rtl8169.c revision 1.5 1 /* $NetBSD: rtl8169.c,v 1.5 2005/01/09 12:25:25 kanaoka Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #if NBPFILTER > 0
134 #include <net/bpf.h>
135 #endif
136
137 #include <machine/bus.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 #include <dev/pci/pcidevs.h>
145
146 /*
147 * Default to using PIO access for this driver.
148 */
149 #define RE_USEIOSPACE
150
151 #include <dev/ic/rtl81x9reg.h>
152 #include <dev/ic/rtl81x9var.h>
153
154 #include <dev/ic/rtl8169var.h>
155
156
157 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
158
159 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
160 static int re_rx_list_init(struct rtk_softc *);
161 static int re_tx_list_init(struct rtk_softc *);
162 static void re_rxeof(struct rtk_softc *);
163 static void re_txeof(struct rtk_softc *);
164 static void re_tick(void *);
165 static void re_start(struct ifnet *);
166 static int re_ioctl(struct ifnet *, u_long, caddr_t);
167 static int re_init(struct ifnet *);
168 static void re_stop(struct ifnet *, int);
169 static void re_watchdog(struct ifnet *);
170
171 static void re_shutdown(void *);
172 static int re_enable(struct rtk_softc *);
173 static void re_disable(struct rtk_softc *);
174 static void re_power(int, void *);
175
176 static int re_ifmedia_upd(struct ifnet *);
177 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178
179 static int re_gmii_readreg(struct device *, int, int);
180 static void re_gmii_writereg(struct device *, int, int, int);
181
182 static int re_miibus_readreg(struct device *, int, int);
183 static void re_miibus_writereg(struct device *, int, int, int);
184 static void re_miibus_statchg(struct device *);
185
186 static void re_reset(struct rtk_softc *);
187
188 static int re_diag(struct rtk_softc *);
189
190 #ifdef RE_USEIOSPACE
191 #define RTK_RES SYS_RES_IOPORT
192 #define RTK_RID RTK_PCI_LOIO
193 #else
194 #define RTK_RES SYS_RES_MEMORY
195 #define RTK_RID RTK_PCI_LOMEM
196 #endif
197
198 #define EE_SET(x) \
199 CSR_WRITE_1(sc, RTK_EECMD, \
200 CSR_READ_1(sc, RTK_EECMD) | x)
201
202 #define EE_CLR(x) \
203 CSR_WRITE_1(sc, RTK_EECMD, \
204 CSR_READ_1(sc, RTK_EECMD) & ~x)
205
206 static int
207 re_gmii_readreg(struct device *self, int phy, int reg)
208 {
209 struct rtk_softc *sc = (void *)self;
210 u_int32_t rval;
211 int i;
212
213 if (phy != 7)
214 return 0;
215
216 /* Let the rgephy driver read the GMEDIASTAT register */
217
218 if (reg == RTK_GMEDIASTAT) {
219 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
220 return rval;
221 }
222
223 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
224 DELAY(1000);
225
226 for (i = 0; i < RTK_TIMEOUT; i++) {
227 rval = CSR_READ_4(sc, RTK_PHYAR);
228 if (rval & RTK_PHYAR_BUSY)
229 break;
230 DELAY(100);
231 }
232
233 if (i == RTK_TIMEOUT) {
234 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
235 return 0;
236 }
237
238 return rval & RTK_PHYAR_PHYDATA;
239 }
240
241 static void
242 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
243 {
244 struct rtk_softc *sc = (void *)dev;
245 u_int32_t rval;
246 int i;
247
248 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
249 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
250 DELAY(1000);
251
252 for (i = 0; i < RTK_TIMEOUT; i++) {
253 rval = CSR_READ_4(sc, RTK_PHYAR);
254 if (!(rval & RTK_PHYAR_BUSY))
255 break;
256 DELAY(100);
257 }
258
259 if (i == RTK_TIMEOUT) {
260 aprint_error("%s: PHY write reg %x <- %x failed\n",
261 sc->sc_dev.dv_xname, reg, data);
262 return;
263 }
264
265 return;
266 }
267
268 static int
269 re_miibus_readreg(struct device *dev, int phy, int reg)
270 {
271 struct rtk_softc *sc = (void *)dev;
272 u_int16_t rval = 0;
273 u_int16_t re8139_reg = 0;
274 int s;
275
276 s = splnet();
277
278 if (sc->rtk_type == RTK_8169) {
279 rval = re_gmii_readreg(dev, phy, reg);
280 splx(s);
281 return rval;
282 }
283
284 /* Pretend the internal PHY is only at address 0 */
285 if (phy) {
286 splx(s);
287 return 0;
288 }
289 switch (reg) {
290 case MII_BMCR:
291 re8139_reg = RTK_BMCR;
292 break;
293 case MII_BMSR:
294 re8139_reg = RTK_BMSR;
295 break;
296 case MII_ANAR:
297 re8139_reg = RTK_ANAR;
298 break;
299 case MII_ANER:
300 re8139_reg = RTK_ANER;
301 break;
302 case MII_ANLPAR:
303 re8139_reg = RTK_LPAR;
304 break;
305 case MII_PHYIDR1:
306 case MII_PHYIDR2:
307 splx(s);
308 return 0;
309 /*
310 * Allow the rlphy driver to read the media status
311 * register. If we have a link partner which does not
312 * support NWAY, this is the register which will tell
313 * us the results of parallel detection.
314 */
315 case RTK_MEDIASTAT:
316 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
317 splx(s);
318 return rval;
319 default:
320 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
321 splx(s);
322 return 0;
323 }
324 rval = CSR_READ_2(sc, re8139_reg);
325 splx(s);
326 return rval;
327 }
328
329 static void
330 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
331 {
332 struct rtk_softc *sc = (void *)dev;
333 u_int16_t re8139_reg = 0;
334 int s;
335
336 s = splnet();
337
338 if (sc->rtk_type == RTK_8169) {
339 re_gmii_writereg(dev, phy, reg, data);
340 splx(s);
341 return;
342 }
343
344 /* Pretend the internal PHY is only at address 0 */
345 if (phy) {
346 splx(s);
347 return;
348 }
349 switch (reg) {
350 case MII_BMCR:
351 re8139_reg = RTK_BMCR;
352 break;
353 case MII_BMSR:
354 re8139_reg = RTK_BMSR;
355 break;
356 case MII_ANAR:
357 re8139_reg = RTK_ANAR;
358 break;
359 case MII_ANER:
360 re8139_reg = RTK_ANER;
361 break;
362 case MII_ANLPAR:
363 re8139_reg = RTK_LPAR;
364 break;
365 case MII_PHYIDR1:
366 case MII_PHYIDR2:
367 splx(s);
368 return;
369 break;
370 default:
371 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
372 splx(s);
373 return;
374 }
375 CSR_WRITE_2(sc, re8139_reg, data);
376 splx(s);
377 return;
378 }
379
380 static void
381 re_miibus_statchg(struct device *dev)
382 {
383
384 return;
385 }
386
387 static void
388 re_reset(struct rtk_softc *sc)
389 {
390 register int i;
391
392 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
393
394 for (i = 0; i < RTK_TIMEOUT; i++) {
395 DELAY(10);
396 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
397 break;
398 }
399 if (i == RTK_TIMEOUT)
400 aprint_error("%s: reset never completed!\n",
401 sc->sc_dev.dv_xname);
402
403 /*
404 * NB: Realtek-supplied Linux driver does this only for
405 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
406 */
407 if (1) /* XXX check softc flag for 8169s version */
408 CSR_WRITE_1(sc, 0x82, 1);
409
410 return;
411 }
412
413 /*
414 * The following routine is designed to test for a defect on some
415 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
416 * lines connected to the bus, however for a 32-bit only card, they
417 * should be pulled high. The result of this defect is that the
418 * NIC will not work right if you plug it into a 64-bit slot: DMA
419 * operations will be done with 64-bit transfers, which will fail
420 * because the 64-bit data lines aren't connected.
421 *
422 * There's no way to work around this (short of talking a soldering
423 * iron to the board), however we can detect it. The method we use
424 * here is to put the NIC into digital loopback mode, set the receiver
425 * to promiscuous mode, and then try to send a frame. We then compare
426 * the frame data we sent to what was received. If the data matches,
427 * then the NIC is working correctly, otherwise we know the user has
428 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
429 * slot. In the latter case, there's no way the NIC can work correctly,
430 * so we print out a message on the console and abort the device attach.
431 */
432
433 static int
434 re_diag(struct rtk_softc *sc)
435 {
436 struct ifnet *ifp = &sc->ethercom.ec_if;
437 struct mbuf *m0;
438 struct ether_header *eh;
439 struct rtk_desc *cur_rx;
440 bus_dmamap_t dmamap;
441 u_int16_t status;
442 u_int32_t rxstat;
443 int total_len, i, s, error = 0;
444 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
445 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
446
447 /* Allocate a single mbuf */
448
449 MGETHDR(m0, M_DONTWAIT, MT_DATA);
450 if (m0 == NULL)
451 return ENOBUFS;
452
453 /*
454 * Initialize the NIC in test mode. This sets the chip up
455 * so that it can send and receive frames, but performs the
456 * following special functions:
457 * - Puts receiver in promiscuous mode
458 * - Enables digital loopback mode
459 * - Leaves interrupts turned off
460 */
461
462 ifp->if_flags |= IFF_PROMISC;
463 sc->rtk_testmode = 1;
464 re_init(ifp);
465 re_stop(ifp, 1);
466 DELAY(100000);
467 re_init(ifp);
468
469 /* Put some data in the mbuf */
470
471 eh = mtod(m0, struct ether_header *);
472 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
473 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
474 eh->ether_type = htons(ETHERTYPE_IP);
475 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
476
477 /*
478 * Queue the packet, start transmission.
479 */
480
481 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
482 s = splnet();
483 IF_ENQUEUE(&ifp->if_snd, m0);
484 re_start(ifp);
485 splx(s);
486 m0 = NULL;
487
488 /* Wait for it to propagate through the chip */
489
490 DELAY(100000);
491 for (i = 0; i < RTK_TIMEOUT; i++) {
492 status = CSR_READ_2(sc, RTK_ISR);
493 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
494 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
495 break;
496 DELAY(10);
497 }
498 if (i == RTK_TIMEOUT) {
499 aprint_error("%s: diagnostic failed, failed to receive packet "
500 "in loopback mode\n", sc->sc_dev.dv_xname);
501 error = EIO;
502 goto done;
503 }
504
505 /*
506 * The packet should have been dumped into the first
507 * entry in the RX DMA ring. Grab it from there.
508 */
509
510 dmamap = sc->rtk_ldata.rtk_rx_list_map;
511 bus_dmamap_sync(sc->sc_dmat,
512 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
513 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
514 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
515 BUS_DMASYNC_POSTWRITE);
516 bus_dmamap_unload(sc->sc_dmat,
517 sc->rtk_ldata.rtk_rx_dmamap[0]);
518
519 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
520 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
521 eh = mtod(m0, struct ether_header *);
522
523 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
524 total_len = RTK_RXBYTES(cur_rx);
525 rxstat = le32toh(cur_rx->rtk_cmdstat);
526
527 if (total_len != ETHER_MIN_LEN) {
528 aprint_error("%s: diagnostic failed, received short packet\n",
529 sc->sc_dev.dv_xname);
530 error = EIO;
531 goto done;
532 }
533
534 /* Test that the received packet data matches what we sent. */
535
536 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
537 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
538 ntohs(eh->ether_type) != ETHERTYPE_IP) {
539 aprint_error("%s: WARNING, DMA FAILURE!\n",
540 sc->sc_dev.dv_xname);
541 aprint_error("%s: expected TX data: %s",
542 sc->sc_dev.dv_xname, ether_sprintf(dst));
543 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
544 aprint_error("%s: received RX data: %s",
545 sc->sc_dev.dv_xname,
546 ether_sprintf(eh->ether_dhost));
547 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
548 ntohs(eh->ether_type));
549 aprint_error("%s: You may have a defective 32-bit NIC plugged "
550 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
551 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
552 "for proper operation.\n", sc->sc_dev.dv_xname);
553 aprint_error("%s: Read the re(4) man page for more details.\n",
554 sc->sc_dev.dv_xname);
555 error = EIO;
556 }
557
558 done:
559 /* Turn interface off, release resources */
560
561 sc->rtk_testmode = 0;
562 ifp->if_flags &= ~IFF_PROMISC;
563 re_stop(ifp, 1);
564 if (m0 != NULL)
565 m_freem(m0);
566
567 return error;
568 }
569
570
571 /*
572 * Attach the interface. Allocate softc structures, do ifmedia
573 * setup and ethernet/BPF attach.
574 */
575 void
576 re_attach(struct rtk_softc *sc)
577 {
578 u_char eaddr[ETHER_ADDR_LEN];
579 u_int16_t val;
580 struct ifnet *ifp;
581 int error = 0, i, addr_len;
582
583
584 /* XXX JRS: bus-attach-independent code begins approximately here */
585
586 /* Reset the adapter. */
587 re_reset(sc);
588
589 if (sc->rtk_type == RTK_8169) {
590 uint32_t hwrev;
591
592 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
593 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
594 if (hwrev == (0x1 << 28)) {
595 sc->sc_rev = 4;
596 } else if (hwrev == (0x1 << 26)) {
597 sc->sc_rev = 3;
598 } else if (hwrev == (0x1 << 23)) {
599 sc->sc_rev = 2;
600 } else
601 sc->sc_rev = 1;
602 #if defined(DEBUG) || 1
603 aprint_normal("re_attach: MAC chip hwrev 0x%x softc %d\n",
604 hwrev, sc->sc_rev);
605 #endif
606
607 /* Set RX length mask */
608
609 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
610
611 /* Force station address autoload from the EEPROM */
612
613 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
614 for (i = 0; i < RTK_TIMEOUT; i++) {
615 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
616 break;
617 DELAY(100);
618 }
619 if (i == RTK_TIMEOUT)
620 aprint_error("%s: eeprom autoload timed out\n",
621 sc->sc_dev.dv_xname);
622
623 for (i = 0; i < ETHER_ADDR_LEN; i++)
624 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
625 } else {
626
627 /* Set RX length mask */
628
629 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
630
631 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
632 addr_len = RTK_EEADDR_LEN1;
633 else
634 addr_len = RTK_EEADDR_LEN0;
635
636 /*
637 * Get station address from the EEPROM.
638 */
639 for (i = 0; i < 3; i++) {
640 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
641 eaddr[(i * 2) + 0] = val & 0xff;
642 eaddr[(i * 2) + 1] = val >> 8;
643 }
644 }
645
646 aprint_normal("%s: Ethernet address %s\n",
647 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
648
649
650 /* Allocate DMA'able memory for the TX ring */
651 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
652 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
653 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
654 aprint_error("%s: can't allocate tx listseg, error = %d\n",
655 sc->sc_dev.dv_xname, error);
656 goto fail_0;
657 }
658
659 /* Load the map for the TX ring. */
660 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
661 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
662 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
663 BUS_DMA_NOWAIT)) != 0) {
664 aprint_error("%s: can't map tx list, error = %d\n",
665 sc->sc_dev.dv_xname, error);
666 goto fail_1;
667 }
668 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
669
670 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
671 RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
672 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
673 aprint_error("%s: can't create tx list map, error = %d\n",
674 sc->sc_dev.dv_xname, error);
675 goto fail_2;
676 }
677
678
679 if ((error = bus_dmamap_load(sc->sc_dmat,
680 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
681 RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
682 aprint_error("%s: can't load tx list, error = %d\n",
683 sc->sc_dev.dv_xname, error);
684 goto fail_3;
685 }
686
687 /* Create DMA maps for TX buffers */
688 for (i = 0; i < RTK_TX_DESC_CNT; i++) {
689 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * RTK_NTXSEGS,
690 RTK_NTXSEGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
691 &sc->rtk_ldata.rtk_tx_dmamap[i]);
692 if (error) {
693 aprint_error("%s: can't create DMA map for TX\n",
694 sc->sc_dev.dv_xname);
695 goto fail_4;
696 }
697 }
698
699 /* Allocate DMA'able memory for the RX ring */
700 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
701 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
702 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_4;
706 }
707
708 /* Load the map for the RX ring. */
709 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
710 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
711 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
712 BUS_DMA_NOWAIT)) != 0) {
713 aprint_error("%s: can't map rx list, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_5;
716 }
717 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
718
719 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
720 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
721 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
722 aprint_error("%s: can't create rx list map, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_6;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat,
728 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
729 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error("%s: can't load rx list, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_7;
733 }
734
735 /* Create DMA maps for RX buffers */
736 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
737 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
739 if (error) {
740 aprint_error("%s: can't create DMA map for RX\n",
741 sc->sc_dev.dv_xname);
742 goto fail_8;
743 }
744 }
745
746 ifp = &sc->ethercom.ec_if;
747 ifp->if_softc = sc;
748 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
749 ifp->if_mtu = ETHERMTU;
750 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 ifp->if_ioctl = re_ioctl;
752 sc->ethercom.ec_capabilities |=
753 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
754 ifp->if_start = re_start;
755 ifp->if_stop = re_stop;
756 ifp->if_capabilities |=
757 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
758 ifp->if_watchdog = re_watchdog;
759 ifp->if_init = re_init;
760 if (sc->rtk_type == RTK_8169)
761 ifp->if_baudrate = 1000000000;
762 else
763 ifp->if_baudrate = 100000000;
764 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
765 ifp->if_capenable = ifp->if_capabilities;
766 IFQ_SET_READY(&ifp->if_snd);
767
768 callout_init(&sc->rtk_tick_ch);
769
770 /* Do MII setup */
771 sc->mii.mii_ifp = ifp;
772 sc->mii.mii_readreg = re_miibus_readreg;
773 sc->mii.mii_writereg = re_miibus_writereg;
774 sc->mii.mii_statchg = re_miibus_statchg;
775 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
776 re_ifmedia_sts);
777 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
778 MII_OFFSET_ANY, 0);
779 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
780
781 /*
782 * Call MI attach routine.
783 */
784 if_attach(ifp);
785 ether_ifattach(ifp, eaddr);
786
787 /*
788 * Perform hardware diagnostic.
789 * XXX: this diagnostic only makes sense for attachemnts with 64-bit
790 * busses: PCI, but not CardBus.
791 */
792 error = re_diag(sc);
793
794 if (error) {
795 aprint_error(
796 "%s: attach aborted due to hardware diag failure\n",
797 sc->sc_dev.dv_xname);
798 ether_ifdetach(ifp);
799 if_detach(ifp);
800 goto fail_8;
801 }
802
803 /*
804 * Record interface as attached. From here, we should not fail.
805 */
806
807 /*
808 * Make sure the interface is shutdown during reboot.
809 */
810 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
811 if (sc->sc_sdhook == NULL)
812 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
813 sc->sc_dev.dv_xname);
814 /*
815 * Add a suspend hook to make sure we come back up after a
816 * resume.
817 */
818 sc->sc_powerhook = powerhook_establish(re_power, sc);
819 if (sc->sc_powerhook == NULL)
820 aprint_error("%s: WARNING: unable to establish power hook\n",
821 sc->sc_dev.dv_xname);
822
823 sc->sc_flags |= RTK_ATTACHED;
824
825 return;
826
827 fail_8:
828 /* Destroy DMA maps for RX buffers. */
829 for (i = 0; i < RTK_RX_DESC_CNT; i++)
830 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
831 bus_dmamap_destroy(sc->sc_dmat,
832 sc->rtk_ldata.rtk_rx_dmamap[i]);
833
834 /* Free DMA'able memory for the RX ring. */
835 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
836 fail_7:
837 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
838 fail_6:
839 bus_dmamem_unmap(sc->sc_dmat,
840 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
841 fail_5:
842 bus_dmamem_free(sc->sc_dmat,
843 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
844
845 fail_4:
846 /* Destroy DMA maps for TX buffers. */
847 for (i = 0; i < RTK_TX_DESC_CNT; i++)
848 if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
849 bus_dmamap_destroy(sc->sc_dmat,
850 sc->rtk_ldata.rtk_tx_dmamap[i]);
851
852 /* Free DMA'able memory for the TX ring. */
853 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
854 fail_3:
855 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
856 fail_2:
857 bus_dmamem_unmap(sc->sc_dmat,
858 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
859 fail_1:
860 bus_dmamem_free(sc->sc_dmat,
861 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
862 fail_0:
863 return;
864 }
865
866
867 /*
868 * re_activate:
869 * Handle device activation/deactivation requests.
870 */
871 int
872 re_activate(struct device *self, enum devact act)
873 {
874 struct rtk_softc *sc = (void *) self;
875 int s, error = 0;
876
877 s = splnet();
878 switch (act) {
879 case DVACT_ACTIVATE:
880 error = EOPNOTSUPP;
881 break;
882 case DVACT_DEACTIVATE:
883 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
884 if_deactivate(&sc->ethercom.ec_if);
885 break;
886 }
887 splx(s);
888
889 return error;
890 }
891
892 /*
893 * re_detach:
894 * Detach a rtk interface.
895 */
896 int
897 re_detach(struct rtk_softc *sc)
898 {
899 struct ifnet *ifp = &sc->ethercom.ec_if;
900 int i;
901
902 /*
903 * Succeed now if there isn't any work to do.
904 */
905 if ((sc->sc_flags & RTK_ATTACHED) == 0)
906 return 0;
907
908 /* Unhook our tick handler. */
909 callout_stop(&sc->rtk_tick_ch);
910
911 /* Detach all PHYs. */
912 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
913
914 /* Delete all remaining media. */
915 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
916
917 ether_ifdetach(ifp);
918 if_detach(ifp);
919
920 /* XXX undo re_allocmem() */
921
922 /* Destroy DMA maps for RX buffers. */
923 for (i = 0; i < RTK_RX_DESC_CNT; i++)
924 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
925 bus_dmamap_destroy(sc->sc_dmat,
926 sc->rtk_ldata.rtk_rx_dmamap[i]);
927
928 /* Free DMA'able memory for the RX ring. */
929 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
930 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
931 bus_dmamem_unmap(sc->sc_dmat,
932 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
933 bus_dmamem_free(sc->sc_dmat,
934 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
935
936 /* Destroy DMA maps for TX buffers. */
937 for (i = 0; i < RTK_TX_DESC_CNT; i++)
938 if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
939 bus_dmamap_destroy(sc->sc_dmat,
940 sc->rtk_ldata.rtk_tx_dmamap[i]);
941
942 /* Free DMA'able memory for the TX ring. */
943 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
944 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
945 bus_dmamem_unmap(sc->sc_dmat,
946 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
947 bus_dmamem_free(sc->sc_dmat,
948 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
949
950
951 shutdownhook_disestablish(sc->sc_sdhook);
952 powerhook_disestablish(sc->sc_powerhook);
953
954 return 0;
955 }
956
957 /*
958 * re_enable:
959 * Enable the RTL81X9 chip.
960 */
961 static int
962 re_enable(struct rtk_softc *sc)
963 {
964 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
965 if ((*sc->sc_enable)(sc) != 0) {
966 aprint_error("%s: device enable failed\n",
967 sc->sc_dev.dv_xname);
968 return EIO;
969 }
970 sc->sc_flags |= RTK_ENABLED;
971 }
972 return 0;
973 }
974
975 /*
976 * re_disable:
977 * Disable the RTL81X9 chip.
978 */
979 static void
980 re_disable(struct rtk_softc *sc)
981 {
982
983 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
984 (*sc->sc_disable)(sc);
985 sc->sc_flags &= ~RTK_ENABLED;
986 }
987 }
988
989 /*
990 * re_power:
991 * Power management (suspend/resume) hook.
992 */
993 void
994 re_power(int why, void *arg)
995 {
996 struct rtk_softc *sc = (void *) arg;
997 struct ifnet *ifp = &sc->ethercom.ec_if;
998 int s;
999
1000 s = splnet();
1001 switch (why) {
1002 case PWR_SUSPEND:
1003 case PWR_STANDBY:
1004 re_stop(ifp, 0);
1005 if (sc->sc_power != NULL)
1006 (*sc->sc_power)(sc, why);
1007 break;
1008 case PWR_RESUME:
1009 if (ifp->if_flags & IFF_UP) {
1010 if (sc->sc_power != NULL)
1011 (*sc->sc_power)(sc, why);
1012 re_init(ifp);
1013 }
1014 break;
1015 case PWR_SOFTSUSPEND:
1016 case PWR_SOFTSTANDBY:
1017 case PWR_SOFTRESUME:
1018 break;
1019 }
1020 splx(s);
1021 }
1022
1023
1024 static int
1025 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1026 {
1027 struct mbuf *n = NULL;
1028 bus_dmamap_t map;
1029 struct rtk_desc *d;
1030 u_int32_t cmdstat;
1031 int error;
1032
1033 if (m == NULL) {
1034 MGETHDR(n, M_DONTWAIT, MT_DATA);
1035 if (n == NULL)
1036 return ENOBUFS;
1037 m = n;
1038
1039 MCLGET(m, M_DONTWAIT);
1040 if (!(m->m_flags & M_EXT)) {
1041 m_freem(m);
1042 return ENOBUFS;
1043 }
1044 } else
1045 m->m_data = m->m_ext.ext_buf;
1046
1047 /*
1048 * Initialize mbuf length fields and fixup
1049 * alignment so that the frame payload is
1050 * longword aligned.
1051 */
1052 m->m_len = m->m_pkthdr.len = MCLBYTES;
1053 m_adj(m, RTK_ETHER_ALIGN);
1054
1055 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1056 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1057
1058 if (error)
1059 goto out;
1060
1061 d = &sc->rtk_ldata.rtk_rx_list[idx];
1062 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1063 goto out;
1064
1065 cmdstat = map->dm_segs[0].ds_len;
1066 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1067 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1068 cmdstat |= RTK_TDESC_CMD_SOF;
1069 if (idx == (RTK_RX_DESC_CNT - 1))
1070 cmdstat |= RTK_TDESC_CMD_EOR;
1071 d->rtk_cmdstat = htole32(cmdstat);
1072
1073 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1074
1075
1076 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1077 htole32(RTK_RDESC_CMD_OWN);
1078 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1079
1080 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1081 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1082 BUS_DMASYNC_PREREAD);
1083
1084 return 0;
1085 out:
1086 if (n != NULL)
1087 m_freem(n);
1088 return ENOMEM;
1089 }
1090
1091 static int
1092 re_tx_list_init(struct rtk_softc *sc)
1093 {
1094 memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
1095 memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
1096 (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
1097
1098 bus_dmamap_sync(sc->sc_dmat,
1099 sc->rtk_ldata.rtk_tx_list_map, 0,
1100 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1101 sc->rtk_ldata.rtk_tx_prodidx = 0;
1102 sc->rtk_ldata.rtk_tx_considx = 0;
1103 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
1104
1105 return 0;
1106 }
1107
1108 static int
1109 re_rx_list_init(struct rtk_softc *sc)
1110 {
1111 int i;
1112
1113 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1114 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1115 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1116
1117 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1118 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1119 return ENOBUFS;
1120 }
1121
1122 /* Flush the RX descriptors */
1123
1124 bus_dmamap_sync(sc->sc_dmat,
1125 sc->rtk_ldata.rtk_rx_list_map,
1126 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1127 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1128
1129 sc->rtk_ldata.rtk_rx_prodidx = 0;
1130 sc->rtk_head = sc->rtk_tail = NULL;
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * RX handler for C+ and 8169. For the gigE chips, we support
1137 * the reception of jumbo frames that have been fragmented
1138 * across multiple 2K mbuf cluster buffers.
1139 */
1140 static void
1141 re_rxeof(struct rtk_softc *sc)
1142 {
1143 struct mbuf *m;
1144 struct ifnet *ifp;
1145 int i, total_len;
1146 struct rtk_desc *cur_rx;
1147 struct m_tag *mtag;
1148 u_int32_t rxstat, rxvlan;
1149
1150 ifp = &sc->ethercom.ec_if;
1151 i = sc->rtk_ldata.rtk_rx_prodidx;
1152
1153 /* Invalidate the descriptor memory */
1154
1155 bus_dmamap_sync(sc->sc_dmat,
1156 sc->rtk_ldata.rtk_rx_list_map,
1157 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1158 BUS_DMASYNC_POSTREAD);
1159
1160 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1161
1162 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1163 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1164 total_len = RTK_RXBYTES(cur_rx);
1165 rxstat = le32toh(cur_rx->rtk_cmdstat);
1166 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1167
1168 /* Invalidate the RX mbuf and unload its map */
1169
1170 bus_dmamap_sync(sc->sc_dmat,
1171 sc->rtk_ldata.rtk_rx_dmamap[i],
1172 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1173 BUS_DMASYNC_POSTWRITE);
1174 bus_dmamap_unload(sc->sc_dmat,
1175 sc->rtk_ldata.rtk_rx_dmamap[i]);
1176
1177 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1178 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1179 if (sc->rtk_head == NULL)
1180 sc->rtk_head = sc->rtk_tail = m;
1181 else {
1182 m->m_flags &= ~M_PKTHDR;
1183 sc->rtk_tail->m_next = m;
1184 sc->rtk_tail = m;
1185 }
1186 re_newbuf(sc, i, NULL);
1187 RTK_DESC_INC(i);
1188 continue;
1189 }
1190
1191 /*
1192 * NOTE: for the 8139C+, the frame length field
1193 * is always 12 bits in size, but for the gigE chips,
1194 * it is 13 bits (since the max RX frame length is 16K).
1195 * Unfortunately, all 32 bits in the status word
1196 * were already used, so to make room for the extra
1197 * length bit, RealTek took out the 'frame alignment
1198 * error' bit and shifted the other status bits
1199 * over one slot. The OWN, EOR, FS and LS bits are
1200 * still in the same places. We have already extracted
1201 * the frame length and checked the OWN bit, so rather
1202 * than using an alternate bit mapping, we shift the
1203 * status bits one space to the right so we can evaluate
1204 * them using the 8169 status as though it was in the
1205 * same format as that of the 8139C+.
1206 */
1207 if (sc->rtk_type == RTK_8169)
1208 rxstat >>= 1;
1209
1210 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1211 ifp->if_ierrors++;
1212 /*
1213 * If this is part of a multi-fragment packet,
1214 * discard all the pieces.
1215 */
1216 if (sc->rtk_head != NULL) {
1217 m_freem(sc->rtk_head);
1218 sc->rtk_head = sc->rtk_tail = NULL;
1219 }
1220 re_newbuf(sc, i, m);
1221 RTK_DESC_INC(i);
1222 continue;
1223 }
1224
1225 /*
1226 * If allocating a replacement mbuf fails,
1227 * reload the current one.
1228 */
1229
1230 if (re_newbuf(sc, i, NULL)) {
1231 ifp->if_ierrors++;
1232 if (sc->rtk_head != NULL) {
1233 m_freem(sc->rtk_head);
1234 sc->rtk_head = sc->rtk_tail = NULL;
1235 }
1236 re_newbuf(sc, i, m);
1237 RTK_DESC_INC(i);
1238 continue;
1239 }
1240
1241 RTK_DESC_INC(i);
1242
1243 if (sc->rtk_head != NULL) {
1244 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1245 /*
1246 * Special case: if there's 4 bytes or less
1247 * in this buffer, the mbuf can be discarded:
1248 * the last 4 bytes is the CRC, which we don't
1249 * care about anyway.
1250 */
1251 if (m->m_len <= ETHER_CRC_LEN) {
1252 sc->rtk_tail->m_len -=
1253 (ETHER_CRC_LEN - m->m_len);
1254 m_freem(m);
1255 } else {
1256 m->m_len -= ETHER_CRC_LEN;
1257 m->m_flags &= ~M_PKTHDR;
1258 sc->rtk_tail->m_next = m;
1259 }
1260 m = sc->rtk_head;
1261 sc->rtk_head = sc->rtk_tail = NULL;
1262 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1263 } else
1264 m->m_pkthdr.len = m->m_len =
1265 (total_len - ETHER_CRC_LEN);
1266
1267 ifp->if_ipackets++;
1268 m->m_pkthdr.rcvif = ifp;
1269
1270 /* Do RX checksumming if enabled */
1271
1272 if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1273
1274 /* Check IP header checksum */
1275 if (rxstat & RTK_RDESC_STAT_PROTOID)
1276 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1277 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1278 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1279 }
1280
1281 /* Check TCP/UDP checksum */
1282 if (RTK_TCPPKT(rxstat) &&
1283 (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1285 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1286 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1287 }
1288 if (RTK_UDPPKT(rxstat) &&
1289 (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1290 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1291 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1292 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1293 }
1294
1295 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1296 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1297 M_NOWAIT);
1298 if (mtag == NULL) {
1299 ifp->if_ierrors++;
1300 m_freem(m);
1301 continue;
1302 }
1303 *(u_int *)(mtag + 1) =
1304 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA);
1305 m_tag_prepend(m, mtag);
1306 }
1307 #if NBPFILTER > 0
1308 if (ifp->if_bpf)
1309 bpf_mtap(ifp->if_bpf, m);
1310 #endif
1311 (*ifp->if_input)(ifp, m);
1312 }
1313
1314 /* Flush the RX DMA ring */
1315
1316 bus_dmamap_sync(sc->sc_dmat,
1317 sc->rtk_ldata.rtk_rx_list_map,
1318 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1319 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1320
1321 sc->rtk_ldata.rtk_rx_prodidx = i;
1322
1323 return;
1324 }
1325
1326 static void
1327 re_txeof(struct rtk_softc *sc)
1328 {
1329 struct ifnet *ifp;
1330 u_int32_t txstat;
1331 int idx;
1332
1333 ifp = &sc->ethercom.ec_if;
1334 idx = sc->rtk_ldata.rtk_tx_considx;
1335
1336 /* Invalidate the TX descriptor list */
1337
1338 bus_dmamap_sync(sc->sc_dmat,
1339 sc->rtk_ldata.rtk_tx_list_map,
1340 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1341 BUS_DMASYNC_POSTREAD);
1342
1343 while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
1344
1345 txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
1346 if (txstat & RTK_TDESC_CMD_OWN)
1347 break;
1348
1349 /*
1350 * We only stash mbufs in the last descriptor
1351 * in a fragment chain, which also happens to
1352 * be the only place where the TX status bits
1353 * are valid.
1354 */
1355
1356 if (txstat & RTK_TDESC_CMD_EOF) {
1357 m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
1358 sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
1359 bus_dmamap_unload(sc->sc_dmat,
1360 sc->rtk_ldata.rtk_tx_dmamap[idx]);
1361 if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
1362 RTK_TDESC_STAT_COLCNT))
1363 ifp->if_collisions++;
1364 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1365 ifp->if_oerrors++;
1366 else
1367 ifp->if_opackets++;
1368 }
1369 sc->rtk_ldata.rtk_tx_free++;
1370 RTK_DESC_INC(idx);
1371 }
1372
1373 /* No changes made to the TX ring, so no flush needed */
1374
1375 if (idx != sc->rtk_ldata.rtk_tx_considx) {
1376 sc->rtk_ldata.rtk_tx_considx = idx;
1377 ifp->if_flags &= ~IFF_OACTIVE;
1378 ifp->if_timer = 0;
1379 }
1380
1381 /*
1382 * If not all descriptors have been released reaped yet,
1383 * reload the timer so that we will eventually get another
1384 * interrupt that will cause us to re-enter this routine.
1385 * This is done in case the transmitter has gone idle.
1386 */
1387 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
1388 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1389
1390 return;
1391 }
1392
1393 /*
1394 * Stop all chip I/O so that the kernel's probe routines don't
1395 * get confused by errant DMAs when rebooting.
1396 */
1397 static void
1398 re_shutdown(void *vsc)
1399
1400 {
1401 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1402
1403 re_stop(&sc->ethercom.ec_if, 0);
1404 }
1405
1406
1407 static void
1408 re_tick(void *xsc)
1409 {
1410 struct rtk_softc *sc = xsc;
1411 int s;
1412
1413 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1414 s = splnet();
1415
1416 mii_tick(&sc->mii);
1417 splx(s);
1418
1419 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1420 }
1421
1422 #ifdef DEVICE_POLLING
1423 static void
1424 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1425 {
1426 struct rtk_softc *sc = ifp->if_softc;
1427
1428 RTK_LOCK(sc);
1429 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1430 ether_poll_deregister(ifp);
1431 cmd = POLL_DEREGISTER;
1432 }
1433 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1434 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1435 goto done;
1436 }
1437
1438 sc->rxcycles = count;
1439 re_rxeof(sc);
1440 re_txeof(sc);
1441
1442 if (ifp->if_snd.ifq_head != NULL)
1443 (*ifp->if_start)(ifp);
1444
1445 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1446 u_int16_t status;
1447
1448 status = CSR_READ_2(sc, RTK_ISR);
1449 if (status == 0xffff)
1450 goto done;
1451 if (status)
1452 CSR_WRITE_2(sc, RTK_ISR, status);
1453
1454 /*
1455 * XXX check behaviour on receiver stalls.
1456 */
1457
1458 if (status & RTK_ISR_SYSTEM_ERR) {
1459 re_reset(sc);
1460 re_init(sc);
1461 }
1462 }
1463 done:
1464 RTK_UNLOCK(sc);
1465 }
1466 #endif /* DEVICE_POLLING */
1467
1468 int
1469 re_intr(void *arg)
1470 {
1471 struct rtk_softc *sc = arg;
1472 struct ifnet *ifp;
1473 u_int16_t status;
1474 int handled = 0;
1475
1476 ifp = &sc->ethercom.ec_if;
1477
1478 if (!(ifp->if_flags & IFF_UP))
1479 return 0;
1480
1481 #ifdef DEVICE_POLLING
1482 if (ifp->if_flags & IFF_POLLING)
1483 goto done;
1484 if ((ifp->if_capenable & IFCAP_POLLING) &&
1485 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1486 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1487 re_poll(ifp, 0, 1);
1488 goto done;
1489 }
1490 #endif /* DEVICE_POLLING */
1491
1492 for (;;) {
1493
1494 status = CSR_READ_2(sc, RTK_ISR);
1495 /* If the card has gone away the read returns 0xffff. */
1496 if (status == 0xffff)
1497 break;
1498 if (status) {
1499 handled = 1;
1500 CSR_WRITE_2(sc, RTK_ISR, status);
1501 }
1502
1503 if ((status & RTK_INTRS_CPLUS) == 0)
1504 break;
1505
1506 if (status & RTK_ISR_RX_OK)
1507 re_rxeof(sc);
1508
1509 if (status & RTK_ISR_RX_ERR)
1510 re_rxeof(sc);
1511
1512 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1513 (status & RTK_ISR_TX_ERR) ||
1514 (status & RTK_ISR_TX_DESC_UNAVAIL))
1515 re_txeof(sc);
1516
1517 if (status & RTK_ISR_SYSTEM_ERR) {
1518 re_reset(sc);
1519 re_init(ifp);
1520 }
1521
1522 if (status & RTK_ISR_LINKCHG) {
1523 callout_stop(&sc->rtk_tick_ch);
1524 re_tick(sc);
1525 }
1526 }
1527
1528 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1529 if (ifp->if_snd.ifq_head != NULL)
1530 (*ifp->if_start)(ifp);
1531
1532 #ifdef DEVICE_POLLING
1533 done:
1534 #endif
1535
1536 return handled;
1537 }
1538
1539 static int
1540 re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
1541 {
1542 bus_dmamap_t map;
1543 int error, i, curidx;
1544 struct m_tag *mtag;
1545 struct rtk_desc *d;
1546 u_int32_t cmdstat, rtk_flags;
1547
1548 if (sc->rtk_ldata.rtk_tx_free <= 4)
1549 return EFBIG;
1550
1551 /*
1552 * Set up checksum offload. Note: checksum offload bits must
1553 * appear in all descriptors of a multi-descriptor transmit
1554 * attempt. (This is according to testing done with an 8169
1555 * chip. I'm not sure if this is a requirement or a bug.)
1556 */
1557
1558 rtk_flags = 0;
1559
1560 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1561 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1562 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1563 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1564 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1565 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1566
1567 map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
1568 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1569 m_head, BUS_DMA_NOWAIT);
1570
1571 if (error) {
1572 aprint_error("%s: can't map mbuf (error %d)\n",
1573 sc->sc_dev.dv_xname, error);
1574 return ENOBUFS;
1575 }
1576
1577 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
1578 return ENOBUFS;
1579 /*
1580 * Map the segment array into descriptors. Note that we set the
1581 * start-of-frame and end-of-frame markers for either TX or RX, but
1582 * they really only have meaning in the TX case. (In the RX case,
1583 * it's the chip that tells us where packets begin and end.)
1584 * We also keep track of the end of the ring and set the
1585 * end-of-ring bits as needed, and we set the ownership bits
1586 * in all except the very first descriptor. (The caller will
1587 * set this descriptor later when it start transmission or
1588 * reception.)
1589 */
1590 i = 0;
1591 curidx = *idx;
1592 while (1) {
1593 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1594 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1595 return ENOBUFS;
1596
1597 cmdstat = map->dm_segs[i].ds_len;
1598 d->rtk_bufaddr_lo =
1599 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1600 d->rtk_bufaddr_hi =
1601 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1602 if (i == 0)
1603 cmdstat |= RTK_TDESC_CMD_SOF;
1604 else
1605 cmdstat |= RTK_TDESC_CMD_OWN;
1606 if (curidx == (RTK_RX_DESC_CNT - 1))
1607 cmdstat |= RTK_TDESC_CMD_EOR;
1608 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1609 i++;
1610 if (i == map->dm_nsegs)
1611 break;
1612 RTK_DESC_INC(curidx);
1613 }
1614
1615 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1616
1617 /*
1618 * Insure that the map for this transmission
1619 * is placed at the array index of the last descriptor
1620 * in this chain.
1621 */
1622 sc->rtk_ldata.rtk_tx_dmamap[*idx] =
1623 sc->rtk_ldata.rtk_tx_dmamap[curidx];
1624 sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
1625 sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
1626 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1627
1628 /*
1629 * Set up hardware VLAN tagging. Note: vlan tag info must
1630 * appear in the first descriptor of a multi-descriptor
1631 * transmission attempt.
1632 */
1633
1634 if (sc->ethercom.ec_nvlans &&
1635 (mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL)
1636 sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
1637 htole32(htons(*(u_int *)(mtag + 1)) |
1638 RTK_TDESC_VLANCTL_TAG);
1639
1640 /* Transfer ownership of packet to the chip. */
1641
1642 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1643 htole32(RTK_TDESC_CMD_OWN);
1644 if (*idx != curidx)
1645 sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
1646 htole32(RTK_TDESC_CMD_OWN);
1647
1648 RTK_DESC_INC(curidx);
1649 *idx = curidx;
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * Main transmit routine for C+ and gigE NICs.
1656 */
1657
1658 static void
1659 re_start(struct ifnet *ifp)
1660 {
1661 struct rtk_softc *sc;
1662 struct mbuf *m_head = NULL;
1663 int idx;
1664
1665 sc = ifp->if_softc;
1666
1667 idx = sc->rtk_ldata.rtk_tx_prodidx;
1668 while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
1669 IF_DEQUEUE(&ifp->if_snd, m_head);
1670 if (m_head == NULL)
1671 break;
1672
1673 if (re_encap(sc, m_head, &idx)) {
1674 IF_PREPEND(&ifp->if_snd, m_head);
1675 ifp->if_flags |= IFF_OACTIVE;
1676 break;
1677 }
1678 #if NBPFILTER > 0
1679 /*
1680 * If there's a BPF listener, bounce a copy of this frame
1681 * to him.
1682 */
1683 if (ifp->if_bpf)
1684 bpf_mtap(ifp->if_bpf, m_head);
1685 #endif
1686 }
1687
1688 /* Flush the TX descriptors */
1689
1690 bus_dmamap_sync(sc->sc_dmat,
1691 sc->rtk_ldata.rtk_tx_list_map,
1692 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1693 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1694
1695 sc->rtk_ldata.rtk_tx_prodidx = idx;
1696
1697 /*
1698 * RealTek put the TX poll request register in a different
1699 * location on the 8169 gigE chip. I don't know why.
1700 */
1701
1702 if (sc->rtk_type == RTK_8169)
1703 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1704 else
1705 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1706
1707 /*
1708 * Use the countdown timer for interrupt moderation.
1709 * 'TX done' interrupts are disabled. Instead, we reset the
1710 * countdown timer, which will begin counting until it hits
1711 * the value in the TIMERINT register, and then trigger an
1712 * interrupt. Each time we write to the TIMERCNT register,
1713 * the timer count is reset to 0.
1714 */
1715 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1716
1717 /*
1718 * Set a timeout in case the chip goes out to lunch.
1719 */
1720 ifp->if_timer = 5;
1721
1722 return;
1723 }
1724
1725 static int
1726 re_init(struct ifnet *ifp)
1727 {
1728 struct rtk_softc *sc = ifp->if_softc;
1729 u_int32_t rxcfg = 0;
1730 u_int32_t reg;
1731 int error;
1732
1733 if ((error = re_enable(sc)) != 0)
1734 goto out;
1735
1736 /*
1737 * Cancel pending I/O and free all RX/TX buffers.
1738 */
1739 re_stop(ifp, 0);
1740
1741 /*
1742 * Enable C+ RX and TX mode, as well as VLAN stripping and
1743 * RX checksum offload. We must configure the C+ register
1744 * before all others.
1745 */
1746 reg = 0;
1747
1748 /*
1749 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1750 * FreeBSD drivers set these bits anyway (for 8139C+?).
1751 * So far, it works.
1752 */
1753
1754 /*
1755 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1756 * For 8169S/8110S rev 2 and above, do not set bit 14.
1757 */
1758 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1759 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1760
1761 if (1) {/* not for 8169S ? */
1762 reg |= RTK_CPLUSCMD_VLANSTRIP |
1763 (ifp->if_capenable &
1764 (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1765 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1766 }
1767
1768 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1769 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1770
1771 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1772 if (sc->rtk_type == RTK_8169)
1773 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1774
1775 DELAY(10000);
1776
1777 /*
1778 * Init our MAC address. Even though the chipset
1779 * documentation doesn't mention it, we need to enter "Config
1780 * register write enable" mode to modify the ID registers.
1781 */
1782 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1783 memcpy(®, LLADDR(ifp->if_sadl), 4);
1784 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1785 reg = 0;
1786 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1787 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1788 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1789
1790 /*
1791 * For C+ mode, initialize the RX descriptors and mbufs.
1792 */
1793 re_rx_list_init(sc);
1794 re_tx_list_init(sc);
1795
1796 /*
1797 * Enable transmit and receive.
1798 */
1799 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1800
1801 /*
1802 * Set the initial TX and RX configuration.
1803 */
1804 if (sc->rtk_testmode) {
1805 if (sc->rtk_type == RTK_8169)
1806 CSR_WRITE_4(sc, RTK_TXCFG,
1807 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1808 else
1809 CSR_WRITE_4(sc, RTK_TXCFG,
1810 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1811 } else
1812 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1813 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1814
1815 /* Set the individual bit to receive frames for this host only. */
1816 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1817 rxcfg |= RTK_RXCFG_RX_INDIV;
1818
1819 /* If we want promiscuous mode, set the allframes bit. */
1820 if (ifp->if_flags & IFF_PROMISC) {
1821 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1822 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1823 } else {
1824 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1825 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1826 }
1827
1828 /*
1829 * Set capture broadcast bit to capture broadcast frames.
1830 */
1831 if (ifp->if_flags & IFF_BROADCAST) {
1832 rxcfg |= RTK_RXCFG_RX_BROAD;
1833 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1834 } else {
1835 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1836 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1837 }
1838
1839 /*
1840 * Program the multicast filter, if necessary.
1841 */
1842 rtk_setmulti(sc);
1843
1844 #ifdef DEVICE_POLLING
1845 /*
1846 * Disable interrupts if we are polling.
1847 */
1848 if (ifp->if_flags & IFF_POLLING)
1849 CSR_WRITE_2(sc, RTK_IMR, 0);
1850 else /* otherwise ... */
1851 #endif /* DEVICE_POLLING */
1852 /*
1853 * Enable interrupts.
1854 */
1855 if (sc->rtk_testmode)
1856 CSR_WRITE_2(sc, RTK_IMR, 0);
1857 else
1858 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1859
1860 /* Start RX/TX process. */
1861 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1862 #ifdef notdef
1863 /* Enable receiver and transmitter. */
1864 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1865 #endif
1866 /*
1867 * Load the addresses of the RX and TX lists into the chip.
1868 */
1869
1870 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1871 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
1872 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1873 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
1874
1875 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1876 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
1877 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1878 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
1879
1880 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1881
1882 /*
1883 * Initialize the timer interrupt register so that
1884 * a timer interrupt will be generated once the timer
1885 * reaches a certain number of ticks. The timer is
1886 * reloaded on each transmit. This gives us TX interrupt
1887 * moderation, which dramatically improves TX frame rate.
1888 */
1889
1890 if (sc->rtk_type == RTK_8169)
1891 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1892 else
1893 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1894
1895 /*
1896 * For 8169 gigE NICs, set the max allowed RX packet
1897 * size so we can receive jumbo frames.
1898 */
1899 if (sc->rtk_type == RTK_8169)
1900 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1901
1902 if (sc->rtk_testmode)
1903 return 0;
1904
1905 mii_mediachg(&sc->mii);
1906
1907 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1908
1909 ifp->if_flags |= IFF_RUNNING;
1910 ifp->if_flags &= ~IFF_OACTIVE;
1911
1912 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1913
1914 out:
1915 if (error) {
1916 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1917 ifp->if_timer = 0;
1918 aprint_error("%s: interface not running\n",
1919 sc->sc_dev.dv_xname);
1920 }
1921
1922 return error;
1923
1924 }
1925
1926 /*
1927 * Set media options.
1928 */
1929 static int
1930 re_ifmedia_upd(struct ifnet *ifp)
1931 {
1932 struct rtk_softc *sc;
1933
1934 sc = ifp->if_softc;
1935
1936 return mii_mediachg(&sc->mii);
1937 }
1938
1939 /*
1940 * Report current media status.
1941 */
1942 static void
1943 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1944 {
1945 struct rtk_softc *sc;
1946
1947 sc = ifp->if_softc;
1948
1949 mii_pollstat(&sc->mii);
1950 ifmr->ifm_active = sc->mii.mii_media_active;
1951 ifmr->ifm_status = sc->mii.mii_media_status;
1952
1953 return;
1954 }
1955
1956 static int
1957 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1958 {
1959 struct rtk_softc *sc = ifp->if_softc;
1960 struct ifreq *ifr = (struct ifreq *) data;
1961 int s, error = 0;
1962
1963 s = splnet();
1964
1965 switch (command) {
1966 case SIOCSIFMTU:
1967 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1968 error = EINVAL;
1969 ifp->if_mtu = ifr->ifr_mtu;
1970 break;
1971 case SIOCGIFMEDIA:
1972 case SIOCSIFMEDIA:
1973 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1974 break;
1975 default:
1976 error = ether_ioctl(ifp, command, data);
1977 if (error == ENETRESET) {
1978 if (ifp->if_flags & IFF_RUNNING)
1979 rtk_setmulti(sc);
1980 error = 0;
1981 }
1982 break;
1983 }
1984
1985 splx(s);
1986
1987 return error;
1988 }
1989
1990 static void
1991 re_watchdog(struct ifnet *ifp)
1992 {
1993 struct rtk_softc *sc;
1994 int s;
1995
1996 sc = ifp->if_softc;
1997 s = splnet();
1998 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1999 ifp->if_oerrors++;
2000
2001 re_txeof(sc);
2002 re_rxeof(sc);
2003
2004 re_init(ifp);
2005
2006 splx(s);
2007 }
2008
2009 /*
2010 * Stop the adapter and free any mbufs allocated to the
2011 * RX and TX lists.
2012 */
2013 static void
2014 re_stop(struct ifnet *ifp, int disable)
2015 {
2016 register int i;
2017 struct rtk_softc *sc = ifp->if_softc;
2018
2019 callout_stop(&sc->rtk_tick_ch);
2020
2021 #ifdef DEVICE_POLLING
2022 ether_poll_deregister(ifp);
2023 #endif /* DEVICE_POLLING */
2024
2025 mii_down(&sc->mii);
2026
2027 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2028 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2029
2030 if (sc->rtk_head != NULL) {
2031 m_freem(sc->rtk_head);
2032 sc->rtk_head = sc->rtk_tail = NULL;
2033 }
2034
2035 /* Free the TX list buffers. */
2036 for (i = 0; i < RTK_TX_DESC_CNT; i++) {
2037 if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
2038 bus_dmamap_unload(sc->sc_dmat,
2039 sc->rtk_ldata.rtk_tx_dmamap[i]);
2040 m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
2041 sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
2042 }
2043 }
2044
2045 /* Free the RX list buffers. */
2046 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2047 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2048 bus_dmamap_unload(sc->sc_dmat,
2049 sc->rtk_ldata.rtk_rx_dmamap[i]);
2050 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2051 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2052 }
2053 }
2054
2055 if (disable)
2056 re_disable(sc);
2057
2058 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2059 ifp->if_timer = 0;
2060
2061 return;
2062 }
2063