Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.49
      1 /*	$NetBSD: rtl8169.c,v 1.49 2006/10/27 13:26:34 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <machine/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/ic/rtl81x9reg.h>
    151 #include <dev/ic/rtl81x9var.h>
    152 
    153 #include <dev/ic/rtl8169var.h>
    154 
    155 
    156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    157 
    158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    159 static int re_rx_list_init(struct rtk_softc *);
    160 static int re_tx_list_init(struct rtk_softc *);
    161 static void re_rxeof(struct rtk_softc *);
    162 static void re_txeof(struct rtk_softc *);
    163 static void re_tick(void *);
    164 static void re_start(struct ifnet *);
    165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    166 static int re_init(struct ifnet *);
    167 static void re_stop(struct ifnet *, int);
    168 static void re_watchdog(struct ifnet *);
    169 
    170 static void re_shutdown(void *);
    171 static int re_enable(struct rtk_softc *);
    172 static void re_disable(struct rtk_softc *);
    173 static void re_power(int, void *);
    174 
    175 static int re_ifmedia_upd(struct ifnet *);
    176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    177 
    178 static int re_gmii_readreg(struct device *, int, int);
    179 static void re_gmii_writereg(struct device *, int, int, int);
    180 
    181 static int re_miibus_readreg(struct device *, int, int);
    182 static void re_miibus_writereg(struct device *, int, int, int);
    183 static void re_miibus_statchg(struct device *);
    184 
    185 static void re_reset(struct rtk_softc *);
    186 
    187 static int
    188 re_gmii_readreg(struct device *self, int phy, int reg)
    189 {
    190 	struct rtk_softc	*sc = (void *)self;
    191 	uint32_t		rval;
    192 	int			i;
    193 
    194 	if (phy != 7)
    195 		return 0;
    196 
    197 	/* Let the rgephy driver read the GMEDIASTAT register */
    198 
    199 	if (reg == RTK_GMEDIASTAT) {
    200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    201 		return rval;
    202 	}
    203 
    204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    205 	DELAY(1000);
    206 
    207 	for (i = 0; i < RTK_TIMEOUT; i++) {
    208 		rval = CSR_READ_4(sc, RTK_PHYAR);
    209 		if (rval & RTK_PHYAR_BUSY)
    210 			break;
    211 		DELAY(100);
    212 	}
    213 
    214 	if (i == RTK_TIMEOUT) {
    215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    216 		return 0;
    217 	}
    218 
    219 	return rval & RTK_PHYAR_PHYDATA;
    220 }
    221 
    222 static void
    223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
    224 {
    225 	struct rtk_softc	*sc = (void *)dev;
    226 	uint32_t		rval;
    227 	int			i;
    228 
    229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    231 	DELAY(1000);
    232 
    233 	for (i = 0; i < RTK_TIMEOUT; i++) {
    234 		rval = CSR_READ_4(sc, RTK_PHYAR);
    235 		if (!(rval & RTK_PHYAR_BUSY))
    236 			break;
    237 		DELAY(100);
    238 	}
    239 
    240 	if (i == RTK_TIMEOUT) {
    241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    242 		    sc->sc_dev.dv_xname, reg, data);
    243 	}
    244 }
    245 
    246 static int
    247 re_miibus_readreg(struct device *dev, int phy, int reg)
    248 {
    249 	struct rtk_softc	*sc = (void *)dev;
    250 	uint16_t		rval = 0;
    251 	uint16_t		re8139_reg = 0;
    252 	int			s;
    253 
    254 	s = splnet();
    255 
    256 	if (sc->rtk_type == RTK_8169) {
    257 		rval = re_gmii_readreg(dev, phy, reg);
    258 		splx(s);
    259 		return rval;
    260 	}
    261 
    262 	/* Pretend the internal PHY is only at address 0 */
    263 	if (phy) {
    264 		splx(s);
    265 		return 0;
    266 	}
    267 	switch (reg) {
    268 	case MII_BMCR:
    269 		re8139_reg = RTK_BMCR;
    270 		break;
    271 	case MII_BMSR:
    272 		re8139_reg = RTK_BMSR;
    273 		break;
    274 	case MII_ANAR:
    275 		re8139_reg = RTK_ANAR;
    276 		break;
    277 	case MII_ANER:
    278 		re8139_reg = RTK_ANER;
    279 		break;
    280 	case MII_ANLPAR:
    281 		re8139_reg = RTK_LPAR;
    282 		break;
    283 	case MII_PHYIDR1:
    284 	case MII_PHYIDR2:
    285 		splx(s);
    286 		return 0;
    287 	/*
    288 	 * Allow the rlphy driver to read the media status
    289 	 * register. If we have a link partner which does not
    290 	 * support NWAY, this is the register which will tell
    291 	 * us the results of parallel detection.
    292 	 */
    293 	case RTK_MEDIASTAT:
    294 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    295 		splx(s);
    296 		return rval;
    297 	default:
    298 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    299 		splx(s);
    300 		return 0;
    301 	}
    302 	rval = CSR_READ_2(sc, re8139_reg);
    303 	splx(s);
    304 	return rval;
    305 }
    306 
    307 static void
    308 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    309 {
    310 	struct rtk_softc	*sc = (void *)dev;
    311 	uint16_t		re8139_reg = 0;
    312 	int			s;
    313 
    314 	s = splnet();
    315 
    316 	if (sc->rtk_type == RTK_8169) {
    317 		re_gmii_writereg(dev, phy, reg, data);
    318 		splx(s);
    319 		return;
    320 	}
    321 
    322 	/* Pretend the internal PHY is only at address 0 */
    323 	if (phy) {
    324 		splx(s);
    325 		return;
    326 	}
    327 	switch (reg) {
    328 	case MII_BMCR:
    329 		re8139_reg = RTK_BMCR;
    330 		break;
    331 	case MII_BMSR:
    332 		re8139_reg = RTK_BMSR;
    333 		break;
    334 	case MII_ANAR:
    335 		re8139_reg = RTK_ANAR;
    336 		break;
    337 	case MII_ANER:
    338 		re8139_reg = RTK_ANER;
    339 		break;
    340 	case MII_ANLPAR:
    341 		re8139_reg = RTK_LPAR;
    342 		break;
    343 	case MII_PHYIDR1:
    344 	case MII_PHYIDR2:
    345 		splx(s);
    346 		return;
    347 		break;
    348 	default:
    349 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    350 		splx(s);
    351 		return;
    352 	}
    353 	CSR_WRITE_2(sc, re8139_reg, data);
    354 	splx(s);
    355 	return;
    356 }
    357 
    358 static void
    359 re_miibus_statchg(struct device *dev __unused)
    360 {
    361 
    362 	return;
    363 }
    364 
    365 static void
    366 re_reset(struct rtk_softc *sc)
    367 {
    368 	int		i;
    369 
    370 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    371 
    372 	for (i = 0; i < RTK_TIMEOUT; i++) {
    373 		DELAY(10);
    374 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    375 			break;
    376 	}
    377 	if (i == RTK_TIMEOUT)
    378 		aprint_error("%s: reset never completed!\n",
    379 		    sc->sc_dev.dv_xname);
    380 
    381 	/*
    382 	 * NB: Realtek-supplied Linux driver does this only for
    383 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    384 	 */
    385 	if (1) /* XXX check softc flag for 8169s version */
    386 		CSR_WRITE_1(sc, 0x82, 1);
    387 
    388 	return;
    389 }
    390 
    391 /*
    392  * The following routine is designed to test for a defect on some
    393  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    394  * lines connected to the bus, however for a 32-bit only card, they
    395  * should be pulled high. The result of this defect is that the
    396  * NIC will not work right if you plug it into a 64-bit slot: DMA
    397  * operations will be done with 64-bit transfers, which will fail
    398  * because the 64-bit data lines aren't connected.
    399  *
    400  * There's no way to work around this (short of talking a soldering
    401  * iron to the board), however we can detect it. The method we use
    402  * here is to put the NIC into digital loopback mode, set the receiver
    403  * to promiscuous mode, and then try to send a frame. We then compare
    404  * the frame data we sent to what was received. If the data matches,
    405  * then the NIC is working correctly, otherwise we know the user has
    406  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    407  * slot. In the latter case, there's no way the NIC can work correctly,
    408  * so we print out a message on the console and abort the device attach.
    409  */
    410 
    411 int
    412 re_diag(struct rtk_softc *sc)
    413 {
    414 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    415 	struct mbuf		*m0;
    416 	struct ether_header	*eh;
    417 	struct rtk_desc		*cur_rx;
    418 	bus_dmamap_t		dmamap;
    419 	uint16_t		status;
    420 	uint32_t		rxstat;
    421 	int			total_len, i, s, error = 0;
    422 	static const uint8_t	dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    423 	static const uint8_t	src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    424 
    425 	/* Allocate a single mbuf */
    426 
    427 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    428 	if (m0 == NULL)
    429 		return ENOBUFS;
    430 
    431 	/*
    432 	 * Initialize the NIC in test mode. This sets the chip up
    433 	 * so that it can send and receive frames, but performs the
    434 	 * following special functions:
    435 	 * - Puts receiver in promiscuous mode
    436 	 * - Enables digital loopback mode
    437 	 * - Leaves interrupts turned off
    438 	 */
    439 
    440 	ifp->if_flags |= IFF_PROMISC;
    441 	sc->rtk_testmode = 1;
    442 	re_init(ifp);
    443 	re_stop(ifp, 0);
    444 	DELAY(100000);
    445 	re_init(ifp);
    446 
    447 	/* Put some data in the mbuf */
    448 
    449 	eh = mtod(m0, struct ether_header *);
    450 	memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
    451 	memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
    452 	eh->ether_type = htons(ETHERTYPE_IP);
    453 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    454 
    455 	/*
    456 	 * Queue the packet, start transmission.
    457 	 */
    458 
    459 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    460 	s = splnet();
    461 	IF_ENQUEUE(&ifp->if_snd, m0);
    462 	re_start(ifp);
    463 	splx(s);
    464 	m0 = NULL;
    465 
    466 	/* Wait for it to propagate through the chip */
    467 
    468 	DELAY(100000);
    469 	for (i = 0; i < RTK_TIMEOUT; i++) {
    470 		status = CSR_READ_2(sc, RTK_ISR);
    471 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    472 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    473 			break;
    474 		DELAY(10);
    475 	}
    476 	if (i == RTK_TIMEOUT) {
    477 		aprint_error("%s: diagnostic failed, failed to receive packet "
    478 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    479 		error = EIO;
    480 		goto done;
    481 	}
    482 
    483 	/*
    484 	 * The packet should have been dumped into the first
    485 	 * entry in the RX DMA ring. Grab it from there.
    486 	 */
    487 
    488 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    489 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    490 	    BUS_DMASYNC_POSTREAD);
    491 	bus_dmamap_unload(sc->sc_dmat,
    492 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    493 
    494 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    495 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    496 	eh = mtod(m0, struct ether_header *);
    497 
    498 	RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    499 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    500 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    501 	total_len = rxstat & sc->rtk_rxlenmask;
    502 
    503 	if (total_len != ETHER_MIN_LEN) {
    504 		aprint_error("%s: diagnostic failed, received short packet\n",
    505 		    sc->sc_dev.dv_xname);
    506 		error = EIO;
    507 		goto done;
    508 	}
    509 
    510 	/* Test that the received packet data matches what we sent. */
    511 
    512 	if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    513 	    memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    514 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    515 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    516 		    sc->sc_dev.dv_xname);
    517 		aprint_error("%s: expected TX data: %s",
    518 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    519 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    520 		aprint_error("%s: received RX data: %s",
    521 		    sc->sc_dev.dv_xname,
    522 		    ether_sprintf(eh->ether_dhost));
    523 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    524 		    ntohs(eh->ether_type));
    525 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    526 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    527 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    528 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    529 		aprint_error("%s: Read the re(4) man page for more details.\n",
    530 		    sc->sc_dev.dv_xname);
    531 		error = EIO;
    532 	}
    533 
    534  done:
    535 	/* Turn interface off, release resources */
    536 
    537 	sc->rtk_testmode = 0;
    538 	ifp->if_flags &= ~IFF_PROMISC;
    539 	re_stop(ifp, 0);
    540 	if (m0 != NULL)
    541 		m_freem(m0);
    542 
    543 	return error;
    544 }
    545 
    546 
    547 /*
    548  * Attach the interface. Allocate softc structures, do ifmedia
    549  * setup and ethernet/BPF attach.
    550  */
    551 void
    552 re_attach(struct rtk_softc *sc)
    553 {
    554 	u_char			eaddr[ETHER_ADDR_LEN];
    555 	uint16_t		val;
    556 	struct ifnet		*ifp;
    557 	int			error = 0, i, addr_len;
    558 
    559 
    560 	/* XXX JRS: bus-attach-independent code begins approximately here */
    561 
    562 	/* Reset the adapter. */
    563 	re_reset(sc);
    564 
    565 	if (sc->rtk_type == RTK_8169) {
    566 		uint32_t hwrev;
    567 
    568 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    569 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    570 		if (hwrev == (0x1 << 28)) {
    571 			sc->sc_rev = 4;
    572 		} else if (hwrev == (0x1 << 26)) {
    573 			sc->sc_rev = 3;
    574 		} else if (hwrev == (0x1 << 23)) {
    575 			sc->sc_rev = 2;
    576 		} else
    577 			sc->sc_rev = 1;
    578 
    579 		/* Set RX length mask */
    580 
    581 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    582 
    583 		/* Force station address autoload from the EEPROM */
    584 
    585 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    586 		for (i = 0; i < RTK_TIMEOUT; i++) {
    587 			if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
    588 			    == 0)
    589 				break;
    590 			DELAY(100);
    591 		}
    592 		if (i == RTK_TIMEOUT)
    593 			aprint_error("%s: eeprom autoload timed out\n",
    594 			    sc->sc_dev.dv_xname);
    595 
    596 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    597 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    598 
    599 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
    600 	} else {
    601 
    602 		/* Set RX length mask */
    603 
    604 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    605 
    606 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    607 			addr_len = RTK_EEADDR_LEN1;
    608 		else
    609 			addr_len = RTK_EEADDR_LEN0;
    610 
    611 		/*
    612 		 * Get station address from the EEPROM.
    613 		 */
    614 		for (i = 0; i < 3; i++) {
    615 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    616 			eaddr[(i * 2) + 0] = val & 0xff;
    617 			eaddr[(i * 2) + 1] = val >> 8;
    618 		}
    619 
    620 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
    621 	}
    622 
    623 	aprint_normal("%s: Ethernet address %s\n",
    624 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    625 
    626 	if (sc->rtk_ldata.rtk_tx_desc_cnt >
    627 	    PAGE_SIZE / sizeof(struct rtk_desc)) {
    628 		sc->rtk_ldata.rtk_tx_desc_cnt =
    629 		    PAGE_SIZE / sizeof(struct rtk_desc);
    630 	}
    631 
    632 	aprint_verbose("%s: using %d tx descriptors\n",
    633 	    sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
    634 
    635 	/* Allocate DMA'able memory for the TX ring */
    636 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
    637 	    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
    638 	    &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    639 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    640 		    sc->sc_dev.dv_xname, error);
    641 		goto fail_0;
    642 	}
    643 
    644 	/* Load the map for the TX ring. */
    645 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    646 	    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
    647 	    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    648 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    649 		aprint_error("%s: can't map tx list, error = %d\n",
    650 		    sc->sc_dev.dv_xname, error);
    651 	  	goto fail_1;
    652 	}
    653 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
    654 
    655 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
    656 	    RTK_TX_LIST_SZ(sc), 0, 0,
    657 	    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    658 		aprint_error("%s: can't create tx list map, error = %d\n",
    659 		    sc->sc_dev.dv_xname, error);
    660 		goto fail_2;
    661 	}
    662 
    663 
    664 	if ((error = bus_dmamap_load(sc->sc_dmat,
    665 	    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    666 	    RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    667 		aprint_error("%s: can't load tx list, error = %d\n",
    668 		    sc->sc_dev.dv_xname, error);
    669 		goto fail_3;
    670 	}
    671 
    672 	/* Create DMA maps for TX buffers */
    673 	for (i = 0; i < RTK_TX_QLEN; i++) {
    674 		error = bus_dmamap_create(sc->sc_dmat,
    675 		    round_page(IP_MAXPACKET),
    676 		    RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
    677 		    &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    678 		if (error) {
    679 			aprint_error("%s: can't create DMA map for TX\n",
    680 			    sc->sc_dev.dv_xname);
    681 			goto fail_4;
    682 		}
    683 	}
    684 
    685 	/* Allocate DMA'able memory for the RX ring */
    686 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    687 	    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    688 	    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    689 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    690 		    sc->sc_dev.dv_xname, error);
    691 		goto fail_4;
    692 	}
    693 
    694 	/* Load the map for the RX ring. */
    695 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    696 	    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    697 	    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    698 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    699 		aprint_error("%s: can't map rx list, error = %d\n",
    700 		    sc->sc_dev.dv_xname, error);
    701 		goto fail_5;
    702 	}
    703 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
    704 
    705 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    706 	    RTK_RX_LIST_SZ, 0, 0,
    707 	    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    708 		aprint_error("%s: can't create rx list map, error = %d\n",
    709 		    sc->sc_dev.dv_xname, error);
    710 		goto fail_6;
    711 	}
    712 
    713 	if ((error = bus_dmamap_load(sc->sc_dmat,
    714 	    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    715 	    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    716 		aprint_error("%s: can't load rx list, error = %d\n",
    717 		    sc->sc_dev.dv_xname, error);
    718 		goto fail_7;
    719 	}
    720 
    721 	/* Create DMA maps for RX buffers */
    722 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    723 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    724 		    0, 0, &sc->rtk_ldata.rtk_rx_dmamap[i]);
    725 		if (error) {
    726 			aprint_error("%s: can't create DMA map for RX\n",
    727 			    sc->sc_dev.dv_xname);
    728 			goto fail_8;
    729 		}
    730 	}
    731 
    732 	/*
    733 	 * Record interface as attached. From here, we should not fail.
    734 	 */
    735 	sc->sc_flags |= RTK_ATTACHED;
    736 
    737 	ifp = &sc->ethercom.ec_if;
    738 	ifp->if_softc = sc;
    739 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    740 	ifp->if_mtu = ETHERMTU;
    741 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    742 	ifp->if_ioctl = re_ioctl;
    743 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    744 
    745 	/*
    746 	 * This is a way to disable hw VLAN tagging by default
    747 	 * (RE_VLAN is undefined), as it is problematic. PR 32643
    748 	 */
    749 
    750 #ifdef RE_VLAN
    751 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    752 #endif
    753 	ifp->if_start = re_start;
    754 	ifp->if_stop = re_stop;
    755 
    756 	/*
    757 	 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
    758 	 */
    759 
    760 	ifp->if_capabilities |=
    761 	    /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
    762 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    763 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    764 	    IFCAP_TSOv4;
    765 	ifp->if_watchdog = re_watchdog;
    766 	ifp->if_init = re_init;
    767 	if (sc->rtk_type == RTK_8169)
    768 		ifp->if_baudrate = 1000000000;
    769 	else
    770 		ifp->if_baudrate = 100000000;
    771 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    772 	ifp->if_capenable = ifp->if_capabilities;
    773 	IFQ_SET_READY(&ifp->if_snd);
    774 
    775 	callout_init(&sc->rtk_tick_ch);
    776 
    777 	/* Do MII setup */
    778 	sc->mii.mii_ifp = ifp;
    779 	sc->mii.mii_readreg = re_miibus_readreg;
    780 	sc->mii.mii_writereg = re_miibus_writereg;
    781 	sc->mii.mii_statchg = re_miibus_statchg;
    782 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    783 	    re_ifmedia_sts);
    784 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    785 	    MII_OFFSET_ANY, 0);
    786 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    787 
    788 	/*
    789 	 * Call MI attach routine.
    790 	 */
    791 	if_attach(ifp);
    792 	ether_ifattach(ifp, eaddr);
    793 
    794 
    795 	/*
    796 	 * Make sure the interface is shutdown during reboot.
    797 	 */
    798 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    799 	if (sc->sc_sdhook == NULL)
    800 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    801 		    sc->sc_dev.dv_xname);
    802 	/*
    803 	 * Add a suspend hook to make sure we come back up after a
    804 	 * resume.
    805 	 */
    806 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    807 	    re_power, sc);
    808 	if (sc->sc_powerhook == NULL)
    809 		aprint_error("%s: WARNING: unable to establish power hook\n",
    810 		    sc->sc_dev.dv_xname);
    811 
    812 
    813 	return;
    814 
    815  fail_8:
    816 	/* Destroy DMA maps for RX buffers. */
    817 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    818 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    819 			bus_dmamap_destroy(sc->sc_dmat,
    820 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    821 
    822 	/* Free DMA'able memory for the RX ring. */
    823 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    824  fail_7:
    825 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    826  fail_6:
    827 	bus_dmamem_unmap(sc->sc_dmat,
    828 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    829  fail_5:
    830 	bus_dmamem_free(sc->sc_dmat,
    831 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    832 
    833  fail_4:
    834 	/* Destroy DMA maps for TX buffers. */
    835 	for (i = 0; i < RTK_TX_QLEN; i++)
    836 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    837 			bus_dmamap_destroy(sc->sc_dmat,
    838 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    839 
    840 	/* Free DMA'able memory for the TX ring. */
    841 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    842  fail_3:
    843 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    844  fail_2:
    845 	bus_dmamem_unmap(sc->sc_dmat,
    846 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    847  fail_1:
    848 	bus_dmamem_free(sc->sc_dmat,
    849 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    850  fail_0:
    851 	return;
    852 }
    853 
    854 
    855 /*
    856  * re_activate:
    857  *     Handle device activation/deactivation requests.
    858  */
    859 int
    860 re_activate(struct device *self, enum devact act)
    861 {
    862 	struct rtk_softc *sc = (void *)self;
    863 	int s, error = 0;
    864 
    865 	s = splnet();
    866 	switch (act) {
    867 	case DVACT_ACTIVATE:
    868 		error = EOPNOTSUPP;
    869 		break;
    870 	case DVACT_DEACTIVATE:
    871 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    872 		if_deactivate(&sc->ethercom.ec_if);
    873 		break;
    874 	}
    875 	splx(s);
    876 
    877 	return error;
    878 }
    879 
    880 /*
    881  * re_detach:
    882  *     Detach a rtk interface.
    883  */
    884 int
    885 re_detach(struct rtk_softc *sc)
    886 {
    887 	struct ifnet *ifp = &sc->ethercom.ec_if;
    888 	int i;
    889 
    890 	/*
    891 	 * Succeed now if there isn't any work to do.
    892 	 */
    893 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    894 		return 0;
    895 
    896 	/* Unhook our tick handler. */
    897 	callout_stop(&sc->rtk_tick_ch);
    898 
    899 	/* Detach all PHYs. */
    900 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    901 
    902 	/* Delete all remaining media. */
    903 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    904 
    905 	ether_ifdetach(ifp);
    906 	if_detach(ifp);
    907 
    908 	/* Destroy DMA maps for RX buffers. */
    909 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    910 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    911 			bus_dmamap_destroy(sc->sc_dmat,
    912 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    913 
    914 	/* Free DMA'able memory for the RX ring. */
    915 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    916 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    917 	bus_dmamem_unmap(sc->sc_dmat,
    918 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    919 	bus_dmamem_free(sc->sc_dmat,
    920 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    921 
    922 	/* Destroy DMA maps for TX buffers. */
    923 	for (i = 0; i < RTK_TX_QLEN; i++)
    924 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    925 			bus_dmamap_destroy(sc->sc_dmat,
    926 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    927 
    928 	/* Free DMA'able memory for the TX ring. */
    929 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    930 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    931 	bus_dmamem_unmap(sc->sc_dmat,
    932 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    933 	bus_dmamem_free(sc->sc_dmat,
    934 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    935 
    936 
    937 	shutdownhook_disestablish(sc->sc_sdhook);
    938 	powerhook_disestablish(sc->sc_powerhook);
    939 
    940 	return 0;
    941 }
    942 
    943 /*
    944  * re_enable:
    945  *     Enable the RTL81X9 chip.
    946  */
    947 static int
    948 re_enable(struct rtk_softc *sc)
    949 {
    950 
    951 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    952 		if ((*sc->sc_enable)(sc) != 0) {
    953 			aprint_error("%s: device enable failed\n",
    954 			    sc->sc_dev.dv_xname);
    955 			return EIO;
    956 		}
    957 		sc->sc_flags |= RTK_ENABLED;
    958 	}
    959 	return 0;
    960 }
    961 
    962 /*
    963  * re_disable:
    964  *     Disable the RTL81X9 chip.
    965  */
    966 static void
    967 re_disable(struct rtk_softc *sc)
    968 {
    969 
    970 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    971 		(*sc->sc_disable)(sc);
    972 		sc->sc_flags &= ~RTK_ENABLED;
    973 	}
    974 }
    975 
    976 /*
    977  * re_power:
    978  *     Power management (suspend/resume) hook.
    979  */
    980 void
    981 re_power(int why, void *arg)
    982 {
    983 	struct rtk_softc *sc = (void *)arg;
    984 	struct ifnet *ifp = &sc->ethercom.ec_if;
    985 	int s;
    986 
    987 	s = splnet();
    988 	switch (why) {
    989 	case PWR_SUSPEND:
    990 	case PWR_STANDBY:
    991 		re_stop(ifp, 0);
    992 		if (sc->sc_power != NULL)
    993 			(*sc->sc_power)(sc, why);
    994 		break;
    995 	case PWR_RESUME:
    996 		if (ifp->if_flags & IFF_UP) {
    997 			if (sc->sc_power != NULL)
    998 				(*sc->sc_power)(sc, why);
    999 			re_init(ifp);
   1000 		}
   1001 		break;
   1002 	case PWR_SOFTSUSPEND:
   1003 	case PWR_SOFTSTANDBY:
   1004 	case PWR_SOFTRESUME:
   1005 		break;
   1006 	}
   1007 	splx(s);
   1008 }
   1009 
   1010 
   1011 static int
   1012 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1013 {
   1014 	struct mbuf		*n = NULL;
   1015 	bus_dmamap_t		map;
   1016 	struct rtk_desc		*d;
   1017 	uint32_t		cmdstat;
   1018 	int			error;
   1019 
   1020 	if (m == NULL) {
   1021 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1022 		if (n == NULL)
   1023 			return ENOBUFS;
   1024 
   1025 		MCLGET(n, M_DONTWAIT);
   1026 		if ((n->m_flags & M_EXT) == 0) {
   1027 			m_freem(n);
   1028 			return ENOBUFS;
   1029 		}
   1030 		m = n;
   1031 	} else
   1032 		m->m_data = m->m_ext.ext_buf;
   1033 
   1034 	/*
   1035 	 * Initialize mbuf length fields and fixup
   1036 	 * alignment so that the frame payload is
   1037 	 * longword aligned.
   1038 	 */
   1039 	m->m_len = m->m_pkthdr.len = MCLBYTES - RTK_ETHER_ALIGN;
   1040 	m->m_data += RTK_ETHER_ALIGN;
   1041 
   1042 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
   1043 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1044 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1045 
   1046 	if (error)
   1047 		goto out;
   1048 
   1049 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1050 	    BUS_DMASYNC_PREREAD);
   1051 
   1052 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1053 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1054 	cmdstat = le32toh(d->rtk_cmdstat);
   1055 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1056 	if (cmdstat & RTK_RDESC_STAT_OWN) {
   1057 		aprint_error("%s: tried to map busy RX descriptor\n",
   1058 		    sc->sc_dev.dv_xname);
   1059 		goto out;
   1060 	}
   1061 
   1062 	cmdstat = map->dm_segs[0].ds_len;
   1063 	if (idx == (RTK_RX_DESC_CNT - 1))
   1064 		cmdstat |= RTK_RDESC_CMD_EOR;
   1065 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1066 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1067 	d->rtk_cmdstat = htole32(cmdstat);
   1068 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1069 	cmdstat |= RTK_RDESC_CMD_OWN;
   1070 	d->rtk_cmdstat = htole32(cmdstat);
   1071 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1072 
   1073 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1074 
   1075 	return 0;
   1076  out:
   1077 	if (n != NULL)
   1078 		m_freem(n);
   1079 	return ENOMEM;
   1080 }
   1081 
   1082 static int
   1083 re_tx_list_init(struct rtk_softc *sc)
   1084 {
   1085 	int i;
   1086 
   1087 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
   1088 	for (i = 0; i < RTK_TX_QLEN; i++) {
   1089 		sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   1090 	}
   1091 
   1092 	bus_dmamap_sync(sc->sc_dmat,
   1093 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1094 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1095 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1096 	sc->rtk_ldata.rtk_txq_prodidx = 0;
   1097 	sc->rtk_ldata.rtk_txq_considx = 0;
   1098 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
   1099 	sc->rtk_ldata.rtk_tx_nextfree = 0;
   1100 
   1101 	return 0;
   1102 }
   1103 
   1104 static int
   1105 re_rx_list_init(struct rtk_softc *sc)
   1106 {
   1107 	int			i;
   1108 
   1109 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1110 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1111 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1112 
   1113 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1114 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1115 			return ENOBUFS;
   1116 	}
   1117 
   1118 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1119 	sc->rtk_head = sc->rtk_tail = NULL;
   1120 
   1121 	return 0;
   1122 }
   1123 
   1124 /*
   1125  * RX handler for C+ and 8169. For the gigE chips, we support
   1126  * the reception of jumbo frames that have been fragmented
   1127  * across multiple 2K mbuf cluster buffers.
   1128  */
   1129 static void
   1130 re_rxeof(struct rtk_softc *sc)
   1131 {
   1132 	struct mbuf		*m;
   1133 	struct ifnet		*ifp;
   1134 	int			i, total_len;
   1135 	struct rtk_desc		*cur_rx;
   1136 	uint32_t		rxstat, rxvlan;
   1137 
   1138 	ifp = &sc->ethercom.ec_if;
   1139 
   1140 	for (i = sc->rtk_ldata.rtk_rx_prodidx;; i = RTK_NEXT_RX_DESC(sc, i)) {
   1141 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1142 		RTK_RXDESCSYNC(sc, i,
   1143 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1144 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1145 		RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1146 		if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
   1147 			break;
   1148 		}
   1149 		total_len = rxstat & sc->rtk_rxlenmask;
   1150 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1151 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1152 
   1153 		/* Invalidate the RX mbuf and unload its map */
   1154 
   1155 		bus_dmamap_sync(sc->sc_dmat,
   1156 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1157 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1158 		    BUS_DMASYNC_POSTREAD);
   1159 		bus_dmamap_unload(sc->sc_dmat,
   1160 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1161 
   1162 		if ((rxstat & RTK_RDESC_STAT_EOF) == 0) {
   1163 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1164 			if (sc->rtk_head == NULL)
   1165 				sc->rtk_head = sc->rtk_tail = m;
   1166 			else {
   1167 				m->m_flags &= ~M_PKTHDR;
   1168 				sc->rtk_tail->m_next = m;
   1169 				sc->rtk_tail = m;
   1170 			}
   1171 			re_newbuf(sc, i, NULL);
   1172 			continue;
   1173 		}
   1174 
   1175 		/*
   1176 		 * NOTE: for the 8139C+, the frame length field
   1177 		 * is always 12 bits in size, but for the gigE chips,
   1178 		 * it is 13 bits (since the max RX frame length is 16K).
   1179 		 * Unfortunately, all 32 bits in the status word
   1180 		 * were already used, so to make room for the extra
   1181 		 * length bit, RealTek took out the 'frame alignment
   1182 		 * error' bit and shifted the other status bits
   1183 		 * over one slot. The OWN, EOR, FS and LS bits are
   1184 		 * still in the same places. We have already extracted
   1185 		 * the frame length and checked the OWN bit, so rather
   1186 		 * than using an alternate bit mapping, we shift the
   1187 		 * status bits one space to the right so we can evaluate
   1188 		 * them using the 8169 status as though it was in the
   1189 		 * same format as that of the 8139C+.
   1190 		 */
   1191 		if (sc->rtk_type == RTK_8169)
   1192 			rxstat >>= 1;
   1193 
   1194 		if ((rxstat & RTK_RDESC_STAT_RXERRSUM) != 0) {
   1195 			ifp->if_ierrors++;
   1196 			/*
   1197 			 * If this is part of a multi-fragment packet,
   1198 			 * discard all the pieces.
   1199 			 */
   1200 			if (sc->rtk_head != NULL) {
   1201 				m_freem(sc->rtk_head);
   1202 				sc->rtk_head = sc->rtk_tail = NULL;
   1203 			}
   1204 			re_newbuf(sc, i, m);
   1205 			continue;
   1206 		}
   1207 
   1208 		/*
   1209 		 * If allocating a replacement mbuf fails,
   1210 		 * reload the current one.
   1211 		 */
   1212 
   1213 		if (re_newbuf(sc, i, NULL) != 0) {
   1214 			ifp->if_ierrors++;
   1215 			if (sc->rtk_head != NULL) {
   1216 				m_freem(sc->rtk_head);
   1217 				sc->rtk_head = sc->rtk_tail = NULL;
   1218 			}
   1219 			re_newbuf(sc, i, m);
   1220 			continue;
   1221 		}
   1222 
   1223 		if (sc->rtk_head != NULL) {
   1224 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1225 			/*
   1226 			 * Special case: if there's 4 bytes or less
   1227 			 * in this buffer, the mbuf can be discarded:
   1228 			 * the last 4 bytes is the CRC, which we don't
   1229 			 * care about anyway.
   1230 			 */
   1231 			if (m->m_len <= ETHER_CRC_LEN) {
   1232 				sc->rtk_tail->m_len -=
   1233 				    (ETHER_CRC_LEN - m->m_len);
   1234 				m_freem(m);
   1235 			} else {
   1236 				m->m_len -= ETHER_CRC_LEN;
   1237 				m->m_flags &= ~M_PKTHDR;
   1238 				sc->rtk_tail->m_next = m;
   1239 			}
   1240 			m = sc->rtk_head;
   1241 			sc->rtk_head = sc->rtk_tail = NULL;
   1242 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1243 		} else
   1244 			m->m_pkthdr.len = m->m_len =
   1245 			    (total_len - ETHER_CRC_LEN);
   1246 
   1247 		ifp->if_ipackets++;
   1248 		m->m_pkthdr.rcvif = ifp;
   1249 
   1250 		/* Do RX checksumming if enabled */
   1251 
   1252 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   1253 
   1254 			/* Check IP header checksum */
   1255 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1256 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1257 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1258 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1259 		}
   1260 
   1261 		/* Check TCP/UDP checksum */
   1262 		if (RTK_TCPPKT(rxstat) &&
   1263 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
   1264 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1265 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1266 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1267 		}
   1268 		if (RTK_UDPPKT(rxstat) &&
   1269 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
   1270 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1271 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1272 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1273 		}
   1274 
   1275 #ifdef RE_VLAN
   1276 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1277 			VLAN_INPUT_TAG(ifp, m,
   1278 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
   1279 			     continue);
   1280 		}
   1281 #endif
   1282 #if NBPFILTER > 0
   1283 		if (ifp->if_bpf)
   1284 			bpf_mtap(ifp->if_bpf, m);
   1285 #endif
   1286 		(*ifp->if_input)(ifp, m);
   1287 	}
   1288 
   1289 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1290 }
   1291 
   1292 static void
   1293 re_txeof(struct rtk_softc *sc)
   1294 {
   1295 	struct ifnet		*ifp;
   1296 	int			idx;
   1297 	boolean_t		done = FALSE;
   1298 
   1299 	ifp = &sc->ethercom.ec_if;
   1300 	idx = sc->rtk_ldata.rtk_txq_considx;
   1301 
   1302 	for (;;) {
   1303 		struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
   1304 		int descidx;
   1305 		uint32_t txstat;
   1306 
   1307 		if (txq->txq_mbuf == NULL) {
   1308 			KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
   1309 			break;
   1310 		}
   1311 
   1312 		descidx = txq->txq_descidx;
   1313 		RTK_TXDESCSYNC(sc, descidx,
   1314 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1315 		txstat =
   1316 		    le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
   1317 		RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1318 		KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
   1319 		if (txstat & RTK_TDESC_CMD_OWN) {
   1320 			break;
   1321 		}
   1322 
   1323 		sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
   1324 		KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
   1325 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1326 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1327 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1328 		m_freem(txq->txq_mbuf);
   1329 		txq->txq_mbuf = NULL;
   1330 
   1331 		if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
   1332 			ifp->if_collisions++;
   1333 		if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1334 			ifp->if_oerrors++;
   1335 		else
   1336 			ifp->if_opackets++;
   1337 
   1338 		idx = RTK_NEXT_TXQ(sc, idx);
   1339 		done = TRUE;
   1340 	}
   1341 
   1342 	/* No changes made to the TX ring, so no flush needed */
   1343 
   1344 	if (done) {
   1345 		sc->rtk_ldata.rtk_txq_considx = idx;
   1346 		ifp->if_flags &= ~IFF_OACTIVE;
   1347 		ifp->if_timer = 0;
   1348 	}
   1349 
   1350 	/*
   1351 	 * If not all descriptors have been released reaped yet,
   1352 	 * reload the timer so that we will eventually get another
   1353 	 * interrupt that will cause us to re-enter this routine.
   1354 	 * This is done in case the transmitter has gone idle.
   1355 	 */
   1356 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
   1357 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1358 }
   1359 
   1360 /*
   1361  * Stop all chip I/O so that the kernel's probe routines don't
   1362  * get confused by errant DMAs when rebooting.
   1363  */
   1364 static void
   1365 re_shutdown(void *vsc)
   1366 
   1367 {
   1368 	struct rtk_softc	*sc = vsc;
   1369 
   1370 	re_stop(&sc->ethercom.ec_if, 0);
   1371 }
   1372 
   1373 
   1374 static void
   1375 re_tick(void *xsc)
   1376 {
   1377 	struct rtk_softc	*sc = xsc;
   1378 	int s;
   1379 
   1380 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1381 	s = splnet();
   1382 
   1383 	mii_tick(&sc->mii);
   1384 	splx(s);
   1385 
   1386 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1387 }
   1388 
   1389 #ifdef DEVICE_POLLING
   1390 static void
   1391 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1392 {
   1393 	struct rtk_softc *sc = ifp->if_softc;
   1394 
   1395 	RTK_LOCK(sc);
   1396 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
   1397 		ether_poll_deregister(ifp);
   1398 		cmd = POLL_DEREGISTER;
   1399 	}
   1400 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1401 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1402 		goto done;
   1403 	}
   1404 
   1405 	sc->rxcycles = count;
   1406 	re_rxeof(sc);
   1407 	re_txeof(sc);
   1408 
   1409 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1410 		(*ifp->if_start)(ifp);
   1411 
   1412 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1413 		uint16_t       status;
   1414 
   1415 		status = CSR_READ_2(sc, RTK_ISR);
   1416 		if (status == 0xffff)
   1417 			goto done;
   1418 		if (status)
   1419 			CSR_WRITE_2(sc, RTK_ISR, status);
   1420 
   1421 		/*
   1422 		 * XXX check behaviour on receiver stalls.
   1423 		 */
   1424 
   1425 		if (status & RTK_ISR_SYSTEM_ERR) {
   1426 			re_reset(sc);
   1427 			re_init(sc);
   1428 		}
   1429 	}
   1430  done:
   1431 	RTK_UNLOCK(sc);
   1432 }
   1433 #endif /* DEVICE_POLLING */
   1434 
   1435 int
   1436 re_intr(void *arg)
   1437 {
   1438 	struct rtk_softc	*sc = arg;
   1439 	struct ifnet		*ifp;
   1440 	uint16_t		status;
   1441 	int			handled = 0;
   1442 
   1443 	ifp = &sc->ethercom.ec_if;
   1444 
   1445 	if ((ifp->if_flags & IFF_UP) == 0)
   1446 		return 0;
   1447 
   1448 #ifdef DEVICE_POLLING
   1449 	if (ifp->if_flags & IFF_POLLING)
   1450 		goto done;
   1451 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1452 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1453 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1454 		re_poll(ifp, 0, 1);
   1455 		goto done;
   1456 	}
   1457 #endif /* DEVICE_POLLING */
   1458 
   1459 	for (;;) {
   1460 
   1461 		status = CSR_READ_2(sc, RTK_ISR);
   1462 		/* If the card has gone away the read returns 0xffff. */
   1463 		if (status == 0xffff)
   1464 			break;
   1465 		if (status) {
   1466 			handled = 1;
   1467 			CSR_WRITE_2(sc, RTK_ISR, status);
   1468 		}
   1469 
   1470 		if ((status & RTK_INTRS_CPLUS) == 0)
   1471 			break;
   1472 
   1473 		if ((status & RTK_ISR_RX_OK) ||
   1474 		    (status & RTK_ISR_RX_ERR))
   1475 			re_rxeof(sc);
   1476 
   1477 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1478 		    (status & RTK_ISR_TX_ERR) ||
   1479 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1480 			re_txeof(sc);
   1481 
   1482 		if (status & RTK_ISR_SYSTEM_ERR) {
   1483 			re_reset(sc);
   1484 			re_init(ifp);
   1485 		}
   1486 
   1487 		if (status & RTK_ISR_LINKCHG) {
   1488 			callout_stop(&sc->rtk_tick_ch);
   1489 			re_tick(sc);
   1490 		}
   1491 	}
   1492 
   1493 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1494 		if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1495 			(*ifp->if_start)(ifp);
   1496 
   1497 #ifdef DEVICE_POLLING
   1498  done:
   1499 #endif
   1500 
   1501 	return handled;
   1502 }
   1503 
   1504 static int
   1505 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
   1506 {
   1507 	bus_dmamap_t		map;
   1508 	int			error, seg, uidx, startidx, curidx, lastidx;
   1509 #ifdef RE_VLAN
   1510 	struct m_tag		*mtag;
   1511 #endif
   1512 	struct rtk_desc		*d;
   1513 	uint32_t		cmdstat, rtk_flags;
   1514 	struct rtk_txq		*txq;
   1515 
   1516 	if (sc->rtk_ldata.rtk_tx_free <= 4) {
   1517 		return EFBIG;
   1518 	}
   1519 
   1520 	/*
   1521 	 * Set up checksum offload. Note: checksum offload bits must
   1522 	 * appear in all descriptors of a multi-descriptor transmit
   1523 	 * attempt. (This is according to testing done with an 8169
   1524 	 * chip. I'm not sure if this is a requirement or a bug.)
   1525 	 */
   1526 
   1527 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1528 		uint32_t segsz = m->m_pkthdr.segsz;
   1529 
   1530 		rtk_flags = RTK_TDESC_CMD_LGSEND |
   1531 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
   1532 	} else {
   1533 
   1534 		/*
   1535 		 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
   1536 		 * is requested.  otherwise, RTK_TDESC_CMD_TCPCSUM/
   1537 		 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
   1538 		 */
   1539 
   1540 		rtk_flags = 0;
   1541 		if ((m->m_pkthdr.csum_flags &
   1542 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
   1543 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1544 			if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1545 				rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1546 			} else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1547 				rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1548 			}
   1549 		}
   1550 	}
   1551 
   1552 	txq = &sc->rtk_ldata.rtk_txq[*idx];
   1553 	map = txq->txq_dmamap;
   1554 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1555 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1556 
   1557 	if (error) {
   1558 		/* XXX try to defrag if EFBIG? */
   1559 
   1560 		aprint_error("%s: can't map mbuf (error %d)\n",
   1561 		    sc->sc_dev.dv_xname, error);
   1562 
   1563 		return error;
   1564 	}
   1565 
   1566 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
   1567 		error = EFBIG;
   1568 		goto fail_unload;
   1569 	}
   1570 
   1571 	/*
   1572 	 * Make sure that the caches are synchronized before we
   1573 	 * ask the chip to start DMA for the packet data.
   1574 	 */
   1575 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1576 	    BUS_DMASYNC_PREWRITE);
   1577 
   1578 	/*
   1579 	 * Map the segment array into descriptors. Note that we set the
   1580 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1581 	 * they really only have meaning in the TX case. (In the RX case,
   1582 	 * it's the chip that tells us where packets begin and end.)
   1583 	 * We also keep track of the end of the ring and set the
   1584 	 * end-of-ring bits as needed, and we set the ownership bits
   1585 	 * in all except the very first descriptor. (The caller will
   1586 	 * set this descriptor later when it start transmission or
   1587 	 * reception.)
   1588 	 */
   1589 	curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
   1590 	lastidx = -1;
   1591 	for (seg = 0; seg < map->dm_nsegs;
   1592 	    seg++, curidx = RTK_NEXT_TX_DESC(sc, curidx)) {
   1593 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1594 		RTK_TXDESCSYNC(sc, curidx,
   1595 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1596 		cmdstat = le32toh(d->rtk_cmdstat);
   1597 		RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
   1598 		if (cmdstat & RTK_TDESC_STAT_OWN) {
   1599 			aprint_error("%s: tried to map busy TX descriptor\n",
   1600 			    sc->sc_dev.dv_xname);
   1601 			for (; seg > 0; seg--) {
   1602 				uidx = (curidx + RTK_TX_DESC_CNT(sc) - seg) %
   1603 				    RTK_TX_DESC_CNT(sc);
   1604 				sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
   1605 				RTK_TXDESCSYNC(sc, uidx,
   1606 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1607 			}
   1608 			error = ENOBUFS;
   1609 			goto fail_unload;
   1610 		}
   1611 
   1612 		cmdstat = map->dm_segs[seg].ds_len;
   1613 		if (seg == 0)
   1614 			cmdstat |= RTK_TDESC_CMD_SOF;
   1615 		else
   1616 			cmdstat |= RTK_TDESC_CMD_OWN;
   1617 		if (seg == map->dm_nsegs - 1) {
   1618 			cmdstat |= RTK_TDESC_CMD_EOF;
   1619 			lastidx = curidx;
   1620 		}
   1621 		if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
   1622 			cmdstat |= RTK_TDESC_CMD_EOR;
   1623 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1624 		d->rtk_bufaddr_lo =
   1625 		    htole32(RTK_ADDR_LO(map->dm_segs[seg].ds_addr));
   1626 		d->rtk_bufaddr_hi =
   1627 		    htole32(RTK_ADDR_HI(map->dm_segs[seg].ds_addr));
   1628 		RTK_TXDESCSYNC(sc, curidx,
   1629 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1630 	}
   1631 	KASSERT(lastidx != -1);
   1632 
   1633 	/*
   1634 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1635 	 * appear in the first descriptor of a multi-descriptor
   1636 	 * transmission attempt.
   1637 	 */
   1638 
   1639 #ifdef RE_VLAN
   1640 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1641 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
   1642 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1643 		    RTK_TDESC_VLANCTL_TAG);
   1644 	}
   1645 #endif
   1646 
   1647 	/* Transfer ownership of packet to the chip. */
   1648 
   1649 	sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
   1650 	    htole32(RTK_TDESC_CMD_OWN);
   1651 	RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1652 
   1653 	/* update info of TX queue and descriptors */
   1654 	txq->txq_mbuf = m;
   1655 	txq->txq_descidx = lastidx;
   1656 
   1657 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1658 	sc->rtk_ldata.rtk_tx_nextfree = curidx;
   1659 
   1660 	*idx = RTK_NEXT_TXQ(sc, *idx);
   1661 
   1662 	return 0;
   1663 
   1664  fail_unload:
   1665 	bus_dmamap_unload(sc->sc_dmat, map);
   1666 
   1667 	return error;
   1668 }
   1669 
   1670 /*
   1671  * Main transmit routine for C+ and gigE NICs.
   1672  */
   1673 
   1674 static void
   1675 re_start(struct ifnet *ifp)
   1676 {
   1677 	struct rtk_softc	*sc;
   1678 	int			idx;
   1679 	boolean_t		done = FALSE;
   1680 
   1681 	sc = ifp->if_softc;
   1682 
   1683 	idx = sc->rtk_ldata.rtk_txq_prodidx;
   1684 	for (;;) {
   1685 		struct mbuf *m;
   1686 		int error;
   1687 
   1688 		IFQ_POLL(&ifp->if_snd, m);
   1689 		if (m == NULL)
   1690 			break;
   1691 
   1692 		if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
   1693 			KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
   1694 			ifp->if_flags |= IFF_OACTIVE;
   1695 			break;
   1696 		}
   1697 
   1698 		error = re_encap(sc, m, &idx);
   1699 		if (error == EFBIG &&
   1700 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
   1701 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1702 			m_freem(m);
   1703 			ifp->if_oerrors++;
   1704 			continue;
   1705 		}
   1706 		if (error) {
   1707 			ifp->if_flags |= IFF_OACTIVE;
   1708 			break;
   1709 		}
   1710 
   1711 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1712 
   1713 #if NBPFILTER > 0
   1714 		/*
   1715 		 * If there's a BPF listener, bounce a copy of this frame
   1716 		 * to him.
   1717 		 */
   1718 		if (ifp->if_bpf)
   1719 			bpf_mtap(ifp->if_bpf, m);
   1720 #endif
   1721 
   1722 		done = TRUE;
   1723 	}
   1724 
   1725 	if (!done) {
   1726 		return;
   1727 	}
   1728 	sc->rtk_ldata.rtk_txq_prodidx = idx;
   1729 
   1730 	/*
   1731 	 * RealTek put the TX poll request register in a different
   1732 	 * location on the 8169 gigE chip. I don't know why.
   1733 	 */
   1734 
   1735 	if (sc->rtk_type == RTK_8169)
   1736 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1737 	else
   1738 		CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1739 
   1740 	/*
   1741 	 * Use the countdown timer for interrupt moderation.
   1742 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1743 	 * countdown timer, which will begin counting until it hits
   1744 	 * the value in the TIMERINT register, and then trigger an
   1745 	 * interrupt. Each time we write to the TIMERCNT register,
   1746 	 * the timer count is reset to 0.
   1747 	 */
   1748 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1749 
   1750 	/*
   1751 	 * Set a timeout in case the chip goes out to lunch.
   1752 	 */
   1753 	ifp->if_timer = 5;
   1754 }
   1755 
   1756 static int
   1757 re_init(struct ifnet *ifp)
   1758 {
   1759 	struct rtk_softc	*sc = ifp->if_softc;
   1760 	uint8_t			*enaddr;
   1761 	uint32_t		rxcfg = 0;
   1762 	uint32_t		reg;
   1763 	int error;
   1764 
   1765 	if ((error = re_enable(sc)) != 0)
   1766 		goto out;
   1767 
   1768 	/*
   1769 	 * Cancel pending I/O and free all RX/TX buffers.
   1770 	 */
   1771 	re_stop(ifp, 0);
   1772 
   1773 	/*
   1774 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1775 	 * RX checksum offload. We must configure the C+ register
   1776 	 * before all others.
   1777 	 */
   1778 	reg = 0;
   1779 
   1780 	/*
   1781 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1782 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1783 	 * So far, it works.
   1784 	 */
   1785 
   1786 	/*
   1787 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1788 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1789 	 */
   1790 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1791 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1792 
   1793 	if (1)  {/* not for 8169S ? */
   1794 		reg |=
   1795 #ifdef RE_VLAN
   1796 		    RTK_CPLUSCMD_VLANSTRIP |
   1797 #endif
   1798 		    (ifp->if_capenable &
   1799 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
   1800 		     IFCAP_CSUM_UDPv4_Rx) ?
   1801 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1802 	}
   1803 
   1804 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1805 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1806 
   1807 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1808 	if (sc->rtk_type == RTK_8169)
   1809 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1810 
   1811 	DELAY(10000);
   1812 
   1813 	/*
   1814 	 * Init our MAC address.  Even though the chipset
   1815 	 * documentation doesn't mention it, we need to enter "Config
   1816 	 * register write enable" mode to modify the ID registers.
   1817 	 */
   1818 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1819 	enaddr = LLADDR(ifp->if_sadl);
   1820 	reg = enaddr[0] | (enaddr[1] << 8) |
   1821 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1822 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1823 	reg = enaddr[4] | (enaddr[5] << 8);
   1824 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1825 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1826 
   1827 	/*
   1828 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1829 	 */
   1830 	re_rx_list_init(sc);
   1831 	re_tx_list_init(sc);
   1832 
   1833 	/*
   1834 	 * Enable transmit and receive.
   1835 	 */
   1836 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1837 
   1838 	/*
   1839 	 * Set the initial TX and RX configuration.
   1840 	 */
   1841 	if (sc->rtk_testmode) {
   1842 		if (sc->rtk_type == RTK_8169)
   1843 			CSR_WRITE_4(sc, RTK_TXCFG,
   1844 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1845 		else
   1846 			CSR_WRITE_4(sc, RTK_TXCFG,
   1847 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1848 	} else
   1849 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1850 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1851 
   1852 	/* Set the individual bit to receive frames for this host only. */
   1853 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1854 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1855 
   1856 	/* If we want promiscuous mode, set the allframes bit. */
   1857 	if (ifp->if_flags & IFF_PROMISC)
   1858 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1859 	else
   1860 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1861 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1862 
   1863 	/*
   1864 	 * Set capture broadcast bit to capture broadcast frames.
   1865 	 */
   1866 	if (ifp->if_flags & IFF_BROADCAST)
   1867 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1868 	else
   1869 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1870 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1871 
   1872 	/*
   1873 	 * Program the multicast filter, if necessary.
   1874 	 */
   1875 	rtk_setmulti(sc);
   1876 
   1877 #ifdef DEVICE_POLLING
   1878 	/*
   1879 	 * Disable interrupts if we are polling.
   1880 	 */
   1881 	if (ifp->if_flags & IFF_POLLING)
   1882 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1883 	else	/* otherwise ... */
   1884 #endif /* DEVICE_POLLING */
   1885 	/*
   1886 	 * Enable interrupts.
   1887 	 */
   1888 	if (sc->rtk_testmode)
   1889 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1890 	else
   1891 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1892 
   1893 	/* Start RX/TX process. */
   1894 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1895 #ifdef notdef
   1896 	/* Enable receiver and transmitter. */
   1897 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1898 #endif
   1899 	/*
   1900 	 * Load the addresses of the RX and TX lists into the chip.
   1901 	 */
   1902 
   1903 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1904 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1905 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1906 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1907 
   1908 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1909 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1910 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1911 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1912 
   1913 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1914 
   1915 	/*
   1916 	 * Initialize the timer interrupt register so that
   1917 	 * a timer interrupt will be generated once the timer
   1918 	 * reaches a certain number of ticks. The timer is
   1919 	 * reloaded on each transmit. This gives us TX interrupt
   1920 	 * moderation, which dramatically improves TX frame rate.
   1921 	 */
   1922 
   1923 	if (sc->rtk_type == RTK_8169)
   1924 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1925 	else
   1926 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1927 
   1928 	/*
   1929 	 * For 8169 gigE NICs, set the max allowed RX packet
   1930 	 * size so we can receive jumbo frames.
   1931 	 */
   1932 	if (sc->rtk_type == RTK_8169)
   1933 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1934 
   1935 	if (sc->rtk_testmode)
   1936 		return 0;
   1937 
   1938 	mii_mediachg(&sc->mii);
   1939 
   1940 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1941 
   1942 	ifp->if_flags |= IFF_RUNNING;
   1943 	ifp->if_flags &= ~IFF_OACTIVE;
   1944 
   1945 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1946 
   1947  out:
   1948 	if (error) {
   1949 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1950 		ifp->if_timer = 0;
   1951 		aprint_error("%s: interface not running\n",
   1952 		    sc->sc_dev.dv_xname);
   1953 	}
   1954 
   1955 	return error;
   1956 }
   1957 
   1958 /*
   1959  * Set media options.
   1960  */
   1961 static int
   1962 re_ifmedia_upd(struct ifnet *ifp)
   1963 {
   1964 	struct rtk_softc	*sc;
   1965 
   1966 	sc = ifp->if_softc;
   1967 
   1968 	return mii_mediachg(&sc->mii);
   1969 }
   1970 
   1971 /*
   1972  * Report current media status.
   1973  */
   1974 static void
   1975 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1976 {
   1977 	struct rtk_softc	*sc;
   1978 
   1979 	sc = ifp->if_softc;
   1980 
   1981 	mii_pollstat(&sc->mii);
   1982 	ifmr->ifm_active = sc->mii.mii_media_active;
   1983 	ifmr->ifm_status = sc->mii.mii_media_status;
   1984 }
   1985 
   1986 static int
   1987 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1988 {
   1989 	struct rtk_softc	*sc = ifp->if_softc;
   1990 	struct ifreq		*ifr = (struct ifreq *) data;
   1991 	int			s, error = 0;
   1992 
   1993 	s = splnet();
   1994 
   1995 	switch (command) {
   1996 	case SIOCSIFMTU:
   1997 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   1998 			error = EINVAL;
   1999 		ifp->if_mtu = ifr->ifr_mtu;
   2000 		break;
   2001 	case SIOCGIFMEDIA:
   2002 	case SIOCSIFMEDIA:
   2003 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   2004 		break;
   2005 	default:
   2006 		error = ether_ioctl(ifp, command, data);
   2007 		if (error == ENETRESET) {
   2008 			if (ifp->if_flags & IFF_RUNNING)
   2009 				rtk_setmulti(sc);
   2010 			error = 0;
   2011 		}
   2012 		break;
   2013 	}
   2014 
   2015 	splx(s);
   2016 
   2017 	return error;
   2018 }
   2019 
   2020 static void
   2021 re_watchdog(struct ifnet *ifp)
   2022 {
   2023 	struct rtk_softc	*sc;
   2024 	int			s;
   2025 
   2026 	sc = ifp->if_softc;
   2027 	s = splnet();
   2028 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2029 	ifp->if_oerrors++;
   2030 
   2031 	re_txeof(sc);
   2032 	re_rxeof(sc);
   2033 
   2034 	re_init(ifp);
   2035 
   2036 	splx(s);
   2037 }
   2038 
   2039 /*
   2040  * Stop the adapter and free any mbufs allocated to the
   2041  * RX and TX lists.
   2042  */
   2043 static void
   2044 re_stop(struct ifnet *ifp, int disable)
   2045 {
   2046 	int		i;
   2047 	struct rtk_softc *sc = ifp->if_softc;
   2048 
   2049 	callout_stop(&sc->rtk_tick_ch);
   2050 
   2051 #ifdef DEVICE_POLLING
   2052 	ether_poll_deregister(ifp);
   2053 #endif /* DEVICE_POLLING */
   2054 
   2055 	mii_down(&sc->mii);
   2056 
   2057 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2058 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2059 
   2060 	if (sc->rtk_head != NULL) {
   2061 		m_freem(sc->rtk_head);
   2062 		sc->rtk_head = sc->rtk_tail = NULL;
   2063 	}
   2064 
   2065 	/* Free the TX list buffers. */
   2066 	for (i = 0; i < RTK_TX_QLEN; i++) {
   2067 		if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
   2068 			bus_dmamap_unload(sc->sc_dmat,
   2069 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
   2070 			m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
   2071 			sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   2072 		}
   2073 	}
   2074 
   2075 	/* Free the RX list buffers. */
   2076 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2077 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   2078 			bus_dmamap_unload(sc->sc_dmat,
   2079 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   2080 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   2081 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   2082 		}
   2083 	}
   2084 
   2085 	if (disable)
   2086 		re_disable(sc);
   2087 
   2088 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2089 	ifp->if_timer = 0;
   2090 }
   2091