rtl8169.c revision 1.51 1 /* $NetBSD: rtl8169.c,v 1.51 2006/11/03 17:16:58 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 uint32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 uint32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 }
244 }
245
246 static int
247 re_miibus_readreg(struct device *dev, int phy, int reg)
248 {
249 struct rtk_softc *sc = (void *)dev;
250 uint16_t rval = 0;
251 uint16_t re8139_reg = 0;
252 int s;
253
254 s = splnet();
255
256 if (sc->rtk_type == RTK_8169) {
257 rval = re_gmii_readreg(dev, phy, reg);
258 splx(s);
259 return rval;
260 }
261
262 /* Pretend the internal PHY is only at address 0 */
263 if (phy) {
264 splx(s);
265 return 0;
266 }
267 switch (reg) {
268 case MII_BMCR:
269 re8139_reg = RTK_BMCR;
270 break;
271 case MII_BMSR:
272 re8139_reg = RTK_BMSR;
273 break;
274 case MII_ANAR:
275 re8139_reg = RTK_ANAR;
276 break;
277 case MII_ANER:
278 re8139_reg = RTK_ANER;
279 break;
280 case MII_ANLPAR:
281 re8139_reg = RTK_LPAR;
282 break;
283 case MII_PHYIDR1:
284 case MII_PHYIDR2:
285 splx(s);
286 return 0;
287 /*
288 * Allow the rlphy driver to read the media status
289 * register. If we have a link partner which does not
290 * support NWAY, this is the register which will tell
291 * us the results of parallel detection.
292 */
293 case RTK_MEDIASTAT:
294 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
295 splx(s);
296 return rval;
297 default:
298 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
299 splx(s);
300 return 0;
301 }
302 rval = CSR_READ_2(sc, re8139_reg);
303 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
304 /* 8139C+ has different bit layout. */
305 rval &= ~(BMCR_LOOP | BMCR_ISO);
306 }
307 splx(s);
308 return rval;
309 }
310
311 static void
312 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
313 {
314 struct rtk_softc *sc = (void *)dev;
315 uint16_t re8139_reg = 0;
316 int s;
317
318 s = splnet();
319
320 if (sc->rtk_type == RTK_8169) {
321 re_gmii_writereg(dev, phy, reg, data);
322 splx(s);
323 return;
324 }
325
326 /* Pretend the internal PHY is only at address 0 */
327 if (phy) {
328 splx(s);
329 return;
330 }
331 switch (reg) {
332 case MII_BMCR:
333 re8139_reg = RTK_BMCR;
334 if (sc->rtk_type == RTK_8139CPLUS) {
335 /* 8139C+ has different bit layout. */
336 data &= ~(BMCR_LOOP | BMCR_ISO);
337 }
338 break;
339 case MII_BMSR:
340 re8139_reg = RTK_BMSR;
341 break;
342 case MII_ANAR:
343 re8139_reg = RTK_ANAR;
344 break;
345 case MII_ANER:
346 re8139_reg = RTK_ANER;
347 break;
348 case MII_ANLPAR:
349 re8139_reg = RTK_LPAR;
350 break;
351 case MII_PHYIDR1:
352 case MII_PHYIDR2:
353 splx(s);
354 return;
355 break;
356 default:
357 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
358 splx(s);
359 return;
360 }
361 CSR_WRITE_2(sc, re8139_reg, data);
362 splx(s);
363 return;
364 }
365
366 static void
367 re_miibus_statchg(struct device *dev __unused)
368 {
369
370 return;
371 }
372
373 static void
374 re_reset(struct rtk_softc *sc)
375 {
376 int i;
377
378 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
379
380 for (i = 0; i < RTK_TIMEOUT; i++) {
381 DELAY(10);
382 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
383 break;
384 }
385 if (i == RTK_TIMEOUT)
386 aprint_error("%s: reset never completed!\n",
387 sc->sc_dev.dv_xname);
388
389 /*
390 * NB: Realtek-supplied Linux driver does this only for
391 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
392 */
393 if (1) /* XXX check softc flag for 8169s version */
394 CSR_WRITE_1(sc, 0x82, 1);
395
396 return;
397 }
398
399 /*
400 * The following routine is designed to test for a defect on some
401 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
402 * lines connected to the bus, however for a 32-bit only card, they
403 * should be pulled high. The result of this defect is that the
404 * NIC will not work right if you plug it into a 64-bit slot: DMA
405 * operations will be done with 64-bit transfers, which will fail
406 * because the 64-bit data lines aren't connected.
407 *
408 * There's no way to work around this (short of talking a soldering
409 * iron to the board), however we can detect it. The method we use
410 * here is to put the NIC into digital loopback mode, set the receiver
411 * to promiscuous mode, and then try to send a frame. We then compare
412 * the frame data we sent to what was received. If the data matches,
413 * then the NIC is working correctly, otherwise we know the user has
414 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
415 * slot. In the latter case, there's no way the NIC can work correctly,
416 * so we print out a message on the console and abort the device attach.
417 */
418
419 int
420 re_diag(struct rtk_softc *sc)
421 {
422 struct ifnet *ifp = &sc->ethercom.ec_if;
423 struct mbuf *m0;
424 struct ether_header *eh;
425 struct rtk_rxsoft *rxs;
426 struct rtk_desc *cur_rx;
427 bus_dmamap_t dmamap;
428 uint16_t status;
429 uint32_t rxstat;
430 int total_len, i, s, error = 0;
431 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
432 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
433
434 /* Allocate a single mbuf */
435
436 MGETHDR(m0, M_DONTWAIT, MT_DATA);
437 if (m0 == NULL)
438 return ENOBUFS;
439
440 /*
441 * Initialize the NIC in test mode. This sets the chip up
442 * so that it can send and receive frames, but performs the
443 * following special functions:
444 * - Puts receiver in promiscuous mode
445 * - Enables digital loopback mode
446 * - Leaves interrupts turned off
447 */
448
449 ifp->if_flags |= IFF_PROMISC;
450 sc->rtk_testmode = 1;
451 re_init(ifp);
452 re_stop(ifp, 0);
453 DELAY(100000);
454 re_init(ifp);
455
456 /* Put some data in the mbuf */
457
458 eh = mtod(m0, struct ether_header *);
459 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
460 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
461 eh->ether_type = htons(ETHERTYPE_IP);
462 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
463
464 /*
465 * Queue the packet, start transmission.
466 */
467
468 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
469 s = splnet();
470 IF_ENQUEUE(&ifp->if_snd, m0);
471 re_start(ifp);
472 splx(s);
473 m0 = NULL;
474
475 /* Wait for it to propagate through the chip */
476
477 DELAY(100000);
478 for (i = 0; i < RTK_TIMEOUT; i++) {
479 status = CSR_READ_2(sc, RTK_ISR);
480 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
481 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
482 break;
483 DELAY(10);
484 }
485 if (i == RTK_TIMEOUT) {
486 aprint_error("%s: diagnostic failed, failed to receive packet "
487 "in loopback mode\n", sc->sc_dev.dv_xname);
488 error = EIO;
489 goto done;
490 }
491
492 /*
493 * The packet should have been dumped into the first
494 * entry in the RX DMA ring. Grab it from there.
495 */
496
497 rxs = &sc->rtk_ldata.rtk_rxsoft[0];
498 dmamap = rxs->rxs_dmamap;
499 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
500 BUS_DMASYNC_POSTREAD);
501 bus_dmamap_unload(sc->sc_dmat, dmamap);
502
503 m0 = rxs->rxs_mbuf;
504 rxs->rxs_mbuf = NULL;
505 eh = mtod(m0, struct ether_header *);
506
507 RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
508 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
509 rxstat = le32toh(cur_rx->rtk_cmdstat);
510 total_len = rxstat & sc->rtk_rxlenmask;
511
512 if (total_len != ETHER_MIN_LEN) {
513 aprint_error("%s: diagnostic failed, received short packet\n",
514 sc->sc_dev.dv_xname);
515 error = EIO;
516 goto done;
517 }
518
519 /* Test that the received packet data matches what we sent. */
520
521 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
522 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
523 ntohs(eh->ether_type) != ETHERTYPE_IP) {
524 aprint_error("%s: WARNING, DMA FAILURE!\n",
525 sc->sc_dev.dv_xname);
526 aprint_error("%s: expected TX data: %s",
527 sc->sc_dev.dv_xname, ether_sprintf(dst));
528 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
529 aprint_error("%s: received RX data: %s",
530 sc->sc_dev.dv_xname,
531 ether_sprintf(eh->ether_dhost));
532 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
533 ntohs(eh->ether_type));
534 aprint_error("%s: You may have a defective 32-bit NIC plugged "
535 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
536 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
537 "for proper operation.\n", sc->sc_dev.dv_xname);
538 aprint_error("%s: Read the re(4) man page for more details.\n",
539 sc->sc_dev.dv_xname);
540 error = EIO;
541 }
542
543 done:
544 /* Turn interface off, release resources */
545
546 sc->rtk_testmode = 0;
547 ifp->if_flags &= ~IFF_PROMISC;
548 re_stop(ifp, 0);
549 if (m0 != NULL)
550 m_freem(m0);
551
552 return error;
553 }
554
555
556 /*
557 * Attach the interface. Allocate softc structures, do ifmedia
558 * setup and ethernet/BPF attach.
559 */
560 void
561 re_attach(struct rtk_softc *sc)
562 {
563 u_char eaddr[ETHER_ADDR_LEN];
564 uint16_t val;
565 struct ifnet *ifp;
566 int error = 0, i, addr_len;
567
568
569 /* XXX JRS: bus-attach-independent code begins approximately here */
570
571 /* Reset the adapter. */
572 re_reset(sc);
573
574 if (sc->rtk_type == RTK_8169) {
575 uint32_t hwrev;
576
577 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
578 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
579 if (hwrev == (0x1 << 28)) {
580 sc->sc_rev = 4;
581 } else if (hwrev == (0x1 << 26)) {
582 sc->sc_rev = 3;
583 } else if (hwrev == (0x1 << 23)) {
584 sc->sc_rev = 2;
585 } else
586 sc->sc_rev = 1;
587
588 /* Set RX length mask */
589
590 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
591
592 /* Force station address autoload from the EEPROM */
593
594 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
595 for (i = 0; i < RTK_TIMEOUT; i++) {
596 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
597 == 0)
598 break;
599 DELAY(100);
600 }
601 if (i == RTK_TIMEOUT)
602 aprint_error("%s: eeprom autoload timed out\n",
603 sc->sc_dev.dv_xname);
604
605 for (i = 0; i < ETHER_ADDR_LEN; i++)
606 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
607
608 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
609 } else {
610
611 /* Set RX length mask */
612
613 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
614
615 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
616 addr_len = RTK_EEADDR_LEN1;
617 else
618 addr_len = RTK_EEADDR_LEN0;
619
620 /*
621 * Get station address from the EEPROM.
622 */
623 for (i = 0; i < 3; i++) {
624 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
625 eaddr[(i * 2) + 0] = val & 0xff;
626 eaddr[(i * 2) + 1] = val >> 8;
627 }
628
629 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
630 }
631
632 aprint_normal("%s: Ethernet address %s\n",
633 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
634
635 if (sc->rtk_ldata.rtk_tx_desc_cnt >
636 PAGE_SIZE / sizeof(struct rtk_desc)) {
637 sc->rtk_ldata.rtk_tx_desc_cnt =
638 PAGE_SIZE / sizeof(struct rtk_desc);
639 }
640
641 aprint_verbose("%s: using %d tx descriptors\n",
642 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
643
644 /* Allocate DMA'able memory for the TX ring */
645 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
646 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
647 &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
648 aprint_error("%s: can't allocate tx listseg, error = %d\n",
649 sc->sc_dev.dv_xname, error);
650 goto fail_0;
651 }
652
653 /* Load the map for the TX ring. */
654 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
655 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
656 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
657 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
658 aprint_error("%s: can't map tx list, error = %d\n",
659 sc->sc_dev.dv_xname, error);
660 goto fail_1;
661 }
662 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
663
664 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
665 RTK_TX_LIST_SZ(sc), 0, 0,
666 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
667 aprint_error("%s: can't create tx list map, error = %d\n",
668 sc->sc_dev.dv_xname, error);
669 goto fail_2;
670 }
671
672
673 if ((error = bus_dmamap_load(sc->sc_dmat,
674 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
675 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
676 aprint_error("%s: can't load tx list, error = %d\n",
677 sc->sc_dev.dv_xname, error);
678 goto fail_3;
679 }
680
681 /* Create DMA maps for TX buffers */
682 for (i = 0; i < RTK_TX_QLEN; i++) {
683 error = bus_dmamap_create(sc->sc_dmat,
684 round_page(IP_MAXPACKET),
685 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
686 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
687 if (error) {
688 aprint_error("%s: can't create DMA map for TX\n",
689 sc->sc_dev.dv_xname);
690 goto fail_4;
691 }
692 }
693
694 /* Allocate DMA'able memory for the RX ring */
695 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
696 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
697 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
698 aprint_error("%s: can't allocate rx listseg, error = %d\n",
699 sc->sc_dev.dv_xname, error);
700 goto fail_4;
701 }
702
703 /* Load the map for the RX ring. */
704 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
705 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
706 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
707 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
708 aprint_error("%s: can't map rx list, error = %d\n",
709 sc->sc_dev.dv_xname, error);
710 goto fail_5;
711 }
712 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
713
714 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
715 RTK_RX_LIST_SZ, 0, 0,
716 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
717 aprint_error("%s: can't create rx list map, error = %d\n",
718 sc->sc_dev.dv_xname, error);
719 goto fail_6;
720 }
721
722 if ((error = bus_dmamap_load(sc->sc_dmat,
723 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
724 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
725 aprint_error("%s: can't load rx list, error = %d\n",
726 sc->sc_dev.dv_xname, error);
727 goto fail_7;
728 }
729
730 /* Create DMA maps for RX buffers */
731 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
732 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
733 0, 0, &sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
734 if (error) {
735 aprint_error("%s: can't create DMA map for RX\n",
736 sc->sc_dev.dv_xname);
737 goto fail_8;
738 }
739 }
740
741 /*
742 * Record interface as attached. From here, we should not fail.
743 */
744 sc->sc_flags |= RTK_ATTACHED;
745
746 ifp = &sc->ethercom.ec_if;
747 ifp->if_softc = sc;
748 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
749 ifp->if_mtu = ETHERMTU;
750 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 ifp->if_ioctl = re_ioctl;
752 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
753
754 /*
755 * This is a way to disable hw VLAN tagging by default
756 * (RE_VLAN is undefined), as it is problematic. PR 32643
757 */
758
759 #ifdef RE_VLAN
760 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
761 #endif
762 ifp->if_start = re_start;
763 ifp->if_stop = re_stop;
764
765 /*
766 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
767 */
768
769 ifp->if_capabilities |=
770 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
771 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
772 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
773 IFCAP_TSOv4;
774 ifp->if_watchdog = re_watchdog;
775 ifp->if_init = re_init;
776 if (sc->rtk_type == RTK_8169)
777 ifp->if_baudrate = 1000000000;
778 else
779 ifp->if_baudrate = 100000000;
780 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
781 ifp->if_capenable = ifp->if_capabilities;
782 IFQ_SET_READY(&ifp->if_snd);
783
784 callout_init(&sc->rtk_tick_ch);
785
786 /* Do MII setup */
787 sc->mii.mii_ifp = ifp;
788 sc->mii.mii_readreg = re_miibus_readreg;
789 sc->mii.mii_writereg = re_miibus_writereg;
790 sc->mii.mii_statchg = re_miibus_statchg;
791 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
792 re_ifmedia_sts);
793 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
794 MII_OFFSET_ANY, 0);
795 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
796
797 /*
798 * Call MI attach routine.
799 */
800 if_attach(ifp);
801 ether_ifattach(ifp, eaddr);
802
803
804 /*
805 * Make sure the interface is shutdown during reboot.
806 */
807 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
808 if (sc->sc_sdhook == NULL)
809 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
810 sc->sc_dev.dv_xname);
811 /*
812 * Add a suspend hook to make sure we come back up after a
813 * resume.
814 */
815 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
816 re_power, sc);
817 if (sc->sc_powerhook == NULL)
818 aprint_error("%s: WARNING: unable to establish power hook\n",
819 sc->sc_dev.dv_xname);
820
821
822 return;
823
824 fail_8:
825 /* Destroy DMA maps for RX buffers. */
826 for (i = 0; i < RTK_RX_DESC_CNT; i++)
827 if (sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap != NULL)
828 bus_dmamap_destroy(sc->sc_dmat,
829 sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
830
831 /* Free DMA'able memory for the RX ring. */
832 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
833 fail_7:
834 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
835 fail_6:
836 bus_dmamem_unmap(sc->sc_dmat,
837 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
838 fail_5:
839 bus_dmamem_free(sc->sc_dmat,
840 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
841
842 fail_4:
843 /* Destroy DMA maps for TX buffers. */
844 for (i = 0; i < RTK_TX_QLEN; i++)
845 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
846 bus_dmamap_destroy(sc->sc_dmat,
847 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
848
849 /* Free DMA'able memory for the TX ring. */
850 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
851 fail_3:
852 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
853 fail_2:
854 bus_dmamem_unmap(sc->sc_dmat,
855 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
856 fail_1:
857 bus_dmamem_free(sc->sc_dmat,
858 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
859 fail_0:
860 return;
861 }
862
863
864 /*
865 * re_activate:
866 * Handle device activation/deactivation requests.
867 */
868 int
869 re_activate(struct device *self, enum devact act)
870 {
871 struct rtk_softc *sc = (void *)self;
872 int s, error = 0;
873
874 s = splnet();
875 switch (act) {
876 case DVACT_ACTIVATE:
877 error = EOPNOTSUPP;
878 break;
879 case DVACT_DEACTIVATE:
880 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
881 if_deactivate(&sc->ethercom.ec_if);
882 break;
883 }
884 splx(s);
885
886 return error;
887 }
888
889 /*
890 * re_detach:
891 * Detach a rtk interface.
892 */
893 int
894 re_detach(struct rtk_softc *sc)
895 {
896 struct ifnet *ifp = &sc->ethercom.ec_if;
897 int i;
898
899 /*
900 * Succeed now if there isn't any work to do.
901 */
902 if ((sc->sc_flags & RTK_ATTACHED) == 0)
903 return 0;
904
905 /* Unhook our tick handler. */
906 callout_stop(&sc->rtk_tick_ch);
907
908 /* Detach all PHYs. */
909 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
910
911 /* Delete all remaining media. */
912 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
913
914 ether_ifdetach(ifp);
915 if_detach(ifp);
916
917 /* Destroy DMA maps for RX buffers. */
918 for (i = 0; i < RTK_RX_DESC_CNT; i++)
919 if (sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap != NULL)
920 bus_dmamap_destroy(sc->sc_dmat,
921 sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
922
923 /* Free DMA'able memory for the RX ring. */
924 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
925 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
926 bus_dmamem_unmap(sc->sc_dmat,
927 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
928 bus_dmamem_free(sc->sc_dmat,
929 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
930
931 /* Destroy DMA maps for TX buffers. */
932 for (i = 0; i < RTK_TX_QLEN; i++)
933 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
934 bus_dmamap_destroy(sc->sc_dmat,
935 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
936
937 /* Free DMA'able memory for the TX ring. */
938 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
939 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
940 bus_dmamem_unmap(sc->sc_dmat,
941 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
942 bus_dmamem_free(sc->sc_dmat,
943 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
944
945
946 shutdownhook_disestablish(sc->sc_sdhook);
947 powerhook_disestablish(sc->sc_powerhook);
948
949 return 0;
950 }
951
952 /*
953 * re_enable:
954 * Enable the RTL81X9 chip.
955 */
956 static int
957 re_enable(struct rtk_softc *sc)
958 {
959
960 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
961 if ((*sc->sc_enable)(sc) != 0) {
962 aprint_error("%s: device enable failed\n",
963 sc->sc_dev.dv_xname);
964 return EIO;
965 }
966 sc->sc_flags |= RTK_ENABLED;
967 }
968 return 0;
969 }
970
971 /*
972 * re_disable:
973 * Disable the RTL81X9 chip.
974 */
975 static void
976 re_disable(struct rtk_softc *sc)
977 {
978
979 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
980 (*sc->sc_disable)(sc);
981 sc->sc_flags &= ~RTK_ENABLED;
982 }
983 }
984
985 /*
986 * re_power:
987 * Power management (suspend/resume) hook.
988 */
989 void
990 re_power(int why, void *arg)
991 {
992 struct rtk_softc *sc = (void *)arg;
993 struct ifnet *ifp = &sc->ethercom.ec_if;
994 int s;
995
996 s = splnet();
997 switch (why) {
998 case PWR_SUSPEND:
999 case PWR_STANDBY:
1000 re_stop(ifp, 0);
1001 if (sc->sc_power != NULL)
1002 (*sc->sc_power)(sc, why);
1003 break;
1004 case PWR_RESUME:
1005 if (ifp->if_flags & IFF_UP) {
1006 if (sc->sc_power != NULL)
1007 (*sc->sc_power)(sc, why);
1008 re_init(ifp);
1009 }
1010 break;
1011 case PWR_SOFTSUSPEND:
1012 case PWR_SOFTSTANDBY:
1013 case PWR_SOFTRESUME:
1014 break;
1015 }
1016 splx(s);
1017 }
1018
1019
1020 static int
1021 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1022 {
1023 struct mbuf *n = NULL;
1024 bus_dmamap_t map;
1025 struct rtk_desc *d;
1026 struct rtk_rxsoft *rxs;
1027 uint32_t cmdstat;
1028 int error;
1029
1030 if (m == NULL) {
1031 MGETHDR(n, M_DONTWAIT, MT_DATA);
1032 if (n == NULL)
1033 return ENOBUFS;
1034
1035 MCLGET(n, M_DONTWAIT);
1036 if ((n->m_flags & M_EXT) == 0) {
1037 m_freem(n);
1038 return ENOBUFS;
1039 }
1040 m = n;
1041 } else
1042 m->m_data = m->m_ext.ext_buf;
1043
1044 /*
1045 * Initialize mbuf length fields and fixup
1046 * alignment so that the frame payload is
1047 * longword aligned.
1048 */
1049 m->m_len = m->m_pkthdr.len = MCLBYTES - RTK_ETHER_ALIGN;
1050 m->m_data += RTK_ETHER_ALIGN;
1051
1052 rxs = &sc->rtk_ldata.rtk_rxsoft[idx];
1053 map = rxs->rxs_dmamap;
1054 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1055 BUS_DMA_READ|BUS_DMA_NOWAIT);
1056
1057 if (error)
1058 goto out;
1059
1060 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1061 BUS_DMASYNC_PREREAD);
1062
1063 d = &sc->rtk_ldata.rtk_rx_list[idx];
1064 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1065 cmdstat = le32toh(d->rtk_cmdstat);
1066 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1067 if (cmdstat & RTK_RDESC_STAT_OWN) {
1068 aprint_error("%s: tried to map busy RX descriptor\n",
1069 sc->sc_dev.dv_xname);
1070 goto out;
1071 }
1072
1073 rxs->rxs_mbuf = m;
1074
1075 cmdstat = map->dm_segs[0].ds_len;
1076 if (idx == (RTK_RX_DESC_CNT - 1))
1077 cmdstat |= RTK_RDESC_CMD_EOR;
1078 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1079 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1080 d->rtk_cmdstat = htole32(cmdstat);
1081 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082 cmdstat |= RTK_RDESC_CMD_OWN;
1083 d->rtk_cmdstat = htole32(cmdstat);
1084 RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085
1086 return 0;
1087 out:
1088 if (n != NULL)
1089 m_freem(n);
1090 return ENOMEM;
1091 }
1092
1093 static int
1094 re_tx_list_init(struct rtk_softc *sc)
1095 {
1096 int i;
1097
1098 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1099 for (i = 0; i < RTK_TX_QLEN; i++) {
1100 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1101 }
1102
1103 bus_dmamap_sync(sc->sc_dmat,
1104 sc->rtk_ldata.rtk_tx_list_map, 0,
1105 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1106 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1107 sc->rtk_ldata.rtk_txq_prodidx = 0;
1108 sc->rtk_ldata.rtk_txq_considx = 0;
1109 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1110 sc->rtk_ldata.rtk_tx_nextfree = 0;
1111
1112 return 0;
1113 }
1114
1115 static int
1116 re_rx_list_init(struct rtk_softc *sc)
1117 {
1118 int i;
1119
1120 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1121
1122 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1123 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1124 return ENOBUFS;
1125 }
1126
1127 sc->rtk_ldata.rtk_rx_prodidx = 0;
1128 sc->rtk_head = sc->rtk_tail = NULL;
1129
1130 return 0;
1131 }
1132
1133 /*
1134 * RX handler for C+ and 8169. For the gigE chips, we support
1135 * the reception of jumbo frames that have been fragmented
1136 * across multiple 2K mbuf cluster buffers.
1137 */
1138 static void
1139 re_rxeof(struct rtk_softc *sc)
1140 {
1141 struct mbuf *m;
1142 struct ifnet *ifp;
1143 int i, total_len;
1144 struct rtk_desc *cur_rx;
1145 struct rtk_rxsoft *rxs;
1146 uint32_t rxstat, rxvlan;
1147
1148 ifp = &sc->ethercom.ec_if;
1149
1150 for (i = sc->rtk_ldata.rtk_rx_prodidx;; i = RTK_NEXT_RX_DESC(sc, i)) {
1151 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1152 RTK_RXDESCSYNC(sc, i,
1153 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1154 rxstat = le32toh(cur_rx->rtk_cmdstat);
1155 RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1156 if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1157 break;
1158 }
1159 total_len = rxstat & sc->rtk_rxlenmask;
1160 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1161 rxs = &sc->rtk_ldata.rtk_rxsoft[i];
1162 m = rxs->rxs_mbuf;
1163
1164 /* Invalidate the RX mbuf and unload its map */
1165
1166 bus_dmamap_sync(sc->sc_dmat,
1167 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1168 BUS_DMASYNC_POSTREAD);
1169 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1170
1171 if ((rxstat & RTK_RDESC_STAT_EOF) == 0) {
1172 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1173 if (sc->rtk_head == NULL)
1174 sc->rtk_head = sc->rtk_tail = m;
1175 else {
1176 m->m_flags &= ~M_PKTHDR;
1177 sc->rtk_tail->m_next = m;
1178 sc->rtk_tail = m;
1179 }
1180 re_newbuf(sc, i, NULL);
1181 continue;
1182 }
1183
1184 /*
1185 * NOTE: for the 8139C+, the frame length field
1186 * is always 12 bits in size, but for the gigE chips,
1187 * it is 13 bits (since the max RX frame length is 16K).
1188 * Unfortunately, all 32 bits in the status word
1189 * were already used, so to make room for the extra
1190 * length bit, RealTek took out the 'frame alignment
1191 * error' bit and shifted the other status bits
1192 * over one slot. The OWN, EOR, FS and LS bits are
1193 * still in the same places. We have already extracted
1194 * the frame length and checked the OWN bit, so rather
1195 * than using an alternate bit mapping, we shift the
1196 * status bits one space to the right so we can evaluate
1197 * them using the 8169 status as though it was in the
1198 * same format as that of the 8139C+.
1199 */
1200 if (sc->rtk_type == RTK_8169)
1201 rxstat >>= 1;
1202
1203 if ((rxstat & RTK_RDESC_STAT_RXERRSUM) != 0) {
1204 ifp->if_ierrors++;
1205 /*
1206 * If this is part of a multi-fragment packet,
1207 * discard all the pieces.
1208 */
1209 if (sc->rtk_head != NULL) {
1210 m_freem(sc->rtk_head);
1211 sc->rtk_head = sc->rtk_tail = NULL;
1212 }
1213 re_newbuf(sc, i, m);
1214 continue;
1215 }
1216
1217 /*
1218 * If allocating a replacement mbuf fails,
1219 * reload the current one.
1220 */
1221
1222 if (re_newbuf(sc, i, NULL) != 0) {
1223 ifp->if_ierrors++;
1224 if (sc->rtk_head != NULL) {
1225 m_freem(sc->rtk_head);
1226 sc->rtk_head = sc->rtk_tail = NULL;
1227 }
1228 re_newbuf(sc, i, m);
1229 continue;
1230 }
1231
1232 if (sc->rtk_head != NULL) {
1233 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1234 /*
1235 * Special case: if there's 4 bytes or less
1236 * in this buffer, the mbuf can be discarded:
1237 * the last 4 bytes is the CRC, which we don't
1238 * care about anyway.
1239 */
1240 if (m->m_len <= ETHER_CRC_LEN) {
1241 sc->rtk_tail->m_len -=
1242 (ETHER_CRC_LEN - m->m_len);
1243 m_freem(m);
1244 } else {
1245 m->m_len -= ETHER_CRC_LEN;
1246 m->m_flags &= ~M_PKTHDR;
1247 sc->rtk_tail->m_next = m;
1248 }
1249 m = sc->rtk_head;
1250 sc->rtk_head = sc->rtk_tail = NULL;
1251 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1252 } else
1253 m->m_pkthdr.len = m->m_len =
1254 (total_len - ETHER_CRC_LEN);
1255
1256 ifp->if_ipackets++;
1257 m->m_pkthdr.rcvif = ifp;
1258
1259 /* Do RX checksumming if enabled */
1260
1261 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1262
1263 /* Check IP header checksum */
1264 if (rxstat & RTK_RDESC_STAT_PROTOID)
1265 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1266 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1267 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1268 }
1269
1270 /* Check TCP/UDP checksum */
1271 if (RTK_TCPPKT(rxstat) &&
1272 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1273 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1274 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1275 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1276 }
1277 if (RTK_UDPPKT(rxstat) &&
1278 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1279 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1280 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1281 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1282 }
1283
1284 #ifdef RE_VLAN
1285 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1286 VLAN_INPUT_TAG(ifp, m,
1287 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1288 continue);
1289 }
1290 #endif
1291 #if NBPFILTER > 0
1292 if (ifp->if_bpf)
1293 bpf_mtap(ifp->if_bpf, m);
1294 #endif
1295 (*ifp->if_input)(ifp, m);
1296 }
1297
1298 sc->rtk_ldata.rtk_rx_prodidx = i;
1299 }
1300
1301 static void
1302 re_txeof(struct rtk_softc *sc)
1303 {
1304 struct ifnet *ifp;
1305 int idx;
1306 boolean_t done = FALSE;
1307
1308 ifp = &sc->ethercom.ec_if;
1309 idx = sc->rtk_ldata.rtk_txq_considx;
1310
1311 for (;;) {
1312 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1313 int descidx;
1314 uint32_t txstat;
1315
1316 if (txq->txq_mbuf == NULL) {
1317 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1318 break;
1319 }
1320
1321 descidx = txq->txq_descidx;
1322 RTK_TXDESCSYNC(sc, descidx,
1323 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1324 txstat =
1325 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1326 RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1327 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1328 if (txstat & RTK_TDESC_CMD_OWN) {
1329 break;
1330 }
1331
1332 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1333 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1334 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1335 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1336 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1337 m_freem(txq->txq_mbuf);
1338 txq->txq_mbuf = NULL;
1339
1340 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1341 ifp->if_collisions++;
1342 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1343 ifp->if_oerrors++;
1344 else
1345 ifp->if_opackets++;
1346
1347 idx = RTK_NEXT_TXQ(sc, idx);
1348 done = TRUE;
1349 }
1350
1351 /* No changes made to the TX ring, so no flush needed */
1352
1353 if (done) {
1354 sc->rtk_ldata.rtk_txq_considx = idx;
1355 ifp->if_flags &= ~IFF_OACTIVE;
1356 ifp->if_timer = 0;
1357 }
1358
1359 /*
1360 * If not all descriptors have been released reaped yet,
1361 * reload the timer so that we will eventually get another
1362 * interrupt that will cause us to re-enter this routine.
1363 * This is done in case the transmitter has gone idle.
1364 */
1365 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1366 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367 }
1368
1369 /*
1370 * Stop all chip I/O so that the kernel's probe routines don't
1371 * get confused by errant DMAs when rebooting.
1372 */
1373 static void
1374 re_shutdown(void *vsc)
1375
1376 {
1377 struct rtk_softc *sc = vsc;
1378
1379 re_stop(&sc->ethercom.ec_if, 0);
1380 }
1381
1382
1383 static void
1384 re_tick(void *xsc)
1385 {
1386 struct rtk_softc *sc = xsc;
1387 int s;
1388
1389 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1390 s = splnet();
1391
1392 mii_tick(&sc->mii);
1393 splx(s);
1394
1395 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1396 }
1397
1398 #ifdef DEVICE_POLLING
1399 static void
1400 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1401 {
1402 struct rtk_softc *sc = ifp->if_softc;
1403
1404 RTK_LOCK(sc);
1405 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1406 ether_poll_deregister(ifp);
1407 cmd = POLL_DEREGISTER;
1408 }
1409 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1410 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1411 goto done;
1412 }
1413
1414 sc->rxcycles = count;
1415 re_rxeof(sc);
1416 re_txeof(sc);
1417
1418 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1419 (*ifp->if_start)(ifp);
1420
1421 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1422 uint16_t status;
1423
1424 status = CSR_READ_2(sc, RTK_ISR);
1425 if (status == 0xffff)
1426 goto done;
1427 if (status)
1428 CSR_WRITE_2(sc, RTK_ISR, status);
1429
1430 /*
1431 * XXX check behaviour on receiver stalls.
1432 */
1433
1434 if (status & RTK_ISR_SYSTEM_ERR) {
1435 re_reset(sc);
1436 re_init(sc);
1437 }
1438 }
1439 done:
1440 RTK_UNLOCK(sc);
1441 }
1442 #endif /* DEVICE_POLLING */
1443
1444 int
1445 re_intr(void *arg)
1446 {
1447 struct rtk_softc *sc = arg;
1448 struct ifnet *ifp;
1449 uint16_t status;
1450 int handled = 0;
1451
1452 ifp = &sc->ethercom.ec_if;
1453
1454 if ((ifp->if_flags & IFF_UP) == 0)
1455 return 0;
1456
1457 #ifdef DEVICE_POLLING
1458 if (ifp->if_flags & IFF_POLLING)
1459 goto done;
1460 if ((ifp->if_capenable & IFCAP_POLLING) &&
1461 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1462 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1463 re_poll(ifp, 0, 1);
1464 goto done;
1465 }
1466 #endif /* DEVICE_POLLING */
1467
1468 for (;;) {
1469
1470 status = CSR_READ_2(sc, RTK_ISR);
1471 /* If the card has gone away the read returns 0xffff. */
1472 if (status == 0xffff)
1473 break;
1474 if (status) {
1475 handled = 1;
1476 CSR_WRITE_2(sc, RTK_ISR, status);
1477 }
1478
1479 if ((status & RTK_INTRS_CPLUS) == 0)
1480 break;
1481
1482 if ((status & RTK_ISR_RX_OK) ||
1483 (status & RTK_ISR_RX_ERR))
1484 re_rxeof(sc);
1485
1486 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1487 (status & RTK_ISR_TX_ERR) ||
1488 (status & RTK_ISR_TX_DESC_UNAVAIL))
1489 re_txeof(sc);
1490
1491 if (status & RTK_ISR_SYSTEM_ERR) {
1492 re_reset(sc);
1493 re_init(ifp);
1494 }
1495
1496 if (status & RTK_ISR_LINKCHG) {
1497 callout_stop(&sc->rtk_tick_ch);
1498 re_tick(sc);
1499 }
1500 }
1501
1502 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1503 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1504 (*ifp->if_start)(ifp);
1505
1506 #ifdef DEVICE_POLLING
1507 done:
1508 #endif
1509
1510 return handled;
1511 }
1512
1513 static int
1514 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1515 {
1516 bus_dmamap_t map;
1517 int error, seg, uidx, startidx, curidx, lastidx;
1518 #ifdef RE_VLAN
1519 struct m_tag *mtag;
1520 #endif
1521 struct rtk_desc *d;
1522 uint32_t cmdstat, rtk_flags;
1523 struct rtk_txq *txq;
1524
1525 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1526 return EFBIG;
1527 }
1528
1529 /*
1530 * Set up checksum offload. Note: checksum offload bits must
1531 * appear in all descriptors of a multi-descriptor transmit
1532 * attempt. (This is according to testing done with an 8169
1533 * chip. I'm not sure if this is a requirement or a bug.)
1534 */
1535
1536 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1537 uint32_t segsz = m->m_pkthdr.segsz;
1538
1539 rtk_flags = RTK_TDESC_CMD_LGSEND |
1540 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1541 } else {
1542
1543 /*
1544 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1545 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1546 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1547 */
1548
1549 rtk_flags = 0;
1550 if ((m->m_pkthdr.csum_flags &
1551 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1552 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1553 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1554 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1555 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1556 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1557 }
1558 }
1559 }
1560
1561 txq = &sc->rtk_ldata.rtk_txq[*idx];
1562 map = txq->txq_dmamap;
1563 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1564 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1565
1566 if (error) {
1567 /* XXX try to defrag if EFBIG? */
1568
1569 aprint_error("%s: can't map mbuf (error %d)\n",
1570 sc->sc_dev.dv_xname, error);
1571
1572 return error;
1573 }
1574
1575 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1576 error = EFBIG;
1577 goto fail_unload;
1578 }
1579
1580 /*
1581 * Make sure that the caches are synchronized before we
1582 * ask the chip to start DMA for the packet data.
1583 */
1584 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1585 BUS_DMASYNC_PREWRITE);
1586
1587 /*
1588 * Map the segment array into descriptors. Note that we set the
1589 * start-of-frame and end-of-frame markers for either TX or RX, but
1590 * they really only have meaning in the TX case. (In the RX case,
1591 * it's the chip that tells us where packets begin and end.)
1592 * We also keep track of the end of the ring and set the
1593 * end-of-ring bits as needed, and we set the ownership bits
1594 * in all except the very first descriptor. (The caller will
1595 * set this descriptor later when it start transmission or
1596 * reception.)
1597 */
1598 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1599 lastidx = -1;
1600 for (seg = 0; seg < map->dm_nsegs;
1601 seg++, curidx = RTK_NEXT_TX_DESC(sc, curidx)) {
1602 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1603 RTK_TXDESCSYNC(sc, curidx,
1604 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1605 cmdstat = le32toh(d->rtk_cmdstat);
1606 RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1607 if (cmdstat & RTK_TDESC_STAT_OWN) {
1608 aprint_error("%s: tried to map busy TX descriptor\n",
1609 sc->sc_dev.dv_xname);
1610 for (; seg > 0; seg--) {
1611 uidx = (curidx + RTK_TX_DESC_CNT(sc) - seg) %
1612 RTK_TX_DESC_CNT(sc);
1613 sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1614 RTK_TXDESCSYNC(sc, uidx,
1615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1616 }
1617 error = ENOBUFS;
1618 goto fail_unload;
1619 }
1620
1621 cmdstat = map->dm_segs[seg].ds_len;
1622 if (seg == 0)
1623 cmdstat |= RTK_TDESC_CMD_SOF;
1624 else
1625 cmdstat |= RTK_TDESC_CMD_OWN;
1626 if (seg == map->dm_nsegs - 1) {
1627 cmdstat |= RTK_TDESC_CMD_EOF;
1628 lastidx = curidx;
1629 }
1630 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1631 cmdstat |= RTK_TDESC_CMD_EOR;
1632 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1633 d->rtk_bufaddr_lo =
1634 htole32(RTK_ADDR_LO(map->dm_segs[seg].ds_addr));
1635 d->rtk_bufaddr_hi =
1636 htole32(RTK_ADDR_HI(map->dm_segs[seg].ds_addr));
1637 RTK_TXDESCSYNC(sc, curidx,
1638 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1639 }
1640 KASSERT(lastidx != -1);
1641
1642 /*
1643 * Set up hardware VLAN tagging. Note: vlan tag info must
1644 * appear in the first descriptor of a multi-descriptor
1645 * transmission attempt.
1646 */
1647
1648 #ifdef RE_VLAN
1649 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1650 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1651 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1652 RTK_TDESC_VLANCTL_TAG);
1653 }
1654 #endif
1655
1656 /* Transfer ownership of packet to the chip. */
1657
1658 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1659 htole32(RTK_TDESC_CMD_OWN);
1660 RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661
1662 /* update info of TX queue and descriptors */
1663 txq->txq_mbuf = m;
1664 txq->txq_descidx = lastidx;
1665
1666 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1667 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1668
1669 *idx = RTK_NEXT_TXQ(sc, *idx);
1670
1671 return 0;
1672
1673 fail_unload:
1674 bus_dmamap_unload(sc->sc_dmat, map);
1675
1676 return error;
1677 }
1678
1679 /*
1680 * Main transmit routine for C+ and gigE NICs.
1681 */
1682
1683 static void
1684 re_start(struct ifnet *ifp)
1685 {
1686 struct rtk_softc *sc;
1687 int idx;
1688 boolean_t done = FALSE;
1689
1690 sc = ifp->if_softc;
1691
1692 idx = sc->rtk_ldata.rtk_txq_prodidx;
1693 for (;;) {
1694 struct mbuf *m;
1695 int error;
1696
1697 IFQ_POLL(&ifp->if_snd, m);
1698 if (m == NULL)
1699 break;
1700
1701 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1702 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1703 ifp->if_flags |= IFF_OACTIVE;
1704 break;
1705 }
1706
1707 error = re_encap(sc, m, &idx);
1708 if (error == EFBIG &&
1709 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1710 IFQ_DEQUEUE(&ifp->if_snd, m);
1711 m_freem(m);
1712 ifp->if_oerrors++;
1713 continue;
1714 }
1715 if (error) {
1716 ifp->if_flags |= IFF_OACTIVE;
1717 break;
1718 }
1719
1720 IFQ_DEQUEUE(&ifp->if_snd, m);
1721
1722 #if NBPFILTER > 0
1723 /*
1724 * If there's a BPF listener, bounce a copy of this frame
1725 * to him.
1726 */
1727 if (ifp->if_bpf)
1728 bpf_mtap(ifp->if_bpf, m);
1729 #endif
1730
1731 done = TRUE;
1732 }
1733
1734 if (!done) {
1735 return;
1736 }
1737 sc->rtk_ldata.rtk_txq_prodidx = idx;
1738
1739 /*
1740 * RealTek put the TX poll request register in a different
1741 * location on the 8169 gigE chip. I don't know why.
1742 */
1743
1744 if (sc->rtk_type == RTK_8169)
1745 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1746 else
1747 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1748
1749 /*
1750 * Use the countdown timer for interrupt moderation.
1751 * 'TX done' interrupts are disabled. Instead, we reset the
1752 * countdown timer, which will begin counting until it hits
1753 * the value in the TIMERINT register, and then trigger an
1754 * interrupt. Each time we write to the TIMERCNT register,
1755 * the timer count is reset to 0.
1756 */
1757 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1758
1759 /*
1760 * Set a timeout in case the chip goes out to lunch.
1761 */
1762 ifp->if_timer = 5;
1763 }
1764
1765 static int
1766 re_init(struct ifnet *ifp)
1767 {
1768 struct rtk_softc *sc = ifp->if_softc;
1769 uint8_t *enaddr;
1770 uint32_t rxcfg = 0;
1771 uint32_t reg;
1772 int error;
1773
1774 if ((error = re_enable(sc)) != 0)
1775 goto out;
1776
1777 /*
1778 * Cancel pending I/O and free all RX/TX buffers.
1779 */
1780 re_stop(ifp, 0);
1781
1782 /*
1783 * Enable C+ RX and TX mode, as well as VLAN stripping and
1784 * RX checksum offload. We must configure the C+ register
1785 * before all others.
1786 */
1787 reg = 0;
1788
1789 /*
1790 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1791 * FreeBSD drivers set these bits anyway (for 8139C+?).
1792 * So far, it works.
1793 */
1794
1795 /*
1796 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1797 * For 8169S/8110S rev 2 and above, do not set bit 14.
1798 */
1799 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1800 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1801
1802 if (1) {/* not for 8169S ? */
1803 reg |=
1804 #ifdef RE_VLAN
1805 RTK_CPLUSCMD_VLANSTRIP |
1806 #endif
1807 (ifp->if_capenable &
1808 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1809 IFCAP_CSUM_UDPv4_Rx) ?
1810 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1811 }
1812
1813 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1814 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1815
1816 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1817 if (sc->rtk_type == RTK_8169)
1818 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1819
1820 DELAY(10000);
1821
1822 /*
1823 * Init our MAC address. Even though the chipset
1824 * documentation doesn't mention it, we need to enter "Config
1825 * register write enable" mode to modify the ID registers.
1826 */
1827 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1828 enaddr = LLADDR(ifp->if_sadl);
1829 reg = enaddr[0] | (enaddr[1] << 8) |
1830 (enaddr[2] << 16) | (enaddr[3] << 24);
1831 CSR_WRITE_4(sc, RTK_IDR0, reg);
1832 reg = enaddr[4] | (enaddr[5] << 8);
1833 CSR_WRITE_4(sc, RTK_IDR4, reg);
1834 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1835
1836 /*
1837 * For C+ mode, initialize the RX descriptors and mbufs.
1838 */
1839 re_rx_list_init(sc);
1840 re_tx_list_init(sc);
1841
1842 /*
1843 * Enable transmit and receive.
1844 */
1845 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1846
1847 /*
1848 * Set the initial TX and RX configuration.
1849 */
1850 if (sc->rtk_testmode) {
1851 if (sc->rtk_type == RTK_8169)
1852 CSR_WRITE_4(sc, RTK_TXCFG,
1853 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1854 else
1855 CSR_WRITE_4(sc, RTK_TXCFG,
1856 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1857 } else
1858 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1859 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1860
1861 /* Set the individual bit to receive frames for this host only. */
1862 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1863 rxcfg |= RTK_RXCFG_RX_INDIV;
1864
1865 /* If we want promiscuous mode, set the allframes bit. */
1866 if (ifp->if_flags & IFF_PROMISC)
1867 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1868 else
1869 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1870 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1871
1872 /*
1873 * Set capture broadcast bit to capture broadcast frames.
1874 */
1875 if (ifp->if_flags & IFF_BROADCAST)
1876 rxcfg |= RTK_RXCFG_RX_BROAD;
1877 else
1878 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1879 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1880
1881 /*
1882 * Program the multicast filter, if necessary.
1883 */
1884 rtk_setmulti(sc);
1885
1886 #ifdef DEVICE_POLLING
1887 /*
1888 * Disable interrupts if we are polling.
1889 */
1890 if (ifp->if_flags & IFF_POLLING)
1891 CSR_WRITE_2(sc, RTK_IMR, 0);
1892 else /* otherwise ... */
1893 #endif /* DEVICE_POLLING */
1894 /*
1895 * Enable interrupts.
1896 */
1897 if (sc->rtk_testmode)
1898 CSR_WRITE_2(sc, RTK_IMR, 0);
1899 else
1900 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1901
1902 /* Start RX/TX process. */
1903 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1904 #ifdef notdef
1905 /* Enable receiver and transmitter. */
1906 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1907 #endif
1908 /*
1909 * Load the addresses of the RX and TX lists into the chip.
1910 */
1911
1912 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1913 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1914 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1915 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1916
1917 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1918 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1919 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1920 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1921
1922 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1923
1924 /*
1925 * Initialize the timer interrupt register so that
1926 * a timer interrupt will be generated once the timer
1927 * reaches a certain number of ticks. The timer is
1928 * reloaded on each transmit. This gives us TX interrupt
1929 * moderation, which dramatically improves TX frame rate.
1930 */
1931
1932 if (sc->rtk_type == RTK_8169)
1933 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1934 else
1935 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1936
1937 /*
1938 * For 8169 gigE NICs, set the max allowed RX packet
1939 * size so we can receive jumbo frames.
1940 */
1941 if (sc->rtk_type == RTK_8169)
1942 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1943
1944 if (sc->rtk_testmode)
1945 return 0;
1946
1947 mii_mediachg(&sc->mii);
1948
1949 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1950
1951 ifp->if_flags |= IFF_RUNNING;
1952 ifp->if_flags &= ~IFF_OACTIVE;
1953
1954 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1955
1956 out:
1957 if (error) {
1958 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1959 ifp->if_timer = 0;
1960 aprint_error("%s: interface not running\n",
1961 sc->sc_dev.dv_xname);
1962 }
1963
1964 return error;
1965 }
1966
1967 /*
1968 * Set media options.
1969 */
1970 static int
1971 re_ifmedia_upd(struct ifnet *ifp)
1972 {
1973 struct rtk_softc *sc;
1974
1975 sc = ifp->if_softc;
1976
1977 return mii_mediachg(&sc->mii);
1978 }
1979
1980 /*
1981 * Report current media status.
1982 */
1983 static void
1984 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1985 {
1986 struct rtk_softc *sc;
1987
1988 sc = ifp->if_softc;
1989
1990 mii_pollstat(&sc->mii);
1991 ifmr->ifm_active = sc->mii.mii_media_active;
1992 ifmr->ifm_status = sc->mii.mii_media_status;
1993 }
1994
1995 static int
1996 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1997 {
1998 struct rtk_softc *sc = ifp->if_softc;
1999 struct ifreq *ifr = (struct ifreq *) data;
2000 int s, error = 0;
2001
2002 s = splnet();
2003
2004 switch (command) {
2005 case SIOCSIFMTU:
2006 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2007 error = EINVAL;
2008 ifp->if_mtu = ifr->ifr_mtu;
2009 break;
2010 case SIOCGIFMEDIA:
2011 case SIOCSIFMEDIA:
2012 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2013 break;
2014 default:
2015 error = ether_ioctl(ifp, command, data);
2016 if (error == ENETRESET) {
2017 if (ifp->if_flags & IFF_RUNNING)
2018 rtk_setmulti(sc);
2019 error = 0;
2020 }
2021 break;
2022 }
2023
2024 splx(s);
2025
2026 return error;
2027 }
2028
2029 static void
2030 re_watchdog(struct ifnet *ifp)
2031 {
2032 struct rtk_softc *sc;
2033 int s;
2034
2035 sc = ifp->if_softc;
2036 s = splnet();
2037 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2038 ifp->if_oerrors++;
2039
2040 re_txeof(sc);
2041 re_rxeof(sc);
2042
2043 re_init(ifp);
2044
2045 splx(s);
2046 }
2047
2048 /*
2049 * Stop the adapter and free any mbufs allocated to the
2050 * RX and TX lists.
2051 */
2052 static void
2053 re_stop(struct ifnet *ifp, int disable)
2054 {
2055 int i;
2056 struct rtk_softc *sc = ifp->if_softc;
2057
2058 callout_stop(&sc->rtk_tick_ch);
2059
2060 #ifdef DEVICE_POLLING
2061 ether_poll_deregister(ifp);
2062 #endif /* DEVICE_POLLING */
2063
2064 mii_down(&sc->mii);
2065
2066 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2067 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2068
2069 if (sc->rtk_head != NULL) {
2070 m_freem(sc->rtk_head);
2071 sc->rtk_head = sc->rtk_tail = NULL;
2072 }
2073
2074 /* Free the TX list buffers. */
2075 for (i = 0; i < RTK_TX_QLEN; i++) {
2076 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2077 bus_dmamap_unload(sc->sc_dmat,
2078 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2079 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2080 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2081 }
2082 }
2083
2084 /* Free the RX list buffers. */
2085 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2086 if (sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf != NULL) {
2087 bus_dmamap_unload(sc->sc_dmat,
2088 sc->rtk_ldata.rtk_rxsoft[i].rxs_dmamap);
2089 m_freem(sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf);
2090 sc->rtk_ldata.rtk_rxsoft[i].rxs_mbuf = NULL;
2091 }
2092 }
2093
2094 if (disable)
2095 re_disable(sc);
2096
2097 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2098 ifp->if_timer = 0;
2099 }
2100