Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.6
      1 /*	$NetBSD: rtl8169.c,v 1.6 2005/01/13 14:24:24 kanaoka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #if NBPFILTER > 0
    134 #include <net/bpf.h>
    135 #endif
    136 
    137 #include <machine/bus.h>
    138 
    139 #include <dev/mii/mii.h>
    140 #include <dev/mii/miivar.h>
    141 
    142 #include <dev/pci/pcireg.h>
    143 #include <dev/pci/pcivar.h>
    144 #include <dev/pci/pcidevs.h>
    145 
    146 /*
    147  * Default to using PIO access for this driver.
    148  */
    149 #define RE_USEIOSPACE
    150 
    151 #include <dev/ic/rtl81x9reg.h>
    152 #include <dev/ic/rtl81x9var.h>
    153 
    154 #include <dev/ic/rtl8169var.h>
    155 
    156 
    157 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    158 
    159 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    160 static int re_rx_list_init(struct rtk_softc *);
    161 static int re_tx_list_init(struct rtk_softc *);
    162 static void re_rxeof(struct rtk_softc *);
    163 static void re_txeof(struct rtk_softc *);
    164 static void re_tick(void *);
    165 static void re_start(struct ifnet *);
    166 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    167 static int re_init(struct ifnet *);
    168 static void re_stop(struct ifnet *, int);
    169 static void re_watchdog(struct ifnet *);
    170 
    171 static void re_shutdown(void *);
    172 static int re_enable(struct rtk_softc *);
    173 static void re_disable(struct rtk_softc *);
    174 static void re_power(int, void *);
    175 
    176 static int re_ifmedia_upd(struct ifnet *);
    177 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    178 
    179 static int re_gmii_readreg(struct device *, int, int);
    180 static void re_gmii_writereg(struct device *, int, int, int);
    181 
    182 static int re_miibus_readreg(struct device *, int, int);
    183 static void re_miibus_writereg(struct device *, int, int, int);
    184 static void re_miibus_statchg(struct device *);
    185 
    186 static void re_reset(struct rtk_softc *);
    187 
    188 
    189 #ifdef RE_USEIOSPACE
    190 #define RTK_RES			SYS_RES_IOPORT
    191 #define RTK_RID			RTK_PCI_LOIO
    192 #else
    193 #define RTK_RES			SYS_RES_MEMORY
    194 #define RTK_RID			RTK_PCI_LOMEM
    195 #endif
    196 
    197 #define EE_SET(x)					\
    198 	CSR_WRITE_1(sc, RTK_EECMD,			\
    199 		CSR_READ_1(sc, RTK_EECMD) | x)
    200 
    201 #define EE_CLR(x)					\
    202 	CSR_WRITE_1(sc, RTK_EECMD,			\
    203 		CSR_READ_1(sc, RTK_EECMD) & ~x)
    204 
    205 static int
    206 re_gmii_readreg(struct device *self, int phy, int reg)
    207 {
    208 	struct rtk_softc	*sc = (void *)self;
    209 	u_int32_t		rval;
    210 	int			i;
    211 
    212 	if (phy != 7)
    213 		return 0;
    214 
    215 	/* Let the rgephy driver read the GMEDIASTAT register */
    216 
    217 	if (reg == RTK_GMEDIASTAT) {
    218 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    219 		return rval;
    220 	}
    221 
    222 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    223 	DELAY(1000);
    224 
    225 	for (i = 0; i < RTK_TIMEOUT; i++) {
    226 		rval = CSR_READ_4(sc, RTK_PHYAR);
    227 		if (rval & RTK_PHYAR_BUSY)
    228 			break;
    229 		DELAY(100);
    230 	}
    231 
    232 	if (i == RTK_TIMEOUT) {
    233 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    234 		return 0;
    235 	}
    236 
    237 	return rval & RTK_PHYAR_PHYDATA;
    238 }
    239 
    240 static void
    241 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    242 {
    243 	struct rtk_softc	*sc = (void *)dev;
    244 	u_int32_t		rval;
    245 	int			i;
    246 
    247 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    248 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    249 	DELAY(1000);
    250 
    251 	for (i = 0; i < RTK_TIMEOUT; i++) {
    252 		rval = CSR_READ_4(sc, RTK_PHYAR);
    253 		if (!(rval & RTK_PHYAR_BUSY))
    254 			break;
    255 		DELAY(100);
    256 	}
    257 
    258 	if (i == RTK_TIMEOUT) {
    259 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    260 		    sc->sc_dev.dv_xname, reg, data);
    261 		return;
    262 	}
    263 
    264 	return;
    265 }
    266 
    267 static int
    268 re_miibus_readreg(struct device *dev, int phy, int reg)
    269 {
    270 	struct rtk_softc	*sc = (void *)dev;
    271 	u_int16_t		rval = 0;
    272 	u_int16_t		re8139_reg = 0;
    273 	int			s;
    274 
    275 	s = splnet();
    276 
    277 	if (sc->rtk_type == RTK_8169) {
    278 		rval = re_gmii_readreg(dev, phy, reg);
    279 		splx(s);
    280 		return rval;
    281 	}
    282 
    283 	/* Pretend the internal PHY is only at address 0 */
    284 	if (phy) {
    285 		splx(s);
    286 		return 0;
    287 	}
    288 	switch (reg) {
    289 	case MII_BMCR:
    290 		re8139_reg = RTK_BMCR;
    291 		break;
    292 	case MII_BMSR:
    293 		re8139_reg = RTK_BMSR;
    294 		break;
    295 	case MII_ANAR:
    296 		re8139_reg = RTK_ANAR;
    297 		break;
    298 	case MII_ANER:
    299 		re8139_reg = RTK_ANER;
    300 		break;
    301 	case MII_ANLPAR:
    302 		re8139_reg = RTK_LPAR;
    303 		break;
    304 	case MII_PHYIDR1:
    305 	case MII_PHYIDR2:
    306 		splx(s);
    307 		return 0;
    308 	/*
    309 	 * Allow the rlphy driver to read the media status
    310 	 * register. If we have a link partner which does not
    311 	 * support NWAY, this is the register which will tell
    312 	 * us the results of parallel detection.
    313 	 */
    314 	case RTK_MEDIASTAT:
    315 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    316 		splx(s);
    317 		return rval;
    318 	default:
    319 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    320 		splx(s);
    321 		return 0;
    322 	}
    323 	rval = CSR_READ_2(sc, re8139_reg);
    324 	splx(s);
    325 	return rval;
    326 }
    327 
    328 static void
    329 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    330 {
    331 	struct rtk_softc	*sc = (void *)dev;
    332 	u_int16_t		re8139_reg = 0;
    333 	int			s;
    334 
    335 	s = splnet();
    336 
    337 	if (sc->rtk_type == RTK_8169) {
    338 		re_gmii_writereg(dev, phy, reg, data);
    339 		splx(s);
    340 		return;
    341 	}
    342 
    343 	/* Pretend the internal PHY is only at address 0 */
    344 	if (phy) {
    345 		splx(s);
    346 		return;
    347 	}
    348 	switch (reg) {
    349 	case MII_BMCR:
    350 		re8139_reg = RTK_BMCR;
    351 		break;
    352 	case MII_BMSR:
    353 		re8139_reg = RTK_BMSR;
    354 		break;
    355 	case MII_ANAR:
    356 		re8139_reg = RTK_ANAR;
    357 		break;
    358 	case MII_ANER:
    359 		re8139_reg = RTK_ANER;
    360 		break;
    361 	case MII_ANLPAR:
    362 		re8139_reg = RTK_LPAR;
    363 		break;
    364 	case MII_PHYIDR1:
    365 	case MII_PHYIDR2:
    366 		splx(s);
    367 		return;
    368 		break;
    369 	default:
    370 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    371 		splx(s);
    372 		return;
    373 	}
    374 	CSR_WRITE_2(sc, re8139_reg, data);
    375 	splx(s);
    376 	return;
    377 }
    378 
    379 static void
    380 re_miibus_statchg(struct device *dev)
    381 {
    382 
    383 	return;
    384 }
    385 
    386 static void
    387 re_reset(struct rtk_softc *sc)
    388 {
    389 	register int		i;
    390 
    391 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    392 
    393 	for (i = 0; i < RTK_TIMEOUT; i++) {
    394 		DELAY(10);
    395 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
    396 			break;
    397 	}
    398 	if (i == RTK_TIMEOUT)
    399 		aprint_error("%s: reset never completed!\n",
    400 		    sc->sc_dev.dv_xname);
    401 
    402 	/*
    403 	 * NB: Realtek-supplied Linux driver does this only for
    404 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    405 	 */
    406 	if (1) /* XXX check softc flag for 8169s version */
    407 		CSR_WRITE_1(sc, 0x82, 1);
    408 
    409 	return;
    410 }
    411 
    412 /*
    413  * The following routine is designed to test for a defect on some
    414  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    415  * lines connected to the bus, however for a 32-bit only card, they
    416  * should be pulled high. The result of this defect is that the
    417  * NIC will not work right if you plug it into a 64-bit slot: DMA
    418  * operations will be done with 64-bit transfers, which will fail
    419  * because the 64-bit data lines aren't connected.
    420  *
    421  * There's no way to work around this (short of talking a soldering
    422  * iron to the board), however we can detect it. The method we use
    423  * here is to put the NIC into digital loopback mode, set the receiver
    424  * to promiscuous mode, and then try to send a frame. We then compare
    425  * the frame data we sent to what was received. If the data matches,
    426  * then the NIC is working correctly, otherwise we know the user has
    427  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    428  * slot. In the latter case, there's no way the NIC can work correctly,
    429  * so we print out a message on the console and abort the device attach.
    430  */
    431 
    432 int
    433 re_diag(struct rtk_softc *sc)
    434 {
    435 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    436 	struct mbuf		*m0;
    437 	struct ether_header	*eh;
    438 	struct rtk_desc		*cur_rx;
    439 	bus_dmamap_t		dmamap;
    440 	u_int16_t		status;
    441 	u_int32_t		rxstat;
    442 	int			total_len, i, s, error = 0;
    443 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    444 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    445 
    446 	/* Allocate a single mbuf */
    447 
    448 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    449 	if (m0 == NULL)
    450 		return ENOBUFS;
    451 
    452 	/*
    453 	 * Initialize the NIC in test mode. This sets the chip up
    454 	 * so that it can send and receive frames, but performs the
    455 	 * following special functions:
    456 	 * - Puts receiver in promiscuous mode
    457 	 * - Enables digital loopback mode
    458 	 * - Leaves interrupts turned off
    459 	 */
    460 
    461 	ifp->if_flags |= IFF_PROMISC;
    462 	sc->rtk_testmode = 1;
    463 	re_init(ifp);
    464 	re_stop(ifp, 0);
    465 	DELAY(100000);
    466 	re_init(ifp);
    467 
    468 	/* Put some data in the mbuf */
    469 
    470 	eh = mtod(m0, struct ether_header *);
    471 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
    472 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
    473 	eh->ether_type = htons(ETHERTYPE_IP);
    474 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    475 
    476 	/*
    477 	 * Queue the packet, start transmission.
    478 	 */
    479 
    480 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    481 	s = splnet();
    482 	IF_ENQUEUE(&ifp->if_snd, m0);
    483 	re_start(ifp);
    484 	splx(s);
    485 	m0 = NULL;
    486 
    487 	/* Wait for it to propagate through the chip */
    488 
    489 	DELAY(100000);
    490 	for (i = 0; i < RTK_TIMEOUT; i++) {
    491 		status = CSR_READ_2(sc, RTK_ISR);
    492 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    493 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    494 			break;
    495 		DELAY(10);
    496 	}
    497 	if (i == RTK_TIMEOUT) {
    498 		aprint_error("%s: diagnostic failed, failed to receive packet "
    499 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    500 		error = EIO;
    501 		goto done;
    502 	}
    503 
    504 	/*
    505 	 * The packet should have been dumped into the first
    506 	 * entry in the RX DMA ring. Grab it from there.
    507 	 */
    508 
    509 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
    510 	bus_dmamap_sync(sc->sc_dmat,
    511 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    512 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    513 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    514 	    BUS_DMASYNC_POSTWRITE);
    515 	bus_dmamap_unload(sc->sc_dmat,
    516 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    517 
    518 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    519 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    520 	eh = mtod(m0, struct ether_header *);
    521 
    522 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    523 	total_len = RTK_RXBYTES(cur_rx);
    524 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    525 
    526 	if (total_len != ETHER_MIN_LEN) {
    527 		aprint_error("%s: diagnostic failed, received short packet\n",
    528 		    sc->sc_dev.dv_xname);
    529 		error = EIO;
    530 		goto done;
    531 	}
    532 
    533 	/* Test that the received packet data matches what we sent. */
    534 
    535 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    536 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    537 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    538 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    539 		    sc->sc_dev.dv_xname);
    540 		aprint_error("%s: expected TX data: %s",
    541 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    542 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    543 		aprint_error("%s: received RX data: %s",
    544 		    sc->sc_dev.dv_xname,
    545 		    ether_sprintf(eh->ether_dhost));
    546 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    547 		    ntohs(eh->ether_type));
    548 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    549 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    550 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    551 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    552 		aprint_error("%s: Read the re(4) man page for more details.\n",
    553 		    sc->sc_dev.dv_xname);
    554 		error = EIO;
    555 	}
    556 
    557 done:
    558 	/* Turn interface off, release resources */
    559 
    560 	sc->rtk_testmode = 0;
    561 	ifp->if_flags &= ~IFF_PROMISC;
    562 	re_stop(ifp, 0);
    563 	if (m0 != NULL)
    564 		m_freem(m0);
    565 
    566 	return error;
    567 }
    568 
    569 
    570 /*
    571  * Attach the interface. Allocate softc structures, do ifmedia
    572  * setup and ethernet/BPF attach.
    573  */
    574 void
    575 re_attach(struct rtk_softc *sc)
    576 {
    577 	u_char			eaddr[ETHER_ADDR_LEN];
    578 	u_int16_t		val;
    579 	struct ifnet		*ifp;
    580 	int			error = 0, i, addr_len;
    581 
    582 
    583 	/* XXX JRS: bus-attach-independent code begins approximately here */
    584 
    585 	/* Reset the adapter. */
    586 	re_reset(sc);
    587 
    588 	if (sc->rtk_type == RTK_8169) {
    589 		uint32_t hwrev;
    590 
    591 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    592 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    593 		if (hwrev == (0x1 << 28)) {
    594 			sc->sc_rev = 4;
    595 		} else if (hwrev == (0x1 << 26)) {
    596 			sc->sc_rev = 3;
    597 		} else if (hwrev == (0x1 << 23)) {
    598 			sc->sc_rev = 2;
    599 		} else
    600 			sc->sc_rev = 1;
    601 #if defined(DEBUG) || 1
    602 		aprint_normal("re_attach: MAC chip hwrev 0x%x softc %d\n",
    603 		    hwrev, sc->sc_rev);
    604 #endif
    605 
    606 		/* Set RX length mask */
    607 
    608 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    609 
    610 		/* Force station address autoload from the EEPROM */
    611 
    612 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    613 		for (i = 0; i < RTK_TIMEOUT; i++) {
    614 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
    615 				break;
    616 			DELAY(100);
    617 		}
    618 		if (i == RTK_TIMEOUT)
    619 			aprint_error("%s: eeprom autoload timed out\n",
    620 			    sc->sc_dev.dv_xname);
    621 
    622 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    623 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    624 	} else {
    625 
    626 		/* Set RX length mask */
    627 
    628 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    629 
    630 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    631 			addr_len = RTK_EEADDR_LEN1;
    632 		else
    633 			addr_len = RTK_EEADDR_LEN0;
    634 
    635 		/*
    636 		 * Get station address from the EEPROM.
    637 		 */
    638 		for (i = 0; i < 3; i++) {
    639 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    640 			eaddr[(i * 2) + 0] = val & 0xff;
    641 			eaddr[(i * 2) + 1] = val >> 8;
    642 		}
    643 	}
    644 
    645 	aprint_normal("%s: Ethernet address %s\n",
    646 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    647 
    648 
    649 	/* Allocate DMA'able memory for the TX ring */
    650 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
    651 		    RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
    652 		    1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    653 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    654 		    sc->sc_dev.dv_xname, error);
    655 		goto fail_0;
    656 	}
    657 
    658 	/* Load the map for the TX ring. */
    659 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    660 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
    661 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    662 		    BUS_DMA_NOWAIT)) != 0) {
    663 		aprint_error("%s: can't map tx list, error = %d\n",
    664 		    sc->sc_dev.dv_xname, error);
    665 	  	goto fail_1;
    666 	}
    667 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
    668 
    669 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
    670 		    RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    671 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    672 		aprint_error("%s: can't create tx list map, error = %d\n",
    673 		    sc->sc_dev.dv_xname, error);
    674 		goto fail_2;
    675 	}
    676 
    677 
    678 	if ((error = bus_dmamap_load(sc->sc_dmat,
    679 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    680 		    RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    681 		aprint_error("%s: can't load tx list, error = %d\n",
    682 		    sc->sc_dev.dv_xname, error);
    683 		goto fail_3;
    684 	}
    685 
    686 	/* Create DMA maps for TX buffers */
    687 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
    688 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * RTK_NTXSEGS,
    689 		    RTK_NTXSEGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
    690 		    &sc->rtk_ldata.rtk_tx_dmamap[i]);
    691 		if (error) {
    692 			aprint_error("%s: can't create DMA map for TX\n",
    693 			    sc->sc_dev.dv_xname);
    694 			goto fail_4;
    695 		}
    696 	}
    697 
    698 	/* Allocate DMA'able memory for the RX ring */
    699         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    700 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    701 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    702 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    703 		    sc->sc_dev.dv_xname, error);
    704 		goto fail_4;
    705 	}
    706 
    707 	/* Load the map for the RX ring. */
    708 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    709 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    710 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    711 		    BUS_DMA_NOWAIT)) != 0) {
    712 		aprint_error("%s: can't map rx list, error = %d\n",
    713 		    sc->sc_dev.dv_xname, error);
    714 		goto fail_5;
    715 	}
    716 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
    717 
    718 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    719 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    720 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    721 		aprint_error("%s: can't create rx list map, error = %d\n",
    722 		    sc->sc_dev.dv_xname, error);
    723 		goto fail_6;
    724 	}
    725 
    726 	if ((error = bus_dmamap_load(sc->sc_dmat,
    727 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    728 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    729 		aprint_error("%s: can't load rx list, error = %d\n",
    730 		    sc->sc_dev.dv_xname, error);
    731 		goto fail_7;
    732 	}
    733 
    734 	/* Create DMA maps for RX buffers */
    735 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    736 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    737 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
    738 		if (error) {
    739 			aprint_error("%s: can't create DMA map for RX\n",
    740 			    sc->sc_dev.dv_xname);
    741 			goto fail_8;
    742 		}
    743 	}
    744 
    745 	/*
    746 	 * Record interface as attached. From here, we should not fail.
    747 	 */
    748 	sc->sc_flags |= RTK_ATTACHED;
    749 
    750 	ifp = &sc->ethercom.ec_if;
    751 	ifp->if_softc = sc;
    752 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    753 	ifp->if_mtu = ETHERMTU;
    754 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    755 	ifp->if_ioctl = re_ioctl;
    756 	sc->ethercom.ec_capabilities |=
    757 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    758 	ifp->if_start = re_start;
    759 	ifp->if_stop = re_stop;
    760 	ifp->if_capabilities |=
    761 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    762 	ifp->if_watchdog = re_watchdog;
    763 	ifp->if_init = re_init;
    764 	if (sc->rtk_type == RTK_8169)
    765 		ifp->if_baudrate = 1000000000;
    766 	else
    767 		ifp->if_baudrate = 100000000;
    768 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    769 	ifp->if_capenable = ifp->if_capabilities;
    770 	IFQ_SET_READY(&ifp->if_snd);
    771 
    772 	callout_init(&sc->rtk_tick_ch);
    773 
    774 	/* Do MII setup */
    775 	sc->mii.mii_ifp = ifp;
    776 	sc->mii.mii_readreg = re_miibus_readreg;
    777 	sc->mii.mii_writereg = re_miibus_writereg;
    778 	sc->mii.mii_statchg = re_miibus_statchg;
    779 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    780 	    re_ifmedia_sts);
    781 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    782 	    MII_OFFSET_ANY, 0);
    783 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    784 
    785 	/*
    786 	 * Call MI attach routine.
    787 	 */
    788 	if_attach(ifp);
    789 	ether_ifattach(ifp, eaddr);
    790 
    791 
    792 	/*
    793 	 * Make sure the interface is shutdown during reboot.
    794 	 */
    795 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    796 	if (sc->sc_sdhook == NULL)
    797 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    798 		    sc->sc_dev.dv_xname);
    799 	/*
    800 	 * Add a suspend hook to make sure we come back up after a
    801 	 * resume.
    802 	 */
    803 	sc->sc_powerhook = powerhook_establish(re_power, sc);
    804 	if (sc->sc_powerhook == NULL)
    805 		aprint_error("%s: WARNING: unable to establish power hook\n",
    806 		    sc->sc_dev.dv_xname);
    807 
    808 
    809 	return;
    810 
    811 fail_8:
    812 	/* Destroy DMA maps for RX buffers. */
    813 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    814 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    815 			bus_dmamap_destroy(sc->sc_dmat,
    816 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    817 
    818 	/* Free DMA'able memory for the RX ring. */
    819 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    820 fail_7:
    821 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    822 fail_6:
    823 	bus_dmamem_unmap(sc->sc_dmat,
    824 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    825 fail_5:
    826 	bus_dmamem_free(sc->sc_dmat,
    827 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    828 
    829 fail_4:
    830 	/* Destroy DMA maps for TX buffers. */
    831 	for (i = 0; i < RTK_TX_DESC_CNT; i++)
    832 		if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
    833 			bus_dmamap_destroy(sc->sc_dmat,
    834 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
    835 
    836 	/* Free DMA'able memory for the TX ring. */
    837 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    838 fail_3:
    839 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    840 fail_2:
    841 	bus_dmamem_unmap(sc->sc_dmat,
    842 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
    843 fail_1:
    844 	bus_dmamem_free(sc->sc_dmat,
    845 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    846 fail_0:
    847 	return;
    848 }
    849 
    850 
    851 /*
    852  * re_activate:
    853  *     Handle device activation/deactivation requests.
    854  */
    855 int
    856 re_activate(struct device *self, enum devact act)
    857 {
    858 	struct rtk_softc *sc = (void *) self;
    859 	int s, error = 0;
    860 
    861 	s = splnet();
    862 	switch (act) {
    863 	case DVACT_ACTIVATE:
    864 		error = EOPNOTSUPP;
    865 		break;
    866 	case DVACT_DEACTIVATE:
    867 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    868 		if_deactivate(&sc->ethercom.ec_if);
    869 		break;
    870 	}
    871 	splx(s);
    872 
    873 	return error;
    874 }
    875 
    876 /*
    877  * re_detach:
    878  *     Detach a rtk interface.
    879  */
    880 int
    881 re_detach(struct rtk_softc *sc)
    882 {
    883 	struct ifnet *ifp = &sc->ethercom.ec_if;
    884 	int i;
    885 
    886 	/*
    887 	 * Succeed now if there isn't any work to do.
    888 	 */
    889 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    890 		return 0;
    891 
    892 	/* Unhook our tick handler. */
    893 	callout_stop(&sc->rtk_tick_ch);
    894 
    895 	/* Detach all PHYs. */
    896 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    897 
    898 	/* Delete all remaining media. */
    899 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    900 
    901 	ether_ifdetach(ifp);
    902 	if_detach(ifp);
    903 
    904 	/* XXX undo re_allocmem() */
    905 
    906 	/* Destroy DMA maps for RX buffers. */
    907 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    908 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    909 			bus_dmamap_destroy(sc->sc_dmat,
    910 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    911 
    912 	/* Free DMA'able memory for the RX ring. */
    913 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    914 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    915 	bus_dmamem_unmap(sc->sc_dmat,
    916 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    917 	bus_dmamem_free(sc->sc_dmat,
    918 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    919 
    920 	/* Destroy DMA maps for TX buffers. */
    921 	for (i = 0; i < RTK_TX_DESC_CNT; i++)
    922 		if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
    923 			bus_dmamap_destroy(sc->sc_dmat,
    924 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
    925 
    926 	/* Free DMA'able memory for the TX ring. */
    927 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    928 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    929 	bus_dmamem_unmap(sc->sc_dmat,
    930 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
    931 	bus_dmamem_free(sc->sc_dmat,
    932 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    933 
    934 
    935 	shutdownhook_disestablish(sc->sc_sdhook);
    936 	powerhook_disestablish(sc->sc_powerhook);
    937 
    938 	return 0;
    939 }
    940 
    941 /*
    942  * re_enable:
    943  *     Enable the RTL81X9 chip.
    944  */
    945 static int
    946 re_enable(struct rtk_softc *sc)
    947 {
    948 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    949 		if ((*sc->sc_enable)(sc) != 0) {
    950 			aprint_error("%s: device enable failed\n",
    951 			    sc->sc_dev.dv_xname);
    952 			return EIO;
    953 		}
    954 		sc->sc_flags |= RTK_ENABLED;
    955 	}
    956 	return 0;
    957 }
    958 
    959 /*
    960  * re_disable:
    961  *     Disable the RTL81X9 chip.
    962  */
    963 static void
    964 re_disable(struct rtk_softc *sc)
    965 {
    966 
    967 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    968 		(*sc->sc_disable)(sc);
    969 		sc->sc_flags &= ~RTK_ENABLED;
    970 	}
    971 }
    972 
    973 /*
    974  * re_power:
    975  *     Power management (suspend/resume) hook.
    976  */
    977 void
    978 re_power(int why, void *arg)
    979 {
    980 	struct rtk_softc *sc = (void *) arg;
    981 	struct ifnet *ifp = &sc->ethercom.ec_if;
    982 	int s;
    983 
    984 	s = splnet();
    985 	switch (why) {
    986 	case PWR_SUSPEND:
    987 	case PWR_STANDBY:
    988 		re_stop(ifp, 0);
    989 		if (sc->sc_power != NULL)
    990 			(*sc->sc_power)(sc, why);
    991 		break;
    992 	case PWR_RESUME:
    993 		if (ifp->if_flags & IFF_UP) {
    994 			if (sc->sc_power != NULL)
    995 				(*sc->sc_power)(sc, why);
    996 			re_init(ifp);
    997 		}
    998 		break;
    999 	case PWR_SOFTSUSPEND:
   1000 	case PWR_SOFTSTANDBY:
   1001 	case PWR_SOFTRESUME:
   1002 		break;
   1003 	}
   1004 	splx(s);
   1005 }
   1006 
   1007 
   1008 static int
   1009 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1010 {
   1011 	struct mbuf		*n = NULL;
   1012 	bus_dmamap_t		map;
   1013 	struct rtk_desc		*d;
   1014 	u_int32_t		cmdstat;
   1015 	int			error;
   1016 
   1017 	if (m == NULL) {
   1018 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1019 		if (n == NULL)
   1020 			return ENOBUFS;
   1021 		m = n;
   1022 
   1023 		MCLGET(m, M_DONTWAIT);
   1024 		if (!(m->m_flags & M_EXT)) {
   1025 			m_freem(m);
   1026 			return ENOBUFS;
   1027 		}
   1028 	} else
   1029 		m->m_data = m->m_ext.ext_buf;
   1030 
   1031 	/*
   1032 	 * Initialize mbuf length fields and fixup
   1033 	 * alignment so that the frame payload is
   1034 	 * longword aligned.
   1035 	 */
   1036 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1037 	m_adj(m, RTK_ETHER_ALIGN);
   1038 
   1039 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
   1040 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1041 
   1042 	if (error)
   1043 		goto out;
   1044 
   1045 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1046 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1047 		goto out;
   1048 
   1049 	cmdstat = map->dm_segs[0].ds_len;
   1050 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1051 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1052 	cmdstat |= RTK_TDESC_CMD_SOF;
   1053 	if (idx == (RTK_RX_DESC_CNT - 1))
   1054 		cmdstat |= RTK_TDESC_CMD_EOR;
   1055 	d->rtk_cmdstat = htole32(cmdstat);
   1056 
   1057 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1058 
   1059 
   1060 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
   1061 	    htole32(RTK_RDESC_CMD_OWN);
   1062 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1063 
   1064 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
   1065 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
   1066 	    BUS_DMASYNC_PREREAD);
   1067 
   1068 	return 0;
   1069 out:
   1070 	if (n != NULL)
   1071 		m_freem(n);
   1072 	return ENOMEM;
   1073 }
   1074 
   1075 static int
   1076 re_tx_list_init(struct rtk_softc *sc)
   1077 {
   1078 	memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
   1079 	memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
   1080 	    (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
   1081 
   1082 	bus_dmamap_sync(sc->sc_dmat,
   1083 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1084 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1085 	sc->rtk_ldata.rtk_tx_prodidx = 0;
   1086 	sc->rtk_ldata.rtk_tx_considx = 0;
   1087 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
   1088 
   1089 	return 0;
   1090 }
   1091 
   1092 static int
   1093 re_rx_list_init(struct rtk_softc *sc)
   1094 {
   1095 	int			i;
   1096 
   1097 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1098 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1099 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1100 
   1101 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1102 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1103 			return ENOBUFS;
   1104 	}
   1105 
   1106 	/* Flush the RX descriptors */
   1107 
   1108 	bus_dmamap_sync(sc->sc_dmat,
   1109 	    sc->rtk_ldata.rtk_rx_list_map,
   1110 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1111 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1112 
   1113 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1114 	sc->rtk_head = sc->rtk_tail = NULL;
   1115 
   1116 	return 0;
   1117 }
   1118 
   1119 /*
   1120  * RX handler for C+ and 8169. For the gigE chips, we support
   1121  * the reception of jumbo frames that have been fragmented
   1122  * across multiple 2K mbuf cluster buffers.
   1123  */
   1124 static void
   1125 re_rxeof(struct rtk_softc *sc)
   1126 {
   1127 	struct mbuf		*m;
   1128 	struct ifnet		*ifp;
   1129 	int			i, total_len;
   1130 	struct rtk_desc		*cur_rx;
   1131 	struct m_tag		*mtag;
   1132 	u_int32_t		rxstat, rxvlan;
   1133 
   1134 	ifp = &sc->ethercom.ec_if;
   1135 	i = sc->rtk_ldata.rtk_rx_prodidx;
   1136 
   1137 	/* Invalidate the descriptor memory */
   1138 
   1139 	bus_dmamap_sync(sc->sc_dmat,
   1140 	    sc->rtk_ldata.rtk_rx_list_map,
   1141 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1142 	    BUS_DMASYNC_POSTREAD);
   1143 
   1144 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
   1145 
   1146 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1147 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1148 		total_len = RTK_RXBYTES(cur_rx);
   1149 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1150 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1151 
   1152 		/* Invalidate the RX mbuf and unload its map */
   1153 
   1154 		bus_dmamap_sync(sc->sc_dmat,
   1155 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1156 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1157 		    BUS_DMASYNC_POSTWRITE);
   1158 		bus_dmamap_unload(sc->sc_dmat,
   1159 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1160 
   1161 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
   1162 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1163 			if (sc->rtk_head == NULL)
   1164 				sc->rtk_head = sc->rtk_tail = m;
   1165 			else {
   1166 				m->m_flags &= ~M_PKTHDR;
   1167 				sc->rtk_tail->m_next = m;
   1168 				sc->rtk_tail = m;
   1169 			}
   1170 			re_newbuf(sc, i, NULL);
   1171 			RTK_DESC_INC(i);
   1172 			continue;
   1173 		}
   1174 
   1175 		/*
   1176 		 * NOTE: for the 8139C+, the frame length field
   1177 		 * is always 12 bits in size, but for the gigE chips,
   1178 		 * it is 13 bits (since the max RX frame length is 16K).
   1179 		 * Unfortunately, all 32 bits in the status word
   1180 		 * were already used, so to make room for the extra
   1181 		 * length bit, RealTek took out the 'frame alignment
   1182 		 * error' bit and shifted the other status bits
   1183 		 * over one slot. The OWN, EOR, FS and LS bits are
   1184 		 * still in the same places. We have already extracted
   1185 		 * the frame length and checked the OWN bit, so rather
   1186 		 * than using an alternate bit mapping, we shift the
   1187 		 * status bits one space to the right so we can evaluate
   1188 		 * them using the 8169 status as though it was in the
   1189 		 * same format as that of the 8139C+.
   1190 		 */
   1191 		if (sc->rtk_type == RTK_8169)
   1192 			rxstat >>= 1;
   1193 
   1194 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
   1195 			ifp->if_ierrors++;
   1196 			/*
   1197 			 * If this is part of a multi-fragment packet,
   1198 			 * discard all the pieces.
   1199 			 */
   1200 			if (sc->rtk_head != NULL) {
   1201 				m_freem(sc->rtk_head);
   1202 				sc->rtk_head = sc->rtk_tail = NULL;
   1203 			}
   1204 			re_newbuf(sc, i, m);
   1205 			RTK_DESC_INC(i);
   1206 			continue;
   1207 		}
   1208 
   1209 		/*
   1210 		 * If allocating a replacement mbuf fails,
   1211 		 * reload the current one.
   1212 		 */
   1213 
   1214 		if (re_newbuf(sc, i, NULL)) {
   1215 			ifp->if_ierrors++;
   1216 			if (sc->rtk_head != NULL) {
   1217 				m_freem(sc->rtk_head);
   1218 				sc->rtk_head = sc->rtk_tail = NULL;
   1219 			}
   1220 			re_newbuf(sc, i, m);
   1221 			RTK_DESC_INC(i);
   1222 			continue;
   1223 		}
   1224 
   1225 		RTK_DESC_INC(i);
   1226 
   1227 		if (sc->rtk_head != NULL) {
   1228 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1229 			/*
   1230 			 * Special case: if there's 4 bytes or less
   1231 			 * in this buffer, the mbuf can be discarded:
   1232 			 * the last 4 bytes is the CRC, which we don't
   1233 			 * care about anyway.
   1234 			 */
   1235 			if (m->m_len <= ETHER_CRC_LEN) {
   1236 				sc->rtk_tail->m_len -=
   1237 				    (ETHER_CRC_LEN - m->m_len);
   1238 				m_freem(m);
   1239 			} else {
   1240 				m->m_len -= ETHER_CRC_LEN;
   1241 				m->m_flags &= ~M_PKTHDR;
   1242 				sc->rtk_tail->m_next = m;
   1243 			}
   1244 			m = sc->rtk_head;
   1245 			sc->rtk_head = sc->rtk_tail = NULL;
   1246 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1247 		} else
   1248 			m->m_pkthdr.len = m->m_len =
   1249 			    (total_len - ETHER_CRC_LEN);
   1250 
   1251 		ifp->if_ipackets++;
   1252 		m->m_pkthdr.rcvif = ifp;
   1253 
   1254 		/* Do RX checksumming if enabled */
   1255 
   1256 		if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
   1257 
   1258 			/* Check IP header checksum */
   1259 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1260 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1261 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1262 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1263 		}
   1264 
   1265 		/* Check TCP/UDP checksum */
   1266 		if (RTK_TCPPKT(rxstat) &&
   1267 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
   1268 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1269 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1270 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1271 		}
   1272 		if (RTK_UDPPKT(rxstat) &&
   1273 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
   1274 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1275 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1276 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1277 		}
   1278 
   1279 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1280 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1281 			    M_NOWAIT);
   1282 			if (mtag == NULL) {
   1283 				ifp->if_ierrors++;
   1284 				m_freem(m);
   1285 				continue;
   1286 			}
   1287 			*(u_int *)(mtag + 1) =
   1288 			    be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA);
   1289 			m_tag_prepend(m, mtag);
   1290 		}
   1291 #if NBPFILTER > 0
   1292 		if (ifp->if_bpf)
   1293 			bpf_mtap(ifp->if_bpf, m);
   1294 #endif
   1295 		(*ifp->if_input)(ifp, m);
   1296 	}
   1297 
   1298 	/* Flush the RX DMA ring */
   1299 
   1300 	bus_dmamap_sync(sc->sc_dmat,
   1301 	    sc->rtk_ldata.rtk_rx_list_map,
   1302 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1303 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1304 
   1305 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1306 
   1307 	return;
   1308 }
   1309 
   1310 static void
   1311 re_txeof(struct rtk_softc *sc)
   1312 {
   1313 	struct ifnet		*ifp;
   1314 	u_int32_t		txstat;
   1315 	int			idx;
   1316 
   1317 	ifp = &sc->ethercom.ec_if;
   1318 	idx = sc->rtk_ldata.rtk_tx_considx;
   1319 
   1320 	/* Invalidate the TX descriptor list */
   1321 
   1322 	bus_dmamap_sync(sc->sc_dmat,
   1323 	    sc->rtk_ldata.rtk_tx_list_map,
   1324 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1325 	    BUS_DMASYNC_POSTREAD);
   1326 
   1327 	while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
   1328 
   1329 		txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
   1330 		if (txstat & RTK_TDESC_CMD_OWN)
   1331 			break;
   1332 
   1333 		/*
   1334 		 * We only stash mbufs in the last descriptor
   1335 		 * in a fragment chain, which also happens to
   1336 		 * be the only place where the TX status bits
   1337 		 * are valid.
   1338 		 */
   1339 
   1340 		if (txstat & RTK_TDESC_CMD_EOF) {
   1341 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
   1342 			sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
   1343 			bus_dmamap_unload(sc->sc_dmat,
   1344 			    sc->rtk_ldata.rtk_tx_dmamap[idx]);
   1345 			if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
   1346 			    RTK_TDESC_STAT_COLCNT))
   1347 				ifp->if_collisions++;
   1348 			if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1349 				ifp->if_oerrors++;
   1350 			else
   1351 				ifp->if_opackets++;
   1352 		}
   1353 		sc->rtk_ldata.rtk_tx_free++;
   1354 		RTK_DESC_INC(idx);
   1355 	}
   1356 
   1357 	/* No changes made to the TX ring, so no flush needed */
   1358 
   1359 	if (idx != sc->rtk_ldata.rtk_tx_considx) {
   1360 		sc->rtk_ldata.rtk_tx_considx = idx;
   1361 		ifp->if_flags &= ~IFF_OACTIVE;
   1362 		ifp->if_timer = 0;
   1363 	}
   1364 
   1365 	/*
   1366 	 * If not all descriptors have been released reaped yet,
   1367 	 * reload the timer so that we will eventually get another
   1368 	 * interrupt that will cause us to re-enter this routine.
   1369 	 * This is done in case the transmitter has gone idle.
   1370 	 */
   1371 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
   1372 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1373 
   1374 	return;
   1375 }
   1376 
   1377 /*
   1378  * Stop all chip I/O so that the kernel's probe routines don't
   1379  * get confused by errant DMAs when rebooting.
   1380  */
   1381 static void
   1382 re_shutdown(void *vsc)
   1383 
   1384 {
   1385 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1386 
   1387 	re_stop(&sc->ethercom.ec_if, 0);
   1388 }
   1389 
   1390 
   1391 static void
   1392 re_tick(void *xsc)
   1393 {
   1394 	struct rtk_softc	*sc = xsc;
   1395 	int s;
   1396 
   1397 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1398 	s = splnet();
   1399 
   1400 	mii_tick(&sc->mii);
   1401 	splx(s);
   1402 
   1403 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1404 }
   1405 
   1406 #ifdef DEVICE_POLLING
   1407 static void
   1408 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1409 {
   1410 	struct rtk_softc *sc = ifp->if_softc;
   1411 
   1412 	RTK_LOCK(sc);
   1413 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1414 		ether_poll_deregister(ifp);
   1415 		cmd = POLL_DEREGISTER;
   1416 	}
   1417 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1418 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1419 		goto done;
   1420 	}
   1421 
   1422 	sc->rxcycles = count;
   1423 	re_rxeof(sc);
   1424 	re_txeof(sc);
   1425 
   1426 	if (ifp->if_snd.ifq_head != NULL)
   1427 		(*ifp->if_start)(ifp);
   1428 
   1429 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1430 		u_int16_t       status;
   1431 
   1432 		status = CSR_READ_2(sc, RTK_ISR);
   1433 		if (status == 0xffff)
   1434 			goto done;
   1435 		if (status)
   1436 			CSR_WRITE_2(sc, RTK_ISR, status);
   1437 
   1438 		/*
   1439 		 * XXX check behaviour on receiver stalls.
   1440 		 */
   1441 
   1442 		if (status & RTK_ISR_SYSTEM_ERR) {
   1443 			re_reset(sc);
   1444 			re_init(sc);
   1445 		}
   1446 	}
   1447 done:
   1448 	RTK_UNLOCK(sc);
   1449 }
   1450 #endif /* DEVICE_POLLING */
   1451 
   1452 int
   1453 re_intr(void *arg)
   1454 {
   1455 	struct rtk_softc	*sc = arg;
   1456 	struct ifnet		*ifp;
   1457 	u_int16_t		status;
   1458 	int			handled = 0;
   1459 
   1460 	ifp = &sc->ethercom.ec_if;
   1461 
   1462 	if (!(ifp->if_flags & IFF_UP))
   1463 		return 0;
   1464 
   1465 #ifdef DEVICE_POLLING
   1466 	if (ifp->if_flags & IFF_POLLING)
   1467 		goto done;
   1468 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1469 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1470 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1471 		re_poll(ifp, 0, 1);
   1472 		goto done;
   1473 	}
   1474 #endif /* DEVICE_POLLING */
   1475 
   1476 	for (;;) {
   1477 
   1478 		status = CSR_READ_2(sc, RTK_ISR);
   1479 		/* If the card has gone away the read returns 0xffff. */
   1480 		if (status == 0xffff)
   1481 			break;
   1482 		if (status) {
   1483 			handled = 1;
   1484 			CSR_WRITE_2(sc, RTK_ISR, status);
   1485 		}
   1486 
   1487 		if ((status & RTK_INTRS_CPLUS) == 0)
   1488 			break;
   1489 
   1490 		if (status & RTK_ISR_RX_OK)
   1491 			re_rxeof(sc);
   1492 
   1493 		if (status & RTK_ISR_RX_ERR)
   1494 			re_rxeof(sc);
   1495 
   1496 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1497 		    (status & RTK_ISR_TX_ERR) ||
   1498 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1499 			re_txeof(sc);
   1500 
   1501 		if (status & RTK_ISR_SYSTEM_ERR) {
   1502 			re_reset(sc);
   1503 			re_init(ifp);
   1504 		}
   1505 
   1506 		if (status & RTK_ISR_LINKCHG) {
   1507 			callout_stop(&sc->rtk_tick_ch);
   1508 			re_tick(sc);
   1509 		}
   1510 	}
   1511 
   1512 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1513 		if (ifp->if_snd.ifq_head != NULL)
   1514 			(*ifp->if_start)(ifp);
   1515 
   1516 #ifdef DEVICE_POLLING
   1517 done:
   1518 #endif
   1519 
   1520 	return handled;
   1521 }
   1522 
   1523 static int
   1524 re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
   1525 {
   1526 	bus_dmamap_t		map;
   1527 	int			error, i, curidx;
   1528 	struct m_tag		*mtag;
   1529 	struct rtk_desc		*d;
   1530 	u_int32_t		cmdstat, rtk_flags;
   1531 
   1532 	if (sc->rtk_ldata.rtk_tx_free <= 4)
   1533 		return EFBIG;
   1534 
   1535 	/*
   1536 	 * Set up checksum offload. Note: checksum offload bits must
   1537 	 * appear in all descriptors of a multi-descriptor transmit
   1538 	 * attempt. (This is according to testing done with an 8169
   1539 	 * chip. I'm not sure if this is a requirement or a bug.)
   1540 	 */
   1541 
   1542 	rtk_flags = 0;
   1543 
   1544 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1545 		rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1546 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1547 		rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1548 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1549 		rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1550 
   1551 	map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
   1552 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1553 	    m_head, BUS_DMA_NOWAIT);
   1554 
   1555 	if (error) {
   1556 		aprint_error("%s: can't map mbuf (error %d)\n",
   1557 		    sc->sc_dev.dv_xname, error);
   1558 		return ENOBUFS;
   1559 	}
   1560 
   1561 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
   1562 		return ENOBUFS;
   1563 	/*
   1564 	 * Map the segment array into descriptors. Note that we set the
   1565 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1566 	 * they really only have meaning in the TX case. (In the RX case,
   1567 	 * it's the chip that tells us where packets begin and end.)
   1568 	 * We also keep track of the end of the ring and set the
   1569 	 * end-of-ring bits as needed, and we set the ownership bits
   1570 	 * in all except the very first descriptor. (The caller will
   1571 	 * set this descriptor later when it start transmission or
   1572 	 * reception.)
   1573 	 */
   1574 	i = 0;
   1575 	curidx = *idx;
   1576 	while (1) {
   1577 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1578 		if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1579 			return ENOBUFS;
   1580 
   1581 		cmdstat = map->dm_segs[i].ds_len;
   1582 		d->rtk_bufaddr_lo =
   1583 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
   1584 		d->rtk_bufaddr_hi =
   1585 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
   1586 		if (i == 0)
   1587 			cmdstat |= RTK_TDESC_CMD_SOF;
   1588 		else
   1589 			cmdstat |= RTK_TDESC_CMD_OWN;
   1590 		if (curidx == (RTK_RX_DESC_CNT - 1))
   1591 			cmdstat |= RTK_TDESC_CMD_EOR;
   1592 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1593 		i++;
   1594 		if (i == map->dm_nsegs)
   1595 			break;
   1596 		RTK_DESC_INC(curidx);
   1597 	}
   1598 
   1599 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1600 
   1601 	/*
   1602 	 * Insure that the map for this transmission
   1603 	 * is placed at the array index of the last descriptor
   1604 	 * in this chain.
   1605 	 */
   1606 	sc->rtk_ldata.rtk_tx_dmamap[*idx] =
   1607 	    sc->rtk_ldata.rtk_tx_dmamap[curidx];
   1608 	sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
   1609 	sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
   1610 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1611 
   1612 	/*
   1613 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1614 	 * appear in the first descriptor of a multi-descriptor
   1615 	 * transmission attempt.
   1616 	 */
   1617 
   1618 	if (sc->ethercom.ec_nvlans &&
   1619 	    (mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL)
   1620 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
   1621 		    htole32(htons(*(u_int *)(mtag + 1)) |
   1622 		    RTK_TDESC_VLANCTL_TAG);
   1623 
   1624 	/* Transfer ownership of packet to the chip. */
   1625 
   1626 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
   1627 	    htole32(RTK_TDESC_CMD_OWN);
   1628 	if (*idx != curidx)
   1629 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
   1630 		    htole32(RTK_TDESC_CMD_OWN);
   1631 
   1632 	RTK_DESC_INC(curidx);
   1633 	*idx = curidx;
   1634 
   1635 	return 0;
   1636 }
   1637 
   1638 /*
   1639  * Main transmit routine for C+ and gigE NICs.
   1640  */
   1641 
   1642 static void
   1643 re_start(struct ifnet *ifp)
   1644 {
   1645 	struct rtk_softc	*sc;
   1646 	struct mbuf		*m_head = NULL;
   1647 	int			idx;
   1648 
   1649 	sc = ifp->if_softc;
   1650 
   1651 	idx = sc->rtk_ldata.rtk_tx_prodidx;
   1652 	while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
   1653 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1654 		if (m_head == NULL)
   1655 			break;
   1656 
   1657 		if (re_encap(sc, m_head, &idx)) {
   1658 			IF_PREPEND(&ifp->if_snd, m_head);
   1659 			ifp->if_flags |= IFF_OACTIVE;
   1660 			break;
   1661 		}
   1662 #if NBPFILTER > 0
   1663 		/*
   1664 		 * If there's a BPF listener, bounce a copy of this frame
   1665 		 * to him.
   1666 		 */
   1667 		if (ifp->if_bpf)
   1668 			bpf_mtap(ifp->if_bpf, m_head);
   1669 #endif
   1670 	}
   1671 
   1672 	/* Flush the TX descriptors */
   1673 
   1674 	bus_dmamap_sync(sc->sc_dmat,
   1675 	    sc->rtk_ldata.rtk_tx_list_map,
   1676 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1677 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1678 
   1679 	sc->rtk_ldata.rtk_tx_prodidx = idx;
   1680 
   1681 	/*
   1682 	 * RealTek put the TX poll request register in a different
   1683 	 * location on the 8169 gigE chip. I don't know why.
   1684 	 */
   1685 
   1686 	if (sc->rtk_type == RTK_8169)
   1687 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1688 	else
   1689 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
   1690 
   1691 	/*
   1692 	 * Use the countdown timer for interrupt moderation.
   1693 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1694 	 * countdown timer, which will begin counting until it hits
   1695 	 * the value in the TIMERINT register, and then trigger an
   1696 	 * interrupt. Each time we write to the TIMERCNT register,
   1697 	 * the timer count is reset to 0.
   1698 	 */
   1699 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1700 
   1701 	/*
   1702 	 * Set a timeout in case the chip goes out to lunch.
   1703 	 */
   1704 	ifp->if_timer = 5;
   1705 
   1706 	return;
   1707 }
   1708 
   1709 static int
   1710 re_init(struct ifnet *ifp)
   1711 {
   1712 	struct rtk_softc	*sc = ifp->if_softc;
   1713 	u_int32_t		rxcfg = 0;
   1714 	u_int32_t		reg;
   1715 	int error;
   1716 
   1717 	if ((error = re_enable(sc)) != 0)
   1718 		goto out;
   1719 
   1720 	/*
   1721 	 * Cancel pending I/O and free all RX/TX buffers.
   1722 	 */
   1723 	re_stop(ifp, 0);
   1724 
   1725 	/*
   1726 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1727 	 * RX checksum offload. We must configure the C+ register
   1728 	 * before all others.
   1729 	 */
   1730 	reg = 0;
   1731 
   1732 	/*
   1733 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1734 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1735 	 * So far, it works.
   1736 	 */
   1737 
   1738 	/*
   1739 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1740 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1741 	 */
   1742 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1743 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1744 
   1745 	if (1)  {/* not for 8169S ? */
   1746 		reg |= RTK_CPLUSCMD_VLANSTRIP |
   1747 		    (ifp->if_capenable &
   1748 		    (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
   1749 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1750 	}
   1751 
   1752 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1753 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1754 
   1755 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1756 	if (sc->rtk_type == RTK_8169)
   1757 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1758 
   1759 	DELAY(10000);
   1760 
   1761 	/*
   1762 	 * Init our MAC address.  Even though the chipset
   1763 	 * documentation doesn't mention it, we need to enter "Config
   1764 	 * register write enable" mode to modify the ID registers.
   1765 	 */
   1766 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1767 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
   1768 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
   1769 	reg = 0;
   1770 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
   1771 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
   1772 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1773 
   1774 	/*
   1775 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1776 	 */
   1777 	re_rx_list_init(sc);
   1778 	re_tx_list_init(sc);
   1779 
   1780 	/*
   1781 	 * Enable transmit and receive.
   1782 	 */
   1783 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1784 
   1785 	/*
   1786 	 * Set the initial TX and RX configuration.
   1787 	 */
   1788 	if (sc->rtk_testmode) {
   1789 		if (sc->rtk_type == RTK_8169)
   1790 			CSR_WRITE_4(sc, RTK_TXCFG,
   1791 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1792 		else
   1793 			CSR_WRITE_4(sc, RTK_TXCFG,
   1794 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1795 	} else
   1796 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1797 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1798 
   1799 	/* Set the individual bit to receive frames for this host only. */
   1800 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1801 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1802 
   1803 	/* If we want promiscuous mode, set the allframes bit. */
   1804 	if (ifp->if_flags & IFF_PROMISC) {
   1805 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1806 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1807 	} else {
   1808 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1809 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1810 	}
   1811 
   1812 	/*
   1813 	 * Set capture broadcast bit to capture broadcast frames.
   1814 	 */
   1815 	if (ifp->if_flags & IFF_BROADCAST) {
   1816 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1817 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1818 	} else {
   1819 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1820 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1821 	}
   1822 
   1823 	/*
   1824 	 * Program the multicast filter, if necessary.
   1825 	 */
   1826 	rtk_setmulti(sc);
   1827 
   1828 #ifdef DEVICE_POLLING
   1829 	/*
   1830 	 * Disable interrupts if we are polling.
   1831 	 */
   1832 	if (ifp->if_flags & IFF_POLLING)
   1833 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1834 	else	/* otherwise ... */
   1835 #endif /* DEVICE_POLLING */
   1836 	/*
   1837 	 * Enable interrupts.
   1838 	 */
   1839 	if (sc->rtk_testmode)
   1840 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1841 	else
   1842 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1843 
   1844 	/* Start RX/TX process. */
   1845 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1846 #ifdef notdef
   1847 	/* Enable receiver and transmitter. */
   1848 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1849 #endif
   1850 	/*
   1851 	 * Load the addresses of the RX and TX lists into the chip.
   1852 	 */
   1853 
   1854 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1855 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
   1856 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1857 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
   1858 
   1859 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1860 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
   1861 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1862 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
   1863 
   1864 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1865 
   1866 	/*
   1867 	 * Initialize the timer interrupt register so that
   1868 	 * a timer interrupt will be generated once the timer
   1869 	 * reaches a certain number of ticks. The timer is
   1870 	 * reloaded on each transmit. This gives us TX interrupt
   1871 	 * moderation, which dramatically improves TX frame rate.
   1872 	 */
   1873 
   1874 	if (sc->rtk_type == RTK_8169)
   1875 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1876 	else
   1877 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1878 
   1879 	/*
   1880 	 * For 8169 gigE NICs, set the max allowed RX packet
   1881 	 * size so we can receive jumbo frames.
   1882 	 */
   1883 	if (sc->rtk_type == RTK_8169)
   1884 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1885 
   1886 	if (sc->rtk_testmode)
   1887 		return 0;
   1888 
   1889 	mii_mediachg(&sc->mii);
   1890 
   1891 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1892 
   1893 	ifp->if_flags |= IFF_RUNNING;
   1894 	ifp->if_flags &= ~IFF_OACTIVE;
   1895 
   1896 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1897 
   1898 out:
   1899 	if (error) {
   1900 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1901 		ifp->if_timer = 0;
   1902 		aprint_error("%s: interface not running\n",
   1903 		    sc->sc_dev.dv_xname);
   1904 	}
   1905 
   1906 	return error;
   1907 
   1908 }
   1909 
   1910 /*
   1911  * Set media options.
   1912  */
   1913 static int
   1914 re_ifmedia_upd(struct ifnet *ifp)
   1915 {
   1916 	struct rtk_softc	*sc;
   1917 
   1918 	sc = ifp->if_softc;
   1919 
   1920 	return mii_mediachg(&sc->mii);
   1921 }
   1922 
   1923 /*
   1924  * Report current media status.
   1925  */
   1926 static void
   1927 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1928 {
   1929 	struct rtk_softc	*sc;
   1930 
   1931 	sc = ifp->if_softc;
   1932 
   1933 	mii_pollstat(&sc->mii);
   1934 	ifmr->ifm_active = sc->mii.mii_media_active;
   1935 	ifmr->ifm_status = sc->mii.mii_media_status;
   1936 
   1937 	return;
   1938 }
   1939 
   1940 static int
   1941 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1942 {
   1943 	struct rtk_softc	*sc = ifp->if_softc;
   1944 	struct ifreq		*ifr = (struct ifreq *) data;
   1945 	int			s, error = 0;
   1946 
   1947 	s = splnet();
   1948 
   1949 	switch (command) {
   1950 	case SIOCSIFMTU:
   1951 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   1952 			error = EINVAL;
   1953 		ifp->if_mtu = ifr->ifr_mtu;
   1954 		break;
   1955 	case SIOCGIFMEDIA:
   1956 	case SIOCSIFMEDIA:
   1957 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1958 		break;
   1959 	default:
   1960 		error = ether_ioctl(ifp, command, data);
   1961 		if (error == ENETRESET) {
   1962 			if (ifp->if_flags & IFF_RUNNING)
   1963 				rtk_setmulti(sc);
   1964 			error = 0;
   1965 		}
   1966 		break;
   1967 	}
   1968 
   1969 	splx(s);
   1970 
   1971 	return error;
   1972 }
   1973 
   1974 static void
   1975 re_watchdog(struct ifnet *ifp)
   1976 {
   1977 	struct rtk_softc	*sc;
   1978 	int			s;
   1979 
   1980 	sc = ifp->if_softc;
   1981 	s = splnet();
   1982 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1983 	ifp->if_oerrors++;
   1984 
   1985 	re_txeof(sc);
   1986 	re_rxeof(sc);
   1987 
   1988 	re_init(ifp);
   1989 
   1990 	splx(s);
   1991 }
   1992 
   1993 /*
   1994  * Stop the adapter and free any mbufs allocated to the
   1995  * RX and TX lists.
   1996  */
   1997 static void
   1998 re_stop(struct ifnet *ifp, int disable)
   1999 {
   2000 	register int		i;
   2001 	struct rtk_softc *sc = ifp->if_softc;
   2002 
   2003 	callout_stop(&sc->rtk_tick_ch);
   2004 
   2005 #ifdef DEVICE_POLLING
   2006 	ether_poll_deregister(ifp);
   2007 #endif /* DEVICE_POLLING */
   2008 
   2009 	mii_down(&sc->mii);
   2010 
   2011 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2012 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2013 
   2014 	if (sc->rtk_head != NULL) {
   2015 		m_freem(sc->rtk_head);
   2016 		sc->rtk_head = sc->rtk_tail = NULL;
   2017 	}
   2018 
   2019 	/* Free the TX list buffers. */
   2020 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
   2021 		if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
   2022 			bus_dmamap_unload(sc->sc_dmat,
   2023 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
   2024 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
   2025 			sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
   2026 		}
   2027 	}
   2028 
   2029 	/* Free the RX list buffers. */
   2030 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2031 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   2032 			bus_dmamap_unload(sc->sc_dmat,
   2033 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   2034 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   2035 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   2036 		}
   2037 	}
   2038 
   2039 	if (disable)
   2040 		re_disable(sc);
   2041 
   2042 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2043 	ifp->if_timer = 0;
   2044 
   2045 	return;
   2046 }
   2047