* Invalidate the RX mbuf and unload its map */
1154
1155 bus_dmamap_sync(sc->sc_dmat,
1156 sc->rtk_ldata.rtk_rx_dmamap[i],
1157 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1158 BUS_DMASYNC_POSTREAD);
1159 bus_dmamap_unload(sc->sc_dmat,
1160 sc->rtk_ldata.rtk_rx_dmamap[i]);
1161
1162 if ((rxstat & RTK_RDESC_STAT_EOF) == 0) {
1163 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1164 if (sc->rtk_head == NULL)
1165 sc->rtk_head = sc->rtk_tail = m;
1166 else {
1167 m->m_flags &= ~M_PKTHDR;
1168 sc->rtk_tail->m_next = m;
1169 sc->rtk_tail = m;
1170 }
1171 re_newbuf(sc, i, NULL);
1172 continue;
1173 }
1174
1175 /*
1176 * NOTE: for the 8139C+, the frame length field
1177 * is always 12 bits in size, but for the gigE chips,
1178 * it is 13 bits (since the max RX frame length is 16K).
1179 * Unfortunately, all 32 bits in the status word
1180 * were already used, so to make room for the extra
1181 * length bit, RealTek took out the 'frame alignment
1182 * error' bit and shifted the other status bits
1183 * over one slot. The OWN, EOR, FS and LS bits are
1184 * still in the same places. We have already extracted
1185 * the frame length and checked the OWN bit, so rather
1186 * than using an alternate bit mapping, we shift the
1187 * status bits one space to the right so we can evaluate
1188 * them using the 8169 status as though it was in the
1189 * same format as that of the 8139C+.
1190 */
1191 if (sc->rtk_type == RTK_8169)
1192 rxstat >>= 1;
1193
1194 if ((rxstat & RTK_RDESC_STAT_RXERRSUM) != 0) {
1195 ifp->if_ierrors++;
1196 /*
1197 * If this is part of a multi-fragment packet,
1198 * discard all the pieces.
1199 */
1200 if (sc->rtk_head != NULL) {
1201 m_freem(sc->rtk_head);
1202 sc->rtk_head = sc->rtk_tail = NULL;
1203 }
1204 re_newbuf(sc, i, m);
1205 continue;
1206 }
1207
1208 /*
1209 * If allocating a replacement mbuf fails,
1210 * reload the current one.
1211 */
1212
1213 if (re_newbuf(sc, i, NULL) != 0) {
1214 ifp->if_ierrors++;
1215 if (sc->rtk_head != NULL) {
1216 m_freem(sc->rtk_head);
1217 sc->rtk_head = sc->rtk_tail = NULL;
1218 }
1219 re_newbuf(sc, i, m);
1220 continue;
1221 }
1222
1223 if (sc->rtk_head != NULL) {
1224 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1225 /*
1226 * Special case: if there's 4 bytes or less
1227 * in this buffer, the mbuf can be discarded:
1228 * the last 4 bytes is the CRC, which we don't
1229 * care about anyway.
1230 */
1231 if (m->m_len <= ETHER_CRC_LEN) {
1232 sc->rtk_tail->m_len -=
1233 (ETHER_CRC_LEN - m->m_len);
1234 m_freem(m);
1235 } else {
1236 m->m_len -= ETHER_CRC_LEN;
1237 m->m_flags &= ~M_PKTHDR;
1238 sc->rtk_tail->m_next = m;
1239 }
1240 m = sc->rtk_head;
1241 sc->rtk_head = sc->rtk_tail = NULL;
1242 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1243 } else
1244 m->m_pkthdr.len = m->m_len =
1245 (total_len - ETHER_CRC_LEN);
1246
1247 ifp->if_ipackets++;
1248 m->m_pkthdr.rcvif = ifp;
1249
1250 /* Do RX checksumming if enabled */
1251
1252 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1253
1254 /* Check IP header checksum */
1255 if (rxstat & RTK_RDESC_STAT_PROTOID)
1256 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1257 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1258 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1259 }
1260
1261 /* Check TCP/UDP checksum */
1262 if (RTK_TCPPKT(rxstat) &&
1263 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1264 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1265 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1266 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1267 }
1268 if (RTK_UDPPKT(rxstat) &&
1269 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1270 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1271 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1273 }
1274
1275 #ifdef RE_VLAN
1276 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1277 VLAN_INPUT_TAG(ifp, m,
1278 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1279 continue);
1280 }
1281 #endif
1282 #if NBPFILTER > 0
1283 if (ifp->if_bpf)
1284 bpf_mtap(ifp->if_bpf, m);
1285 #endif
1286 (*ifp->if_input)(ifp, m);
1287 }
1288
1289 sc->rtk_ldata.rtk_rx_prodidx = i;
1290 }
1291
1292 static void
1293 re_txeof(struct rtk_softc *sc)
1294 {
1295 struct ifnet *ifp;
1296 int idx;
1297 boolean_t done = FALSE;
1298
1299 ifp = &sc->ethercom.ec_if;
1300 idx = sc->rtk_ldata.rtk_txq_considx;
1301
1302 for (;;) {
1303 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1304 int descidx;
1305 uint32_t txstat;
1306
1307 if (txq->txq_mbuf == NULL) {
1308 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1309 break;
1310 }
1311
1312 descidx = txq->txq_descidx;
1313 RTK_TXDESCSYNC(sc, descidx,
1314 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1315 txstat =
1316 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1317 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1318 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1319 if (txstat & RTK_TDESC_CMD_OWN) {
1320 break;
1321 }
1322
1323 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1324 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1325 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1326 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1327 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1328 m_freem(txq->txq_mbuf);
1329 txq->txq_mbuf = NULL;
1330
1331 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1332 ifp->if_collisions++;
1333 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1334 ifp->if_oerrors++;
1335 else
1336 ifp->if_opackets++;
1337
1338 idx = RTK_NEXT_TXQ(sc, idx);
1339 done = TRUE;
1340 }
1341
1342 /* No changes made to the TX ring, so no flush needed */
1343
1344 if (done) {
1345 sc->rtk_ldata.rtk_txq_considx = idx;
1346 ifp->if_flags &= ~IFF_OACTIVE;
1347 ifp->if_timer = 0;
1348 }
1349
1350 /*
1351 * If not all descriptors have been released reaped yet,
1352 * reload the timer so that we will eventually get another
1353 * interrupt that will cause us to re-enter this routine.
1354 * This is done in case the transmitter has gone idle.
1355 */
1356 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1357 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1358 }
1359
1360 /*
1361 * Stop all chip I/O so that the kernel's probe routines don't
1362 * get confused by errant DMAs when rebooting.
1363 */
1364 static void
1365 re_shutdown(void *vsc)
1366
1367 {
1368 struct rtk_softc *sc = vsc;
1369
1370 re_stop(&sc->ethercom.ec_if, 0);
1371 }
1372
1373
1374 static void
1375 re_tick(void *xsc)
1376 {
1377 struct rtk_softc *sc = xsc;
1378 int s;
1379
1380 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1381 s = splnet();
1382
1383 mii_tick(&sc->mii);
1384 splx(s);
1385
1386 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1387 }
1388
1389 #ifdef DEVICE_POLLING
1390 static void
1391 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1392 {
1393 struct rtk_softc *sc = ifp->if_softc;
1394
1395 RTK_LOCK(sc);
1396 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1397 ether_poll_deregister(ifp);
1398 cmd = POLL_DEREGISTER;
1399 }
1400 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1401 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1402 goto done;
1403 }
1404
1405 sc->rxcycles = count;
1406 re_rxeof(sc);
1407 re_txeof(sc);
1408
1409 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1410 (*ifp->if_start)(ifp);
1411
1412 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1413 uint16_t status;
1414
1415 status = CSR_READ_2(sc, RTK_ISR);
1416 if (status == 0xffff)
1417 goto done;
1418 if (status)
1419 CSR_WRITE_2(sc, RTK_ISR, status);
1420
1421 /*
1422 * XXX check behaviour on receiver stalls.
1423 */
1424
1425 if (status & RTK_ISR_SYSTEM_ERR) {
1426 re_reset(sc);
1427 re_init(sc);
1428 }
1429 }
1430 done:
1431 RTK_UNLOCK(sc);
1432 }
1433 #endif /* DEVICE_POLLING */
1434
1435 int
1436 re_intr(void *arg)
1437 {
1438 struct rtk_softc *sc = arg;
1439 struct ifnet *ifp;
1440 uint16_t status;
1441 int handled = 0;
1442
1443 ifp = &sc->ethercom.ec_if;
1444
1445 if ((ifp->if_flags & IFF_UP) == 0)
1446 return 0;
1447
1448 #ifdef DEVICE_POLLING
1449 if (ifp->if_flags & IFF_POLLING)
1450 goto done;
1451 if ((ifp->if_capenable & IFCAP_POLLING) &&
1452 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1453 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1454 re_poll(ifp, 0, 1);
1455 goto done;
1456 }
1457 #endif /* DEVICE_POLLING */
1458
1459 for (;;) {
1460
1461 status = CSR_READ_2(sc, RTK_ISR);
1462 /* If the card has gone away the read returns 0xffff. */
1463 if (status == 0xffff)
1464 break;
1465 if (status) {
1466 handled = 1;
1467 CSR_WRITE_2(sc, RTK_ISR, status);
1468 }
1469
1470 if ((status & RTK_INTRS_CPLUS) == 0)
1471 break;
1472
1473 if ((status & RTK_ISR_RX_OK) ||
1474 (status & RTK_ISR_RX_ERR))
1475 re_rxeof(sc);
1476
1477 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1478 (status & RTK_ISR_TX_ERR) ||
1479 (status & RTK_ISR_TX_DESC_UNAVAIL))
1480 re_txeof(sc);
1481
1482 if (status & RTK_ISR_SYSTEM_ERR) {
1483 re_reset(sc);
1484 re_init(ifp);
1485 }
1486
1487 if (status & RTK_ISR_LINKCHG) {
1488 callout_stop(&sc->rtk_tick_ch);
1489 re_tick(sc);
1490 }
1491 }
1492
1493 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1494 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1495 (*ifp->if_start)(ifp);
1496
1497 #ifdef DEVICE_POLLING
1498 done:
1499 #endif
1500
1501 return handled;
1502 }
1503
1504 static int
1505 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1506 {
1507 bus_dmamap_t map;
1508 int error, seg, uidx, startidx, curidx, lastidx;
1509 #ifdef RE_VLAN
1510 struct m_tag *mtag;
1511 #endif
1512 struct rtk_desc *d;
1513 uint32_t cmdstat, rtk_flags;
1514 struct rtk_txq *txq;
1515
1516 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1517 return EFBIG;
1518 }
1519
1520 /*
1521 * Set up checksum offload. Note: checksum offload bits must
1522 * appear in all descriptors of a multi-descriptor transmit
1523 * attempt. (This is according to testing done with an 8169
1524 * chip. I'm not sure if this is a requirement or a bug.)
1525 */
1526
1527 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1528 uint32_t segsz = m->m_pkthdr.segsz;
1529
1530 rtk_flags = RTK_TDESC_CMD_LGSEND |
1531 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1532 } else {
1533
1534 /*
1535 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1536 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1537 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1538 */
1539
1540 rtk_flags = 0;
1541 if ((m->m_pkthdr.csum_flags &
1542 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1543 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1544 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1545 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1546 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1547 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1548 }
1549 }
1550 }
1551
1552 txq = &sc->rtk_ldata.rtk_txq[*idx];
1553 map = txq->txq_dmamap;
1554 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1555 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1556
1557 if (error) {
1558 /* XXX try to defrag if EFBIG? */
1559
1560 aprint_error("%s: can't map mbuf (error %d)\n",
1561 sc->sc_dev.dv_xname, error);
1562
1563 return error;
1564 }
1565
1566 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1567 error = EFBIG;
1568 goto fail_unload;
1569 }
1570
1571 /*
1572 * Make sure that the caches are synchronized before we
1573 * ask the chip to start DMA for the packet data.
1574 */
1575 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1576 BUS_DMASYNC_PREWRITE);
1577
1578 /*
1579 * Map the segment array into descriptors. Note that we set the
1580 * start-of-frame and end-of-frame markers for either TX or RX, but
1581 * they really only have meaning in the TX case. (In the RX case,
1582 * it's the chip that tells us where packets begin and end.)
1583 * We also keep track of the end of the ring and set the
1584 * end-of-ring bits as needed, and we set the ownership bits
1585 * in all except the very first descriptor. (The caller will
1586 * set this descriptor later when it start transmission or
1587 * reception.)
1588 */
1589 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1590 lastidx = -1;
1591 for (seg = 0; seg < map->dm_nsegs;
1592 seg++, curidx = RTK_NEXT_TX_DESC(sc, curidx)) {
1593 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1594 RTK_TXDESCSYNC(sc, curidx,
1595 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1596 cmdstat = le32toh(d->rtk_cmdstat);
1597 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1598 if (cmdstat & RTK_TDESC_STAT_OWN) {
1599 aprint_error("%s: tried to map busy TX descriptor\n",
1600 sc->sc_dev.dv_xname);
1601 for (; seg > 0; seg--) {
1602 uidx = (curidx + RTK_TX_DESC_CNT(sc) - seg) %
1603 RTK_TX_DESC_CNT(sc);
1604 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1605 RTK_TXDESCSYNC(sc, uidx,
1606 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1607 }
1608 error = ENOBUFS;
1609 goto fail_unload;
1610 }
1611
1612 cmdstat = map->dm_segs[seg].ds_len;
1613 if (seg == 0)
1614 cmdstat |= RTK_TDESC_CMD_SOF;
1615 else
1616 cmdstat |= RTK_TDESC_CMD_OWN;
1617 if (seg == map->dm_nsegs - 1) {
1618 cmdstat |= RTK_TDESC_CMD_EOF;
1619 lastidx = curidx;
1620 }
1621 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1622 cmdstat |= RTK_TDESC_CMD_EOR;
1623 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1624 d->rtk_bufaddr_lo =
1625 htole32(RTK_ADDR_LO(map->dm_segs[seg].ds_addr));
1626 d->rtk_bufaddr_hi =
1627 htole32(RTK_ADDR_HI(map->dm_segs[seg].ds_addr));
1628 RTK_TXDESCSYNC(sc, curidx,
1629 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1630 }
1631 KASSERT(lastidx != -1);
1632
1633 /*
1634 * Set up hardware VLAN tagging. Note: vlan tag info must
1635 * appear in the first descriptor of a multi-descriptor
1636 * transmission attempt.
1637 */
1638
1639 #ifdef RE_VLAN
1640 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1641 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1642 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1643 RTK_TDESC_VLANCTL_TAG);
1644 }
1645 #endif
1646
1647 /* Transfer ownership of packet to the chip. */
1648
1649 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1650 htole32(RTK_TDESC_CMD_OWN);
1651 RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1652
1653 /* update info of TX queue and descriptors */
1654 txq->txq_mbuf = m;
1655 txq->txq_descidx = lastidx;
1656
1657 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1658 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1659
1660 *idx = RTK_NEXT_TXQ(sc, *idx);
1661
1662 return 0;
1663
1664 fail_unload:
1665 bus_dmamap_unload(sc->sc_dmat, map);
1666
1667 return error;
1668 }
1669
1670 /*
1671 * Main transmit routine for C+ and gigE NICs.
1672 */
1673
1674 static void
1675 re_start(struct ifnet *ifp)
1676 {
1677 struct rtk_softc *sc;
1678 int idx;
1679 boolean_t done = FALSE;
1680
1681 sc = ifp->if_softc;
1682
1683 idx = sc->rtk_ldata.rtk_txq_prodidx;
1684 for (;;) {
1685 struct mbuf *m;
1686 int error;
1687
1688 IFQ_POLL(&ifp->if_snd, m);
1689 if (m == NULL)
1690 break;
1691
1692 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1693 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1694 ifp->if_flags |= IFF_OACTIVE;
1695 break;
1696 }
1697
1698 error = re_encap(sc, m, &idx);
1699 if (error == EFBIG &&
1700 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1701 IFQ_DEQUEUE(&ifp->if_snd, m);
1702 m_freem(m);
1703 ifp->if_oerrors++;
1704 continue;
1705 }
1706 if (error) {
1707 ifp->if_flags |= IFF_OACTIVE;
1708 break;
1709 }
1710
1711 IFQ_DEQUEUE(&ifp->if_snd, m);
1712
1713 #if NBPFILTER > 0
1714 /*
1715 * If there's a BPF listener, bounce a copy of this frame
1716 * to him.
1717 */
1718 if (ifp->if_bpf)
1719 bpf_mtap(ifp->if_bpf, m);
1720 #endif
1721
1722 done = TRUE;
1723 }
1724
1725 if (!done) {
1726 return;
1727 }
1728 sc->rtk_ldata.rtk_txq_prodidx = idx;
1729
1730 /*
1731 * RealTek put the TX poll request register in a different
1732 * location on the 8169 gigE chip. I don't know why.
1733 */
1734
1735 if (sc->rtk_type == RTK_8169)
1736 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1737 else
1738 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1739
1740 /*
1741 * Use the countdown timer for interrupt moderation.
1742 * 'TX done' interrupts are disabled. Instead, we reset the
1743 * countdown timer, which will begin counting until it hits
1744 * the value in the TIMERINT register, and then trigger an
1745 * interrupt. Each time we write to the TIMERCNT register,
1746 * the timer count is reset to 0.
1747 */
1748 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1749
1750 /*
1751 * Set a timeout in case the chip goes out to lunch.
1752 */
1753 ifp->if_timer = 5;
1754 }
1755
1756 static int
1757 re_init(struct ifnet *ifp)
1758 {
1759 struct rtk_softc *sc = ifp->if_softc;
1760 uint8_t *enaddr;
1761 uint32_t rxcfg = 0;
1762 uint32_t reg;
1763 int error;
1764
1765 if ((error = re_enable(sc)) != 0)
1766 goto out;
1767
1768 /*
1769 * Cancel pending I/O and free all RX/TX buffers.
1770 */
1771 re_stop(ifp, 0);
1772
1773 /*
1774 * Enable C+ RX and TX mode, as well as VLAN stripping and
1775 * RX checksum offload. We must configure the C+ register
1776 * before all others.
1777 */
1778 reg = 0;
1779
1780 /*
1781 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1782 * FreeBSD drivers set these bits anyway (for 8139C+?).
1783 * So far, it works.
1784 */
1785
1786 /*
1787 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1788 * For 8169S/8110S rev 2 and above, do not set bit 14.
1789 */
1790 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1791 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1792
1793 if (1) {/* not for 8169S ? */
1794 reg |=
1795 #ifdef RE_VLAN
1796 RTK_CPLUSCMD_VLANSTRIP |
1797 #endif
1798 (ifp->if_capenable &
1799 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1800 IFCAP_CSUM_UDPv4_Rx) ?
1801 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1802 }
1803
1804 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1805 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1806
1807 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1808 if (sc->rtk_type == RTK_8169)
1809 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1810
1811 DELAY(10000);
1812
1813 /*
1814 * Init our MAC address. Even though the chipset
1815 * documentation doesn't mention it, we need to enter "Config
1816 * register write enable" mode to modify the ID registers.
1817 */
1818 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1819 enaddr = LLADDR(ifp->if_sadl);
1820 reg = enaddr[0] | (enaddr[1] << 8) |
1821 (enaddr[2] << 16) | (enaddr[3] << 24);
1822 CSR_WRITE_4(sc, RTK_IDR0, reg);
1823 reg = enaddr[4] | (enaddr[5] << 8);
1824 CSR_WRITE_4(sc, RTK_IDR4, reg);
1825 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1826
1827 /*
1828 * For C+ mode, initialize the RX descriptors and mbufs.
1829 */
1830 re_rx_list_init(sc);
1831 re_tx_list_init(sc);
1832
1833 /*
1834 * Enable transmit and receive.
1835 */
1836 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1837
1838 /*
1839 * Set the initial TX and RX configuration.
1840 */
1841 if (sc->rtk_testmode) {
1842 if (sc->rtk_type == RTK_8169)
1843 CSR_WRITE_4(sc, RTK_TXCFG,
1844 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1845 else
1846 CSR_WRITE_4(sc, RTK_TXCFG,
1847 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1848 } else
1849 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1850 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1851
1852 /* Set the individual bit to receive frames for this host only. */
1853 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1854 rxcfg |= RTK_RXCFG_RX_INDIV;
1855
1856 /* If we want promiscuous mode, set the allframes bit. */
1857 if (ifp->if_flags & IFF_PROMISC)
1858 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1859 else
1860 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1861 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1862
1863 /*
1864 * Set capture broadcast bit to capture broadcast frames.
1865 */
1866 if (ifp->if_flags & IFF_BROADCAST)
1867 rxcfg |= RTK_RXCFG_RX_BROAD;
1868 else
1869 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1870 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1871
1872 /*
1873 * Program the multicast filter, if necessary.
1874 */
1875 rtk_setmulti(sc);
1876
1877 #ifdef DEVICE_POLLING
1878 /*
1879 * Disable interrupts if we are polling.
1880 */
1881 if (ifp->if_flags & IFF_POLLING)
1882 CSR_WRITE_2(sc, RTK_IMR, 0);
1883 else /* otherwise ... */
1884 #endif /* DEVICE_POLLING */
1885 /*
1886 * Enable interrupts.
1887 */
1888 if (sc->rtk_testmode)
1889 CSR_WRITE_2(sc, RTK_IMR, 0);
1890 else
1891 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1892
1893 /* Start RX/TX process. */
1894 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1895 #ifdef notdef
1896 /* Enable receiver and transmitter. */
1897 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1898 #endif
1899 /*
1900 * Load the addresses of the RX and TX lists into the chip.
1901 */
1902
1903 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1904 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1905 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1906 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1907
1908 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1909 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1910 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1911 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1912
1913 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1914
1915 /*
1916 * Initialize the timer interrupt register so that
1917 * a timer interrupt will be generated once the timer
1918 * reaches a certain number of ticks. The timer is
1919 * reloaded on each transmit. This gives us TX interrupt
1920 * moderation, which dramatically improves TX frame rate.
1921 */
1922
1923 if (sc->rtk_type == RTK_8169)
1924 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1925 else
1926 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1927
1928 /*
1929 * For 8169 gigE NICs, set the max allowed RX packet
1930 * size so we can receive jumbo frames.
1931 */
1932 if (sc->rtk_type == RTK_8169)
1933 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1934
1935 if (sc->rtk_testmode)
1936 return 0;
1937
1938 mii_mediachg(&sc->mii);
1939
1940 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1941
1942 ifp->if_flags |= IFF_RUNNING;
1943 ifp->if_flags &= ~IFF_OACTIVE;
1944
1945 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1946
1947 out:
1948 if (error) {
1949 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1950 ifp->if_timer = 0;
1951 aprint_error("%s: interface not running\n",
1952 sc->sc_dev.dv_xname);
1953 }
1954
1955 return error;
1956 }
1957
1958 /*
1959 * Set media options.
1960 */
1961 static int
1962 re_ifmedia_upd(struct ifnet *ifp)
1963 {
1964 struct rtk_softc *sc;
1965
1966 sc = ifp->if_softc;
1967
1968 return mii_mediachg(&sc->mii);
1969 }
1970
1971 /*
1972 * Report current media status.
1973 */
1974 static void
1975 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1976 {
1977 struct rtk_softc *sc;
1978
1979 sc = ifp->if_softc;
1980
1981 mii_pollstat(&sc->mii);
1982 ifmr->ifm_active = sc->mii.mii_media_active;
1983 ifmr->ifm_status = sc->mii.mii_media_status;
1984 }
1985
1986 static int
1987 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1988 {
1989 struct rtk_softc *sc = ifp->if_softc;
1990 struct ifreq *ifr = (struct ifreq *) data;
1991 int s, error = 0;
1992
1993 s = splnet();
1994
1995 switch (command) {
1996 case SIOCSIFMTU:
1997 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1998 error = EINVAL;
1999 ifp->if_mtu = ifr->ifr_mtu;
2000 break;
2001 case SIOCGIFMEDIA:
2002 case SIOCSIFMEDIA:
2003 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2004 break;
2005 default:
2006 error = ether_ioctl(ifp, command, data);
2007 if (error == ENETRESET) {
2008 if (ifp->if_flags & IFF_RUNNING)
2009 rtk_setmulti(sc);
2010 error = 0;
2011 }
2012 break;
2013 }
2014
2015 splx(s);
2016
2017 return error;
2018 }
2019
2020 static void
2021 re_watchdog(struct ifnet *ifp)
2022 {
2023 struct rtk_softc *sc;
2024 int s;
2025
2026 sc = ifp->if_softc;
2027 s = splnet();
2028 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2029 ifp->if_oerrors++;
2030
2031 re_txeof(sc);
2032 re_rxeof(sc);
2033
2034 re_init(ifp);
2035
2036 splx(s);
2037 }
2038
2039 /*
2040 * Stop the adapter and free any mbufs allocated to the
2041 * RX and TX lists.
2042 */
2043 static void
2044 re_stop(struct ifnet *ifp, int disable)
2045 {
2046 int i;
2047 struct rtk_softc *sc = ifp->if_softc;
2048
2049 callout_stop(&sc->rtk_tick_ch);
2050
2051 #ifdef DEVICE_POLLING
2052 ether_poll_deregister(ifp);
2053 #endif /* DEVICE_POLLING */
2054
2055 mii_down(&sc->mii);
2056
2057 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2058 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2059
2060 if (sc->rtk_head != NULL) {
2061 m_freem(sc->rtk_head);
2062 sc->rtk_head = sc->rtk_tail = NULL;
2063 }
2064
2065 /* Free the TX list buffers. */
2066 for (i = 0; i < RTK_TX_QLEN; i++) {
2067 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2068 bus_dmamap_unload(sc->sc_dmat,
2069 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2070 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2071 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2072 }
2073 }
2074
2075 /* Free the RX list buffers. */
2076 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2077 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2078 bus_dmamap_unload(sc->sc_dmat,
2079 sc->rtk_ldata.rtk_rx_dmamap[i]);
2080 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2081 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2082 }
2083 }
2084
2085 if (disable)
2086 re_disable(sc);
2087
2088 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2089 ifp->if_timer = 0;
2090 }
2091