rtl8169.c revision 1.50 1 /* $NetBSD: rtl8169.c,v 1.50 2006/10/28 03:42:55 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 uint32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 uint32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 }
244 }
245
246 static int
247 re_miibus_readreg(struct device *dev, int phy, int reg)
248 {
249 struct rtk_softc *sc = (void *)dev;
250 uint16_t rval = 0;
251 uint16_t re8139_reg = 0;
252 int s;
253
254 s = splnet();
255
256 if (sc->rtk_type == RTK_8169) {
257 rval = re_gmii_readreg(dev, phy, reg);
258 splx(s);
259 return rval;
260 }
261
262 /* Pretend the internal PHY is only at address 0 */
263 if (phy) {
264 splx(s);
265 return 0;
266 }
267 switch (reg) {
268 case MII_BMCR:
269 re8139_reg = RTK_BMCR;
270 break;
271 case MII_BMSR:
272 re8139_reg = RTK_BMSR;
273 break;
274 case MII_ANAR:
275 re8139_reg = RTK_ANAR;
276 break;
277 case MII_ANER:
278 re8139_reg = RTK_ANER;
279 break;
280 case MII_ANLPAR:
281 re8139_reg = RTK_LPAR;
282 break;
283 case MII_PHYIDR1:
284 case MII_PHYIDR2:
285 splx(s);
286 return 0;
287 /*
288 * Allow the rlphy driver to read the media status
289 * register. If we have a link partner which does not
290 * support NWAY, this is the register which will tell
291 * us the results of parallel detection.
292 */
293 case RTK_MEDIASTAT:
294 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
295 splx(s);
296 return rval;
297 default:
298 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
299 splx(s);
300 return 0;
301 }
302 rval = CSR_READ_2(sc, re8139_reg);
303 splx(s);
304 return rval;
305 }
306
307 static void
308 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
309 {
310 struct rtk_softc *sc = (void *)dev;
311 uint16_t re8139_reg = 0;
312 int s;
313
314 s = splnet();
315
316 if (sc->rtk_type == RTK_8169) {
317 re_gmii_writereg(dev, phy, reg, data);
318 splx(s);
319 return;
320 }
321
322 /* Pretend the internal PHY is only at address 0 */
323 if (phy) {
324 splx(s);
325 return;
326 }
327 switch (reg) {
328 case MII_BMCR:
329 re8139_reg = RTK_BMCR;
330 break;
331 case MII_BMSR:
332 re8139_reg = RTK_BMSR;
333 break;
334 case MII_ANAR:
335 re8139_reg = RTK_ANAR;
336 break;
337 case MII_ANER:
338 re8139_reg = RTK_ANER;
339 break;
340 case MII_ANLPAR:
341 re8139_reg = RTK_LPAR;
342 break;
343 case MII_PHYIDR1:
344 case MII_PHYIDR2:
345 splx(s);
346 return;
347 break;
348 default:
349 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
350 splx(s);
351 return;
352 }
353 CSR_WRITE_2(sc, re8139_reg, data);
354 splx(s);
355 return;
356 }
357
358 static void
359 re_miibus_statchg(struct device *dev __unused)
360 {
361
362 return;
363 }
364
365 static void
366 re_reset(struct rtk_softc *sc)
367 {
368 int i;
369
370 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
371
372 for (i = 0; i < RTK_TIMEOUT; i++) {
373 DELAY(10);
374 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
375 break;
376 }
377 if (i == RTK_TIMEOUT)
378 aprint_error("%s: reset never completed!\n",
379 sc->sc_dev.dv_xname);
380
381 /*
382 * NB: Realtek-supplied Linux driver does this only for
383 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
384 */
385 if (1) /* XXX check softc flag for 8169s version */
386 CSR_WRITE_1(sc, 0x82, 1);
387
388 return;
389 }
390
391 /*
392 * The following routine is designed to test for a defect on some
393 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
394 * lines connected to the bus, however for a 32-bit only card, they
395 * should be pulled high. The result of this defect is that the
396 * NIC will not work right if you plug it into a 64-bit slot: DMA
397 * operations will be done with 64-bit transfers, which will fail
398 * because the 64-bit data lines aren't connected.
399 *
400 * There's no way to work around this (short of talking a soldering
401 * iron to the board), however we can detect it. The method we use
402 * here is to put the NIC into digital loopback mode, set the receiver
403 * to promiscuous mode, and then try to send a frame. We then compare
404 * the frame data we sent to what was received. If the data matches,
405 * then the NIC is working correctly, otherwise we know the user has
406 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
407 * slot. In the latter case, there's no way the NIC can work correctly,
408 * so we print out a message on the console and abort the device attach.
409 */
410
411 int
412 re_diag(struct rtk_softc *sc)
413 {
414 struct ifnet *ifp = &sc->ethercom.ec_if;
415 struct mbuf *m0;
416 struct ether_header *eh;
417 struct rtk_rxsoft *rxs;
418 struct rtk_desc *cur_rx;
419 bus_dmamap_t dmamap;
420 uint16_t status;
421 uint32_t rxstat;
422 int total_len, i, s, error = 0;
423 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
424 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
425
426 /* Allocate a single mbuf */
427
428 MGETHDR(m0, M_DONTWAIT, MT_DATA);
429 if (m0 == NULL)
430 return ENOBUFS;
431
432 /*
433 * Initialize the NIC in test mode. This sets the chip up
434 * so that it can send and receive frames, but performs the
435 * following special functions:
436 * - Puts receiver in promiscuous mode
437 * - Enables digital loopback mode
438 * - Leaves interrupts turned off
439 */
440
441 ifp->if_flags |= IFF_PROMISC;
442 sc->rtk_testmode = 1;
443 re_init(ifp);
444 re_stop(ifp, 0);
445 DELAY(100000);
446 re_init(ifp);
447
448 /* Put some data in the mbuf */
449
450 eh = mtod(m0, struct ether_header *);
451 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
452 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
453 eh->ether_type = htons(ETHERTYPE_IP);
454 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
455
456 /*
457 * Queue the packet, start transmission.
458 */
459
460 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
461 s = splnet();
462 IF_ENQUEUE(&ifp->if_snd, m0);
463 re_start(ifp);
464 splx(s);
465 m0 = NULL;
466
467 /* Wait for it to propagate through the chip */
468
469 DELAY(100000);
470 for (i = 0; i < RTK_TIMEOUT; i++) {
471 status = CSR_READ_2(sc, RTK_ISR);
472 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
473 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
474 break;
475 DELAY(10);
476 }
477 if (i == RTK_TIMEOUT) {
478 aprint_error("%s: diagnostic failed, failed to receive packet "
479 "in loopback mode\n", sc->sc_dev.dv_xname);
480 error = EIO;
481 goto done;
482 }
483
484 /*
485 * The packet should have been dumped into the first
486 * entry in the RX DMA ring. Grab it from there.
487 */
488
489 rxs = &sc->rtk_ldata.rtk_rxsoft[0];
490 dmamap = rxs->rxs_dmamap;
491 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
492 BUS_DMASYNC_POSTREAD);
493 bus_dmamap_unload(sc->sc_dmat, dmamap);
494
495 m0 = rxs->rxs_mbuf;
496 rxs->rxs_mbuf = NULL;
497 eh = mtod(m0, struct ether_header *);
498
499 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
500 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
501 rxstat = le32toh(cur_rx->rtk_cmdstat);
502 total_len = rxstat & sc->rtk_rxlenmask;
503
504 if (total_len != ETHER_MIN_LEN) {
505 aprint_error("%s: diagnostic failed, received short packet\n",
506 sc->sc_dev.dv_xname);
507 error = EIO;
508 goto done;
509 }
510
511 /* Test that the received packet data matches what we sent. */
512
513 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
514 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
515 ntohs(eh->ether_type) != ETHERTYPE_IP) {
516 aprint_error("%s: WARNING, DMA FAILURE!\n",
517 sc->sc_dev.dv_xname);
518 aprint_error("%s: expected TX data: %s",
519 sc->sc_dev.dv_xname, ether_sprintf(dst));
520 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
521 aprint_error("%s: received RX data: %s",
522 sc->sc_dev.dv_xname,
523 ether_sprintf(eh->ether_dhost));
524 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
525 ntohs(eh->ether_type));
526 aprint_error("%s: You may have a defective 32-bit NIC plugged "
527 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
528 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
529 "for proper operation.\n", sc->sc_dev.dv_xname);
530 aprint_error("%s: Read the re(4) man page for more details.\n",
531 sc->sc_dev.dv_xname);
532 error = EIO;
533 }
534
535 done:
536 /* Turn interface off, release resources */
537
538 sc->rtk_testmode = 0;
539 ifp->if_flags &= ~IFF_PROMISC;
540 re_stop(ifp, 0);
541 if (m0 != NULL)
542 m_freem(m0);
543
544 return error;
545 }
546
547
548 /*
549 * Attach the interface. Allocate softc structures, do ifmedia
550 * setup and ethernet/BPF attach.
551 */
552 void
553 re_attach(struct rtk_softc *sc)
554 {
555 u_char eaddr[ETHER_ADDR_LEN];
556 uint16_t val;
557 struct ifnet *ifp;
558 int error = 0, i, addr_len;
559
560
561 /* XXX JRS: bus-attach-independent code begins approximately here */
562
563 /* Reset the adapter. */
564 re_reset(sc);
565
566 if (sc->rtk_type == RTK_8169) {
567 uint32_t hwrev;
568
569 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
570 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
571 if (hwrev == (0x1 << 28)) {
572 sc->sc_rev = 4;
573 } else if (hwrev == (0x1 << 26)) {
574 sc->sc_rev = 3;
575 } else if (hwrev == (0x1 << 23)) {
576 sc->sc_rev = 2;
577 } else
578 sc->sc_rev = 1;
579
580 /* Set RX length mask */
581
582 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
583
584 /* Force station address autoload from the EEPROM */
585
586 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
587 for (i = 0; i < RTK_TIMEOUT; i++) {
588 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
589 == 0)
590 break;
591 DELAY(100);
592 }
593 if (i == RTK_TIMEOUT)
594 aprint_error("%s: eeprom autoload timed out\n",
595 sc->sc_dev.dv_xname);
596
597 for (i = 0; i < ETHER_ADDR_LEN; i++)
598 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
599
600 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
601 } else {
602
603 /* Set RX length mask */
604
605 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
606
607 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
608 addr_len = RTK_EEADDR_LEN1;
609 else
610 addr_len = RTK_EEADDR_LEN0;
611
612 /*
613 * Get station address from the EEPROM.
614 */
615 for (i = 0; i < 3; i++) {
616 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
617 eaddr[(i * 2) + 0] = val & 0xff;
618 eaddr[(i * 2) + 1] = val >> 8;
619 }
620
621 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
622 }
623
624 aprint_normal("%s: Ethernet address %s\n",
625 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
626
627 if (sc->rtk_ldata.rtk_tx_desc_cnt >
628 PAGE_SIZE / sizeof(struct rtk_desc)) {
629 sc->rtk_ldata.rtk_tx_desc_cnt =
630 PAGE_SIZE / sizeof(struct rtk_desc);
631 }
632
633 aprint_verbose("%s: using %d tx descriptors\n",
634 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
635
636 /* Allocate DMA'able memory for the TX ring */
637 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
638 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
639 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
640 aprint_error("%s: can't allocate tx listseg, error = %d\n",
641 sc->sc_dev.dv_xname, error);
642 goto fail_0;
643 }
644
645 /* Load the map for the TX ring. */
646 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
647 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
648 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
649 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
650 aprint_error("%s: can't map tx list, error = %d\n",
651 sc->sc_dev.dv_xname, error);
652 goto fail_1;
653 }
654 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
655
656 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
657 RTK_TX_LIST_SZ(sc), 0, 0,
658 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
659 aprint_error("%s: can't create tx list map, error = %d\n",
660 sc->sc_dev.dv_xname, error);
661 goto fail_2;
662 }
663
664
665 if ((error = bus_dmamap_load(sc->sc_dmat,
666 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
667 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
668 aprint_error("%s: can't load tx list, error = %d\n",
669 sc->sc_dev.dv_xname, error);
670 goto fail_3;
671 }
672
673 /* Create DMA maps for TX buffers */
674 for (i = 0; i < RTK_TX_QLEN; i++) {
675 error = bus_dmamap_create(sc->sc_dmat,
676 round_page(IP_MAXPACKET),
677 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
678 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
679 if (error) {
680 aprint_error("%s: can't create DMA map for TX\n",
681 sc->sc_dev.dv_xname);
682 goto fail_4;
683 }
684 }
685
686 /* Allocate DMA'able memory for the RX ring */
687 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
688 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
689 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
690 aprint_error("%s: can't allocate rx listseg, error = %d\n",
691 sc->sc_dev.dv_xname, error);
692 goto fail_4;
693 }
694
695 /* Load the map for the RX ring. */
696 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
697 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
698 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
699 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
700 aprint_error("%s: can't map rx list, error = %d\n",
701 sc->sc_dev.dv_xname, error);
702 goto fail_5;
703 }
704 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
705
706 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
707 RTK_RX_LIST_SZ, 0, 0,
708 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
709 aprint_error("%s: can't create rx list map, error = %d\n",
710 sc->sc_dev.dv_xname, error);
711 goto fail_6;
712 }
713
714 if ((error = bus_dmamap_load(sc->sc_dmat,
715 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
716 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
717 aprint_error("%s: can't load rx list, error = %d\n",
718 sc->sc_dev.dv_xname, error);
719 goto fail_7;
720 }
721
722 /* Create DMA maps for RX buffers */
723 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
724 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
725 0, 0, &sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
726 if (error) {
727 aprint_error("%s: can't create DMA map for RX\n",
728 sc->sc_dev.dv_xname);
729 goto fail_8;
730 }
731 }
732
733 /*
734 * Record interface as attached. From here, we should not fail.
735 */
736 sc->sc_flags |= RTK_ATTACHED;
737
738 ifp = &sc->ethercom.ec_if;
739 ifp->if_softc = sc;
740 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
741 ifp->if_mtu = ETHERMTU;
742 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
743 ifp->if_ioctl = re_ioctl;
744 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
745
746 /*
747 * This is a way to disable hw VLAN tagging by default
748 * (RE_VLAN is undefined), as it is problematic. PR 32643
749 */
750
751 #ifdef RE_VLAN
752 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
753 #endif
754 ifp->if_start = re_start;
755 ifp->if_stop = re_stop;
756
757 /*
758 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
759 */
760
761 ifp->if_capabilities |=
762 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
763 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
764 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
765 IFCAP_TSOv4;
766 ifp->if_watchdog = re_watchdog;
767 ifp->if_init = re_init;
768 if (sc->rtk_type == RTK_8169)
769 ifp->if_baudrate = 1000000000;
770 else
771 ifp->if_baudrate = 100000000;
772 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
773 ifp->if_capenable = ifp->if_capabilities;
774 IFQ_SET_READY(&ifp->if_snd);
775
776 callout_init(&sc->rtk_tick_ch);
777
778 /* Do MII setup */
779 sc->mii.mii_ifp = ifp;
780 sc->mii.mii_readreg = re_miibus_readreg;
781 sc->mii.mii_writereg = re_miibus_writereg;
782 sc->mii.mii_statchg = re_miibus_statchg;
783 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
784 re_ifmedia_sts);
785 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
786 MII_OFFSET_ANY, 0);
787 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
788
789 /*
790 * Call MI attach routine.
791 */
792 if_attach(ifp);
793 ether_ifattach(ifp, eaddr);
794
795
796 /*
797 * Make sure the interface is shutdown during reboot.
798 */
799 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
800 if (sc->sc_sdhook == NULL)
801 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
802 sc->sc_dev.dv_xname);
803 /*
804 * Add a suspend hook to make sure we come back up after a
805 * resume.
806 */
807 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
808 re_power, sc);
809 if (sc->sc_powerhook == NULL)
810 aprint_error("%s: WARNING: unable to establish power hook\n",
811 sc->sc_dev.dv_xname);
812
813
814 return;
815
816 fail_8:
817 /* Destroy DMA maps for RX buffers. */
818 for (i = 0; i < RTK_RX_DESC_CNT; i++)
819 if (sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap != NULL)
820 bus_dmamap_destroy(sc->sc_dmat,
821 sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
822
823 /* Free DMA'able memory for the RX ring. */
824 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
825 fail_7:
826 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
827 fail_6:
828 bus_dmamem_unmap(sc->sc_dmat,
829 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
830 fail_5:
831 bus_dmamem_free(sc->sc_dmat,
832 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
833
834 fail_4:
835 /* Destroy DMA maps for TX buffers. */
836 for (i = 0; i < RTK_TX_QLEN; i++)
837 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
838 bus_dmamap_destroy(sc->sc_dmat,
839 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
840
841 /* Free DMA'able memory for the TX ring. */
842 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
843 fail_3:
844 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
845 fail_2:
846 bus_dmamem_unmap(sc->sc_dmat,
847 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
848 fail_1:
849 bus_dmamem_free(sc->sc_dmat,
850 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
851 fail_0:
852 return;
853 }
854
855
856 /*
857 * re_activate:
858 * Handle device activation/deactivation requests.
859 */
860 int
861 re_activate(struct device *self, enum devact act)
862 {
863 struct rtk_softc *sc = (void *)self;
864 int s, error = 0;
865
866 s = splnet();
867 switch (act) {
868 case DVACT_ACTIVATE:
869 error = EOPNOTSUPP;
870 break;
871 case DVACT_DEACTIVATE:
872 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
873 if_deactivate(&sc->ethercom.ec_if);
874 break;
875 }
876 splx(s);
877
878 return error;
879 }
880
881 /*
882 * re_detach:
883 * Detach a rtk interface.
884 */
885 int
886 re_detach(struct rtk_softc *sc)
887 {
888 struct ifnet *ifp = &sc->ethercom.ec_if;
889 int i;
890
891 /*
892 * Succeed now if there isn't any work to do.
893 */
894 if ((sc->sc_flags & RTK_ATTACHED) == 0)
895 return 0;
896
897 /* Unhook our tick handler. */
898 callout_stop(&sc->rtk_tick_ch);
899
900 /* Detach all PHYs. */
901 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
902
903 /* Delete all remaining media. */
904 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
905
906 ether_ifdetach(ifp);
907 if_detach(ifp);
908
909 /* Destroy DMA maps for RX buffers. */
910 for (i = 0; i < RTK_RX_DESC_CNT; i++)
911 if (sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap != NULL)
912 bus_dmamap_destroy(sc->sc_dmat,
913 sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
914
915 /* Free DMA'able memory for the RX ring. */
916 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
917 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
918 bus_dmamem_unmap(sc->sc_dmat,
919 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
920 bus_dmamem_free(sc->sc_dmat,
921 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
922
923 /* Destroy DMA maps for TX buffers. */
924 for (i = 0; i < RTK_TX_QLEN; i++)
925 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
926 bus_dmamap_destroy(sc->sc_dmat,
927 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
928
929 /* Free DMA'able memory for the TX ring. */
930 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
931 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
932 bus_dmamem_unmap(sc->sc_dmat,
933 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
934 bus_dmamem_free(sc->sc_dmat,
935 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
936
937
938 shutdownhook_disestablish(sc->sc_sdhook);
939 powerhook_disestablish(sc->sc_powerhook);
940
941 return 0;
942 }
943
944 /*
945 * re_enable:
946 * Enable the RTL81X9 chip.
947 */
948 static int
949 re_enable(struct rtk_softc *sc)
950 {
951
952 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
953 if ((*sc->sc_enable)(sc) != 0) {
954 aprint_error("%s: device enable failed\n",
955 sc->sc_dev.dv_xname);
956 return EIO;
957 }
958 sc->sc_flags |= RTK_ENABLED;
959 }
960 return 0;
961 }
962
963 /*
964 * re_disable:
965 * Disable the RTL81X9 chip.
966 */
967 static void
968 re_disable(struct rtk_softc *sc)
969 {
970
971 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
972 (*sc->sc_disable)(sc);
973 sc->sc_flags &= ~RTK_ENABLED;
974 }
975 }
976
977 /*
978 * re_power:
979 * Power management (suspend/resume) hook.
980 */
981 void
982 re_power(int why, void *arg)
983 {
984 struct rtk_softc *sc = (void *)arg;
985 struct ifnet *ifp = &sc->ethercom.ec_if;
986 int s;
987
988 s = splnet();
989 switch (why) {
990 case PWR_SUSPEND:
991 case PWR_STANDBY:
992 re_stop(ifp, 0);
993 if (sc->sc_power != NULL)
994 (*sc->sc_power)(sc, why);
995 break;
996 case PWR_RESUME:
997 if (ifp->if_flags & IFF_UP) {
998 if (sc->sc_power != NULL)
999 (*sc->sc_power)(sc, why);
1000 re_init(ifp);
1001 }
1002 break;
1003 case PWR_SOFTSUSPEND:
1004 case PWR_SOFTSTANDBY:
1005 case PWR_SOFTRESUME:
1006 break;
1007 }
1008 splx(s);
1009 }
1010
1011
1012 static int
1013 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1014 {
1015 struct mbuf *n = NULL;
1016 bus_dmamap_t map;
1017 struct rtk_desc *d;
1018 struct rtk_rxsoft *rxs;
1019 uint32_t cmdstat;
1020 int error;
1021
1022 if (m == NULL) {
1023 MGETHDR(n, M_DONTWAIT, MT_DATA);
1024 if (n == NULL)
1025 return ENOBUFS;
1026
1027 MCLGET(n, M_DONTWAIT);
1028 if ((n->m_flags & M_EXT) == 0) {
1029 m_freem(n);
1030 return ENOBUFS;
1031 }
1032 m = n;
1033 } else
1034 m->m_data = m->m_ext.ext_buf;
1035
1036 /*
1037 * Initialize mbuf length fields and fixup
1038 * alignment so that the frame payload is
1039 * longword aligned.
1040 */
1041 m->m_len = m->m_pkthdr.len = MCLBYTES - RTK_ETHER_ALIGN;
1042 m->m_data += RTK_ETHER_ALIGN;
1043
1044 rxs = &sc->rtk_ldata.rtk_rxsoft[idx];
1045 map = rxs->rxs_dmamap;
1046 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1047 BUS_DMA_READ|BUS_DMA_NOWAIT);
1048
1049 if (error)
1050 goto out;
1051
1052 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1053 BUS_DMASYNC_PREREAD);
1054
1055 d = &sc->rtk_ldata.rtk_rx_list[idx];
1056 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1057 cmdstat = le32toh(d->rtk_cmdstat);
1058 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1059 if (cmdstat & RTK_RDESC_STAT_OWN) {
1060 aprint_error("%s: tried to map busy RX descriptor\n",
1061 sc->sc_dev.dv_xname);
1062 goto out;
1063 }
1064
1065 rxs->rxs_mbuf = m;
1066
1067 cmdstat = map->dm_segs[0].ds_len;
1068 if (idx == (RTK_RX_DESC_CNT - 1))
1069 cmdstat |= RTK_RDESC_CMD_EOR;
1070 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1071 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1072 d->rtk_cmdstat = htole32(cmdstat);
1073 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1074 cmdstat |= RTK_RDESC_CMD_OWN;
1075 d->rtk_cmdstat = htole32(cmdstat);
1076 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1077
1078 return 0;
1079 out:
1080 if (n != NULL)
1081 m_freem(n);
1082 return ENOMEM;
1083 }
1084
1085 static int
1086 re_tx_list_init(struct rtk_softc *sc)
1087 {
1088 int i;
1089
1090 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1091 for (i = 0; i < RTK_TX_QLEN; i++) {
1092 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1093 }
1094
1095 bus_dmamap_sync(sc->sc_dmat,
1096 sc->rtk_ldata.rtk_tx_list_map, 0,
1097 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1098 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1099 sc->rtk_ldata.rtk_txq_prodidx = 0;
1100 sc->rtk_ldata.rtk_txq_considx = 0;
1101 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1102 sc->rtk_ldata.rtk_tx_nextfree = 0;
1103
1104 return 0;
1105 }
1106
1107 static int
1108 re_rx_list_init(struct rtk_softc *sc)
1109 {
1110 int i;
1111
1112 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1113
1114 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1115 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1116 return ENOBUFS;
1117 }
1118
1119 sc->rtk_ldata.rtk_rx_prodidx = 0;
1120 sc->rtk_head = sc->rtk_tail = NULL;
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * RX handler for C+ and 8169. For the gigE chips, we support
1127 * the reception of jumbo frames that have been fragmented
1128 * across multiple 2K mbuf cluster buffers.
1129 */
1130 static void
1131 re_rxeof(struct rtk_softc *sc)
1132 {
1133 struct mbuf *m;
1134 struct ifnet *ifp;
1135 int i, total_len;
1136 struct rtk_desc *cur_rx;
1137 struct rtk_rxsoft *rxs;
1138 uint32_t rxstat, rxvlan;
1139
1140 ifp = &sc->ethercom.ec_if;
1141
1142 for (i = sc->rtk_ldata.rtk_rx_prodidx;; i = RTK_NEXT_RX_DESC(sc, i)) {
1143 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1144 RTK_RXDESCSYNC(sc, i,
1145 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1146 rxstat = le32toh(cur_rx->rtk_cmdstat);
1147 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1148 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1149 break;
1150 }
1151 total_len = rxstat & sc->rtk_rxlenmask;
1152 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1153 rxs = &sc->rtk_ldata.rtk_rxsoft[i];
1154 m = rxs->rxs_mbuf;
1155
1156 /* Invalidate the RX mbuf and unload its map */
1157
1158 bus_dmamap_sync(sc->sc_dmat,
1159 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1160 BUS_DMASYNC_POSTREAD);
1161 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1162
1163 if ((rxstat & RTK_RDESC_STAT_EOF) == 0) {
1164 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1165 if (sc->rtk_head == NULL)
1166 sc->rtk_head = sc->rtk_tail = m;
1167 else {
1168 m->m_flags &= ~M_PKTHDR;
1169 sc->rtk_tail->m_next = m;
1170 sc->rtk_tail = m;
1171 }
1172 re_newbuf(sc, i, NULL);
1173 continue;
1174 }
1175
1176 /*
1177 * NOTE: for the 8139C+, the frame length field
1178 * is always 12 bits in size, but for the gigE chips,
1179 * it is 13 bits (since the max RX frame length is 16K).
1180 * Unfortunately, all 32 bits in the status word
1181 * were already used, so to make room for the extra
1182 * length bit, RealTek took out the 'frame alignment
1183 * error' bit and shifted the other status bits
1184 * over one slot. The OWN, EOR, FS and LS bits are
1185 * still in the same places. We have already extracted
1186 * the frame length and checked the OWN bit, so rather
1187 * than using an alternate bit mapping, we shift the
1188 * status bits one space to the right so we can evaluate
1189 * them using the 8169 status as though it was in the
1190 * same format as that of the 8139C+.
1191 */
1192 if (sc->rtk_type == RTK_8169)
1193 rxstat >>= 1;
1194
1195 if ((rxstat & RTK_RDESC_STAT_RXERRSUM) != 0) {
1196 ifp->if_ierrors++;
1197 /*
1198 * If this is part of a multi-fragment packet,
1199 * discard all the pieces.
1200 */
1201 if (sc->rtk_head != NULL) {
1202 m_freem(sc->rtk_head);
1203 sc->rtk_head = sc->rtk_tail = NULL;
1204 }
1205 re_newbuf(sc, i, m);
1206 continue;
1207 }
1208
1209 /*
1210 * If allocating a replacement mbuf fails,
1211 * reload the current one.
1212 */
1213
1214 if (re_newbuf(sc, i, NULL) != 0) {
1215 ifp->if_ierrors++;
1216 if (sc->rtk_head != NULL) {
1217 m_freem(sc->rtk_head);
1218 sc->rtk_head = sc->rtk_tail = NULL;
1219 }
1220 re_newbuf(sc, i, m);
1221 continue;
1222 }
1223
1224 if (sc->rtk_head != NULL) {
1225 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1226 /*
1227 * Special case: if there's 4 bytes or less
1228 * in this buffer, the mbuf can be discarded:
1229 * the last 4 bytes is the CRC, which we don't
1230 * care about anyway.
1231 */
1232 if (m->m_len <= ETHER_CRC_LEN) {
1233 sc->rtk_tail->m_len -=
1234 (ETHER_CRC_LEN - m->m_len);
1235 m_freem(m);
1236 } else {
1237 m->m_len -= ETHER_CRC_LEN;
1238 m->m_flags &= ~M_PKTHDR;
1239 sc->rtk_tail->m_next = m;
1240 }
1241 m = sc->rtk_head;
1242 sc->rtk_head = sc->rtk_tail = NULL;
1243 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1244 } else
1245 m->m_pkthdr.len = m->m_len =
1246 (total_len - ETHER_CRC_LEN);
1247
1248 ifp->if_ipackets++;
1249 m->m_pkthdr.rcvif = ifp;
1250
1251 /* Do RX checksumming if enabled */
1252
1253 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1254
1255 /* Check IP header checksum */
1256 if (rxstat & RTK_RDESC_STAT_PROTOID)
1257 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1258 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1259 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1260 }
1261
1262 /* Check TCP/UDP checksum */
1263 if (RTK_TCPPKT(rxstat) &&
1264 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1265 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1266 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1267 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1268 }
1269 if (RTK_UDPPKT(rxstat) &&
1270 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1271 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1272 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1273 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1274 }
1275
1276 #ifdef RE_VLAN
1277 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1278 VLAN_INPUT_TAG(ifp, m,
1279 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1280 continue);
1281 }
1282 #endif
1283 #if NBPFILTER > 0
1284 if (ifp->if_bpf)
1285 bpf_mtap(ifp->if_bpf, m);
1286 #endif
1287 (*ifp->if_input)(ifp, m);
1288 }
1289
1290 sc->rtk_ldata.rtk_rx_prodidx = i;
1291 }
1292
1293 static void
1294 re_txeof(struct rtk_softc *sc)
1295 {
1296 struct ifnet *ifp;
1297 int idx;
1298 boolean_t done = FALSE;
1299
1300 ifp = &sc->ethercom.ec_if;
1301 idx = sc->rtk_ldata.rtk_txq_considx;
1302
1303 for (;;) {
1304 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1305 int descidx;
1306 uint32_t txstat;
1307
1308 if (txq->txq_mbuf == NULL) {
1309 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1310 break;
1311 }
1312
1313 descidx = txq->txq_descidx;
1314 RTK_TXDESCSYNC(sc, descidx,
1315 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1316 txstat =
1317 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1318 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1319 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1320 if (txstat & RTK_TDESC_CMD_OWN) {
1321 break;
1322 }
1323
1324 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1325 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1326 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1327 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1328 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1329 m_freem(txq->txq_mbuf);
1330 txq->txq_mbuf = NULL;
1331
1332 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1333 ifp->if_collisions++;
1334 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1335 ifp->if_oerrors++;
1336 else
1337 ifp->if_opackets++;
1338
1339 idx = RTK_NEXT_TXQ(sc, idx);
1340 done = TRUE;
1341 }
1342
1343 /* No changes made to the TX ring, so no flush needed */
1344
1345 if (done) {
1346 sc->rtk_ldata.rtk_txq_considx = idx;
1347 ifp->if_flags &= ~IFF_OACTIVE;
1348 ifp->if_timer = 0;
1349 }
1350
1351 /*
1352 * If not all descriptors have been released reaped yet,
1353 * reload the timer so that we will eventually get another
1354 * interrupt that will cause us to re-enter this routine.
1355 * This is done in case the transmitter has gone idle.
1356 */
1357 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1358 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1359 }
1360
1361 /*
1362 * Stop all chip I/O so that the kernel's probe routines don't
1363 * get confused by errant DMAs when rebooting.
1364 */
1365 static void
1366 re_shutdown(void *vsc)
1367
1368 {
1369 struct rtk_softc *sc = vsc;
1370
1371 re_stop(&sc->ethercom.ec_if, 0);
1372 }
1373
1374
1375 static void
1376 re_tick(void *xsc)
1377 {
1378 struct rtk_softc *sc = xsc;
1379 int s;
1380
1381 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1382 s = splnet();
1383
1384 mii_tick(&sc->mii);
1385 splx(s);
1386
1387 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1388 }
1389
1390 #ifdef DEVICE_POLLING
1391 static void
1392 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1393 {
1394 struct rtk_softc *sc = ifp->if_softc;
1395
1396 RTK_LOCK(sc);
1397 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1398 ether_poll_deregister(ifp);
1399 cmd = POLL_DEREGISTER;
1400 }
1401 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1402 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1403 goto done;
1404 }
1405
1406 sc->rxcycles = count;
1407 re_rxeof(sc);
1408 re_txeof(sc);
1409
1410 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1411 (*ifp->if_start)(ifp);
1412
1413 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1414 uint16_t status;
1415
1416 status = CSR_READ_2(sc, RTK_ISR);
1417 if (status == 0xffff)
1418 goto done;
1419 if (status)
1420 CSR_WRITE_2(sc, RTK_ISR, status);
1421
1422 /*
1423 * XXX check behaviour on receiver stalls.
1424 */
1425
1426 if (status & RTK_ISR_SYSTEM_ERR) {
1427 re_reset(sc);
1428 re_init(sc);
1429 }
1430 }
1431 done:
1432 RTK_UNLOCK(sc);
1433 }
1434 #endif /* DEVICE_POLLING */
1435
1436 int
1437 re_intr(void *arg)
1438 {
1439 struct rtk_softc *sc = arg;
1440 struct ifnet *ifp;
1441 uint16_t status;
1442 int handled = 0;
1443
1444 ifp = &sc->ethercom.ec_if;
1445
1446 if ((ifp->if_flags & IFF_UP) == 0)
1447 return 0;
1448
1449 #ifdef DEVICE_POLLING
1450 if (ifp->if_flags & IFF_POLLING)
1451 goto done;
1452 if ((ifp->if_capenable & IFCAP_POLLING) &&
1453 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1454 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1455 re_poll(ifp, 0, 1);
1456 goto done;
1457 }
1458 #endif /* DEVICE_POLLING */
1459
1460 for (;;) {
1461
1462 status = CSR_READ_2(sc, RTK_ISR);
1463 /* If the card has gone away the read returns 0xffff. */
1464 if (status == 0xffff)
1465 break;
1466 if (status) {
1467 handled = 1;
1468 CSR_WRITE_2(sc, RTK_ISR, status);
1469 }
1470
1471 if ((status & RTK_INTRS_CPLUS) == 0)
1472 break;
1473
1474 if ((status & RTK_ISR_RX_OK) ||
1475 (status & RTK_ISR_RX_ERR))
1476 re_rxeof(sc);
1477
1478 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1479 (status & RTK_ISR_TX_ERR) ||
1480 (status & RTK_ISR_TX_DESC_UNAVAIL))
1481 re_txeof(sc);
1482
1483 if (status & RTK_ISR_SYSTEM_ERR) {
1484 re_reset(sc);
1485 re_init(ifp);
1486 }
1487
1488 if (status & RTK_ISR_LINKCHG) {
1489 callout_stop(&sc->rtk_tick_ch);
1490 re_tick(sc);
1491 }
1492 }
1493
1494 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1495 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1496 (*ifp->if_start)(ifp);
1497
1498 #ifdef DEVICE_POLLING
1499 done:
1500 #endif
1501
1502 return handled;
1503 }
1504
1505 static int
1506 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1507 {
1508 bus_dmamap_t map;
1509 int error, seg, uidx, startidx, curidx, lastidx;
1510 #ifdef RE_VLAN
1511 struct m_tag *mtag;
1512 #endif
1513 struct rtk_desc *d;
1514 uint32_t cmdstat, rtk_flags;
1515 struct rtk_txq *txq;
1516
1517 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1518 return EFBIG;
1519 }
1520
1521 /*
1522 * Set up checksum offload. Note: checksum offload bits must
1523 * appear in all descriptors of a multi-descriptor transmit
1524 * attempt. (This is according to testing done with an 8169
1525 * chip. I'm not sure if this is a requirement or a bug.)
1526 */
1527
1528 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1529 uint32_t segsz = m->m_pkthdr.segsz;
1530
1531 rtk_flags = RTK_TDESC_CMD_LGSEND |
1532 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1533 } else {
1534
1535 /*
1536 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1537 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1538 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1539 */
1540
1541 rtk_flags = 0;
1542 if ((m->m_pkthdr.csum_flags &
1543 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1544 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1545 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1546 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1547 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1548 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1549 }
1550 }
1551 }
1552
1553 txq = &sc->rtk_ldata.rtk_txq[*idx];
1554 map = txq->txq_dmamap;
1555 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1556 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1557
1558 if (error) {
1559 /* XXX try to defrag if EFBIG? */
1560
1561 aprint_error("%s: can't map mbuf (error %d)\n",
1562 sc->sc_dev.dv_xname, error);
1563
1564 return error;
1565 }
1566
1567 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1568 error = EFBIG;
1569 goto fail_unload;
1570 }
1571
1572 /*
1573 * Make sure that the caches are synchronized before we
1574 * ask the chip to start DMA for the packet data.
1575 */
1576 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1577 BUS_DMASYNC_PREWRITE);
1578
1579 /*
1580 * Map the segment array into descriptors. Note that we set the
1581 * start-of-frame and end-of-frame markers for either TX or RX, but
1582 * they really only have meaning in the TX case. (In the RX case,
1583 * it's the chip that tells us where packets begin and end.)
1584 * We also keep track of the end of the ring and set the
1585 * end-of-ring bits as needed, and we set the ownership bits
1586 * in all except the very first descriptor. (The caller will
1587 * set this descriptor later when it start transmission or
1588 * reception.)
1589 */
1590 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1591 lastidx = -1;
1592 for (seg = 0; seg < map->dm_nsegs;
1593 seg++, curidx = RTK_NEXT_TX_DESC(sc, curidx)) {
1594 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1595 RTK_TXDESCSYNC(sc, curidx,
1596 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1597 cmdstat = le32toh(d->rtk_cmdstat);
1598 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1599 if (cmdstat & RTK_TDESC_STAT_OWN) {
1600 aprint_error("%s: tried to map busy TX descriptor\n",
1601 sc->sc_dev.dv_xname);
1602 for (; seg > 0; seg--) {
1603 uidx = (curidx + RTK_TX_DESC_CNT(sc) - seg) %
1604 RTK_TX_DESC_CNT(sc);
1605 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1606 RTK_TXDESCSYNC(sc, uidx,
1607 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1608 }
1609 error = ENOBUFS;
1610 goto fail_unload;
1611 }
1612
1613 cmdstat = map->dm_segs[seg].ds_len;
1614 if (seg == 0)
1615 cmdstat |= RTK_TDESC_CMD_SOF;
1616 else
1617 cmdstat |= RTK_TDESC_CMD_OWN;
1618 if (seg == map->dm_nsegs - 1) {
1619 cmdstat |= RTK_TDESC_CMD_EOF;
1620 lastidx = curidx;
1621 }
1622 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1623 cmdstat |= RTK_TDESC_CMD_EOR;
1624 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1625 d->rtk_bufaddr_lo =
1626 htole32(RTK_ADDR_LO(map->dm_segs[seg].ds_addr));
1627 d->rtk_bufaddr_hi =
1628 htole32(RTK_ADDR_HI(map->dm_segs[seg].ds_addr));
1629 RTK_TXDESCSYNC(sc, curidx,
1630 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1631 }
1632 KASSERT(lastidx != -1);
1633
1634 /*
1635 * Set up hardware VLAN tagging. Note: vlan tag info must
1636 * appear in the first descriptor of a multi-descriptor
1637 * transmission attempt.
1638 */
1639
1640 #ifdef RE_VLAN
1641 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1642 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1643 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1644 RTK_TDESC_VLANCTL_TAG);
1645 }
1646 #endif
1647
1648 /* Transfer ownership of packet to the chip. */
1649
1650 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1651 htole32(RTK_TDESC_CMD_OWN);
1652 RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1653
1654 /* update info of TX queue and descriptors */
1655 txq->txq_mbuf = m;
1656 txq->txq_descidx = lastidx;
1657
1658 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1659 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1660
1661 *idx = RTK_NEXT_TXQ(sc, *idx);
1662
1663 return 0;
1664
1665 fail_unload:
1666 bus_dmamap_unload(sc->sc_dmat, map);
1667
1668 return error;
1669 }
1670
1671 /*
1672 * Main transmit routine for C+ and gigE NICs.
1673 */
1674
1675 static void
1676 re_start(struct ifnet *ifp)
1677 {
1678 struct rtk_softc *sc;
1679 int idx;
1680 boolean_t done = FALSE;
1681
1682 sc = ifp->if_softc;
1683
1684 idx = sc->rtk_ldata.rtk_txq_prodidx;
1685 for (;;) {
1686 struct mbuf *m;
1687 int error;
1688
1689 IFQ_POLL(&ifp->if_snd, m);
1690 if (m == NULL)
1691 break;
1692
1693 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1694 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1695 ifp->if_flags |= IFF_OACTIVE;
1696 break;
1697 }
1698
1699 error = re_encap(sc, m, &idx);
1700 if (error == EFBIG &&
1701 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1702 IFQ_DEQUEUE(&ifp->if_snd, m);
1703 m_freem(m);
1704 ifp->if_oerrors++;
1705 continue;
1706 }
1707 if (error) {
1708 ifp->if_flags |= IFF_OACTIVE;
1709 break;
1710 }
1711
1712 IFQ_DEQUEUE(&ifp->if_snd, m);
1713
1714 #if NBPFILTER > 0
1715 /*
1716 * If there's a BPF listener, bounce a copy of this frame
1717 * to him.
1718 */
1719 if (ifp->if_bpf)
1720 bpf_mtap(ifp->if_bpf, m);
1721 #endif
1722
1723 done = TRUE;
1724 }
1725
1726 if (!done) {
1727 return;
1728 }
1729 sc->rtk_ldata.rtk_txq_prodidx = idx;
1730
1731 /*
1732 * RealTek put the TX poll request register in a different
1733 * location on the 8169 gigE chip. I don't know why.
1734 */
1735
1736 if (sc->rtk_type == RTK_8169)
1737 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1738 else
1739 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1740
1741 /*
1742 * Use the countdown timer for interrupt moderation.
1743 * 'TX done' interrupts are disabled. Instead, we reset the
1744 * countdown timer, which will begin counting until it hits
1745 * the value in the TIMERINT register, and then trigger an
1746 * interrupt. Each time we write to the TIMERCNT register,
1747 * the timer count is reset to 0.
1748 */
1749 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1750
1751 /*
1752 * Set a timeout in case the chip goes out to lunch.
1753 */
1754 ifp->if_timer = 5;
1755 }
1756
1757 static int
1758 re_init(struct ifnet *ifp)
1759 {
1760 struct rtk_softc *sc = ifp->if_softc;
1761 uint8_t *enaddr;
1762 uint32_t rxcfg = 0;
1763 uint32_t reg;
1764 int error;
1765
1766 if ((error = re_enable(sc)) != 0)
1767 goto out;
1768
1769 /*
1770 * Cancel pending I/O and free all RX/TX buffers.
1771 */
1772 re_stop(ifp, 0);
1773
1774 /*
1775 * Enable C+ RX and TX mode, as well as VLAN stripping and
1776 * RX checksum offload. We must configure the C+ register
1777 * before all others.
1778 */
1779 reg = 0;
1780
1781 /*
1782 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1783 * FreeBSD drivers set these bits anyway (for 8139C+?).
1784 * So far, it works.
1785 */
1786
1787 /*
1788 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1789 * For 8169S/8110S rev 2 and above, do not set bit 14.
1790 */
1791 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1792 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1793
1794 if (1) {/* not for 8169S ? */
1795 reg |=
1796 #ifdef RE_VLAN
1797 RTK_CPLUSCMD_VLANSTRIP |
1798 #endif
1799 (ifp->if_capenable &
1800 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1801 IFCAP_CSUM_UDPv4_Rx) ?
1802 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1803 }
1804
1805 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1806 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1807
1808 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1809 if (sc->rtk_type == RTK_8169)
1810 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1811
1812 DELAY(10000);
1813
1814 /*
1815 * Init our MAC address. Even though the chipset
1816 * documentation doesn't mention it, we need to enter "Config
1817 * register write enable" mode to modify the ID registers.
1818 */
1819 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1820 enaddr = LLADDR(ifp->if_sadl);
1821 reg = enaddr[0] | (enaddr[1] << 8) |
1822 (enaddr[2] << 16) | (enaddr[3] << 24);
1823 CSR_WRITE_4(sc, RTK_IDR0, reg);
1824 reg = enaddr[4] | (enaddr[5] << 8);
1825 CSR_WRITE_4(sc, RTK_IDR4, reg);
1826 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1827
1828 /*
1829 * For C+ mode, initialize the RX descriptors and mbufs.
1830 */
1831 re_rx_list_init(sc);
1832 re_tx_list_init(sc);
1833
1834 /*
1835 * Enable transmit and receive.
1836 */
1837 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1838
1839 /*
1840 * Set the initial TX and RX configuration.
1841 */
1842 if (sc->rtk_testmode) {
1843 if (sc->rtk_type == RTK_8169)
1844 CSR_WRITE_4(sc, RTK_TXCFG,
1845 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1846 else
1847 CSR_WRITE_4(sc, RTK_TXCFG,
1848 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1849 } else
1850 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1851 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1852
1853 /* Set the individual bit to receive frames for this host only. */
1854 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1855 rxcfg |= RTK_RXCFG_RX_INDIV;
1856
1857 /* If we want promiscuous mode, set the allframes bit. */
1858 if (ifp->if_flags & IFF_PROMISC)
1859 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1860 else
1861 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1862 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1863
1864 /*
1865 * Set capture broadcast bit to capture broadcast frames.
1866 */
1867 if (ifp->if_flags & IFF_BROADCAST)
1868 rxcfg |= RTK_RXCFG_RX_BROAD;
1869 else
1870 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1871 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1872
1873 /*
1874 * Program the multicast filter, if necessary.
1875 */
1876 rtk_setmulti(sc);
1877
1878 #ifdef DEVICE_POLLING
1879 /*
1880 * Disable interrupts if we are polling.
1881 */
1882 if (ifp->if_flags & IFF_POLLING)
1883 CSR_WRITE_2(sc, RTK_IMR, 0);
1884 else /* otherwise ... */
1885 #endif /* DEVICE_POLLING */
1886 /*
1887 * Enable interrupts.
1888 */
1889 if (sc->rtk_testmode)
1890 CSR_WRITE_2(sc, RTK_IMR, 0);
1891 else
1892 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1893
1894 /* Start RX/TX process. */
1895 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1896 #ifdef notdef
1897 /* Enable receiver and transmitter. */
1898 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1899 #endif
1900 /*
1901 * Load the addresses of the RX and TX lists into the chip.
1902 */
1903
1904 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1905 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1906 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1907 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1908
1909 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1910 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1911 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1912 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1913
1914 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1915
1916 /*
1917 * Initialize the timer interrupt register so that
1918 * a timer interrupt will be generated once the timer
1919 * reaches a certain number of ticks. The timer is
1920 * reloaded on each transmit. This gives us TX interrupt
1921 * moderation, which dramatically improves TX frame rate.
1922 */
1923
1924 if (sc->rtk_type == RTK_8169)
1925 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1926 else
1927 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1928
1929 /*
1930 * For 8169 gigE NICs, set the max allowed RX packet
1931 * size so we can receive jumbo frames.
1932 */
1933 if (sc->rtk_type == RTK_8169)
1934 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1935
1936 if (sc->rtk_testmode)
1937 return 0;
1938
1939 mii_mediachg(&sc->mii);
1940
1941 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1942
1943 ifp->if_flags |= IFF_RUNNING;
1944 ifp->if_flags &= ~IFF_OACTIVE;
1945
1946 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1947
1948 out:
1949 if (error) {
1950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1951 ifp->if_timer = 0;
1952 aprint_error("%s: interface not running\n",
1953 sc->sc_dev.dv_xname);
1954 }
1955
1956 return error;
1957 }
1958
1959 /*
1960 * Set media options.
1961 */
1962 static int
1963 re_ifmedia_upd(struct ifnet *ifp)
1964 {
1965 struct rtk_softc *sc;
1966
1967 sc = ifp->if_softc;
1968
1969 return mii_mediachg(&sc->mii);
1970 }
1971
1972 /*
1973 * Report current media status.
1974 */
1975 static void
1976 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1977 {
1978 struct rtk_softc *sc;
1979
1980 sc = ifp->if_softc;
1981
1982 mii_pollstat(&sc->mii);
1983 ifmr->ifm_active = sc->mii.mii_media_active;
1984 ifmr->ifm_status = sc->mii.mii_media_status;
1985 }
1986
1987 static int
1988 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1989 {
1990 struct rtk_softc *sc = ifp->if_softc;
1991 struct ifreq *ifr = (struct ifreq *) data;
1992 int s, error = 0;
1993
1994 s = splnet();
1995
1996 switch (command) {
1997 case SIOCSIFMTU:
1998 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1999 error = EINVAL;
2000 ifp->if_mtu = ifr->ifr_mtu;
2001 break;
2002 case SIOCGIFMEDIA:
2003 case SIOCSIFMEDIA:
2004 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2005 break;
2006 default:
2007 error = ether_ioctl(ifp, command, data);
2008 if (error == ENETRESET) {
2009 if (ifp->if_flags & IFF_RUNNING)
2010 rtk_setmulti(sc);
2011 error = 0;
2012 }
2013 break;
2014 }
2015
2016 splx(s);
2017
2018 return error;
2019 }
2020
2021 static void
2022 re_watchdog(struct ifnet *ifp)
2023 {
2024 struct rtk_softc *sc;
2025 int s;
2026
2027 sc = ifp->if_softc;
2028 s = splnet();
2029 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2030 ifp->if_oerrors++;
2031
2032 re_txeof(sc);
2033 re_rxeof(sc);
2034
2035 re_init(ifp);
2036
2037 splx(s);
2038 }
2039
2040 /*
2041 * Stop the adapter and free any mbufs allocated to the
2042 * RX and TX lists.
2043 */
2044 static void
2045 re_stop(struct ifnet *ifp, int disable)
2046 {
2047 int i;
2048 struct rtk_softc *sc = ifp->if_softc;
2049
2050 callout_stop(&sc->rtk_tick_ch);
2051
2052 #ifdef DEVICE_POLLING
2053 ether_poll_deregister(ifp);
2054 #endif /* DEVICE_POLLING */
2055
2056 mii_down(&sc->mii);
2057
2058 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2059 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2060
2061 if (sc->rtk_head != NULL) {
2062 m_freem(sc->rtk_head);
2063 sc->rtk_head = sc->rtk_tail = NULL;
2064 }
2065
2066 /* Free the TX list buffers. */
2067 for (i = 0; i < RTK_TX_QLEN; i++) {
2068 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2069 bus_dmamap_unload(sc->sc_dmat,
2070 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2071 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2072 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2073 }
2074 }
2075
2076 /* Free the RX list buffers. */
2077 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2078 if (sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf != NULL) {
2079 bus_dmamap_unload(sc->sc_dmat,
2080 sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
2081 m_freem(sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf);
2082 sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf = NULL;
2083 }
2084 }
2085
2086 if (disable)
2087 re_disable(sc);
2088
2089 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2090 ifp->if_timer = 0;
2091 }
2092