rtl8169.c revision 1.63 1 /* $NetBSD: rtl8169.c,v 1.63 2006/11/17 21:29:36 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
157 static int re_rx_list_init(struct rtk_softc *);
158 static int re_tx_list_init(struct rtk_softc *);
159 static void re_rxeof(struct rtk_softc *);
160 static void re_txeof(struct rtk_softc *);
161 static void re_tick(void *);
162 static void re_start(struct ifnet *);
163 static int re_ioctl(struct ifnet *, u_long, caddr_t);
164 static int re_init(struct ifnet *);
165 static void re_stop(struct ifnet *, int);
166 static void re_watchdog(struct ifnet *);
167
168 static void re_shutdown(void *);
169 static int re_enable(struct rtk_softc *);
170 static void re_disable(struct rtk_softc *);
171 static void re_power(int, void *);
172
173 static int re_ifmedia_upd(struct ifnet *);
174 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175
176 static int re_gmii_readreg(struct device *, int, int);
177 static void re_gmii_writereg(struct device *, int, int, int);
178
179 static int re_miibus_readreg(struct device *, int, int);
180 static void re_miibus_writereg(struct device *, int, int, int);
181 static void re_miibus_statchg(struct device *);
182
183 static void re_reset(struct rtk_softc *);
184
185 static int
186 re_gmii_readreg(struct device *self, int phy, int reg)
187 {
188 struct rtk_softc *sc = (void *)self;
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = (void *)dev;
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 aprint_error("%s: PHY write reg %x <- %x failed\n",
240 sc->sc_dev.dv_xname, reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(struct device *dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = (void *)dev;
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if (sc->rtk_type == RTK_8169) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = (void *)dev;
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if (sc->rtk_type == RTK_8169) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if (sc->rtk_type == RTK_8139CPLUS) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(struct device *dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 aprint_error("%s: reset never completed!\n",
385 sc->sc_dev.dv_xname);
386
387 /*
388 * NB: Realtek-supplied Linux driver does this only for
389 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
390 */
391 if (1) /* XXX check softc flag for 8169s version */
392 CSR_WRITE_1(sc, 0x82, 1);
393
394 return;
395 }
396
397 /*
398 * The following routine is designed to test for a defect on some
399 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
400 * lines connected to the bus, however for a 32-bit only card, they
401 * should be pulled high. The result of this defect is that the
402 * NIC will not work right if you plug it into a 64-bit slot: DMA
403 * operations will be done with 64-bit transfers, which will fail
404 * because the 64-bit data lines aren't connected.
405 *
406 * There's no way to work around this (short of talking a soldering
407 * iron to the board), however we can detect it. The method we use
408 * here is to put the NIC into digital loopback mode, set the receiver
409 * to promiscuous mode, and then try to send a frame. We then compare
410 * the frame data we sent to what was received. If the data matches,
411 * then the NIC is working correctly, otherwise we know the user has
412 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
413 * slot. In the latter case, there's no way the NIC can work correctly,
414 * so we print out a message on the console and abort the device attach.
415 */
416
417 int
418 re_diag(struct rtk_softc *sc)
419 {
420 struct ifnet *ifp = &sc->ethercom.ec_if;
421 struct mbuf *m0;
422 struct ether_header *eh;
423 struct re_rxsoft *rxs;
424 struct re_desc *cur_rx;
425 bus_dmamap_t dmamap;
426 uint16_t status;
427 uint32_t rxstat;
428 int total_len, i, s, error = 0;
429 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
430 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
431
432 /* Allocate a single mbuf */
433
434 MGETHDR(m0, M_DONTWAIT, MT_DATA);
435 if (m0 == NULL)
436 return ENOBUFS;
437
438 /*
439 * Initialize the NIC in test mode. This sets the chip up
440 * so that it can send and receive frames, but performs the
441 * following special functions:
442 * - Puts receiver in promiscuous mode
443 * - Enables digital loopback mode
444 * - Leaves interrupts turned off
445 */
446
447 ifp->if_flags |= IFF_PROMISC;
448 sc->re_testmode = 1;
449 re_init(ifp);
450 re_stop(ifp, 0);
451 DELAY(100000);
452 re_init(ifp);
453
454 /* Put some data in the mbuf */
455
456 eh = mtod(m0, struct ether_header *);
457 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
458 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
459 eh->ether_type = htons(ETHERTYPE_IP);
460 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
461
462 /*
463 * Queue the packet, start transmission.
464 */
465
466 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
467 s = splnet();
468 IF_ENQUEUE(&ifp->if_snd, m0);
469 re_start(ifp);
470 splx(s);
471 m0 = NULL;
472
473 /* Wait for it to propagate through the chip */
474
475 DELAY(100000);
476 for (i = 0; i < RTK_TIMEOUT; i++) {
477 status = CSR_READ_2(sc, RTK_ISR);
478 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
479 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
480 break;
481 DELAY(10);
482 }
483 if (i == RTK_TIMEOUT) {
484 aprint_error("%s: diagnostic failed, failed to receive packet "
485 "in loopback mode\n", sc->sc_dev.dv_xname);
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error("%s: diagnostic failed, received short packet\n",
512 sc->sc_dev.dv_xname);
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error("%s: WARNING, DMA FAILURE!\n",
523 sc->sc_dev.dv_xname);
524 aprint_error("%s: expected TX data: %s",
525 sc->sc_dev.dv_xname, ether_sprintf(dst));
526 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
527 aprint_error("%s: received RX data: %s",
528 sc->sc_dev.dv_xname,
529 ether_sprintf(eh->ether_dhost));
530 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
531 ntohs(eh->ether_type));
532 aprint_error("%s: You may have a defective 32-bit NIC plugged "
533 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
535 "for proper operation.\n", sc->sc_dev.dv_xname);
536 aprint_error("%s: Read the re(4) man page for more details.\n",
537 sc->sc_dev.dv_xname);
538 error = EIO;
539 }
540
541 done:
542 /* Turn interface off, release resources */
543
544 sc->re_testmode = 0;
545 ifp->if_flags &= ~IFF_PROMISC;
546 re_stop(ifp, 0);
547 if (m0 != NULL)
548 m_freem(m0);
549
550 return error;
551 }
552
553
554 /*
555 * Attach the interface. Allocate softc structures, do ifmedia
556 * setup and ethernet/BPF attach.
557 */
558 void
559 re_attach(struct rtk_softc *sc)
560 {
561 u_char eaddr[ETHER_ADDR_LEN];
562 uint16_t val;
563 struct ifnet *ifp;
564 int error = 0, i, addr_len;
565
566
567 /* XXX JRS: bus-attach-independent code begins approximately here */
568
569 /* Reset the adapter. */
570 re_reset(sc);
571
572 if (sc->rtk_type == RTK_8169) {
573 uint32_t hwrev;
574
575 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
576 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
577 if (hwrev == (0x1 << 28)) {
578 sc->sc_rev = 4;
579 } else if (hwrev == (0x1 << 26)) {
580 sc->sc_rev = 3;
581 } else if (hwrev == (0x1 << 23)) {
582 sc->sc_rev = 2;
583 } else
584 sc->sc_rev = 1;
585
586 /* Set RX length mask */
587
588 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
589
590 /* Force station address autoload from the EEPROM */
591
592 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
593 for (i = 0; i < RTK_TIMEOUT; i++) {
594 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
595 == 0)
596 break;
597 DELAY(100);
598 }
599 if (i == RTK_TIMEOUT)
600 aprint_error("%s: eeprom autoload timed out\n",
601 sc->sc_dev.dv_xname);
602
603 for (i = 0; i < ETHER_ADDR_LEN; i++)
604 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
605
606 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
607 } else {
608
609 /* Set RX length mask */
610
611 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
612
613 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
614 addr_len = RTK_EEADDR_LEN1;
615 else
616 addr_len = RTK_EEADDR_LEN0;
617
618 /*
619 * Get station address from the EEPROM.
620 */
621 for (i = 0; i < 3; i++) {
622 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
623 eaddr[(i * 2) + 0] = val & 0xff;
624 eaddr[(i * 2) + 1] = val >> 8;
625 }
626
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
628 }
629
630 aprint_normal("%s: Ethernet address %s\n",
631 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
632
633 if (sc->re_ldata.re_tx_desc_cnt >
634 PAGE_SIZE / sizeof(struct re_desc)) {
635 sc->re_ldata.re_tx_desc_cnt =
636 PAGE_SIZE / sizeof(struct re_desc);
637 }
638
639 aprint_verbose("%s: using %d tx descriptors\n",
640 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
641
642 /* Allocate DMA'able memory for the TX ring */
643 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
644 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
645 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
646 aprint_error("%s: can't allocate tx listseg, error = %d\n",
647 sc->sc_dev.dv_xname, error);
648 goto fail_0;
649 }
650
651 /* Load the map for the TX ring. */
652 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
653 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
654 (caddr_t *)&sc->re_ldata.re_tx_list,
655 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
656 aprint_error("%s: can't map tx list, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_1;
659 }
660 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
661
662 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
663 RE_TX_LIST_SZ(sc), 0, 0,
664 &sc->re_ldata.re_tx_list_map)) != 0) {
665 aprint_error("%s: can't create tx list map, error = %d\n",
666 sc->sc_dev.dv_xname, error);
667 goto fail_2;
668 }
669
670
671 if ((error = bus_dmamap_load(sc->sc_dmat,
672 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
673 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
674 aprint_error("%s: can't load tx list, error = %d\n",
675 sc->sc_dev.dv_xname, error);
676 goto fail_3;
677 }
678
679 /* Create DMA maps for TX buffers */
680 for (i = 0; i < RE_TX_QLEN; i++) {
681 error = bus_dmamap_create(sc->sc_dmat,
682 round_page(IP_MAXPACKET),
683 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
684 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
685 if (error) {
686 aprint_error("%s: can't create DMA map for TX\n",
687 sc->sc_dev.dv_xname);
688 goto fail_4;
689 }
690 }
691
692 /* Allocate DMA'able memory for the RX ring */
693 if ((error = bus_dmamem_alloc(sc->sc_dmat,
694 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
695 RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
696 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
697 aprint_error("%s: can't allocate rx listseg, error = %d\n",
698 sc->sc_dev.dv_xname, error);
699 goto fail_4;
700 }
701
702 /* Load the map for the RX ring. */
703 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
704 sc->re_ldata.re_rx_listnseg, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
705 (caddr_t *)&sc->re_ldata.re_rx_list,
706 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
707 aprint_error("%s: can't map rx list, error = %d\n",
708 sc->sc_dev.dv_xname, error);
709 goto fail_5;
710 }
711 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN);
712
713 if ((error = bus_dmamap_create(sc->sc_dmat,
714 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 1,
715 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 0, 0,
716 &sc->re_ldata.re_rx_list_map)) != 0) {
717 aprint_error("%s: can't create rx list map, error = %d\n",
718 sc->sc_dev.dv_xname, error);
719 goto fail_6;
720 }
721
722 if ((error = bus_dmamap_load(sc->sc_dmat,
723 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
724 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, NULL, BUS_DMA_NOWAIT)) != 0) {
725 aprint_error("%s: can't load rx list, error = %d\n",
726 sc->sc_dev.dv_xname, error);
727 goto fail_7;
728 }
729
730 /* Create DMA maps for RX buffers */
731 for (i = 0; i < RE_RX_DESC_CNT; i++) {
732 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
733 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
734 if (error) {
735 aprint_error("%s: can't create DMA map for RX\n",
736 sc->sc_dev.dv_xname);
737 goto fail_8;
738 }
739 }
740
741 /*
742 * Record interface as attached. From here, we should not fail.
743 */
744 sc->sc_flags |= RTK_ATTACHED;
745
746 ifp = &sc->ethercom.ec_if;
747 ifp->if_softc = sc;
748 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
749 ifp->if_mtu = ETHERMTU;
750 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 ifp->if_ioctl = re_ioctl;
752 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
753
754 /*
755 * This is a way to disable hw VLAN tagging by default
756 * (RE_VLAN is undefined), as it is problematic. PR 32643
757 */
758
759 #ifdef RE_VLAN
760 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
761 #endif
762 ifp->if_start = re_start;
763 ifp->if_stop = re_stop;
764
765 /*
766 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
767 */
768
769 ifp->if_capabilities |=
770 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
771 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
772 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
773 IFCAP_TSOv4;
774 ifp->if_watchdog = re_watchdog;
775 ifp->if_init = re_init;
776 if (sc->rtk_type == RTK_8169)
777 ifp->if_baudrate = 1000000000;
778 else
779 ifp->if_baudrate = 100000000;
780 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
781 ifp->if_capenable = ifp->if_capabilities;
782 IFQ_SET_READY(&ifp->if_snd);
783
784 callout_init(&sc->rtk_tick_ch);
785
786 /* Do MII setup */
787 sc->mii.mii_ifp = ifp;
788 sc->mii.mii_readreg = re_miibus_readreg;
789 sc->mii.mii_writereg = re_miibus_writereg;
790 sc->mii.mii_statchg = re_miibus_statchg;
791 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
792 re_ifmedia_sts);
793 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
794 MII_OFFSET_ANY, 0);
795 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
796
797 /*
798 * Call MI attach routine.
799 */
800 if_attach(ifp);
801 ether_ifattach(ifp, eaddr);
802
803
804 /*
805 * Make sure the interface is shutdown during reboot.
806 */
807 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
808 if (sc->sc_sdhook == NULL)
809 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
810 sc->sc_dev.dv_xname);
811 /*
812 * Add a suspend hook to make sure we come back up after a
813 * resume.
814 */
815 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
816 re_power, sc);
817 if (sc->sc_powerhook == NULL)
818 aprint_error("%s: WARNING: unable to establish power hook\n",
819 sc->sc_dev.dv_xname);
820
821
822 return;
823
824 fail_8:
825 /* Destroy DMA maps for RX buffers. */
826 for (i = 0; i < RE_RX_DESC_CNT; i++)
827 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
828 bus_dmamap_destroy(sc->sc_dmat,
829 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
830
831 /* Free DMA'able memory for the RX ring. */
832 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
833 fail_7:
834 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
835 fail_6:
836 bus_dmamem_unmap(sc->sc_dmat,
837 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
838 fail_5:
839 bus_dmamem_free(sc->sc_dmat,
840 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
841
842 fail_4:
843 /* Destroy DMA maps for TX buffers. */
844 for (i = 0; i < RE_TX_QLEN; i++)
845 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
846 bus_dmamap_destroy(sc->sc_dmat,
847 sc->re_ldata.re_txq[i].txq_dmamap);
848
849 /* Free DMA'able memory for the TX ring. */
850 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
851 fail_3:
852 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
853 fail_2:
854 bus_dmamem_unmap(sc->sc_dmat,
855 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
856 fail_1:
857 bus_dmamem_free(sc->sc_dmat,
858 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
859 fail_0:
860 return;
861 }
862
863
864 /*
865 * re_activate:
866 * Handle device activation/deactivation requests.
867 */
868 int
869 re_activate(struct device *self, enum devact act)
870 {
871 struct rtk_softc *sc = (void *)self;
872 int s, error = 0;
873
874 s = splnet();
875 switch (act) {
876 case DVACT_ACTIVATE:
877 error = EOPNOTSUPP;
878 break;
879 case DVACT_DEACTIVATE:
880 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
881 if_deactivate(&sc->ethercom.ec_if);
882 break;
883 }
884 splx(s);
885
886 return error;
887 }
888
889 /*
890 * re_detach:
891 * Detach a rtk interface.
892 */
893 int
894 re_detach(struct rtk_softc *sc)
895 {
896 struct ifnet *ifp = &sc->ethercom.ec_if;
897 int i;
898
899 /*
900 * Succeed now if there isn't any work to do.
901 */
902 if ((sc->sc_flags & RTK_ATTACHED) == 0)
903 return 0;
904
905 /* Unhook our tick handler. */
906 callout_stop(&sc->rtk_tick_ch);
907
908 /* Detach all PHYs. */
909 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
910
911 /* Delete all remaining media. */
912 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
913
914 ether_ifdetach(ifp);
915 if_detach(ifp);
916
917 /* Destroy DMA maps for RX buffers. */
918 for (i = 0; i < RE_RX_DESC_CNT; i++)
919 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
920 bus_dmamap_destroy(sc->sc_dmat,
921 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
922
923 /* Free DMA'able memory for the RX ring. */
924 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
925 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
926 bus_dmamem_unmap(sc->sc_dmat,
927 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
928 bus_dmamem_free(sc->sc_dmat,
929 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
930
931 /* Destroy DMA maps for TX buffers. */
932 for (i = 0; i < RE_TX_QLEN; i++)
933 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
934 bus_dmamap_destroy(sc->sc_dmat,
935 sc->re_ldata.re_txq[i].txq_dmamap);
936
937 /* Free DMA'able memory for the TX ring. */
938 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
939 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
940 bus_dmamem_unmap(sc->sc_dmat,
941 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
942 bus_dmamem_free(sc->sc_dmat,
943 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
944
945
946 shutdownhook_disestablish(sc->sc_sdhook);
947 powerhook_disestablish(sc->sc_powerhook);
948
949 return 0;
950 }
951
952 /*
953 * re_enable:
954 * Enable the RTL81X9 chip.
955 */
956 static int
957 re_enable(struct rtk_softc *sc)
958 {
959
960 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
961 if ((*sc->sc_enable)(sc) != 0) {
962 aprint_error("%s: device enable failed\n",
963 sc->sc_dev.dv_xname);
964 return EIO;
965 }
966 sc->sc_flags |= RTK_ENABLED;
967 }
968 return 0;
969 }
970
971 /*
972 * re_disable:
973 * Disable the RTL81X9 chip.
974 */
975 static void
976 re_disable(struct rtk_softc *sc)
977 {
978
979 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
980 (*sc->sc_disable)(sc);
981 sc->sc_flags &= ~RTK_ENABLED;
982 }
983 }
984
985 /*
986 * re_power:
987 * Power management (suspend/resume) hook.
988 */
989 void
990 re_power(int why, void *arg)
991 {
992 struct rtk_softc *sc = (void *)arg;
993 struct ifnet *ifp = &sc->ethercom.ec_if;
994 int s;
995
996 s = splnet();
997 switch (why) {
998 case PWR_SUSPEND:
999 case PWR_STANDBY:
1000 re_stop(ifp, 0);
1001 if (sc->sc_power != NULL)
1002 (*sc->sc_power)(sc, why);
1003 break;
1004 case PWR_RESUME:
1005 if (ifp->if_flags & IFF_UP) {
1006 if (sc->sc_power != NULL)
1007 (*sc->sc_power)(sc, why);
1008 re_init(ifp);
1009 }
1010 break;
1011 case PWR_SOFTSUSPEND:
1012 case PWR_SOFTSTANDBY:
1013 case PWR_SOFTRESUME:
1014 break;
1015 }
1016 splx(s);
1017 }
1018
1019
1020 static int
1021 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1022 {
1023 struct mbuf *n = NULL;
1024 bus_dmamap_t map;
1025 struct re_desc *d;
1026 struct re_rxsoft *rxs;
1027 uint32_t cmdstat;
1028 int error;
1029
1030 if (m == NULL) {
1031 MGETHDR(n, M_DONTWAIT, MT_DATA);
1032 if (n == NULL)
1033 return ENOBUFS;
1034
1035 MCLGET(n, M_DONTWAIT);
1036 if ((n->m_flags & M_EXT) == 0) {
1037 m_freem(n);
1038 return ENOBUFS;
1039 }
1040 m = n;
1041 } else
1042 m->m_data = m->m_ext.ext_buf;
1043
1044 /*
1045 * Initialize mbuf length fields and fixup
1046 * alignment so that the frame payload is
1047 * longword aligned.
1048 */
1049 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1050 m->m_data += RE_ETHER_ALIGN;
1051
1052 rxs = &sc->re_ldata.re_rxsoft[idx];
1053 map = rxs->rxs_dmamap;
1054 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1055 BUS_DMA_READ|BUS_DMA_NOWAIT);
1056
1057 if (error)
1058 goto out;
1059
1060 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1061 BUS_DMASYNC_PREREAD);
1062
1063 d = &sc->re_ldata.re_rx_list[idx];
1064 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1065 cmdstat = le32toh(d->re_cmdstat);
1066 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1067 if (cmdstat & RE_RDESC_STAT_OWN) {
1068 aprint_error("%s: tried to map busy RX descriptor\n",
1069 sc->sc_dev.dv_xname);
1070 goto out;
1071 }
1072
1073 rxs->rxs_mbuf = m;
1074
1075 cmdstat = map->dm_segs[0].ds_len;
1076 if (idx == (RE_RX_DESC_CNT - 1))
1077 cmdstat |= RE_RDESC_CMD_EOR;
1078 d->re_bufaddr_lo = htole32(RE_ADDR_LO(map->dm_segs[0].ds_addr));
1079 d->re_bufaddr_hi = htole32(RE_ADDR_HI(map->dm_segs[0].ds_addr));
1080 d->re_cmdstat = htole32(cmdstat);
1081 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082 cmdstat |= RE_RDESC_CMD_OWN;
1083 d->re_cmdstat = htole32(cmdstat);
1084 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085
1086 return 0;
1087 out:
1088 if (n != NULL)
1089 m_freem(n);
1090 return ENOMEM;
1091 }
1092
1093 static int
1094 re_tx_list_init(struct rtk_softc *sc)
1095 {
1096 int i;
1097
1098 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1099 for (i = 0; i < RE_TX_QLEN; i++) {
1100 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1101 }
1102
1103 bus_dmamap_sync(sc->sc_dmat,
1104 sc->re_ldata.re_tx_list_map, 0,
1105 sc->re_ldata.re_tx_list_map->dm_mapsize,
1106 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1107 sc->re_ldata.re_txq_prodidx = 0;
1108 sc->re_ldata.re_txq_considx = 0;
1109 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1110 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1111 sc->re_ldata.re_tx_nextfree = 0;
1112
1113 return 0;
1114 }
1115
1116 static int
1117 re_rx_list_init(struct rtk_softc *sc)
1118 {
1119 int i;
1120
1121 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1122
1123 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1124 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1125 return ENOBUFS;
1126 }
1127
1128 sc->re_ldata.re_rx_prodidx = 0;
1129 sc->re_head = sc->re_tail = NULL;
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * RX handler for C+ and 8169. For the gigE chips, we support
1136 * the reception of jumbo frames that have been fragmented
1137 * across multiple 2K mbuf cluster buffers.
1138 */
1139 static void
1140 re_rxeof(struct rtk_softc *sc)
1141 {
1142 struct mbuf *m;
1143 struct ifnet *ifp;
1144 int i, total_len;
1145 struct re_desc *cur_rx;
1146 struct re_rxsoft *rxs;
1147 uint32_t rxstat, rxvlan;
1148
1149 ifp = &sc->ethercom.ec_if;
1150
1151 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1152 cur_rx = &sc->re_ldata.re_rx_list[i];
1153 RE_RXDESCSYNC(sc, i,
1154 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1155 rxstat = le32toh(cur_rx->re_cmdstat);
1156 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1157 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1158 break;
1159 }
1160 total_len = rxstat & sc->re_rxlenmask;
1161 rxvlan = le32toh(cur_rx->re_vlanctl);
1162 rxs = &sc->re_ldata.re_rxsoft[i];
1163 m = rxs->rxs_mbuf;
1164
1165 /* Invalidate the RX mbuf and unload its map */
1166
1167 bus_dmamap_sync(sc->sc_dmat,
1168 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1169 BUS_DMASYNC_POSTREAD);
1170 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1171
1172 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1173 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1174 if (sc->re_head == NULL)
1175 sc->re_head = sc->re_tail = m;
1176 else {
1177 m->m_flags &= ~M_PKTHDR;
1178 sc->re_tail->m_next = m;
1179 sc->re_tail = m;
1180 }
1181 re_newbuf(sc, i, NULL);
1182 continue;
1183 }
1184
1185 /*
1186 * NOTE: for the 8139C+, the frame length field
1187 * is always 12 bits in size, but for the gigE chips,
1188 * it is 13 bits (since the max RX frame length is 16K).
1189 * Unfortunately, all 32 bits in the status word
1190 * were already used, so to make room for the extra
1191 * length bit, RealTek took out the 'frame alignment
1192 * error' bit and shifted the other status bits
1193 * over one slot. The OWN, EOR, FS and LS bits are
1194 * still in the same places. We have already extracted
1195 * the frame length and checked the OWN bit, so rather
1196 * than using an alternate bit mapping, we shift the
1197 * status bits one space to the right so we can evaluate
1198 * them using the 8169 status as though it was in the
1199 * same format as that of the 8139C+.
1200 */
1201 if (sc->rtk_type == RTK_8169)
1202 rxstat >>= 1;
1203
1204 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1205 ifp->if_ierrors++;
1206 /*
1207 * If this is part of a multi-fragment packet,
1208 * discard all the pieces.
1209 */
1210 if (sc->re_head != NULL) {
1211 m_freem(sc->re_head);
1212 sc->re_head = sc->re_tail = NULL;
1213 }
1214 re_newbuf(sc, i, m);
1215 continue;
1216 }
1217
1218 /*
1219 * If allocating a replacement mbuf fails,
1220 * reload the current one.
1221 */
1222
1223 if (re_newbuf(sc, i, NULL) != 0) {
1224 ifp->if_ierrors++;
1225 if (sc->re_head != NULL) {
1226 m_freem(sc->re_head);
1227 sc->re_head = sc->re_tail = NULL;
1228 }
1229 re_newbuf(sc, i, m);
1230 continue;
1231 }
1232
1233 if (sc->re_head != NULL) {
1234 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1235 /*
1236 * Special case: if there's 4 bytes or less
1237 * in this buffer, the mbuf can be discarded:
1238 * the last 4 bytes is the CRC, which we don't
1239 * care about anyway.
1240 */
1241 if (m->m_len <= ETHER_CRC_LEN) {
1242 sc->re_tail->m_len -=
1243 (ETHER_CRC_LEN - m->m_len);
1244 m_freem(m);
1245 } else {
1246 m->m_len -= ETHER_CRC_LEN;
1247 m->m_flags &= ~M_PKTHDR;
1248 sc->re_tail->m_next = m;
1249 }
1250 m = sc->re_head;
1251 sc->re_head = sc->re_tail = NULL;
1252 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1253 } else
1254 m->m_pkthdr.len = m->m_len =
1255 (total_len - ETHER_CRC_LEN);
1256
1257 ifp->if_ipackets++;
1258 m->m_pkthdr.rcvif = ifp;
1259
1260 /* Do RX checksumming if enabled */
1261
1262 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1263
1264 /* Check IP header checksum */
1265 if (rxstat & RE_RDESC_STAT_PROTOID)
1266 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1267 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1268 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1269 }
1270
1271 /* Check TCP/UDP checksum */
1272 if (RE_TCPPKT(rxstat) &&
1273 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1274 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1275 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1276 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1277 }
1278 if (RE_UDPPKT(rxstat) &&
1279 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1280 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1281 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1282 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1283 }
1284
1285 #ifdef RE_VLAN
1286 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1287 VLAN_INPUT_TAG(ifp, m,
1288 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1289 continue);
1290 }
1291 #endif
1292 #if NBPFILTER > 0
1293 if (ifp->if_bpf)
1294 bpf_mtap(ifp->if_bpf, m);
1295 #endif
1296 (*ifp->if_input)(ifp, m);
1297 }
1298
1299 sc->re_ldata.re_rx_prodidx = i;
1300 }
1301
1302 static void
1303 re_txeof(struct rtk_softc *sc)
1304 {
1305 struct ifnet *ifp;
1306 struct re_txq *txq;
1307 uint32_t txstat;
1308 int idx, descidx;
1309
1310 ifp = &sc->ethercom.ec_if;
1311
1312 for (idx = sc->re_ldata.re_txq_considx;
1313 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1314 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1315 txq = &sc->re_ldata.re_txq[idx];
1316 KASSERT(txq->txq_mbuf != NULL);
1317
1318 descidx = txq->txq_descidx;
1319 RE_TXDESCSYNC(sc, descidx,
1320 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1321 txstat =
1322 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1323 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1324 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1325 if (txstat & RE_TDESC_CMD_OWN) {
1326 break;
1327 }
1328
1329 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1330 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1331 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1332 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1333 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1334 m_freem(txq->txq_mbuf);
1335 txq->txq_mbuf = NULL;
1336
1337 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1338 ifp->if_collisions++;
1339 if (txstat & RE_TDESC_STAT_TXERRSUM)
1340 ifp->if_oerrors++;
1341 else
1342 ifp->if_opackets++;
1343 }
1344
1345 sc->re_ldata.re_txq_considx = idx;
1346
1347 if (sc->re_ldata.re_txq_free > 0)
1348 ifp->if_flags &= ~IFF_OACTIVE;
1349
1350 /*
1351 * If not all descriptors have been released reaped yet,
1352 * reload the timer so that we will eventually get another
1353 * interrupt that will cause us to re-enter this routine.
1354 * This is done in case the transmitter has gone idle.
1355 */
1356 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1357 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1358 else
1359 ifp->if_timer = 0;
1360 }
1361
1362 /*
1363 * Stop all chip I/O so that the kernel's probe routines don't
1364 * get confused by errant DMAs when rebooting.
1365 */
1366 static void
1367 re_shutdown(void *vsc)
1368
1369 {
1370 struct rtk_softc *sc = vsc;
1371
1372 re_stop(&sc->ethercom.ec_if, 0);
1373 }
1374
1375
1376 static void
1377 re_tick(void *xsc)
1378 {
1379 struct rtk_softc *sc = xsc;
1380 int s;
1381
1382 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1383 s = splnet();
1384
1385 mii_tick(&sc->mii);
1386 splx(s);
1387
1388 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1389 }
1390
1391 #ifdef DEVICE_POLLING
1392 static void
1393 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1394 {
1395 struct rtk_softc *sc = ifp->if_softc;
1396
1397 RTK_LOCK(sc);
1398 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1399 ether_poll_deregister(ifp);
1400 cmd = POLL_DEREGISTER;
1401 }
1402 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1403 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1404 goto done;
1405 }
1406
1407 sc->rxcycles = count;
1408 re_rxeof(sc);
1409 re_txeof(sc);
1410
1411 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1412 (*ifp->if_start)(ifp);
1413
1414 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1415 uint16_t status;
1416
1417 status = CSR_READ_2(sc, RTK_ISR);
1418 if (status == 0xffff)
1419 goto done;
1420 if (status)
1421 CSR_WRITE_2(sc, RTK_ISR, status);
1422
1423 /*
1424 * XXX check behaviour on receiver stalls.
1425 */
1426
1427 if (status & RTK_ISR_SYSTEM_ERR) {
1428 re_init(sc);
1429 }
1430 }
1431 done:
1432 RTK_UNLOCK(sc);
1433 }
1434 #endif /* DEVICE_POLLING */
1435
1436 int
1437 re_intr(void *arg)
1438 {
1439 struct rtk_softc *sc = arg;
1440 struct ifnet *ifp;
1441 uint16_t status;
1442 int handled = 0;
1443
1444 ifp = &sc->ethercom.ec_if;
1445
1446 if ((ifp->if_flags & IFF_UP) == 0)
1447 return 0;
1448
1449 #ifdef DEVICE_POLLING
1450 if (ifp->if_flags & IFF_POLLING)
1451 goto done;
1452 if ((ifp->if_capenable & IFCAP_POLLING) &&
1453 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1454 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1455 re_poll(ifp, 0, 1);
1456 goto done;
1457 }
1458 #endif /* DEVICE_POLLING */
1459
1460 for (;;) {
1461
1462 status = CSR_READ_2(sc, RTK_ISR);
1463 /* If the card has gone away the read returns 0xffff. */
1464 if (status == 0xffff)
1465 break;
1466 if (status) {
1467 handled = 1;
1468 CSR_WRITE_2(sc, RTK_ISR, status);
1469 }
1470
1471 if ((status & RTK_INTRS_CPLUS) == 0)
1472 break;
1473
1474 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1475 re_rxeof(sc);
1476
1477 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1478 RTK_ISR_TX_DESC_UNAVAIL))
1479 re_txeof(sc);
1480
1481 if (status & RTK_ISR_SYSTEM_ERR) {
1482 re_init(ifp);
1483 }
1484
1485 if (status & RTK_ISR_LINKCHG) {
1486 callout_stop(&sc->rtk_tick_ch);
1487 re_tick(sc);
1488 }
1489 }
1490
1491 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1492 re_start(ifp);
1493
1494 #ifdef DEVICE_POLLING
1495 done:
1496 #endif
1497
1498 return handled;
1499 }
1500
1501
1502
1503 /*
1504 * Main transmit routine for C+ and gigE NICs.
1505 */
1506
1507 static void
1508 re_start(struct ifnet *ifp)
1509 {
1510 struct rtk_softc *sc;
1511 struct mbuf *m;
1512 bus_dmamap_t map;
1513 struct re_txq *txq;
1514 struct re_desc *d;
1515 #ifdef RE_VLAN
1516 struct m_tag *mtag;
1517 #endif
1518 uint32_t cmdstat, re_flags;
1519 int ofree, idx, error, nsegs, seg;
1520 int startdesc, curdesc, lastdesc;
1521 boolean_t pad;
1522
1523 sc = ifp->if_softc;
1524 ofree = sc->re_ldata.re_txq_free;
1525
1526 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1527
1528 IFQ_POLL(&ifp->if_snd, m);
1529 if (m == NULL)
1530 break;
1531
1532 if (sc->re_ldata.re_txq_free == 0 ||
1533 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1534 /* no more free slots left */
1535 ifp->if_flags |= IFF_OACTIVE;
1536 break;
1537 }
1538
1539 /*
1540 * Set up checksum offload. Note: checksum offload bits must
1541 * appear in all descriptors of a multi-descriptor transmit
1542 * attempt. (This is according to testing done with an 8169
1543 * chip. I'm not sure if this is a requirement or a bug.)
1544 */
1545
1546 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1547 uint32_t segsz = m->m_pkthdr.segsz;
1548
1549 re_flags = RE_TDESC_CMD_LGSEND |
1550 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1551 } else {
1552 /*
1553 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1554 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1555 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1556 */
1557 re_flags = 0;
1558 if ((m->m_pkthdr.csum_flags &
1559 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1560 != 0) {
1561 re_flags |= RE_TDESC_CMD_IPCSUM;
1562 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1563 re_flags |= RE_TDESC_CMD_TCPCSUM;
1564 } else if (m->m_pkthdr.csum_flags &
1565 M_CSUM_UDPv4) {
1566 re_flags |= RE_TDESC_CMD_UDPCSUM;
1567 }
1568 }
1569 }
1570
1571 txq = &sc->re_ldata.re_txq[idx];
1572 map = txq->txq_dmamap;
1573 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1574 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1575
1576 if (error) {
1577 /* XXX try to defrag if EFBIG? */
1578 aprint_error("%s: can't map mbuf (error %d)\n",
1579 sc->sc_dev.dv_xname, error);
1580
1581 IFQ_DEQUEUE(&ifp->if_snd, m);
1582 m_freem(m);
1583 ifp->if_oerrors++;
1584 continue;
1585 }
1586
1587 nsegs = map->dm_nsegs;
1588 pad = FALSE;
1589 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1590 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1591 pad = TRUE;
1592 nsegs++;
1593 }
1594
1595 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1596 /*
1597 * Not enough free descriptors to transmit this packet.
1598 */
1599 ifp->if_flags |= IFF_OACTIVE;
1600 bus_dmamap_unload(sc->sc_dmat, map);
1601 break;
1602 }
1603
1604 IFQ_DEQUEUE(&ifp->if_snd, m);
1605
1606 /*
1607 * Make sure that the caches are synchronized before we
1608 * ask the chip to start DMA for the packet data.
1609 */
1610 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1611 BUS_DMASYNC_PREWRITE);
1612
1613 /*
1614 * Map the segment array into descriptors.
1615 * Note that we set the start-of-frame and
1616 * end-of-frame markers for either TX or RX,
1617 * but they really only have meaning in the TX case.
1618 * (In the RX case, it's the chip that tells us
1619 * where packets begin and end.)
1620 * We also keep track of the end of the ring
1621 * and set the end-of-ring bits as needed,
1622 * and we set the ownership bits in all except
1623 * the very first descriptor. (The caller will
1624 * set this descriptor later when it start
1625 * transmission or reception.)
1626 */
1627 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1628 lastdesc = -1;
1629 for (seg = 0; seg < map->dm_nsegs;
1630 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1631 d = &sc->re_ldata.re_tx_list[curdesc];
1632 #ifdef DIAGNISTIC
1633 RE_TXDESCSYNC(sc, curdesc,
1634 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1635 cmdstat = le32toh(d->re_cmdstat);
1636 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1637 if (cmdstat & RE_TDESC_STAT_OWN) {
1638 panic("%s: tried to map busy TX descriptor",
1639 sc->sc_dev.dv_xname);
1640 }
1641 #endif
1642
1643 d->re_bufaddr_lo =
1644 htole32(RE_ADDR_LO(map->dm_segs[seg].ds_addr));
1645 d->re_bufaddr_hi =
1646 htole32(RE_ADDR_HI(map->dm_segs[seg].ds_addr));
1647 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1648 if (seg == 0)
1649 cmdstat |= RE_TDESC_CMD_SOF;
1650 else
1651 cmdstat |= RE_TDESC_CMD_OWN;
1652 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1653 cmdstat |= RE_TDESC_CMD_EOR;
1654 if (seg == nsegs - 1) {
1655 cmdstat |= RE_TDESC_CMD_EOF;
1656 lastdesc = curdesc;
1657 }
1658 d->re_cmdstat = htole32(cmdstat);
1659 RE_TXDESCSYNC(sc, curdesc,
1660 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661 }
1662 if (pad) {
1663 bus_addr_t paddaddr;
1664
1665 d = &sc->re_ldata.re_tx_list[curdesc];
1666 paddaddr = RE_TXPADDADDR(sc);
1667 d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddaddr));
1668 d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddaddr));
1669 cmdstat = re_flags |
1670 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1671 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1672 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1673 cmdstat |= RE_TDESC_CMD_EOR;
1674 d->re_cmdstat = htole32(cmdstat);
1675 RE_TXDESCSYNC(sc, curdesc,
1676 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1677 lastdesc = curdesc;
1678 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1679 }
1680 KASSERT(lastdesc != -1);
1681
1682 /*
1683 * Set up hardware VLAN tagging. Note: vlan tag info must
1684 * appear in the first descriptor of a multi-descriptor
1685 * transmission attempt.
1686 */
1687
1688 #ifdef RE_VLAN
1689 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1690 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1691 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1692 RE_TDESC_VLANCTL_TAG);
1693 }
1694 #endif
1695
1696 /* Transfer ownership of packet to the chip. */
1697
1698 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1699 htole32(RE_TDESC_CMD_OWN);
1700 RE_TXDESCSYNC(sc, startdesc,
1701 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1702
1703 /* update info of TX queue and descriptors */
1704 txq->txq_mbuf = m;
1705 txq->txq_descidx = lastdesc;
1706 txq->txq_nsegs = nsegs;
1707
1708 sc->re_ldata.re_txq_free--;
1709 sc->re_ldata.re_tx_free -= nsegs;
1710 sc->re_ldata.re_tx_nextfree = curdesc;
1711
1712 #if NBPFILTER > 0
1713 /*
1714 * If there's a BPF listener, bounce a copy of this frame
1715 * to him.
1716 */
1717 if (ifp->if_bpf)
1718 bpf_mtap(ifp->if_bpf, m);
1719 #endif
1720 }
1721
1722 if (sc->re_ldata.re_txq_free < ofree) {
1723 /*
1724 * TX packets are enqueued.
1725 */
1726 sc->re_ldata.re_txq_prodidx = idx;
1727
1728 /*
1729 * Start the transmitter to poll.
1730 *
1731 * RealTek put the TX poll request register in a different
1732 * location on the 8169 gigE chip. I don't know why.
1733 */
1734 if (sc->rtk_type == RTK_8169)
1735 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1736 else
1737 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1738
1739 /*
1740 * Use the countdown timer for interrupt moderation.
1741 * 'TX done' interrupts are disabled. Instead, we reset the
1742 * countdown timer, which will begin counting until it hits
1743 * the value in the TIMERINT register, and then trigger an
1744 * interrupt. Each time we write to the TIMERCNT register,
1745 * the timer count is reset to 0.
1746 */
1747 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1748
1749 /*
1750 * Set a timeout in case the chip goes out to lunch.
1751 */
1752 ifp->if_timer = 5;
1753 }
1754 }
1755
1756 static int
1757 re_init(struct ifnet *ifp)
1758 {
1759 struct rtk_softc *sc = ifp->if_softc;
1760 uint8_t *enaddr;
1761 uint32_t rxcfg = 0;
1762 uint32_t reg;
1763 int error;
1764
1765 if ((error = re_enable(sc)) != 0)
1766 goto out;
1767
1768 /*
1769 * Cancel pending I/O and free all RX/TX buffers.
1770 */
1771 re_stop(ifp, 0);
1772
1773 re_reset(sc);
1774
1775 /*
1776 * Enable C+ RX and TX mode, as well as VLAN stripping and
1777 * RX checksum offload. We must configure the C+ register
1778 * before all others.
1779 */
1780 reg = 0;
1781
1782 /*
1783 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1784 * FreeBSD drivers set these bits anyway (for 8139C+?).
1785 * So far, it works.
1786 */
1787
1788 /*
1789 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1790 * For 8169S/8110S rev 2 and above, do not set bit 14.
1791 */
1792 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1793 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1794
1795 if (1) {/* not for 8169S ? */
1796 reg |=
1797 #ifdef RE_VLAN
1798 RTK_CPLUSCMD_VLANSTRIP |
1799 #endif
1800 (ifp->if_capenable &
1801 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1802 IFCAP_CSUM_UDPv4_Rx) ?
1803 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1804 }
1805
1806 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1807 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1808
1809 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1810 if (sc->rtk_type == RTK_8169)
1811 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1812
1813 DELAY(10000);
1814
1815 /*
1816 * Init our MAC address. Even though the chipset
1817 * documentation doesn't mention it, we need to enter "Config
1818 * register write enable" mode to modify the ID registers.
1819 */
1820 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1821 enaddr = LLADDR(ifp->if_sadl);
1822 reg = enaddr[0] | (enaddr[1] << 8) |
1823 (enaddr[2] << 16) | (enaddr[3] << 24);
1824 CSR_WRITE_4(sc, RTK_IDR0, reg);
1825 reg = enaddr[4] | (enaddr[5] << 8);
1826 CSR_WRITE_4(sc, RTK_IDR4, reg);
1827 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1828
1829 /*
1830 * For C+ mode, initialize the RX descriptors and mbufs.
1831 */
1832 re_rx_list_init(sc);
1833 re_tx_list_init(sc);
1834
1835 /*
1836 * Load the addresses of the RX and TX lists into the chip.
1837 */
1838 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1839 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1840 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1841 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1842
1843 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1844 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1845 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1846 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1847
1848 /*
1849 * Enable transmit and receive.
1850 */
1851 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1852
1853 /*
1854 * Set the initial TX and RX configuration.
1855 */
1856 if (sc->re_testmode) {
1857 if (sc->rtk_type == RTK_8169)
1858 CSR_WRITE_4(sc, RTK_TXCFG,
1859 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1860 else
1861 CSR_WRITE_4(sc, RTK_TXCFG,
1862 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1863 } else
1864 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1865
1866 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1867
1868 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1869
1870 /* Set the individual bit to receive frames for this host only. */
1871 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1872 rxcfg |= RTK_RXCFG_RX_INDIV;
1873
1874 /* If we want promiscuous mode, set the allframes bit. */
1875 if (ifp->if_flags & IFF_PROMISC)
1876 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1877 else
1878 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1879 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1880
1881 /*
1882 * Set capture broadcast bit to capture broadcast frames.
1883 */
1884 if (ifp->if_flags & IFF_BROADCAST)
1885 rxcfg |= RTK_RXCFG_RX_BROAD;
1886 else
1887 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1888 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1889
1890 /*
1891 * Program the multicast filter, if necessary.
1892 */
1893 rtk_setmulti(sc);
1894
1895 #ifdef DEVICE_POLLING
1896 /*
1897 * Disable interrupts if we are polling.
1898 */
1899 if (ifp->if_flags & IFF_POLLING)
1900 CSR_WRITE_2(sc, RTK_IMR, 0);
1901 else /* otherwise ... */
1902 #endif /* DEVICE_POLLING */
1903 /*
1904 * Enable interrupts.
1905 */
1906 if (sc->re_testmode)
1907 CSR_WRITE_2(sc, RTK_IMR, 0);
1908 else
1909 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1910
1911 /* Start RX/TX process. */
1912 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1913 #ifdef notdef
1914 /* Enable receiver and transmitter. */
1915 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1916 #endif
1917
1918 /*
1919 * Initialize the timer interrupt register so that
1920 * a timer interrupt will be generated once the timer
1921 * reaches a certain number of ticks. The timer is
1922 * reloaded on each transmit. This gives us TX interrupt
1923 * moderation, which dramatically improves TX frame rate.
1924 */
1925
1926 if (sc->rtk_type == RTK_8169)
1927 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1928 else
1929 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1930
1931 /*
1932 * For 8169 gigE NICs, set the max allowed RX packet
1933 * size so we can receive jumbo frames.
1934 */
1935 if (sc->rtk_type == RTK_8169)
1936 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1937
1938 if (sc->re_testmode)
1939 return 0;
1940
1941 mii_mediachg(&sc->mii);
1942
1943 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1944
1945 ifp->if_flags |= IFF_RUNNING;
1946 ifp->if_flags &= ~IFF_OACTIVE;
1947
1948 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1949
1950 out:
1951 if (error) {
1952 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1953 ifp->if_timer = 0;
1954 aprint_error("%s: interface not running\n",
1955 sc->sc_dev.dv_xname);
1956 }
1957
1958 return error;
1959 }
1960
1961 /*
1962 * Set media options.
1963 */
1964 static int
1965 re_ifmedia_upd(struct ifnet *ifp)
1966 {
1967 struct rtk_softc *sc;
1968
1969 sc = ifp->if_softc;
1970
1971 return mii_mediachg(&sc->mii);
1972 }
1973
1974 /*
1975 * Report current media status.
1976 */
1977 static void
1978 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1979 {
1980 struct rtk_softc *sc;
1981
1982 sc = ifp->if_softc;
1983
1984 mii_pollstat(&sc->mii);
1985 ifmr->ifm_active = sc->mii.mii_media_active;
1986 ifmr->ifm_status = sc->mii.mii_media_status;
1987 }
1988
1989 static int
1990 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1991 {
1992 struct rtk_softc *sc = ifp->if_softc;
1993 struct ifreq *ifr = (struct ifreq *) data;
1994 int s, error = 0;
1995
1996 s = splnet();
1997
1998 switch (command) {
1999 case SIOCSIFMTU:
2000 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2001 error = EINVAL;
2002 ifp->if_mtu = ifr->ifr_mtu;
2003 break;
2004 case SIOCGIFMEDIA:
2005 case SIOCSIFMEDIA:
2006 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2007 break;
2008 default:
2009 error = ether_ioctl(ifp, command, data);
2010 if (error == ENETRESET) {
2011 if (ifp->if_flags & IFF_RUNNING)
2012 rtk_setmulti(sc);
2013 error = 0;
2014 }
2015 break;
2016 }
2017
2018 splx(s);
2019
2020 return error;
2021 }
2022
2023 static void
2024 re_watchdog(struct ifnet *ifp)
2025 {
2026 struct rtk_softc *sc;
2027 int s;
2028
2029 sc = ifp->if_softc;
2030 s = splnet();
2031 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2032 ifp->if_oerrors++;
2033
2034 re_txeof(sc);
2035 re_rxeof(sc);
2036
2037 re_init(ifp);
2038
2039 splx(s);
2040 }
2041
2042 /*
2043 * Stop the adapter and free any mbufs allocated to the
2044 * RX and TX lists.
2045 */
2046 static void
2047 re_stop(struct ifnet *ifp, int disable)
2048 {
2049 int i;
2050 struct rtk_softc *sc = ifp->if_softc;
2051
2052 callout_stop(&sc->rtk_tick_ch);
2053
2054 #ifdef DEVICE_POLLING
2055 ether_poll_deregister(ifp);
2056 #endif /* DEVICE_POLLING */
2057
2058 mii_down(&sc->mii);
2059
2060 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2061 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2062
2063 if (sc->re_head != NULL) {
2064 m_freem(sc->re_head);
2065 sc->re_head = sc->re_tail = NULL;
2066 }
2067
2068 /* Free the TX list buffers. */
2069 for (i = 0; i < RE_TX_QLEN; i++) {
2070 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2071 bus_dmamap_unload(sc->sc_dmat,
2072 sc->re_ldata.re_txq[i].txq_dmamap);
2073 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2074 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2075 }
2076 }
2077
2078 /* Free the RX list buffers. */
2079 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2080 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2081 bus_dmamap_unload(sc->sc_dmat,
2082 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2083 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2084 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2085 }
2086 }
2087
2088 if (disable)
2089 re_disable(sc);
2090
2091 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2092 ifp->if_timer = 0;
2093 }
2094