Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.51
      1 /*	$NetBSD: rtl8169.c,v 1.51 2006/11/03 17:16:58 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <machine/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/ic/rtl81x9reg.h>
    151 #include <dev/ic/rtl81x9var.h>
    152 
    153 #include <dev/ic/rtl8169var.h>
    154 
    155 
    156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    157 
    158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    159 static int re_rx_list_init(struct rtk_softc *);
    160 static int re_tx_list_init(struct rtk_softc *);
    161 static void re_rxeof(struct rtk_softc *);
    162 static void re_txeof(struct rtk_softc *);
    163 static void re_tick(void *);
    164 static void re_start(struct ifnet *);
    165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    166 static int re_init(struct ifnet *);
    167 static void re_stop(struct ifnet *, int);
    168 static void re_watchdog(struct ifnet *);
    169 
    170 static void re_shutdown(void *);
    171 static int re_enable(struct rtk_softc *);
    172 static void re_disable(struct rtk_softc *);
    173 static void re_power(int, void *);
    174 
    175 static int re_ifmedia_upd(struct ifnet *);
    176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    177 
    178 static int re_gmii_readreg(struct device *, int, int);
    179 static void re_gmii_writereg(struct device *, int, int, int);
    180 
    181 static int re_miibus_readreg(struct device *, int, int);
    182 static void re_miibus_writereg(struct device *, int, int, int);
    183 static void re_miibus_statchg(struct device *);
    184 
    185 static void re_reset(struct rtk_softc *);
    186 
    187 static int
    188 re_gmii_readreg(struct device *self, int phy, int reg)
    189 {
    190 	struct rtk_softc	*sc = (void *)self;
    191 	uint32_t		rval;
    192 	int			i;
    193 
    194 	if (phy != 7)
    195 		return 0;
    196 
    197 	/* Let the rgephy driver read the GMEDIASTAT register */
    198 
    199 	if (reg == RTK_GMEDIASTAT) {
    200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    201 		return rval;
    202 	}
    203 
    204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    205 	DELAY(1000);
    206 
    207 	for (i = 0; i < RTK_TIMEOUT; i++) {
    208 		rval = CSR_READ_4(sc, RTK_PHYAR);
    209 		if (rval & RTK_PHYAR_BUSY)
    210 			break;
    211 		DELAY(100);
    212 	}
    213 
    214 	if (i == RTK_TIMEOUT) {
    215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    216 		return 0;
    217 	}
    218 
    219 	return rval & RTK_PHYAR_PHYDATA;
    220 }
    221 
    222 static void
    223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
    224 {
    225 	struct rtk_softc	*sc = (void *)dev;
    226 	uint32_t		rval;
    227 	int			i;
    228 
    229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    231 	DELAY(1000);
    232 
    233 	for (i = 0; i < RTK_TIMEOUT; i++) {
    234 		rval = CSR_READ_4(sc, RTK_PHYAR);
    235 		if (!(rval & RTK_PHYAR_BUSY))
    236 			break;
    237 		DELAY(100);
    238 	}
    239 
    240 	if (i == RTK_TIMEOUT) {
    241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    242 		    sc->sc_dev.dv_xname, reg, data);
    243 	}
    244 }
    245 
    246 static int
    247 re_miibus_readreg(struct device *dev, int phy, int reg)
    248 {
    249 	struct rtk_softc	*sc = (void *)dev;
    250 	uint16_t		rval = 0;
    251 	uint16_t		re8139_reg = 0;
    252 	int			s;
    253 
    254 	s = splnet();
    255 
    256 	if (sc->rtk_type == RTK_8169) {
    257 		rval = re_gmii_readreg(dev, phy, reg);
    258 		splx(s);
    259 		return rval;
    260 	}
    261 
    262 	/* Pretend the internal PHY is only at address 0 */
    263 	if (phy) {
    264 		splx(s);
    265 		return 0;
    266 	}
    267 	switch (reg) {
    268 	case MII_BMCR:
    269 		re8139_reg = RTK_BMCR;
    270 		break;
    271 	case MII_BMSR:
    272 		re8139_reg = RTK_BMSR;
    273 		break;
    274 	case MII_ANAR:
    275 		re8139_reg = RTK_ANAR;
    276 		break;
    277 	case MII_ANER:
    278 		re8139_reg = RTK_ANER;
    279 		break;
    280 	case MII_ANLPAR:
    281 		re8139_reg = RTK_LPAR;
    282 		break;
    283 	case MII_PHYIDR1:
    284 	case MII_PHYIDR2:
    285 		splx(s);
    286 		return 0;
    287 	/*
    288 	 * Allow the rlphy driver to read the media status
    289 	 * register. If we have a link partner which does not
    290 	 * support NWAY, this is the register which will tell
    291 	 * us the results of parallel detection.
    292 	 */
    293 	case RTK_MEDIASTAT:
    294 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    295 		splx(s);
    296 		return rval;
    297 	default:
    298 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    299 		splx(s);
    300 		return 0;
    301 	}
    302 	rval = CSR_READ_2(sc, re8139_reg);
    303 	if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
    304 		/* 8139C+ has different bit layout. */
    305 		rval &= ~(BMCR_LOOP | BMCR_ISO);
    306 	}
    307 	splx(s);
    308 	return rval;
    309 }
    310 
    311 static void
    312 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    313 {
    314 	struct rtk_softc	*sc = (void *)dev;
    315 	uint16_t		re8139_reg = 0;
    316 	int			s;
    317 
    318 	s = splnet();
    319 
    320 	if (sc->rtk_type == RTK_8169) {
    321 		re_gmii_writereg(dev, phy, reg, data);
    322 		splx(s);
    323 		return;
    324 	}
    325 
    326 	/* Pretend the internal PHY is only at address 0 */
    327 	if (phy) {
    328 		splx(s);
    329 		return;
    330 	}
    331 	switch (reg) {
    332 	case MII_BMCR:
    333 		re8139_reg = RTK_BMCR;
    334 		if (sc->rtk_type == RTK_8139CPLUS) {
    335 			/* 8139C+ has different bit layout. */
    336 			data &= ~(BMCR_LOOP | BMCR_ISO);
    337 		}
    338 		break;
    339 	case MII_BMSR:
    340 		re8139_reg = RTK_BMSR;
    341 		break;
    342 	case MII_ANAR:
    343 		re8139_reg = RTK_ANAR;
    344 		break;
    345 	case MII_ANER:
    346 		re8139_reg = RTK_ANER;
    347 		break;
    348 	case MII_ANLPAR:
    349 		re8139_reg = RTK_LPAR;
    350 		break;
    351 	case MII_PHYIDR1:
    352 	case MII_PHYIDR2:
    353 		splx(s);
    354 		return;
    355 		break;
    356 	default:
    357 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    358 		splx(s);
    359 		return;
    360 	}
    361 	CSR_WRITE_2(sc, re8139_reg, data);
    362 	splx(s);
    363 	return;
    364 }
    365 
    366 static void
    367 re_miibus_statchg(struct device *dev __unused)
    368 {
    369 
    370 	return;
    371 }
    372 
    373 static void
    374 re_reset(struct rtk_softc *sc)
    375 {
    376 	int		i;
    377 
    378 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    379 
    380 	for (i = 0; i < RTK_TIMEOUT; i++) {
    381 		DELAY(10);
    382 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    383 			break;
    384 	}
    385 	if (i == RTK_TIMEOUT)
    386 		aprint_error("%s: reset never completed!\n",
    387 		    sc->sc_dev.dv_xname);
    388 
    389 	/*
    390 	 * NB: Realtek-supplied Linux driver does this only for
    391 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    392 	 */
    393 	if (1) /* XXX check softc flag for 8169s version */
    394 		CSR_WRITE_1(sc, 0x82, 1);
    395 
    396 	return;
    397 }
    398 
    399 /*
    400  * The following routine is designed to test for a defect on some
    401  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    402  * lines connected to the bus, however for a 32-bit only card, they
    403  * should be pulled high. The result of this defect is that the
    404  * NIC will not work right if you plug it into a 64-bit slot: DMA
    405  * operations will be done with 64-bit transfers, which will fail
    406  * because the 64-bit data lines aren't connected.
    407  *
    408  * There's no way to work around this (short of talking a soldering
    409  * iron to the board), however we can detect it. The method we use
    410  * here is to put the NIC into digital loopback mode, set the receiver
    411  * to promiscuous mode, and then try to send a frame. We then compare
    412  * the frame data we sent to what was received. If the data matches,
    413  * then the NIC is working correctly, otherwise we know the user has
    414  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    415  * slot. In the latter case, there's no way the NIC can work correctly,
    416  * so we print out a message on the console and abort the device attach.
    417  */
    418 
    419 int
    420 re_diag(struct rtk_softc *sc)
    421 {
    422 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    423 	struct mbuf		*m0;
    424 	struct ether_header	*eh;
    425 	struct rtk_rxsoft	*rxs;
    426 	struct rtk_desc		*cur_rx;
    427 	bus_dmamap_t		dmamap;
    428 	uint16_t		status;
    429 	uint32_t		rxstat;
    430 	int			total_len, i, s, error = 0;
    431 	static const uint8_t	dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    432 	static const uint8_t	src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    433 
    434 	/* Allocate a single mbuf */
    435 
    436 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    437 	if (m0 == NULL)
    438 		return ENOBUFS;
    439 
    440 	/*
    441 	 * Initialize the NIC in test mode. This sets the chip up
    442 	 * so that it can send and receive frames, but performs the
    443 	 * following special functions:
    444 	 * - Puts receiver in promiscuous mode
    445 	 * - Enables digital loopback mode
    446 	 * - Leaves interrupts turned off
    447 	 */
    448 
    449 	ifp->if_flags |= IFF_PROMISC;
    450 	sc->rtk_testmode = 1;
    451 	re_init(ifp);
    452 	re_stop(ifp, 0);
    453 	DELAY(100000);
    454 	re_init(ifp);
    455 
    456 	/* Put some data in the mbuf */
    457 
    458 	eh = mtod(m0, struct ether_header *);
    459 	memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
    460 	memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
    461 	eh->ether_type = htons(ETHERTYPE_IP);
    462 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    463 
    464 	/*
    465 	 * Queue the packet, start transmission.
    466 	 */
    467 
    468 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    469 	s = splnet();
    470 	IF_ENQUEUE(&ifp->if_snd, m0);
    471 	re_start(ifp);
    472 	splx(s);
    473 	m0 = NULL;
    474 
    475 	/* Wait for it to propagate through the chip */
    476 
    477 	DELAY(100000);
    478 	for (i = 0; i < RTK_TIMEOUT; i++) {
    479 		status = CSR_READ_2(sc, RTK_ISR);
    480 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    481 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    482 			break;
    483 		DELAY(10);
    484 	}
    485 	if (i == RTK_TIMEOUT) {
    486 		aprint_error("%s: diagnostic failed, failed to receive packet "
    487 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    488 		error = EIO;
    489 		goto done;
    490 	}
    491 
    492 	/*
    493 	 * The packet should have been dumped into the first
    494 	 * entry in the RX DMA ring. Grab it from there.
    495 	 */
    496 
    497 	rxs = &sc->rtk_ldata.rtk_rxsoft[0];
    498 	dmamap = rxs->rxs_dmamap;
    499 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    500 	    BUS_DMASYNC_POSTREAD);
    501 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    502 
    503 	m0 = rxs->rxs_mbuf;
    504 	rxs->rxs_mbuf = NULL;
    505 	eh = mtod(m0, struct ether_header *);
    506 
    507 	RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    508 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    509 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    510 	total_len = rxstat & sc->rtk_rxlenmask;
    511 
    512 	if (total_len != ETHER_MIN_LEN) {
    513 		aprint_error("%s: diagnostic failed, received short packet\n",
    514 		    sc->sc_dev.dv_xname);
    515 		error = EIO;
    516 		goto done;
    517 	}
    518 
    519 	/* Test that the received packet data matches what we sent. */
    520 
    521 	if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    522 	    memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    523 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    524 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    525 		    sc->sc_dev.dv_xname);
    526 		aprint_error("%s: expected TX data: %s",
    527 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    528 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    529 		aprint_error("%s: received RX data: %s",
    530 		    sc->sc_dev.dv_xname,
    531 		    ether_sprintf(eh->ether_dhost));
    532 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    533 		    ntohs(eh->ether_type));
    534 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    535 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    536 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    537 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    538 		aprint_error("%s: Read the re(4) man page for more details.\n",
    539 		    sc->sc_dev.dv_xname);
    540 		error = EIO;
    541 	}
    542 
    543  done:
    544 	/* Turn interface off, release resources */
    545 
    546 	sc->rtk_testmode = 0;
    547 	ifp->if_flags &= ~IFF_PROMISC;
    548 	re_stop(ifp, 0);
    549 	if (m0 != NULL)
    550 		m_freem(m0);
    551 
    552 	return error;
    553 }
    554 
    555 
    556 /*
    557  * Attach the interface. Allocate softc structures, do ifmedia
    558  * setup and ethernet/BPF attach.
    559  */
    560 void
    561 re_attach(struct rtk_softc *sc)
    562 {
    563 	u_char			eaddr[ETHER_ADDR_LEN];
    564 	uint16_t		val;
    565 	struct ifnet		*ifp;
    566 	int			error = 0, i, addr_len;
    567 
    568 
    569 	/* XXX JRS: bus-attach-independent code begins approximately here */
    570 
    571 	/* Reset the adapter. */
    572 	re_reset(sc);
    573 
    574 	if (sc->rtk_type == RTK_8169) {
    575 		uint32_t hwrev;
    576 
    577 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    578 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    579 		if (hwrev == (0x1 << 28)) {
    580 			sc->sc_rev = 4;
    581 		} else if (hwrev == (0x1 << 26)) {
    582 			sc->sc_rev = 3;
    583 		} else if (hwrev == (0x1 << 23)) {
    584 			sc->sc_rev = 2;
    585 		} else
    586 			sc->sc_rev = 1;
    587 
    588 		/* Set RX length mask */
    589 
    590 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    591 
    592 		/* Force station address autoload from the EEPROM */
    593 
    594 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    595 		for (i = 0; i < RTK_TIMEOUT; i++) {
    596 			if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
    597 			    == 0)
    598 				break;
    599 			DELAY(100);
    600 		}
    601 		if (i == RTK_TIMEOUT)
    602 			aprint_error("%s: eeprom autoload timed out\n",
    603 			    sc->sc_dev.dv_xname);
    604 
    605 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    606 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    607 
    608 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
    609 	} else {
    610 
    611 		/* Set RX length mask */
    612 
    613 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    614 
    615 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    616 			addr_len = RTK_EEADDR_LEN1;
    617 		else
    618 			addr_len = RTK_EEADDR_LEN0;
    619 
    620 		/*
    621 		 * Get station address from the EEPROM.
    622 		 */
    623 		for (i = 0; i < 3; i++) {
    624 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    625 			eaddr[(i * 2) + 0] = val & 0xff;
    626 			eaddr[(i * 2) + 1] = val >> 8;
    627 		}
    628 
    629 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
    630 	}
    631 
    632 	aprint_normal("%s: Ethernet address %s\n",
    633 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    634 
    635 	if (sc->rtk_ldata.rtk_tx_desc_cnt >
    636 	    PAGE_SIZE / sizeof(struct rtk_desc)) {
    637 		sc->rtk_ldata.rtk_tx_desc_cnt =
    638 		    PAGE_SIZE / sizeof(struct rtk_desc);
    639 	}
    640 
    641 	aprint_verbose("%s: using %d tx descriptors\n",
    642 	    sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
    643 
    644 	/* Allocate DMA'able memory for the TX ring */
    645 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
    646 	    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
    647 	    &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    648 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    649 		    sc->sc_dev.dv_xname, error);
    650 		goto fail_0;
    651 	}
    652 
    653 	/* Load the map for the TX ring. */
    654 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    655 	    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
    656 	    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    657 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    658 		aprint_error("%s: can't map tx list, error = %d\n",
    659 		    sc->sc_dev.dv_xname, error);
    660 	  	goto fail_1;
    661 	}
    662 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
    663 
    664 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
    665 	    RTK_TX_LIST_SZ(sc), 0, 0,
    666 	    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    667 		aprint_error("%s: can't create tx list map, error = %d\n",
    668 		    sc->sc_dev.dv_xname, error);
    669 		goto fail_2;
    670 	}
    671 
    672 
    673 	if ((error = bus_dmamap_load(sc->sc_dmat,
    674 	    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    675 	    RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    676 		aprint_error("%s: can't load tx list, error = %d\n",
    677 		    sc->sc_dev.dv_xname, error);
    678 		goto fail_3;
    679 	}
    680 
    681 	/* Create DMA maps for TX buffers */
    682 	for (i = 0; i < RTK_TX_QLEN; i++) {
    683 		error = bus_dmamap_create(sc->sc_dmat,
    684 		    round_page(IP_MAXPACKET),
    685 		    RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
    686 		    &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    687 		if (error) {
    688 			aprint_error("%s: can't create DMA map for TX\n",
    689 			    sc->sc_dev.dv_xname);
    690 			goto fail_4;
    691 		}
    692 	}
    693 
    694 	/* Allocate DMA'able memory for the RX ring */
    695 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    696 	    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    697 	    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    698 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    699 		    sc->sc_dev.dv_xname, error);
    700 		goto fail_4;
    701 	}
    702 
    703 	/* Load the map for the RX ring. */
    704 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    705 	    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    706 	    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    707 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    708 		aprint_error("%s: can't map rx list, error = %d\n",
    709 		    sc->sc_dev.dv_xname, error);
    710 		goto fail_5;
    711 	}
    712 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
    713 
    714 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    715 	    RTK_RX_LIST_SZ, 0, 0,
    716 	    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    717 		aprint_error("%s: can't create rx list map, error = %d\n",
    718 		    sc->sc_dev.dv_xname, error);
    719 		goto fail_6;
    720 	}
    721 
    722 	if ((error = bus_dmamap_load(sc->sc_dmat,
    723 	    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    724 	    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    725 		aprint_error("%s: can't load rx list, error = %d\n",
    726 		    sc->sc_dev.dv_xname, error);
    727 		goto fail_7;
    728 	}
    729 
    730 	/* Create DMA maps for RX buffers */
    731 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    732 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    733 		    0, 0, &sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
    734 		if (error) {
    735 			aprint_error("%s: can't create DMA map for RX\n",
    736 			    sc->sc_dev.dv_xname);
    737 			goto fail_8;
    738 		}
    739 	}
    740 
    741 	/*
    742 	 * Record interface as attached. From here, we should not fail.
    743 	 */
    744 	sc->sc_flags |= RTK_ATTACHED;
    745 
    746 	ifp = &sc->ethercom.ec_if;
    747 	ifp->if_softc = sc;
    748 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    749 	ifp->if_mtu = ETHERMTU;
    750 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    751 	ifp->if_ioctl = re_ioctl;
    752 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    753 
    754 	/*
    755 	 * This is a way to disable hw VLAN tagging by default
    756 	 * (RE_VLAN is undefined), as it is problematic. PR 32643
    757 	 */
    758 
    759 #ifdef RE_VLAN
    760 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    761 #endif
    762 	ifp->if_start = re_start;
    763 	ifp->if_stop = re_stop;
    764 
    765 	/*
    766 	 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
    767 	 */
    768 
    769 	ifp->if_capabilities |=
    770 	    /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
    771 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    772 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    773 	    IFCAP_TSOv4;
    774 	ifp->if_watchdog = re_watchdog;
    775 	ifp->if_init = re_init;
    776 	if (sc->rtk_type == RTK_8169)
    777 		ifp->if_baudrate = 1000000000;
    778 	else
    779 		ifp->if_baudrate = 100000000;
    780 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    781 	ifp->if_capenable = ifp->if_capabilities;
    782 	IFQ_SET_READY(&ifp->if_snd);
    783 
    784 	callout_init(&sc->rtk_tick_ch);
    785 
    786 	/* Do MII setup */
    787 	sc->mii.mii_ifp = ifp;
    788 	sc->mii.mii_readreg = re_miibus_readreg;
    789 	sc->mii.mii_writereg = re_miibus_writereg;
    790 	sc->mii.mii_statchg = re_miibus_statchg;
    791 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    792 	    re_ifmedia_sts);
    793 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    794 	    MII_OFFSET_ANY, 0);
    795 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    796 
    797 	/*
    798 	 * Call MI attach routine.
    799 	 */
    800 	if_attach(ifp);
    801 	ether_ifattach(ifp, eaddr);
    802 
    803 
    804 	/*
    805 	 * Make sure the interface is shutdown during reboot.
    806 	 */
    807 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    808 	if (sc->sc_sdhook == NULL)
    809 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    810 		    sc->sc_dev.dv_xname);
    811 	/*
    812 	 * Add a suspend hook to make sure we come back up after a
    813 	 * resume.
    814 	 */
    815 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    816 	    re_power, sc);
    817 	if (sc->sc_powerhook == NULL)
    818 		aprint_error("%s: WARNING: unable to establish power hook\n",
    819 		    sc->sc_dev.dv_xname);
    820 
    821 
    822 	return;
    823 
    824  fail_8:
    825 	/* Destroy DMA maps for RX buffers. */
    826 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    827 		if (sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap != NULL)
    828 			bus_dmamap_destroy(sc->sc_dmat,
    829 			    sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
    830 
    831 	/* Free DMA'able memory for the RX ring. */
    832 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    833  fail_7:
    834 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    835  fail_6:
    836 	bus_dmamem_unmap(sc->sc_dmat,
    837 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    838  fail_5:
    839 	bus_dmamem_free(sc->sc_dmat,
    840 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    841 
    842  fail_4:
    843 	/* Destroy DMA maps for TX buffers. */
    844 	for (i = 0; i < RTK_TX_QLEN; i++)
    845 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    846 			bus_dmamap_destroy(sc->sc_dmat,
    847 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    848 
    849 	/* Free DMA'able memory for the TX ring. */
    850 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    851  fail_3:
    852 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    853  fail_2:
    854 	bus_dmamem_unmap(sc->sc_dmat,
    855 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    856  fail_1:
    857 	bus_dmamem_free(sc->sc_dmat,
    858 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    859  fail_0:
    860 	return;
    861 }
    862 
    863 
    864 /*
    865  * re_activate:
    866  *     Handle device activation/deactivation requests.
    867  */
    868 int
    869 re_activate(struct device *self, enum devact act)
    870 {
    871 	struct rtk_softc *sc = (void *)self;
    872 	int s, error = 0;
    873 
    874 	s = splnet();
    875 	switch (act) {
    876 	case DVACT_ACTIVATE:
    877 		error = EOPNOTSUPP;
    878 		break;
    879 	case DVACT_DEACTIVATE:
    880 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    881 		if_deactivate(&sc->ethercom.ec_if);
    882 		break;
    883 	}
    884 	splx(s);
    885 
    886 	return error;
    887 }
    888 
    889 /*
    890  * re_detach:
    891  *     Detach a rtk interface.
    892  */
    893 int
    894 re_detach(struct rtk_softc *sc)
    895 {
    896 	struct ifnet *ifp = &sc->ethercom.ec_if;
    897 	int i;
    898 
    899 	/*
    900 	 * Succeed now if there isn't any work to do.
    901 	 */
    902 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    903 		return 0;
    904 
    905 	/* Unhook our tick handler. */
    906 	callout_stop(&sc->rtk_tick_ch);
    907 
    908 	/* Detach all PHYs. */
    909 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    910 
    911 	/* Delete all remaining media. */
    912 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    913 
    914 	ether_ifdetach(ifp);
    915 	if_detach(ifp);
    916 
    917 	/* Destroy DMA maps for RX buffers. */
    918 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    919 		if (sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap != NULL)
    920 			bus_dmamap_destroy(sc->sc_dmat,
    921 			    sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
    922 
    923 	/* Free DMA'able memory for the RX ring. */
    924 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    925 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    926 	bus_dmamem_unmap(sc->sc_dmat,
    927 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    928 	bus_dmamem_free(sc->sc_dmat,
    929 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    930 
    931 	/* Destroy DMA maps for TX buffers. */
    932 	for (i = 0; i < RTK_TX_QLEN; i++)
    933 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    934 			bus_dmamap_destroy(sc->sc_dmat,
    935 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    936 
    937 	/* Free DMA'able memory for the TX ring. */
    938 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    939 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    940 	bus_dmamem_unmap(sc->sc_dmat,
    941 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    942 	bus_dmamem_free(sc->sc_dmat,
    943 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    944 
    945 
    946 	shutdownhook_disestablish(sc->sc_sdhook);
    947 	powerhook_disestablish(sc->sc_powerhook);
    948 
    949 	return 0;
    950 }
    951 
    952 /*
    953  * re_enable:
    954  *     Enable the RTL81X9 chip.
    955  */
    956 static int
    957 re_enable(struct rtk_softc *sc)
    958 {
    959 
    960 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    961 		if ((*sc->sc_enable)(sc) != 0) {
    962 			aprint_error("%s: device enable failed\n",
    963 			    sc->sc_dev.dv_xname);
    964 			return EIO;
    965 		}
    966 		sc->sc_flags |= RTK_ENABLED;
    967 	}
    968 	return 0;
    969 }
    970 
    971 /*
    972  * re_disable:
    973  *     Disable the RTL81X9 chip.
    974  */
    975 static void
    976 re_disable(struct rtk_softc *sc)
    977 {
    978 
    979 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    980 		(*sc->sc_disable)(sc);
    981 		sc->sc_flags &= ~RTK_ENABLED;
    982 	}
    983 }
    984 
    985 /*
    986  * re_power:
    987  *     Power management (suspend/resume) hook.
    988  */
    989 void
    990 re_power(int why, void *arg)
    991 {
    992 	struct rtk_softc *sc = (void *)arg;
    993 	struct ifnet *ifp = &sc->ethercom.ec_if;
    994 	int s;
    995 
    996 	s = splnet();
    997 	switch (why) {
    998 	case PWR_SUSPEND:
    999 	case PWR_STANDBY:
   1000 		re_stop(ifp, 0);
   1001 		if (sc->sc_power != NULL)
   1002 			(*sc->sc_power)(sc, why);
   1003 		break;
   1004 	case PWR_RESUME:
   1005 		if (ifp->if_flags & IFF_UP) {
   1006 			if (sc->sc_power != NULL)
   1007 				(*sc->sc_power)(sc, why);
   1008 			re_init(ifp);
   1009 		}
   1010 		break;
   1011 	case PWR_SOFTSUSPEND:
   1012 	case PWR_SOFTSTANDBY:
   1013 	case PWR_SOFTRESUME:
   1014 		break;
   1015 	}
   1016 	splx(s);
   1017 }
   1018 
   1019 
   1020 static int
   1021 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1022 {
   1023 	struct mbuf		*n = NULL;
   1024 	bus_dmamap_t		map;
   1025 	struct rtk_desc		*d;
   1026 	struct rtk_rxsoft	*rxs;
   1027 	uint32_t		cmdstat;
   1028 	int			error;
   1029 
   1030 	if (m == NULL) {
   1031 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1032 		if (n == NULL)
   1033 			return ENOBUFS;
   1034 
   1035 		MCLGET(n, M_DONTWAIT);
   1036 		if ((n->m_flags & M_EXT) == 0) {
   1037 			m_freem(n);
   1038 			return ENOBUFS;
   1039 		}
   1040 		m = n;
   1041 	} else
   1042 		m->m_data = m->m_ext.ext_buf;
   1043 
   1044 	/*
   1045 	 * Initialize mbuf length fields and fixup
   1046 	 * alignment so that the frame payload is
   1047 	 * longword aligned.
   1048 	 */
   1049 	m->m_len = m->m_pkthdr.len = MCLBYTES - RTK_ETHER_ALIGN;
   1050 	m->m_data += RTK_ETHER_ALIGN;
   1051 
   1052 	rxs = &sc->rtk_ldata.rtk_rxsoft[idx];
   1053 	map = rxs->rxs_dmamap;
   1054 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1055 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1056 
   1057 	if (error)
   1058 		goto out;
   1059 
   1060 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1061 	    BUS_DMASYNC_PREREAD);
   1062 
   1063 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1064 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1065 	cmdstat = le32toh(d->rtk_cmdstat);
   1066 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1067 	if (cmdstat & RTK_RDESC_STAT_OWN) {
   1068 		aprint_error("%s: tried to map busy RX descriptor\n",
   1069 		    sc->sc_dev.dv_xname);
   1070 		goto out;
   1071 	}
   1072 
   1073 	rxs->rxs_mbuf = m;
   1074 
   1075 	cmdstat = map->dm_segs[0].ds_len;
   1076 	if (idx == (RTK_RX_DESC_CNT - 1))
   1077 		cmdstat |= RTK_RDESC_CMD_EOR;
   1078 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1079 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1080 	d->rtk_cmdstat = htole32(cmdstat);
   1081 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1082 	cmdstat |= RTK_RDESC_CMD_OWN;
   1083 	d->rtk_cmdstat = htole32(cmdstat);
   1084 	RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1085 
   1086 	return 0;
   1087  out:
   1088 	if (n != NULL)
   1089 		m_freem(n);
   1090 	return ENOMEM;
   1091 }
   1092 
   1093 static int
   1094 re_tx_list_init(struct rtk_softc *sc)
   1095 {
   1096 	int i;
   1097 
   1098 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
   1099 	for (i = 0; i < RTK_TX_QLEN; i++) {
   1100 		sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   1101 	}
   1102 
   1103 	bus_dmamap_sync(sc->sc_dmat,
   1104 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1105 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1106 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1107 	sc->rtk_ldata.rtk_txq_prodidx = 0;
   1108 	sc->rtk_ldata.rtk_txq_considx = 0;
   1109 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
   1110 	sc->rtk_ldata.rtk_tx_nextfree = 0;
   1111 
   1112 	return 0;
   1113 }
   1114 
   1115 static int
   1116 re_rx_list_init(struct rtk_softc *sc)
   1117 {
   1118 	int			i;
   1119 
   1120 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1121 
   1122 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1123 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1124 			return ENOBUFS;
   1125 	}
   1126 
   1127 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1128 	sc->rtk_head = sc->rtk_tail = NULL;
   1129 
   1130 	return 0;
   1131 }
   1132 
   1133 /*
   1134  * RX handler for C+ and 8169. For the gigE chips, we support
   1135  * the reception of jumbo frames that have been fragmented
   1136  * across multiple 2K mbuf cluster buffers.
   1137  */
   1138 static void
   1139 re_rxeof(struct rtk_softc *sc)
   1140 {
   1141 	struct mbuf		*m;
   1142 	struct ifnet		*ifp;
   1143 	int			i, total_len;
   1144 	struct rtk_desc		*cur_rx;
   1145 	struct rtk_rxsoft	*rxs;
   1146 	uint32_t		rxstat, rxvlan;
   1147 
   1148 	ifp = &sc->ethercom.ec_if;
   1149 
   1150 	for (i = sc->rtk_ldata.rtk_rx_prodidx;; i = RTK_NEXT_RX_DESC(sc, i)) {
   1151 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1152 		RTK_RXDESCSYNC(sc, i,
   1153 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1154 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1155 		RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1156 		if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
   1157 			break;
   1158 		}
   1159 		total_len = rxstat & sc->rtk_rxlenmask;
   1160 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1161 		rxs = &sc->rtk_ldata.rtk_rxsoft[i];
   1162 		m = rxs->rxs_mbuf;
   1163 
   1164 		/* Invalidate the RX mbuf and unload its map */
   1165 
   1166 		bus_dmamap_sync(sc->sc_dmat,
   1167 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1168 		    BUS_DMASYNC_POSTREAD);
   1169 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1170 
   1171 		if ((rxstat & RTK_RDESC_STAT_EOF) == 0) {
   1172 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1173 			if (sc->rtk_head == NULL)
   1174 				sc->rtk_head = sc->rtk_tail = m;
   1175 			else {
   1176 				m->m_flags &= ~M_PKTHDR;
   1177 				sc->rtk_tail->m_next = m;
   1178 				sc->rtk_tail = m;
   1179 			}
   1180 			re_newbuf(sc, i, NULL);
   1181 			continue;
   1182 		}
   1183 
   1184 		/*
   1185 		 * NOTE: for the 8139C+, the frame length field
   1186 		 * is always 12 bits in size, but for the gigE chips,
   1187 		 * it is 13 bits (since the max RX frame length is 16K).
   1188 		 * Unfortunately, all 32 bits in the status word
   1189 		 * were already used, so to make room for the extra
   1190 		 * length bit, RealTek took out the 'frame alignment
   1191 		 * error' bit and shifted the other status bits
   1192 		 * over one slot. The OWN, EOR, FS and LS bits are
   1193 		 * still in the same places. We have already extracted
   1194 		 * the frame length and checked the OWN bit, so rather
   1195 		 * than using an alternate bit mapping, we shift the
   1196 		 * status bits one space to the right so we can evaluate
   1197 		 * them using the 8169 status as though it was in the
   1198 		 * same format as that of the 8139C+.
   1199 		 */
   1200 		if (sc->rtk_type == RTK_8169)
   1201 			rxstat >>= 1;
   1202 
   1203 		if ((rxstat & RTK_RDESC_STAT_RXERRSUM) != 0) {
   1204 			ifp->if_ierrors++;
   1205 			/*
   1206 			 * If this is part of a multi-fragment packet,
   1207 			 * discard all the pieces.
   1208 			 */
   1209 			if (sc->rtk_head != NULL) {
   1210 				m_freem(sc->rtk_head);
   1211 				sc->rtk_head = sc->rtk_tail = NULL;
   1212 			}
   1213 			re_newbuf(sc, i, m);
   1214 			continue;
   1215 		}
   1216 
   1217 		/*
   1218 		 * If allocating a replacement mbuf fails,
   1219 		 * reload the current one.
   1220 		 */
   1221 
   1222 		if (re_newbuf(sc, i, NULL) != 0) {
   1223 			ifp->if_ierrors++;
   1224 			if (sc->rtk_head != NULL) {
   1225 				m_freem(sc->rtk_head);
   1226 				sc->rtk_head = sc->rtk_tail = NULL;
   1227 			}
   1228 			re_newbuf(sc, i, m);
   1229 			continue;
   1230 		}
   1231 
   1232 		if (sc->rtk_head != NULL) {
   1233 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1234 			/*
   1235 			 * Special case: if there's 4 bytes or less
   1236 			 * in this buffer, the mbuf can be discarded:
   1237 			 * the last 4 bytes is the CRC, which we don't
   1238 			 * care about anyway.
   1239 			 */
   1240 			if (m->m_len <= ETHER_CRC_LEN) {
   1241 				sc->rtk_tail->m_len -=
   1242 				    (ETHER_CRC_LEN - m->m_len);
   1243 				m_freem(m);
   1244 			} else {
   1245 				m->m_len -= ETHER_CRC_LEN;
   1246 				m->m_flags &= ~M_PKTHDR;
   1247 				sc->rtk_tail->m_next = m;
   1248 			}
   1249 			m = sc->rtk_head;
   1250 			sc->rtk_head = sc->rtk_tail = NULL;
   1251 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1252 		} else
   1253 			m->m_pkthdr.len = m->m_len =
   1254 			    (total_len - ETHER_CRC_LEN);
   1255 
   1256 		ifp->if_ipackets++;
   1257 		m->m_pkthdr.rcvif = ifp;
   1258 
   1259 		/* Do RX checksumming if enabled */
   1260 
   1261 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   1262 
   1263 			/* Check IP header checksum */
   1264 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1265 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1266 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1267 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1268 		}
   1269 
   1270 		/* Check TCP/UDP checksum */
   1271 		if (RTK_TCPPKT(rxstat) &&
   1272 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
   1273 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1274 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1275 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1276 		}
   1277 		if (RTK_UDPPKT(rxstat) &&
   1278 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
   1279 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1280 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1281 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1282 		}
   1283 
   1284 #ifdef RE_VLAN
   1285 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1286 			VLAN_INPUT_TAG(ifp, m,
   1287 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
   1288 			     continue);
   1289 		}
   1290 #endif
   1291 #if NBPFILTER > 0
   1292 		if (ifp->if_bpf)
   1293 			bpf_mtap(ifp->if_bpf, m);
   1294 #endif
   1295 		(*ifp->if_input)(ifp, m);
   1296 	}
   1297 
   1298 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1299 }
   1300 
   1301 static void
   1302 re_txeof(struct rtk_softc *sc)
   1303 {
   1304 	struct ifnet		*ifp;
   1305 	int			idx;
   1306 	boolean_t		done = FALSE;
   1307 
   1308 	ifp = &sc->ethercom.ec_if;
   1309 	idx = sc->rtk_ldata.rtk_txq_considx;
   1310 
   1311 	for (;;) {
   1312 		struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
   1313 		int descidx;
   1314 		uint32_t txstat;
   1315 
   1316 		if (txq->txq_mbuf == NULL) {
   1317 			KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
   1318 			break;
   1319 		}
   1320 
   1321 		descidx = txq->txq_descidx;
   1322 		RTK_TXDESCSYNC(sc, descidx,
   1323 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1324 		txstat =
   1325 		    le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
   1326 		RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1327 		KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
   1328 		if (txstat & RTK_TDESC_CMD_OWN) {
   1329 			break;
   1330 		}
   1331 
   1332 		sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
   1333 		KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
   1334 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1335 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1336 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1337 		m_freem(txq->txq_mbuf);
   1338 		txq->txq_mbuf = NULL;
   1339 
   1340 		if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
   1341 			ifp->if_collisions++;
   1342 		if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1343 			ifp->if_oerrors++;
   1344 		else
   1345 			ifp->if_opackets++;
   1346 
   1347 		idx = RTK_NEXT_TXQ(sc, idx);
   1348 		done = TRUE;
   1349 	}
   1350 
   1351 	/* No changes made to the TX ring, so no flush needed */
   1352 
   1353 	if (done) {
   1354 		sc->rtk_ldata.rtk_txq_considx = idx;
   1355 		ifp->if_flags &= ~IFF_OACTIVE;
   1356 		ifp->if_timer = 0;
   1357 	}
   1358 
   1359 	/*
   1360 	 * If not all descriptors have been released reaped yet,
   1361 	 * reload the timer so that we will eventually get another
   1362 	 * interrupt that will cause us to re-enter this routine.
   1363 	 * This is done in case the transmitter has gone idle.
   1364 	 */
   1365 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
   1366 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1367 }
   1368 
   1369 /*
   1370  * Stop all chip I/O so that the kernel's probe routines don't
   1371  * get confused by errant DMAs when rebooting.
   1372  */
   1373 static void
   1374 re_shutdown(void *vsc)
   1375 
   1376 {
   1377 	struct rtk_softc	*sc = vsc;
   1378 
   1379 	re_stop(&sc->ethercom.ec_if, 0);
   1380 }
   1381 
   1382 
   1383 static void
   1384 re_tick(void *xsc)
   1385 {
   1386 	struct rtk_softc	*sc = xsc;
   1387 	int s;
   1388 
   1389 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1390 	s = splnet();
   1391 
   1392 	mii_tick(&sc->mii);
   1393 	splx(s);
   1394 
   1395 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1396 }
   1397 
   1398 #ifdef DEVICE_POLLING
   1399 static void
   1400 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1401 {
   1402 	struct rtk_softc *sc = ifp->if_softc;
   1403 
   1404 	RTK_LOCK(sc);
   1405 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
   1406 		ether_poll_deregister(ifp);
   1407 		cmd = POLL_DEREGISTER;
   1408 	}
   1409 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1410 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1411 		goto done;
   1412 	}
   1413 
   1414 	sc->rxcycles = count;
   1415 	re_rxeof(sc);
   1416 	re_txeof(sc);
   1417 
   1418 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1419 		(*ifp->if_start)(ifp);
   1420 
   1421 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1422 		uint16_t       status;
   1423 
   1424 		status = CSR_READ_2(sc, RTK_ISR);
   1425 		if (status == 0xffff)
   1426 			goto done;
   1427 		if (status)
   1428 			CSR_WRITE_2(sc, RTK_ISR, status);
   1429 
   1430 		/*
   1431 		 * XXX check behaviour on receiver stalls.
   1432 		 */
   1433 
   1434 		if (status & RTK_ISR_SYSTEM_ERR) {
   1435 			re_reset(sc);
   1436 			re_init(sc);
   1437 		}
   1438 	}
   1439  done:
   1440 	RTK_UNLOCK(sc);
   1441 }
   1442 #endif /* DEVICE_POLLING */
   1443 
   1444 int
   1445 re_intr(void *arg)
   1446 {
   1447 	struct rtk_softc	*sc = arg;
   1448 	struct ifnet		*ifp;
   1449 	uint16_t		status;
   1450 	int			handled = 0;
   1451 
   1452 	ifp = &sc->ethercom.ec_if;
   1453 
   1454 	if ((ifp->if_flags & IFF_UP) == 0)
   1455 		return 0;
   1456 
   1457 #ifdef DEVICE_POLLING
   1458 	if (ifp->if_flags & IFF_POLLING)
   1459 		goto done;
   1460 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1461 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1462 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1463 		re_poll(ifp, 0, 1);
   1464 		goto done;
   1465 	}
   1466 #endif /* DEVICE_POLLING */
   1467 
   1468 	for (;;) {
   1469 
   1470 		status = CSR_READ_2(sc, RTK_ISR);
   1471 		/* If the card has gone away the read returns 0xffff. */
   1472 		if (status == 0xffff)
   1473 			break;
   1474 		if (status) {
   1475 			handled = 1;
   1476 			CSR_WRITE_2(sc, RTK_ISR, status);
   1477 		}
   1478 
   1479 		if ((status & RTK_INTRS_CPLUS) == 0)
   1480 			break;
   1481 
   1482 		if ((status & RTK_ISR_RX_OK) ||
   1483 		    (status & RTK_ISR_RX_ERR))
   1484 			re_rxeof(sc);
   1485 
   1486 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1487 		    (status & RTK_ISR_TX_ERR) ||
   1488 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1489 			re_txeof(sc);
   1490 
   1491 		if (status & RTK_ISR_SYSTEM_ERR) {
   1492 			re_reset(sc);
   1493 			re_init(ifp);
   1494 		}
   1495 
   1496 		if (status & RTK_ISR_LINKCHG) {
   1497 			callout_stop(&sc->rtk_tick_ch);
   1498 			re_tick(sc);
   1499 		}
   1500 	}
   1501 
   1502 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1503 		if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1504 			(*ifp->if_start)(ifp);
   1505 
   1506 #ifdef DEVICE_POLLING
   1507  done:
   1508 #endif
   1509 
   1510 	return handled;
   1511 }
   1512 
   1513 static int
   1514 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
   1515 {
   1516 	bus_dmamap_t		map;
   1517 	int			error, seg, uidx, startidx, curidx, lastidx;
   1518 #ifdef RE_VLAN
   1519 	struct m_tag		*mtag;
   1520 #endif
   1521 	struct rtk_desc		*d;
   1522 	uint32_t		cmdstat, rtk_flags;
   1523 	struct rtk_txq		*txq;
   1524 
   1525 	if (sc->rtk_ldata.rtk_tx_free <= 4) {
   1526 		return EFBIG;
   1527 	}
   1528 
   1529 	/*
   1530 	 * Set up checksum offload. Note: checksum offload bits must
   1531 	 * appear in all descriptors of a multi-descriptor transmit
   1532 	 * attempt. (This is according to testing done with an 8169
   1533 	 * chip. I'm not sure if this is a requirement or a bug.)
   1534 	 */
   1535 
   1536 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1537 		uint32_t segsz = m->m_pkthdr.segsz;
   1538 
   1539 		rtk_flags = RTK_TDESC_CMD_LGSEND |
   1540 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
   1541 	} else {
   1542 
   1543 		/*
   1544 		 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
   1545 		 * is requested.  otherwise, RTK_TDESC_CMD_TCPCSUM/
   1546 		 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
   1547 		 */
   1548 
   1549 		rtk_flags = 0;
   1550 		if ((m->m_pkthdr.csum_flags &
   1551 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
   1552 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1553 			if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1554 				rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1555 			} else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1556 				rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1557 			}
   1558 		}
   1559 	}
   1560 
   1561 	txq = &sc->rtk_ldata.rtk_txq[*idx];
   1562 	map = txq->txq_dmamap;
   1563 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1564 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1565 
   1566 	if (error) {
   1567 		/* XXX try to defrag if EFBIG? */
   1568 
   1569 		aprint_error("%s: can't map mbuf (error %d)\n",
   1570 		    sc->sc_dev.dv_xname, error);
   1571 
   1572 		return error;
   1573 	}
   1574 
   1575 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
   1576 		error = EFBIG;
   1577 		goto fail_unload;
   1578 	}
   1579 
   1580 	/*
   1581 	 * Make sure that the caches are synchronized before we
   1582 	 * ask the chip to start DMA for the packet data.
   1583 	 */
   1584 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1585 	    BUS_DMASYNC_PREWRITE);
   1586 
   1587 	/*
   1588 	 * Map the segment array into descriptors. Note that we set the
   1589 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1590 	 * they really only have meaning in the TX case. (In the RX case,
   1591 	 * it's the chip that tells us where packets begin and end.)
   1592 	 * We also keep track of the end of the ring and set the
   1593 	 * end-of-ring bits as needed, and we set the ownership bits
   1594 	 * in all except the very first descriptor. (The caller will
   1595 	 * set this descriptor later when it start transmission or
   1596 	 * reception.)
   1597 	 */
   1598 	curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
   1599 	lastidx = -1;
   1600 	for (seg = 0; seg < map->dm_nsegs;
   1601 	    seg++, curidx = RTK_NEXT_TX_DESC(sc, curidx)) {
   1602 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1603 		RTK_TXDESCSYNC(sc, curidx,
   1604 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1605 		cmdstat = le32toh(d->rtk_cmdstat);
   1606 		RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
   1607 		if (cmdstat & RTK_TDESC_STAT_OWN) {
   1608 			aprint_error("%s: tried to map busy TX descriptor\n",
   1609 			    sc->sc_dev.dv_xname);
   1610 			for (; seg > 0; seg--) {
   1611 				uidx = (curidx + RTK_TX_DESC_CNT(sc) - seg) %
   1612 				    RTK_TX_DESC_CNT(sc);
   1613 				sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
   1614 				RTK_TXDESCSYNC(sc, uidx,
   1615 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1616 			}
   1617 			error = ENOBUFS;
   1618 			goto fail_unload;
   1619 		}
   1620 
   1621 		cmdstat = map->dm_segs[seg].ds_len;
   1622 		if (seg == 0)
   1623 			cmdstat |= RTK_TDESC_CMD_SOF;
   1624 		else
   1625 			cmdstat |= RTK_TDESC_CMD_OWN;
   1626 		if (seg == map->dm_nsegs - 1) {
   1627 			cmdstat |= RTK_TDESC_CMD_EOF;
   1628 			lastidx = curidx;
   1629 		}
   1630 		if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
   1631 			cmdstat |= RTK_TDESC_CMD_EOR;
   1632 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1633 		d->rtk_bufaddr_lo =
   1634 		    htole32(RTK_ADDR_LO(map->dm_segs[seg].ds_addr));
   1635 		d->rtk_bufaddr_hi =
   1636 		    htole32(RTK_ADDR_HI(map->dm_segs[seg].ds_addr));
   1637 		RTK_TXDESCSYNC(sc, curidx,
   1638 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1639 	}
   1640 	KASSERT(lastidx != -1);
   1641 
   1642 	/*
   1643 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1644 	 * appear in the first descriptor of a multi-descriptor
   1645 	 * transmission attempt.
   1646 	 */
   1647 
   1648 #ifdef RE_VLAN
   1649 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1650 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
   1651 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1652 		    RTK_TDESC_VLANCTL_TAG);
   1653 	}
   1654 #endif
   1655 
   1656 	/* Transfer ownership of packet to the chip. */
   1657 
   1658 	sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
   1659 	    htole32(RTK_TDESC_CMD_OWN);
   1660 	RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1661 
   1662 	/* update info of TX queue and descriptors */
   1663 	txq->txq_mbuf = m;
   1664 	txq->txq_descidx = lastidx;
   1665 
   1666 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1667 	sc->rtk_ldata.rtk_tx_nextfree = curidx;
   1668 
   1669 	*idx = RTK_NEXT_TXQ(sc, *idx);
   1670 
   1671 	return 0;
   1672 
   1673  fail_unload:
   1674 	bus_dmamap_unload(sc->sc_dmat, map);
   1675 
   1676 	return error;
   1677 }
   1678 
   1679 /*
   1680  * Main transmit routine for C+ and gigE NICs.
   1681  */
   1682 
   1683 static void
   1684 re_start(struct ifnet *ifp)
   1685 {
   1686 	struct rtk_softc	*sc;
   1687 	int			idx;
   1688 	boolean_t		done = FALSE;
   1689 
   1690 	sc = ifp->if_softc;
   1691 
   1692 	idx = sc->rtk_ldata.rtk_txq_prodidx;
   1693 	for (;;) {
   1694 		struct mbuf *m;
   1695 		int error;
   1696 
   1697 		IFQ_POLL(&ifp->if_snd, m);
   1698 		if (m == NULL)
   1699 			break;
   1700 
   1701 		if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
   1702 			KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
   1703 			ifp->if_flags |= IFF_OACTIVE;
   1704 			break;
   1705 		}
   1706 
   1707 		error = re_encap(sc, m, &idx);
   1708 		if (error == EFBIG &&
   1709 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
   1710 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1711 			m_freem(m);
   1712 			ifp->if_oerrors++;
   1713 			continue;
   1714 		}
   1715 		if (error) {
   1716 			ifp->if_flags |= IFF_OACTIVE;
   1717 			break;
   1718 		}
   1719 
   1720 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1721 
   1722 #if NBPFILTER > 0
   1723 		/*
   1724 		 * If there's a BPF listener, bounce a copy of this frame
   1725 		 * to him.
   1726 		 */
   1727 		if (ifp->if_bpf)
   1728 			bpf_mtap(ifp->if_bpf, m);
   1729 #endif
   1730 
   1731 		done = TRUE;
   1732 	}
   1733 
   1734 	if (!done) {
   1735 		return;
   1736 	}
   1737 	sc->rtk_ldata.rtk_txq_prodidx = idx;
   1738 
   1739 	/*
   1740 	 * RealTek put the TX poll request register in a different
   1741 	 * location on the 8169 gigE chip. I don't know why.
   1742 	 */
   1743 
   1744 	if (sc->rtk_type == RTK_8169)
   1745 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1746 	else
   1747 		CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1748 
   1749 	/*
   1750 	 * Use the countdown timer for interrupt moderation.
   1751 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1752 	 * countdown timer, which will begin counting until it hits
   1753 	 * the value in the TIMERINT register, and then trigger an
   1754 	 * interrupt. Each time we write to the TIMERCNT register,
   1755 	 * the timer count is reset to 0.
   1756 	 */
   1757 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1758 
   1759 	/*
   1760 	 * Set a timeout in case the chip goes out to lunch.
   1761 	 */
   1762 	ifp->if_timer = 5;
   1763 }
   1764 
   1765 static int
   1766 re_init(struct ifnet *ifp)
   1767 {
   1768 	struct rtk_softc	*sc = ifp->if_softc;
   1769 	uint8_t			*enaddr;
   1770 	uint32_t		rxcfg = 0;
   1771 	uint32_t		reg;
   1772 	int error;
   1773 
   1774 	if ((error = re_enable(sc)) != 0)
   1775 		goto out;
   1776 
   1777 	/*
   1778 	 * Cancel pending I/O and free all RX/TX buffers.
   1779 	 */
   1780 	re_stop(ifp, 0);
   1781 
   1782 	/*
   1783 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1784 	 * RX checksum offload. We must configure the C+ register
   1785 	 * before all others.
   1786 	 */
   1787 	reg = 0;
   1788 
   1789 	/*
   1790 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1791 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1792 	 * So far, it works.
   1793 	 */
   1794 
   1795 	/*
   1796 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1797 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1798 	 */
   1799 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1800 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1801 
   1802 	if (1)  {/* not for 8169S ? */
   1803 		reg |=
   1804 #ifdef RE_VLAN
   1805 		    RTK_CPLUSCMD_VLANSTRIP |
   1806 #endif
   1807 		    (ifp->if_capenable &
   1808 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
   1809 		     IFCAP_CSUM_UDPv4_Rx) ?
   1810 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1811 	}
   1812 
   1813 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1814 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1815 
   1816 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1817 	if (sc->rtk_type == RTK_8169)
   1818 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1819 
   1820 	DELAY(10000);
   1821 
   1822 	/*
   1823 	 * Init our MAC address.  Even though the chipset
   1824 	 * documentation doesn't mention it, we need to enter "Config
   1825 	 * register write enable" mode to modify the ID registers.
   1826 	 */
   1827 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1828 	enaddr = LLADDR(ifp->if_sadl);
   1829 	reg = enaddr[0] | (enaddr[1] << 8) |
   1830 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1831 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1832 	reg = enaddr[4] | (enaddr[5] << 8);
   1833 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1834 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1835 
   1836 	/*
   1837 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1838 	 */
   1839 	re_rx_list_init(sc);
   1840 	re_tx_list_init(sc);
   1841 
   1842 	/*
   1843 	 * Enable transmit and receive.
   1844 	 */
   1845 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1846 
   1847 	/*
   1848 	 * Set the initial TX and RX configuration.
   1849 	 */
   1850 	if (sc->rtk_testmode) {
   1851 		if (sc->rtk_type == RTK_8169)
   1852 			CSR_WRITE_4(sc, RTK_TXCFG,
   1853 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1854 		else
   1855 			CSR_WRITE_4(sc, RTK_TXCFG,
   1856 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1857 	} else
   1858 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1859 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1860 
   1861 	/* Set the individual bit to receive frames for this host only. */
   1862 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1863 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1864 
   1865 	/* If we want promiscuous mode, set the allframes bit. */
   1866 	if (ifp->if_flags & IFF_PROMISC)
   1867 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1868 	else
   1869 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1870 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1871 
   1872 	/*
   1873 	 * Set capture broadcast bit to capture broadcast frames.
   1874 	 */
   1875 	if (ifp->if_flags & IFF_BROADCAST)
   1876 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1877 	else
   1878 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1879 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1880 
   1881 	/*
   1882 	 * Program the multicast filter, if necessary.
   1883 	 */
   1884 	rtk_setmulti(sc);
   1885 
   1886 #ifdef DEVICE_POLLING
   1887 	/*
   1888 	 * Disable interrupts if we are polling.
   1889 	 */
   1890 	if (ifp->if_flags & IFF_POLLING)
   1891 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1892 	else	/* otherwise ... */
   1893 #endif /* DEVICE_POLLING */
   1894 	/*
   1895 	 * Enable interrupts.
   1896 	 */
   1897 	if (sc->rtk_testmode)
   1898 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1899 	else
   1900 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1901 
   1902 	/* Start RX/TX process. */
   1903 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1904 #ifdef notdef
   1905 	/* Enable receiver and transmitter. */
   1906 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1907 #endif
   1908 	/*
   1909 	 * Load the addresses of the RX and TX lists into the chip.
   1910 	 */
   1911 
   1912 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1913 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1914 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1915 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1916 
   1917 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1918 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1919 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1920 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1921 
   1922 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1923 
   1924 	/*
   1925 	 * Initialize the timer interrupt register so that
   1926 	 * a timer interrupt will be generated once the timer
   1927 	 * reaches a certain number of ticks. The timer is
   1928 	 * reloaded on each transmit. This gives us TX interrupt
   1929 	 * moderation, which dramatically improves TX frame rate.
   1930 	 */
   1931 
   1932 	if (sc->rtk_type == RTK_8169)
   1933 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1934 	else
   1935 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1936 
   1937 	/*
   1938 	 * For 8169 gigE NICs, set the max allowed RX packet
   1939 	 * size so we can receive jumbo frames.
   1940 	 */
   1941 	if (sc->rtk_type == RTK_8169)
   1942 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1943 
   1944 	if (sc->rtk_testmode)
   1945 		return 0;
   1946 
   1947 	mii_mediachg(&sc->mii);
   1948 
   1949 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1950 
   1951 	ifp->if_flags |= IFF_RUNNING;
   1952 	ifp->if_flags &= ~IFF_OACTIVE;
   1953 
   1954 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1955 
   1956  out:
   1957 	if (error) {
   1958 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1959 		ifp->if_timer = 0;
   1960 		aprint_error("%s: interface not running\n",
   1961 		    sc->sc_dev.dv_xname);
   1962 	}
   1963 
   1964 	return error;
   1965 }
   1966 
   1967 /*
   1968  * Set media options.
   1969  */
   1970 static int
   1971 re_ifmedia_upd(struct ifnet *ifp)
   1972 {
   1973 	struct rtk_softc	*sc;
   1974 
   1975 	sc = ifp->if_softc;
   1976 
   1977 	return mii_mediachg(&sc->mii);
   1978 }
   1979 
   1980 /*
   1981  * Report current media status.
   1982  */
   1983 static void
   1984 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1985 {
   1986 	struct rtk_softc	*sc;
   1987 
   1988 	sc = ifp->if_softc;
   1989 
   1990 	mii_pollstat(&sc->mii);
   1991 	ifmr->ifm_active = sc->mii.mii_media_active;
   1992 	ifmr->ifm_status = sc->mii.mii_media_status;
   1993 }
   1994 
   1995 static int
   1996 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1997 {
   1998 	struct rtk_softc	*sc = ifp->if_softc;
   1999 	struct ifreq		*ifr = (struct ifreq *) data;
   2000 	int			s, error = 0;
   2001 
   2002 	s = splnet();
   2003 
   2004 	switch (command) {
   2005 	case SIOCSIFMTU:
   2006 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   2007 			error = EINVAL;
   2008 		ifp->if_mtu = ifr->ifr_mtu;
   2009 		break;
   2010 	case SIOCGIFMEDIA:
   2011 	case SIOCSIFMEDIA:
   2012 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   2013 		break;
   2014 	default:
   2015 		error = ether_ioctl(ifp, command, data);
   2016 		if (error == ENETRESET) {
   2017 			if (ifp->if_flags & IFF_RUNNING)
   2018 				rtk_setmulti(sc);
   2019 			error = 0;
   2020 		}
   2021 		break;
   2022 	}
   2023 
   2024 	splx(s);
   2025 
   2026 	return error;
   2027 }
   2028 
   2029 static void
   2030 re_watchdog(struct ifnet *ifp)
   2031 {
   2032 	struct rtk_softc	*sc;
   2033 	int			s;
   2034 
   2035 	sc = ifp->if_softc;
   2036 	s = splnet();
   2037 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2038 	ifp->if_oerrors++;
   2039 
   2040 	re_txeof(sc);
   2041 	re_rxeof(sc);
   2042 
   2043 	re_init(ifp);
   2044 
   2045 	splx(s);
   2046 }
   2047 
   2048 /*
   2049  * Stop the adapter and free any mbufs allocated to the
   2050  * RX and TX lists.
   2051  */
   2052 static void
   2053 re_stop(struct ifnet *ifp, int disable)
   2054 {
   2055 	int		i;
   2056 	struct rtk_softc *sc = ifp->if_softc;
   2057 
   2058 	callout_stop(&sc->rtk_tick_ch);
   2059 
   2060 #ifdef DEVICE_POLLING
   2061 	ether_poll_deregister(ifp);
   2062 #endif /* DEVICE_POLLING */
   2063 
   2064 	mii_down(&sc->mii);
   2065 
   2066 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2067 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2068 
   2069 	if (sc->rtk_head != NULL) {
   2070 		m_freem(sc->rtk_head);
   2071 		sc->rtk_head = sc->rtk_tail = NULL;
   2072 	}
   2073 
   2074 	/* Free the TX list buffers. */
   2075 	for (i = 0; i < RTK_TX_QLEN; i++) {
   2076 		if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
   2077 			bus_dmamap_unload(sc->sc_dmat,
   2078 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
   2079 			m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
   2080 			sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   2081 		}
   2082 	}
   2083 
   2084 	/* Free the RX list buffers. */
   2085 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2086 		if (sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf != NULL) {
   2087 			bus_dmamap_unload(sc->sc_dmat,
   2088 			    sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
   2089 			m_freem(sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf);
   2090 			sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf = NULL;
   2091 		}
   2092 	}
   2093 
   2094 	if (disable)
   2095 		re_disable(sc);
   2096 
   2097 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2098 	ifp->if_timer = 0;
   2099 }
   2100