rtl8169.c revision 1.62 1 /* $NetBSD: rtl8169.c,v 1.62 2006/11/16 01:32:52 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
157 static int re_rx_list_init(struct rtk_softc *);
158 static int re_tx_list_init(struct rtk_softc *);
159 static void re_rxeof(struct rtk_softc *);
160 static void re_txeof(struct rtk_softc *);
161 static void re_tick(void *);
162 static void re_start(struct ifnet *);
163 static int re_ioctl(struct ifnet *, u_long, caddr_t);
164 static int re_init(struct ifnet *);
165 static void re_stop(struct ifnet *, int);
166 static void re_watchdog(struct ifnet *);
167
168 static void re_shutdown(void *);
169 static int re_enable(struct rtk_softc *);
170 static void re_disable(struct rtk_softc *);
171 static void re_power(int, void *);
172
173 static int re_ifmedia_upd(struct ifnet *);
174 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175
176 static int re_gmii_readreg(struct device *, int, int);
177 static void re_gmii_writereg(struct device *, int, int, int);
178
179 static int re_miibus_readreg(struct device *, int, int);
180 static void re_miibus_writereg(struct device *, int, int, int);
181 static void re_miibus_statchg(struct device *);
182
183 static void re_reset(struct rtk_softc *);
184
185 static int
186 re_gmii_readreg(struct device *self, int phy, int reg)
187 {
188 struct rtk_softc *sc = (void *)self;
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = (void *)dev;
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 aprint_error("%s: PHY write reg %x <- %x failed\n",
240 sc->sc_dev.dv_xname, reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(struct device *dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = (void *)dev;
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if (sc->rtk_type == RTK_8169) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = (void *)dev;
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if (sc->rtk_type == RTK_8169) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if (sc->rtk_type == RTK_8139CPLUS) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(struct device *dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 aprint_error("%s: reset never completed!\n",
385 sc->sc_dev.dv_xname);
386
387 /*
388 * NB: Realtek-supplied Linux driver does this only for
389 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
390 */
391 if (1) /* XXX check softc flag for 8169s version */
392 CSR_WRITE_1(sc, 0x82, 1);
393
394 return;
395 }
396
397 /*
398 * The following routine is designed to test for a defect on some
399 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
400 * lines connected to the bus, however for a 32-bit only card, they
401 * should be pulled high. The result of this defect is that the
402 * NIC will not work right if you plug it into a 64-bit slot: DMA
403 * operations will be done with 64-bit transfers, which will fail
404 * because the 64-bit data lines aren't connected.
405 *
406 * There's no way to work around this (short of talking a soldering
407 * iron to the board), however we can detect it. The method we use
408 * here is to put the NIC into digital loopback mode, set the receiver
409 * to promiscuous mode, and then try to send a frame. We then compare
410 * the frame data we sent to what was received. If the data matches,
411 * then the NIC is working correctly, otherwise we know the user has
412 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
413 * slot. In the latter case, there's no way the NIC can work correctly,
414 * so we print out a message on the console and abort the device attach.
415 */
416
417 int
418 re_diag(struct rtk_softc *sc)
419 {
420 struct ifnet *ifp = &sc->ethercom.ec_if;
421 struct mbuf *m0;
422 struct ether_header *eh;
423 struct re_rxsoft *rxs;
424 struct re_desc *cur_rx;
425 bus_dmamap_t dmamap;
426 uint16_t status;
427 uint32_t rxstat;
428 int total_len, i, s, error = 0;
429 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
430 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
431
432 /* Allocate a single mbuf */
433
434 MGETHDR(m0, M_DONTWAIT, MT_DATA);
435 if (m0 == NULL)
436 return ENOBUFS;
437
438 /*
439 * Initialize the NIC in test mode. This sets the chip up
440 * so that it can send and receive frames, but performs the
441 * following special functions:
442 * - Puts receiver in promiscuous mode
443 * - Enables digital loopback mode
444 * - Leaves interrupts turned off
445 */
446
447 ifp->if_flags |= IFF_PROMISC;
448 sc->re_testmode = 1;
449 re_init(ifp);
450 re_stop(ifp, 0);
451 DELAY(100000);
452 re_init(ifp);
453
454 /* Put some data in the mbuf */
455
456 eh = mtod(m0, struct ether_header *);
457 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
458 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
459 eh->ether_type = htons(ETHERTYPE_IP);
460 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
461
462 /*
463 * Queue the packet, start transmission.
464 */
465
466 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
467 s = splnet();
468 IF_ENQUEUE(&ifp->if_snd, m0);
469 re_start(ifp);
470 splx(s);
471 m0 = NULL;
472
473 /* Wait for it to propagate through the chip */
474
475 DELAY(100000);
476 for (i = 0; i < RTK_TIMEOUT; i++) {
477 status = CSR_READ_2(sc, RTK_ISR);
478 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
479 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
480 break;
481 DELAY(10);
482 }
483 if (i == RTK_TIMEOUT) {
484 aprint_error("%s: diagnostic failed, failed to receive packet "
485 "in loopback mode\n", sc->sc_dev.dv_xname);
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error("%s: diagnostic failed, received short packet\n",
512 sc->sc_dev.dv_xname);
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error("%s: WARNING, DMA FAILURE!\n",
523 sc->sc_dev.dv_xname);
524 aprint_error("%s: expected TX data: %s",
525 sc->sc_dev.dv_xname, ether_sprintf(dst));
526 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
527 aprint_error("%s: received RX data: %s",
528 sc->sc_dev.dv_xname,
529 ether_sprintf(eh->ether_dhost));
530 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
531 ntohs(eh->ether_type));
532 aprint_error("%s: You may have a defective 32-bit NIC plugged "
533 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
535 "for proper operation.\n", sc->sc_dev.dv_xname);
536 aprint_error("%s: Read the re(4) man page for more details.\n",
537 sc->sc_dev.dv_xname);
538 error = EIO;
539 }
540
541 done:
542 /* Turn interface off, release resources */
543
544 sc->re_testmode = 0;
545 ifp->if_flags &= ~IFF_PROMISC;
546 re_stop(ifp, 0);
547 if (m0 != NULL)
548 m_freem(m0);
549
550 return error;
551 }
552
553
554 /*
555 * Attach the interface. Allocate softc structures, do ifmedia
556 * setup and ethernet/BPF attach.
557 */
558 void
559 re_attach(struct rtk_softc *sc)
560 {
561 u_char eaddr[ETHER_ADDR_LEN];
562 uint16_t val;
563 struct ifnet *ifp;
564 int error = 0, i, addr_len;
565
566
567 /* XXX JRS: bus-attach-independent code begins approximately here */
568
569 /* Reset the adapter. */
570 re_reset(sc);
571
572 if (sc->rtk_type == RTK_8169) {
573 uint32_t hwrev;
574
575 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
576 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
577 if (hwrev == (0x1 << 28)) {
578 sc->sc_rev = 4;
579 } else if (hwrev == (0x1 << 26)) {
580 sc->sc_rev = 3;
581 } else if (hwrev == (0x1 << 23)) {
582 sc->sc_rev = 2;
583 } else
584 sc->sc_rev = 1;
585
586 /* Set RX length mask */
587
588 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
589
590 /* Force station address autoload from the EEPROM */
591
592 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
593 for (i = 0; i < RTK_TIMEOUT; i++) {
594 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
595 == 0)
596 break;
597 DELAY(100);
598 }
599 if (i == RTK_TIMEOUT)
600 aprint_error("%s: eeprom autoload timed out\n",
601 sc->sc_dev.dv_xname);
602
603 for (i = 0; i < ETHER_ADDR_LEN; i++)
604 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
605
606 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
607 } else {
608
609 /* Set RX length mask */
610
611 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
612
613 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
614 addr_len = RTK_EEADDR_LEN1;
615 else
616 addr_len = RTK_EEADDR_LEN0;
617
618 /*
619 * Get station address from the EEPROM.
620 */
621 for (i = 0; i < 3; i++) {
622 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
623 eaddr[(i * 2) + 0] = val & 0xff;
624 eaddr[(i * 2) + 1] = val >> 8;
625 }
626
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
628 }
629
630 aprint_normal("%s: Ethernet address %s\n",
631 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
632
633 if (sc->re_ldata.re_tx_desc_cnt >
634 PAGE_SIZE / sizeof(struct re_desc)) {
635 sc->re_ldata.re_tx_desc_cnt =
636 PAGE_SIZE / sizeof(struct re_desc);
637 }
638
639 aprint_verbose("%s: using %d tx descriptors\n",
640 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
641
642 /* Allocate DMA'able memory for the TX ring */
643 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
644 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
645 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
646 aprint_error("%s: can't allocate tx listseg, error = %d\n",
647 sc->sc_dev.dv_xname, error);
648 goto fail_0;
649 }
650
651 /* Load the map for the TX ring. */
652 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
653 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
654 (caddr_t *)&sc->re_ldata.re_tx_list,
655 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
656 aprint_error("%s: can't map tx list, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_1;
659 }
660 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
661
662 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
663 RE_TX_LIST_SZ(sc), 0, 0,
664 &sc->re_ldata.re_tx_list_map)) != 0) {
665 aprint_error("%s: can't create tx list map, error = %d\n",
666 sc->sc_dev.dv_xname, error);
667 goto fail_2;
668 }
669
670
671 if ((error = bus_dmamap_load(sc->sc_dmat,
672 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
673 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
674 aprint_error("%s: can't load tx list, error = %d\n",
675 sc->sc_dev.dv_xname, error);
676 goto fail_3;
677 }
678
679 /* Create DMA maps for TX buffers */
680 for (i = 0; i < RE_TX_QLEN; i++) {
681 error = bus_dmamap_create(sc->sc_dmat,
682 round_page(IP_MAXPACKET),
683 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
684 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
685 if (error) {
686 aprint_error("%s: can't create DMA map for TX\n",
687 sc->sc_dev.dv_xname);
688 goto fail_4;
689 }
690 }
691
692 /* Allocate DMA'able memory for the RX ring */
693 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_RX_LIST_SZ,
694 RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
695 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
696 aprint_error("%s: can't allocate rx listseg, error = %d\n",
697 sc->sc_dev.dv_xname, error);
698 goto fail_4;
699 }
700
701 /* Load the map for the RX ring. */
702 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
703 sc->re_ldata.re_rx_listnseg, RE_RX_LIST_SZ,
704 (caddr_t *)&sc->re_ldata.re_rx_list,
705 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
706 aprint_error("%s: can't map rx list, error = %d\n",
707 sc->sc_dev.dv_xname, error);
708 goto fail_5;
709 }
710 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
711
712 if ((error = bus_dmamap_create(sc->sc_dmat, RE_RX_LIST_SZ, 1,
713 RE_RX_LIST_SZ, 0, 0,
714 &sc->re_ldata.re_rx_list_map)) != 0) {
715 aprint_error("%s: can't create rx list map, error = %d\n",
716 sc->sc_dev.dv_xname, error);
717 goto fail_6;
718 }
719
720 if ((error = bus_dmamap_load(sc->sc_dmat,
721 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
722 RE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
723 aprint_error("%s: can't load rx list, error = %d\n",
724 sc->sc_dev.dv_xname, error);
725 goto fail_7;
726 }
727
728 /* Create DMA maps for RX buffers */
729 for (i = 0; i < RE_RX_DESC_CNT; i++) {
730 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
731 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
732 if (error) {
733 aprint_error("%s: can't create DMA map for RX\n",
734 sc->sc_dev.dv_xname);
735 goto fail_8;
736 }
737 }
738
739 /*
740 * Record interface as attached. From here, we should not fail.
741 */
742 sc->sc_flags |= RTK_ATTACHED;
743
744 ifp = &sc->ethercom.ec_if;
745 ifp->if_softc = sc;
746 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
747 ifp->if_mtu = ETHERMTU;
748 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
749 ifp->if_ioctl = re_ioctl;
750 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
751
752 /*
753 * This is a way to disable hw VLAN tagging by default
754 * (RE_VLAN is undefined), as it is problematic. PR 32643
755 */
756
757 #ifdef RE_VLAN
758 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
759 #endif
760 ifp->if_start = re_start;
761 ifp->if_stop = re_stop;
762
763 /*
764 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
765 */
766
767 ifp->if_capabilities |=
768 /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
769 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
770 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
771 IFCAP_TSOv4;
772 ifp->if_watchdog = re_watchdog;
773 ifp->if_init = re_init;
774 if (sc->rtk_type == RTK_8169)
775 ifp->if_baudrate = 1000000000;
776 else
777 ifp->if_baudrate = 100000000;
778 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
779 ifp->if_capenable = ifp->if_capabilities;
780 IFQ_SET_READY(&ifp->if_snd);
781
782 callout_init(&sc->rtk_tick_ch);
783
784 /* Do MII setup */
785 sc->mii.mii_ifp = ifp;
786 sc->mii.mii_readreg = re_miibus_readreg;
787 sc->mii.mii_writereg = re_miibus_writereg;
788 sc->mii.mii_statchg = re_miibus_statchg;
789 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
790 re_ifmedia_sts);
791 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
792 MII_OFFSET_ANY, 0);
793 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
794
795 /*
796 * Call MI attach routine.
797 */
798 if_attach(ifp);
799 ether_ifattach(ifp, eaddr);
800
801
802 /*
803 * Make sure the interface is shutdown during reboot.
804 */
805 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
806 if (sc->sc_sdhook == NULL)
807 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
808 sc->sc_dev.dv_xname);
809 /*
810 * Add a suspend hook to make sure we come back up after a
811 * resume.
812 */
813 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
814 re_power, sc);
815 if (sc->sc_powerhook == NULL)
816 aprint_error("%s: WARNING: unable to establish power hook\n",
817 sc->sc_dev.dv_xname);
818
819
820 return;
821
822 fail_8:
823 /* Destroy DMA maps for RX buffers. */
824 for (i = 0; i < RE_RX_DESC_CNT; i++)
825 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
826 bus_dmamap_destroy(sc->sc_dmat,
827 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
828
829 /* Free DMA'able memory for the RX ring. */
830 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
831 fail_7:
832 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
833 fail_6:
834 bus_dmamem_unmap(sc->sc_dmat,
835 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
836 fail_5:
837 bus_dmamem_free(sc->sc_dmat,
838 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
839
840 fail_4:
841 /* Destroy DMA maps for TX buffers. */
842 for (i = 0; i < RE_TX_QLEN; i++)
843 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
844 bus_dmamap_destroy(sc->sc_dmat,
845 sc->re_ldata.re_txq[i].txq_dmamap);
846
847 /* Free DMA'able memory for the TX ring. */
848 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
849 fail_3:
850 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
851 fail_2:
852 bus_dmamem_unmap(sc->sc_dmat,
853 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
854 fail_1:
855 bus_dmamem_free(sc->sc_dmat,
856 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
857 fail_0:
858 return;
859 }
860
861
862 /*
863 * re_activate:
864 * Handle device activation/deactivation requests.
865 */
866 int
867 re_activate(struct device *self, enum devact act)
868 {
869 struct rtk_softc *sc = (void *)self;
870 int s, error = 0;
871
872 s = splnet();
873 switch (act) {
874 case DVACT_ACTIVATE:
875 error = EOPNOTSUPP;
876 break;
877 case DVACT_DEACTIVATE:
878 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
879 if_deactivate(&sc->ethercom.ec_if);
880 break;
881 }
882 splx(s);
883
884 return error;
885 }
886
887 /*
888 * re_detach:
889 * Detach a rtk interface.
890 */
891 int
892 re_detach(struct rtk_softc *sc)
893 {
894 struct ifnet *ifp = &sc->ethercom.ec_if;
895 int i;
896
897 /*
898 * Succeed now if there isn't any work to do.
899 */
900 if ((sc->sc_flags & RTK_ATTACHED) == 0)
901 return 0;
902
903 /* Unhook our tick handler. */
904 callout_stop(&sc->rtk_tick_ch);
905
906 /* Detach all PHYs. */
907 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
908
909 /* Delete all remaining media. */
910 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
911
912 ether_ifdetach(ifp);
913 if_detach(ifp);
914
915 /* Destroy DMA maps for RX buffers. */
916 for (i = 0; i < RE_RX_DESC_CNT; i++)
917 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
918 bus_dmamap_destroy(sc->sc_dmat,
919 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
920
921 /* Free DMA'able memory for the RX ring. */
922 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
923 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
924 bus_dmamem_unmap(sc->sc_dmat,
925 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
926 bus_dmamem_free(sc->sc_dmat,
927 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
928
929 /* Destroy DMA maps for TX buffers. */
930 for (i = 0; i < RE_TX_QLEN; i++)
931 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->re_ldata.re_txq[i].txq_dmamap);
934
935 /* Free DMA'able memory for the TX ring. */
936 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
937 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
938 bus_dmamem_unmap(sc->sc_dmat,
939 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
940 bus_dmamem_free(sc->sc_dmat,
941 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
942
943
944 shutdownhook_disestablish(sc->sc_sdhook);
945 powerhook_disestablish(sc->sc_powerhook);
946
947 return 0;
948 }
949
950 /*
951 * re_enable:
952 * Enable the RTL81X9 chip.
953 */
954 static int
955 re_enable(struct rtk_softc *sc)
956 {
957
958 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
959 if ((*sc->sc_enable)(sc) != 0) {
960 aprint_error("%s: device enable failed\n",
961 sc->sc_dev.dv_xname);
962 return EIO;
963 }
964 sc->sc_flags |= RTK_ENABLED;
965 }
966 return 0;
967 }
968
969 /*
970 * re_disable:
971 * Disable the RTL81X9 chip.
972 */
973 static void
974 re_disable(struct rtk_softc *sc)
975 {
976
977 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
978 (*sc->sc_disable)(sc);
979 sc->sc_flags &= ~RTK_ENABLED;
980 }
981 }
982
983 /*
984 * re_power:
985 * Power management (suspend/resume) hook.
986 */
987 void
988 re_power(int why, void *arg)
989 {
990 struct rtk_softc *sc = (void *)arg;
991 struct ifnet *ifp = &sc->ethercom.ec_if;
992 int s;
993
994 s = splnet();
995 switch (why) {
996 case PWR_SUSPEND:
997 case PWR_STANDBY:
998 re_stop(ifp, 0);
999 if (sc->sc_power != NULL)
1000 (*sc->sc_power)(sc, why);
1001 break;
1002 case PWR_RESUME:
1003 if (ifp->if_flags & IFF_UP) {
1004 if (sc->sc_power != NULL)
1005 (*sc->sc_power)(sc, why);
1006 re_init(ifp);
1007 }
1008 break;
1009 case PWR_SOFTSUSPEND:
1010 case PWR_SOFTSTANDBY:
1011 case PWR_SOFTRESUME:
1012 break;
1013 }
1014 splx(s);
1015 }
1016
1017
1018 static int
1019 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1020 {
1021 struct mbuf *n = NULL;
1022 bus_dmamap_t map;
1023 struct re_desc *d;
1024 struct re_rxsoft *rxs;
1025 uint32_t cmdstat;
1026 int error;
1027
1028 if (m == NULL) {
1029 MGETHDR(n, M_DONTWAIT, MT_DATA);
1030 if (n == NULL)
1031 return ENOBUFS;
1032
1033 MCLGET(n, M_DONTWAIT);
1034 if ((n->m_flags & M_EXT) == 0) {
1035 m_freem(n);
1036 return ENOBUFS;
1037 }
1038 m = n;
1039 } else
1040 m->m_data = m->m_ext.ext_buf;
1041
1042 /*
1043 * Initialize mbuf length fields and fixup
1044 * alignment so that the frame payload is
1045 * longword aligned.
1046 */
1047 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1048 m->m_data += RE_ETHER_ALIGN;
1049
1050 rxs = &sc->re_ldata.re_rxsoft[idx];
1051 map = rxs->rxs_dmamap;
1052 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1053 BUS_DMA_READ|BUS_DMA_NOWAIT);
1054
1055 if (error)
1056 goto out;
1057
1058 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1059 BUS_DMASYNC_PREREAD);
1060
1061 d = &sc->re_ldata.re_rx_list[idx];
1062 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1063 cmdstat = le32toh(d->re_cmdstat);
1064 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1065 if (cmdstat & RE_RDESC_STAT_OWN) {
1066 aprint_error("%s: tried to map busy RX descriptor\n",
1067 sc->sc_dev.dv_xname);
1068 goto out;
1069 }
1070
1071 rxs->rxs_mbuf = m;
1072
1073 cmdstat = map->dm_segs[0].ds_len;
1074 if (idx == (RE_RX_DESC_CNT - 1))
1075 cmdstat |= RE_RDESC_CMD_EOR;
1076 d->re_bufaddr_lo = htole32(RE_ADDR_LO(map->dm_segs[0].ds_addr));
1077 d->re_bufaddr_hi = htole32(RE_ADDR_HI(map->dm_segs[0].ds_addr));
1078 d->re_cmdstat = htole32(cmdstat);
1079 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1080 cmdstat |= RE_RDESC_CMD_OWN;
1081 d->re_cmdstat = htole32(cmdstat);
1082 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083
1084 return 0;
1085 out:
1086 if (n != NULL)
1087 m_freem(n);
1088 return ENOMEM;
1089 }
1090
1091 static int
1092 re_tx_list_init(struct rtk_softc *sc)
1093 {
1094 int i;
1095
1096 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1097 for (i = 0; i < RE_TX_QLEN; i++) {
1098 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1099 }
1100
1101 bus_dmamap_sync(sc->sc_dmat,
1102 sc->re_ldata.re_tx_list_map, 0,
1103 sc->re_ldata.re_tx_list_map->dm_mapsize,
1104 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105 sc->re_ldata.re_txq_prodidx = 0;
1106 sc->re_ldata.re_txq_considx = 0;
1107 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1108 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1109 sc->re_ldata.re_tx_nextfree = 0;
1110
1111 return 0;
1112 }
1113
1114 static int
1115 re_rx_list_init(struct rtk_softc *sc)
1116 {
1117 int i;
1118
1119 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1120
1121 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1122 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1123 return ENOBUFS;
1124 }
1125
1126 sc->re_ldata.re_rx_prodidx = 0;
1127 sc->re_head = sc->re_tail = NULL;
1128
1129 return 0;
1130 }
1131
1132 /*
1133 * RX handler for C+ and 8169. For the gigE chips, we support
1134 * the reception of jumbo frames that have been fragmented
1135 * across multiple 2K mbuf cluster buffers.
1136 */
1137 static void
1138 re_rxeof(struct rtk_softc *sc)
1139 {
1140 struct mbuf *m;
1141 struct ifnet *ifp;
1142 int i, total_len;
1143 struct re_desc *cur_rx;
1144 struct re_rxsoft *rxs;
1145 uint32_t rxstat, rxvlan;
1146
1147 ifp = &sc->ethercom.ec_if;
1148
1149 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1150 cur_rx = &sc->re_ldata.re_rx_list[i];
1151 RE_RXDESCSYNC(sc, i,
1152 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1153 rxstat = le32toh(cur_rx->re_cmdstat);
1154 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1155 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1156 break;
1157 }
1158 total_len = rxstat & sc->re_rxlenmask;
1159 rxvlan = le32toh(cur_rx->re_vlanctl);
1160 rxs = &sc->re_ldata.re_rxsoft[i];
1161 m = rxs->rxs_mbuf;
1162
1163 /* Invalidate the RX mbuf and unload its map */
1164
1165 bus_dmamap_sync(sc->sc_dmat,
1166 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1167 BUS_DMASYNC_POSTREAD);
1168 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1169
1170 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1171 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1172 if (sc->re_head == NULL)
1173 sc->re_head = sc->re_tail = m;
1174 else {
1175 m->m_flags &= ~M_PKTHDR;
1176 sc->re_tail->m_next = m;
1177 sc->re_tail = m;
1178 }
1179 re_newbuf(sc, i, NULL);
1180 continue;
1181 }
1182
1183 /*
1184 * NOTE: for the 8139C+, the frame length field
1185 * is always 12 bits in size, but for the gigE chips,
1186 * it is 13 bits (since the max RX frame length is 16K).
1187 * Unfortunately, all 32 bits in the status word
1188 * were already used, so to make room for the extra
1189 * length bit, RealTek took out the 'frame alignment
1190 * error' bit and shifted the other status bits
1191 * over one slot. The OWN, EOR, FS and LS bits are
1192 * still in the same places. We have already extracted
1193 * the frame length and checked the OWN bit, so rather
1194 * than using an alternate bit mapping, we shift the
1195 * status bits one space to the right so we can evaluate
1196 * them using the 8169 status as though it was in the
1197 * same format as that of the 8139C+.
1198 */
1199 if (sc->rtk_type == RTK_8169)
1200 rxstat >>= 1;
1201
1202 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1203 ifp->if_ierrors++;
1204 /*
1205 * If this is part of a multi-fragment packet,
1206 * discard all the pieces.
1207 */
1208 if (sc->re_head != NULL) {
1209 m_freem(sc->re_head);
1210 sc->re_head = sc->re_tail = NULL;
1211 }
1212 re_newbuf(sc, i, m);
1213 continue;
1214 }
1215
1216 /*
1217 * If allocating a replacement mbuf fails,
1218 * reload the current one.
1219 */
1220
1221 if (re_newbuf(sc, i, NULL) != 0) {
1222 ifp->if_ierrors++;
1223 if (sc->re_head != NULL) {
1224 m_freem(sc->re_head);
1225 sc->re_head = sc->re_tail = NULL;
1226 }
1227 re_newbuf(sc, i, m);
1228 continue;
1229 }
1230
1231 if (sc->re_head != NULL) {
1232 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1233 /*
1234 * Special case: if there's 4 bytes or less
1235 * in this buffer, the mbuf can be discarded:
1236 * the last 4 bytes is the CRC, which we don't
1237 * care about anyway.
1238 */
1239 if (m->m_len <= ETHER_CRC_LEN) {
1240 sc->re_tail->m_len -=
1241 (ETHER_CRC_LEN - m->m_len);
1242 m_freem(m);
1243 } else {
1244 m->m_len -= ETHER_CRC_LEN;
1245 m->m_flags &= ~M_PKTHDR;
1246 sc->re_tail->m_next = m;
1247 }
1248 m = sc->re_head;
1249 sc->re_head = sc->re_tail = NULL;
1250 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1251 } else
1252 m->m_pkthdr.len = m->m_len =
1253 (total_len - ETHER_CRC_LEN);
1254
1255 ifp->if_ipackets++;
1256 m->m_pkthdr.rcvif = ifp;
1257
1258 /* Do RX checksumming if enabled */
1259
1260 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1261
1262 /* Check IP header checksum */
1263 if (rxstat & RE_RDESC_STAT_PROTOID)
1264 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1265 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1266 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1267 }
1268
1269 /* Check TCP/UDP checksum */
1270 if (RE_TCPPKT(rxstat) &&
1271 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1273 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1274 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1275 }
1276 if (RE_UDPPKT(rxstat) &&
1277 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1278 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1279 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1280 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1281 }
1282
1283 #ifdef RE_VLAN
1284 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1285 VLAN_INPUT_TAG(ifp, m,
1286 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1287 continue);
1288 }
1289 #endif
1290 #if NBPFILTER > 0
1291 if (ifp->if_bpf)
1292 bpf_mtap(ifp->if_bpf, m);
1293 #endif
1294 (*ifp->if_input)(ifp, m);
1295 }
1296
1297 sc->re_ldata.re_rx_prodidx = i;
1298 }
1299
1300 static void
1301 re_txeof(struct rtk_softc *sc)
1302 {
1303 struct ifnet *ifp;
1304 struct re_txq *txq;
1305 uint32_t txstat;
1306 int idx, descidx;
1307
1308 ifp = &sc->ethercom.ec_if;
1309
1310 for (idx = sc->re_ldata.re_txq_considx;
1311 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1312 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1313 txq = &sc->re_ldata.re_txq[idx];
1314 KASSERT(txq->txq_mbuf != NULL);
1315
1316 descidx = txq->txq_descidx;
1317 RE_TXDESCSYNC(sc, descidx,
1318 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1319 txstat =
1320 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1321 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1322 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1323 if (txstat & RE_TDESC_CMD_OWN) {
1324 break;
1325 }
1326
1327 sc->re_ldata.re_tx_free += txq->txq_dmamap->dm_nsegs;
1328 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1329 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1330 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1331 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1332 m_freem(txq->txq_mbuf);
1333 txq->txq_mbuf = NULL;
1334
1335 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1336 ifp->if_collisions++;
1337 if (txstat & RE_TDESC_STAT_TXERRSUM)
1338 ifp->if_oerrors++;
1339 else
1340 ifp->if_opackets++;
1341 }
1342
1343 sc->re_ldata.re_txq_considx = idx;
1344
1345 if (sc->re_ldata.re_txq_free > 0)
1346 ifp->if_flags &= ~IFF_OACTIVE;
1347
1348 /*
1349 * If not all descriptors have been released reaped yet,
1350 * reload the timer so that we will eventually get another
1351 * interrupt that will cause us to re-enter this routine.
1352 * This is done in case the transmitter has gone idle.
1353 */
1354 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1355 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1356 else
1357 ifp->if_timer = 0;
1358 }
1359
1360 /*
1361 * Stop all chip I/O so that the kernel's probe routines don't
1362 * get confused by errant DMAs when rebooting.
1363 */
1364 static void
1365 re_shutdown(void *vsc)
1366
1367 {
1368 struct rtk_softc *sc = vsc;
1369
1370 re_stop(&sc->ethercom.ec_if, 0);
1371 }
1372
1373
1374 static void
1375 re_tick(void *xsc)
1376 {
1377 struct rtk_softc *sc = xsc;
1378 int s;
1379
1380 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1381 s = splnet();
1382
1383 mii_tick(&sc->mii);
1384 splx(s);
1385
1386 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1387 }
1388
1389 #ifdef DEVICE_POLLING
1390 static void
1391 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1392 {
1393 struct rtk_softc *sc = ifp->if_softc;
1394
1395 RTK_LOCK(sc);
1396 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1397 ether_poll_deregister(ifp);
1398 cmd = POLL_DEREGISTER;
1399 }
1400 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1401 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1402 goto done;
1403 }
1404
1405 sc->rxcycles = count;
1406 re_rxeof(sc);
1407 re_txeof(sc);
1408
1409 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1410 (*ifp->if_start)(ifp);
1411
1412 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1413 uint16_t status;
1414
1415 status = CSR_READ_2(sc, RTK_ISR);
1416 if (status == 0xffff)
1417 goto done;
1418 if (status)
1419 CSR_WRITE_2(sc, RTK_ISR, status);
1420
1421 /*
1422 * XXX check behaviour on receiver stalls.
1423 */
1424
1425 if (status & RTK_ISR_SYSTEM_ERR) {
1426 re_init(sc);
1427 }
1428 }
1429 done:
1430 RTK_UNLOCK(sc);
1431 }
1432 #endif /* DEVICE_POLLING */
1433
1434 int
1435 re_intr(void *arg)
1436 {
1437 struct rtk_softc *sc = arg;
1438 struct ifnet *ifp;
1439 uint16_t status;
1440 int handled = 0;
1441
1442 ifp = &sc->ethercom.ec_if;
1443
1444 if ((ifp->if_flags & IFF_UP) == 0)
1445 return 0;
1446
1447 #ifdef DEVICE_POLLING
1448 if (ifp->if_flags & IFF_POLLING)
1449 goto done;
1450 if ((ifp->if_capenable & IFCAP_POLLING) &&
1451 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1452 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1453 re_poll(ifp, 0, 1);
1454 goto done;
1455 }
1456 #endif /* DEVICE_POLLING */
1457
1458 for (;;) {
1459
1460 status = CSR_READ_2(sc, RTK_ISR);
1461 /* If the card has gone away the read returns 0xffff. */
1462 if (status == 0xffff)
1463 break;
1464 if (status) {
1465 handled = 1;
1466 CSR_WRITE_2(sc, RTK_ISR, status);
1467 }
1468
1469 if ((status & RTK_INTRS_CPLUS) == 0)
1470 break;
1471
1472 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1473 re_rxeof(sc);
1474
1475 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1476 RTK_ISR_TX_DESC_UNAVAIL))
1477 re_txeof(sc);
1478
1479 if (status & RTK_ISR_SYSTEM_ERR) {
1480 re_init(ifp);
1481 }
1482
1483 if (status & RTK_ISR_LINKCHG) {
1484 callout_stop(&sc->rtk_tick_ch);
1485 re_tick(sc);
1486 }
1487 }
1488
1489 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1490 re_start(ifp);
1491
1492 #ifdef DEVICE_POLLING
1493 done:
1494 #endif
1495
1496 return handled;
1497 }
1498
1499
1500
1501 /*
1502 * Main transmit routine for C+ and gigE NICs.
1503 */
1504
1505 static void
1506 re_start(struct ifnet *ifp)
1507 {
1508 struct rtk_softc *sc;
1509 struct mbuf *m;
1510 bus_dmamap_t map;
1511 struct re_txq *txq;
1512 struct re_desc *d;
1513 #ifdef RE_VLAN
1514 struct m_tag *mtag;
1515 #endif
1516 uint32_t cmdstat, re_flags;
1517 int ofree, idx, error, seg;
1518 int startdesc, curdesc, lastdesc;
1519
1520 sc = ifp->if_softc;
1521 ofree = sc->re_ldata.re_txq_free;
1522
1523 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1524
1525 IFQ_POLL(&ifp->if_snd, m);
1526 if (m == NULL)
1527 break;
1528
1529 if (sc->re_ldata.re_txq_free == 0 ||
1530 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1531 /* no more free slots left */
1532 ifp->if_flags |= IFF_OACTIVE;
1533 break;
1534 }
1535
1536 /*
1537 * Set up checksum offload. Note: checksum offload bits must
1538 * appear in all descriptors of a multi-descriptor transmit
1539 * attempt. (This is according to testing done with an 8169
1540 * chip. I'm not sure if this is a requirement or a bug.)
1541 */
1542
1543 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1544 uint32_t segsz = m->m_pkthdr.segsz;
1545
1546 re_flags = RE_TDESC_CMD_LGSEND |
1547 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1548 } else {
1549 /*
1550 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1551 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1552 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1553 */
1554 re_flags = 0;
1555 if ((m->m_pkthdr.csum_flags &
1556 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1557 != 0) {
1558 re_flags |= RE_TDESC_CMD_IPCSUM;
1559 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1560 re_flags |= RE_TDESC_CMD_TCPCSUM;
1561 } else if (m->m_pkthdr.csum_flags &
1562 M_CSUM_UDPv4) {
1563 re_flags |= RE_TDESC_CMD_UDPCSUM;
1564 }
1565 }
1566 }
1567
1568 txq = &sc->re_ldata.re_txq[idx];
1569 map = txq->txq_dmamap;
1570 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1571 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1572
1573 if (error) {
1574 /* XXX try to defrag if EFBIG? */
1575 aprint_error("%s: can't map mbuf (error %d)\n",
1576 sc->sc_dev.dv_xname, error);
1577
1578 IFQ_DEQUEUE(&ifp->if_snd, m);
1579 m_freem(m);
1580 ifp->if_oerrors++;
1581 continue;
1582 }
1583
1584 if (map->dm_nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1585 /*
1586 * Not enough free descriptors to transmit this packet.
1587 */
1588 ifp->if_flags |= IFF_OACTIVE;
1589 bus_dmamap_unload(sc->sc_dmat, map);
1590 break;
1591 }
1592
1593 IFQ_DEQUEUE(&ifp->if_snd, m);
1594
1595 /*
1596 * Make sure that the caches are synchronized before we
1597 * ask the chip to start DMA for the packet data.
1598 */
1599 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1600 BUS_DMASYNC_PREWRITE);
1601
1602 /*
1603 * Map the segment array into descriptors.
1604 * Note that we set the start-of-frame and
1605 * end-of-frame markers for either TX or RX,
1606 * but they really only have meaning in the TX case.
1607 * (In the RX case, it's the chip that tells us
1608 * where packets begin and end.)
1609 * We also keep track of the end of the ring
1610 * and set the end-of-ring bits as needed,
1611 * and we set the ownership bits in all except
1612 * the very first descriptor. (The caller will
1613 * set this descriptor later when it start
1614 * transmission or reception.)
1615 */
1616 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1617 lastdesc = -1;
1618 for (seg = 0; seg < map->dm_nsegs;
1619 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1620 d = &sc->re_ldata.re_tx_list[curdesc];
1621 #ifdef DIAGNISTIC
1622 RE_TXDESCSYNC(sc, curdesc,
1623 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1624 cmdstat = le32toh(d->re_cmdstat);
1625 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1626 if (cmdstat & RE_TDESC_STAT_OWN) {
1627 panic("%s: tried to map busy TX descriptor",
1628 sc->sc_dev.dv_xname);
1629 }
1630 #endif
1631
1632 d->re_bufaddr_lo =
1633 htole32(RE_ADDR_LO(map->dm_segs[seg].ds_addr));
1634 d->re_bufaddr_hi =
1635 htole32(RE_ADDR_HI(map->dm_segs[seg].ds_addr));
1636 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1637 if (seg == 0)
1638 cmdstat |= RE_TDESC_CMD_SOF;
1639 else
1640 cmdstat |= RE_TDESC_CMD_OWN;
1641 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1642 cmdstat |= RE_TDESC_CMD_EOR;
1643 if (seg == map->dm_nsegs - 1) {
1644 cmdstat |= RE_TDESC_CMD_EOF;
1645 lastdesc = curdesc;
1646 }
1647 d->re_cmdstat = htole32(cmdstat);
1648 RE_TXDESCSYNC(sc, curdesc,
1649 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1650 }
1651 KASSERT(lastdesc != -1);
1652
1653 /*
1654 * Set up hardware VLAN tagging. Note: vlan tag info must
1655 * appear in the first descriptor of a multi-descriptor
1656 * transmission attempt.
1657 */
1658
1659 #ifdef RE_VLAN
1660 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1661 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1662 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1663 RE_TDESC_VLANCTL_TAG);
1664 }
1665 #endif
1666
1667 /* Transfer ownership of packet to the chip. */
1668
1669 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1670 htole32(RE_TDESC_CMD_OWN);
1671 RE_TXDESCSYNC(sc, startdesc,
1672 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673
1674 /* update info of TX queue and descriptors */
1675 txq->txq_mbuf = m;
1676 txq->txq_descidx = lastdesc;
1677
1678 sc->re_ldata.re_txq_free--;
1679 sc->re_ldata.re_tx_free -= map->dm_nsegs;
1680 sc->re_ldata.re_tx_nextfree = curdesc;
1681
1682 #if NBPFILTER > 0
1683 /*
1684 * If there's a BPF listener, bounce a copy of this frame
1685 * to him.
1686 */
1687 if (ifp->if_bpf)
1688 bpf_mtap(ifp->if_bpf, m);
1689 #endif
1690 }
1691
1692 if (sc->re_ldata.re_txq_free < ofree) {
1693 /*
1694 * TX packets are enqueued.
1695 */
1696 sc->re_ldata.re_txq_prodidx = idx;
1697
1698 /*
1699 * Start the transmitter to poll.
1700 *
1701 * RealTek put the TX poll request register in a different
1702 * location on the 8169 gigE chip. I don't know why.
1703 */
1704 if (sc->rtk_type == RTK_8169)
1705 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1706 else
1707 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1708
1709 /*
1710 * Use the countdown timer for interrupt moderation.
1711 * 'TX done' interrupts are disabled. Instead, we reset the
1712 * countdown timer, which will begin counting until it hits
1713 * the value in the TIMERINT register, and then trigger an
1714 * interrupt. Each time we write to the TIMERCNT register,
1715 * the timer count is reset to 0.
1716 */
1717 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1718
1719 /*
1720 * Set a timeout in case the chip goes out to lunch.
1721 */
1722 ifp->if_timer = 5;
1723 }
1724 }
1725
1726 static int
1727 re_init(struct ifnet *ifp)
1728 {
1729 struct rtk_softc *sc = ifp->if_softc;
1730 uint8_t *enaddr;
1731 uint32_t rxcfg = 0;
1732 uint32_t reg;
1733 int error;
1734
1735 if ((error = re_enable(sc)) != 0)
1736 goto out;
1737
1738 /*
1739 * Cancel pending I/O and free all RX/TX buffers.
1740 */
1741 re_stop(ifp, 0);
1742
1743 re_reset(sc);
1744
1745 /*
1746 * Enable C+ RX and TX mode, as well as VLAN stripping and
1747 * RX checksum offload. We must configure the C+ register
1748 * before all others.
1749 */
1750 reg = 0;
1751
1752 /*
1753 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1754 * FreeBSD drivers set these bits anyway (for 8139C+?).
1755 * So far, it works.
1756 */
1757
1758 /*
1759 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1760 * For 8169S/8110S rev 2 and above, do not set bit 14.
1761 */
1762 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1763 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1764
1765 if (1) {/* not for 8169S ? */
1766 reg |=
1767 #ifdef RE_VLAN
1768 RTK_CPLUSCMD_VLANSTRIP |
1769 #endif
1770 (ifp->if_capenable &
1771 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1772 IFCAP_CSUM_UDPv4_Rx) ?
1773 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1774 }
1775
1776 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1777 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1778
1779 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1780 if (sc->rtk_type == RTK_8169)
1781 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1782
1783 DELAY(10000);
1784
1785 /*
1786 * Init our MAC address. Even though the chipset
1787 * documentation doesn't mention it, we need to enter "Config
1788 * register write enable" mode to modify the ID registers.
1789 */
1790 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1791 enaddr = LLADDR(ifp->if_sadl);
1792 reg = enaddr[0] | (enaddr[1] << 8) |
1793 (enaddr[2] << 16) | (enaddr[3] << 24);
1794 CSR_WRITE_4(sc, RTK_IDR0, reg);
1795 reg = enaddr[4] | (enaddr[5] << 8);
1796 CSR_WRITE_4(sc, RTK_IDR4, reg);
1797 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1798
1799 /*
1800 * For C+ mode, initialize the RX descriptors and mbufs.
1801 */
1802 re_rx_list_init(sc);
1803 re_tx_list_init(sc);
1804
1805 /*
1806 * Load the addresses of the RX and TX lists into the chip.
1807 */
1808 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1809 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1810 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1811 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1812
1813 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1814 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1815 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1816 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1817
1818 /*
1819 * Enable transmit and receive.
1820 */
1821 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1822
1823 /*
1824 * Set the initial TX and RX configuration.
1825 */
1826 if (sc->re_testmode) {
1827 if (sc->rtk_type == RTK_8169)
1828 CSR_WRITE_4(sc, RTK_TXCFG,
1829 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1830 else
1831 CSR_WRITE_4(sc, RTK_TXCFG,
1832 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1833 } else
1834 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1835
1836 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1837
1838 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1839
1840 /* Set the individual bit to receive frames for this host only. */
1841 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1842 rxcfg |= RTK_RXCFG_RX_INDIV;
1843
1844 /* If we want promiscuous mode, set the allframes bit. */
1845 if (ifp->if_flags & IFF_PROMISC)
1846 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1847 else
1848 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1849 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1850
1851 /*
1852 * Set capture broadcast bit to capture broadcast frames.
1853 */
1854 if (ifp->if_flags & IFF_BROADCAST)
1855 rxcfg |= RTK_RXCFG_RX_BROAD;
1856 else
1857 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1858 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1859
1860 /*
1861 * Program the multicast filter, if necessary.
1862 */
1863 rtk_setmulti(sc);
1864
1865 #ifdef DEVICE_POLLING
1866 /*
1867 * Disable interrupts if we are polling.
1868 */
1869 if (ifp->if_flags & IFF_POLLING)
1870 CSR_WRITE_2(sc, RTK_IMR, 0);
1871 else /* otherwise ... */
1872 #endif /* DEVICE_POLLING */
1873 /*
1874 * Enable interrupts.
1875 */
1876 if (sc->re_testmode)
1877 CSR_WRITE_2(sc, RTK_IMR, 0);
1878 else
1879 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1880
1881 /* Start RX/TX process. */
1882 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1883 #ifdef notdef
1884 /* Enable receiver and transmitter. */
1885 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1886 #endif
1887
1888 /*
1889 * Initialize the timer interrupt register so that
1890 * a timer interrupt will be generated once the timer
1891 * reaches a certain number of ticks. The timer is
1892 * reloaded on each transmit. This gives us TX interrupt
1893 * moderation, which dramatically improves TX frame rate.
1894 */
1895
1896 if (sc->rtk_type == RTK_8169)
1897 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1898 else
1899 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1900
1901 /*
1902 * For 8169 gigE NICs, set the max allowed RX packet
1903 * size so we can receive jumbo frames.
1904 */
1905 if (sc->rtk_type == RTK_8169)
1906 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1907
1908 if (sc->re_testmode)
1909 return 0;
1910
1911 mii_mediachg(&sc->mii);
1912
1913 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1914
1915 ifp->if_flags |= IFF_RUNNING;
1916 ifp->if_flags &= ~IFF_OACTIVE;
1917
1918 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1919
1920 out:
1921 if (error) {
1922 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1923 ifp->if_timer = 0;
1924 aprint_error("%s: interface not running\n",
1925 sc->sc_dev.dv_xname);
1926 }
1927
1928 return error;
1929 }
1930
1931 /*
1932 * Set media options.
1933 */
1934 static int
1935 re_ifmedia_upd(struct ifnet *ifp)
1936 {
1937 struct rtk_softc *sc;
1938
1939 sc = ifp->if_softc;
1940
1941 return mii_mediachg(&sc->mii);
1942 }
1943
1944 /*
1945 * Report current media status.
1946 */
1947 static void
1948 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1949 {
1950 struct rtk_softc *sc;
1951
1952 sc = ifp->if_softc;
1953
1954 mii_pollstat(&sc->mii);
1955 ifmr->ifm_active = sc->mii.mii_media_active;
1956 ifmr->ifm_status = sc->mii.mii_media_status;
1957 }
1958
1959 static int
1960 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1961 {
1962 struct rtk_softc *sc = ifp->if_softc;
1963 struct ifreq *ifr = (struct ifreq *) data;
1964 int s, error = 0;
1965
1966 s = splnet();
1967
1968 switch (command) {
1969 case SIOCSIFMTU:
1970 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1971 error = EINVAL;
1972 ifp->if_mtu = ifr->ifr_mtu;
1973 break;
1974 case SIOCGIFMEDIA:
1975 case SIOCSIFMEDIA:
1976 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1977 break;
1978 default:
1979 error = ether_ioctl(ifp, command, data);
1980 if (error == ENETRESET) {
1981 if (ifp->if_flags & IFF_RUNNING)
1982 rtk_setmulti(sc);
1983 error = 0;
1984 }
1985 break;
1986 }
1987
1988 splx(s);
1989
1990 return error;
1991 }
1992
1993 static void
1994 re_watchdog(struct ifnet *ifp)
1995 {
1996 struct rtk_softc *sc;
1997 int s;
1998
1999 sc = ifp->if_softc;
2000 s = splnet();
2001 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2002 ifp->if_oerrors++;
2003
2004 re_txeof(sc);
2005 re_rxeof(sc);
2006
2007 re_init(ifp);
2008
2009 splx(s);
2010 }
2011
2012 /*
2013 * Stop the adapter and free any mbufs allocated to the
2014 * RX and TX lists.
2015 */
2016 static void
2017 re_stop(struct ifnet *ifp, int disable)
2018 {
2019 int i;
2020 struct rtk_softc *sc = ifp->if_softc;
2021
2022 callout_stop(&sc->rtk_tick_ch);
2023
2024 #ifdef DEVICE_POLLING
2025 ether_poll_deregister(ifp);
2026 #endif /* DEVICE_POLLING */
2027
2028 mii_down(&sc->mii);
2029
2030 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2031 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2032
2033 if (sc->re_head != NULL) {
2034 m_freem(sc->re_head);
2035 sc->re_head = sc->re_tail = NULL;
2036 }
2037
2038 /* Free the TX list buffers. */
2039 for (i = 0; i < RE_TX_QLEN; i++) {
2040 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2041 bus_dmamap_unload(sc->sc_dmat,
2042 sc->re_ldata.re_txq[i].txq_dmamap);
2043 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2044 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2045 }
2046 }
2047
2048 /* Free the RX list buffers. */
2049 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2050 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2051 bus_dmamap_unload(sc->sc_dmat,
2052 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2053 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2054 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2055 }
2056 }
2057
2058 if (disable)
2059 re_disable(sc);
2060
2061 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2062 ifp->if_timer = 0;
2063 }
2064