Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.63
      1 /*	$NetBSD: rtl8169.c,v 1.63 2006/11/17 21:29:36 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <machine/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/ic/rtl81x9reg.h>
    151 #include <dev/ic/rtl81x9var.h>
    152 
    153 #include <dev/ic/rtl8169var.h>
    154 
    155 
    156 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    157 static int re_rx_list_init(struct rtk_softc *);
    158 static int re_tx_list_init(struct rtk_softc *);
    159 static void re_rxeof(struct rtk_softc *);
    160 static void re_txeof(struct rtk_softc *);
    161 static void re_tick(void *);
    162 static void re_start(struct ifnet *);
    163 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    164 static int re_init(struct ifnet *);
    165 static void re_stop(struct ifnet *, int);
    166 static void re_watchdog(struct ifnet *);
    167 
    168 static void re_shutdown(void *);
    169 static int re_enable(struct rtk_softc *);
    170 static void re_disable(struct rtk_softc *);
    171 static void re_power(int, void *);
    172 
    173 static int re_ifmedia_upd(struct ifnet *);
    174 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    175 
    176 static int re_gmii_readreg(struct device *, int, int);
    177 static void re_gmii_writereg(struct device *, int, int, int);
    178 
    179 static int re_miibus_readreg(struct device *, int, int);
    180 static void re_miibus_writereg(struct device *, int, int, int);
    181 static void re_miibus_statchg(struct device *);
    182 
    183 static void re_reset(struct rtk_softc *);
    184 
    185 static int
    186 re_gmii_readreg(struct device *self, int phy, int reg)
    187 {
    188 	struct rtk_softc	*sc = (void *)self;
    189 	uint32_t		rval;
    190 	int			i;
    191 
    192 	if (phy != 7)
    193 		return 0;
    194 
    195 	/* Let the rgephy driver read the GMEDIASTAT register */
    196 
    197 	if (reg == RTK_GMEDIASTAT) {
    198 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    199 		return rval;
    200 	}
    201 
    202 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    203 	DELAY(1000);
    204 
    205 	for (i = 0; i < RTK_TIMEOUT; i++) {
    206 		rval = CSR_READ_4(sc, RTK_PHYAR);
    207 		if (rval & RTK_PHYAR_BUSY)
    208 			break;
    209 		DELAY(100);
    210 	}
    211 
    212 	if (i == RTK_TIMEOUT) {
    213 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    214 		return 0;
    215 	}
    216 
    217 	return rval & RTK_PHYAR_PHYDATA;
    218 }
    219 
    220 static void
    221 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    222 {
    223 	struct rtk_softc	*sc = (void *)dev;
    224 	uint32_t		rval;
    225 	int			i;
    226 
    227 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    228 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    229 	DELAY(1000);
    230 
    231 	for (i = 0; i < RTK_TIMEOUT; i++) {
    232 		rval = CSR_READ_4(sc, RTK_PHYAR);
    233 		if (!(rval & RTK_PHYAR_BUSY))
    234 			break;
    235 		DELAY(100);
    236 	}
    237 
    238 	if (i == RTK_TIMEOUT) {
    239 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    240 		    sc->sc_dev.dv_xname, reg, data);
    241 	}
    242 }
    243 
    244 static int
    245 re_miibus_readreg(struct device *dev, int phy, int reg)
    246 {
    247 	struct rtk_softc	*sc = (void *)dev;
    248 	uint16_t		rval = 0;
    249 	uint16_t		re8139_reg = 0;
    250 	int			s;
    251 
    252 	s = splnet();
    253 
    254 	if (sc->rtk_type == RTK_8169) {
    255 		rval = re_gmii_readreg(dev, phy, reg);
    256 		splx(s);
    257 		return rval;
    258 	}
    259 
    260 	/* Pretend the internal PHY is only at address 0 */
    261 	if (phy) {
    262 		splx(s);
    263 		return 0;
    264 	}
    265 	switch (reg) {
    266 	case MII_BMCR:
    267 		re8139_reg = RTK_BMCR;
    268 		break;
    269 	case MII_BMSR:
    270 		re8139_reg = RTK_BMSR;
    271 		break;
    272 	case MII_ANAR:
    273 		re8139_reg = RTK_ANAR;
    274 		break;
    275 	case MII_ANER:
    276 		re8139_reg = RTK_ANER;
    277 		break;
    278 	case MII_ANLPAR:
    279 		re8139_reg = RTK_LPAR;
    280 		break;
    281 	case MII_PHYIDR1:
    282 	case MII_PHYIDR2:
    283 		splx(s);
    284 		return 0;
    285 	/*
    286 	 * Allow the rlphy driver to read the media status
    287 	 * register. If we have a link partner which does not
    288 	 * support NWAY, this is the register which will tell
    289 	 * us the results of parallel detection.
    290 	 */
    291 	case RTK_MEDIASTAT:
    292 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    293 		splx(s);
    294 		return rval;
    295 	default:
    296 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    297 		splx(s);
    298 		return 0;
    299 	}
    300 	rval = CSR_READ_2(sc, re8139_reg);
    301 	if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
    302 		/* 8139C+ has different bit layout. */
    303 		rval &= ~(BMCR_LOOP | BMCR_ISO);
    304 	}
    305 	splx(s);
    306 	return rval;
    307 }
    308 
    309 static void
    310 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    311 {
    312 	struct rtk_softc	*sc = (void *)dev;
    313 	uint16_t		re8139_reg = 0;
    314 	int			s;
    315 
    316 	s = splnet();
    317 
    318 	if (sc->rtk_type == RTK_8169) {
    319 		re_gmii_writereg(dev, phy, reg, data);
    320 		splx(s);
    321 		return;
    322 	}
    323 
    324 	/* Pretend the internal PHY is only at address 0 */
    325 	if (phy) {
    326 		splx(s);
    327 		return;
    328 	}
    329 	switch (reg) {
    330 	case MII_BMCR:
    331 		re8139_reg = RTK_BMCR;
    332 		if (sc->rtk_type == RTK_8139CPLUS) {
    333 			/* 8139C+ has different bit layout. */
    334 			data &= ~(BMCR_LOOP | BMCR_ISO);
    335 		}
    336 		break;
    337 	case MII_BMSR:
    338 		re8139_reg = RTK_BMSR;
    339 		break;
    340 	case MII_ANAR:
    341 		re8139_reg = RTK_ANAR;
    342 		break;
    343 	case MII_ANER:
    344 		re8139_reg = RTK_ANER;
    345 		break;
    346 	case MII_ANLPAR:
    347 		re8139_reg = RTK_LPAR;
    348 		break;
    349 	case MII_PHYIDR1:
    350 	case MII_PHYIDR2:
    351 		splx(s);
    352 		return;
    353 		break;
    354 	default:
    355 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    356 		splx(s);
    357 		return;
    358 	}
    359 	CSR_WRITE_2(sc, re8139_reg, data);
    360 	splx(s);
    361 	return;
    362 }
    363 
    364 static void
    365 re_miibus_statchg(struct device *dev)
    366 {
    367 
    368 	return;
    369 }
    370 
    371 static void
    372 re_reset(struct rtk_softc *sc)
    373 {
    374 	int		i;
    375 
    376 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    377 
    378 	for (i = 0; i < RTK_TIMEOUT; i++) {
    379 		DELAY(10);
    380 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    381 			break;
    382 	}
    383 	if (i == RTK_TIMEOUT)
    384 		aprint_error("%s: reset never completed!\n",
    385 		    sc->sc_dev.dv_xname);
    386 
    387 	/*
    388 	 * NB: Realtek-supplied Linux driver does this only for
    389 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    390 	 */
    391 	if (1) /* XXX check softc flag for 8169s version */
    392 		CSR_WRITE_1(sc, 0x82, 1);
    393 
    394 	return;
    395 }
    396 
    397 /*
    398  * The following routine is designed to test for a defect on some
    399  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    400  * lines connected to the bus, however for a 32-bit only card, they
    401  * should be pulled high. The result of this defect is that the
    402  * NIC will not work right if you plug it into a 64-bit slot: DMA
    403  * operations will be done with 64-bit transfers, which will fail
    404  * because the 64-bit data lines aren't connected.
    405  *
    406  * There's no way to work around this (short of talking a soldering
    407  * iron to the board), however we can detect it. The method we use
    408  * here is to put the NIC into digital loopback mode, set the receiver
    409  * to promiscuous mode, and then try to send a frame. We then compare
    410  * the frame data we sent to what was received. If the data matches,
    411  * then the NIC is working correctly, otherwise we know the user has
    412  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    413  * slot. In the latter case, there's no way the NIC can work correctly,
    414  * so we print out a message on the console and abort the device attach.
    415  */
    416 
    417 int
    418 re_diag(struct rtk_softc *sc)
    419 {
    420 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    421 	struct mbuf		*m0;
    422 	struct ether_header	*eh;
    423 	struct re_rxsoft	*rxs;
    424 	struct re_desc		*cur_rx;
    425 	bus_dmamap_t		dmamap;
    426 	uint16_t		status;
    427 	uint32_t		rxstat;
    428 	int			total_len, i, s, error = 0;
    429 	static const uint8_t	dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    430 	static const uint8_t	src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    431 
    432 	/* Allocate a single mbuf */
    433 
    434 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    435 	if (m0 == NULL)
    436 		return ENOBUFS;
    437 
    438 	/*
    439 	 * Initialize the NIC in test mode. This sets the chip up
    440 	 * so that it can send and receive frames, but performs the
    441 	 * following special functions:
    442 	 * - Puts receiver in promiscuous mode
    443 	 * - Enables digital loopback mode
    444 	 * - Leaves interrupts turned off
    445 	 */
    446 
    447 	ifp->if_flags |= IFF_PROMISC;
    448 	sc->re_testmode = 1;
    449 	re_init(ifp);
    450 	re_stop(ifp, 0);
    451 	DELAY(100000);
    452 	re_init(ifp);
    453 
    454 	/* Put some data in the mbuf */
    455 
    456 	eh = mtod(m0, struct ether_header *);
    457 	memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
    458 	memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
    459 	eh->ether_type = htons(ETHERTYPE_IP);
    460 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    461 
    462 	/*
    463 	 * Queue the packet, start transmission.
    464 	 */
    465 
    466 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    467 	s = splnet();
    468 	IF_ENQUEUE(&ifp->if_snd, m0);
    469 	re_start(ifp);
    470 	splx(s);
    471 	m0 = NULL;
    472 
    473 	/* Wait for it to propagate through the chip */
    474 
    475 	DELAY(100000);
    476 	for (i = 0; i < RTK_TIMEOUT; i++) {
    477 		status = CSR_READ_2(sc, RTK_ISR);
    478 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    479 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    480 			break;
    481 		DELAY(10);
    482 	}
    483 	if (i == RTK_TIMEOUT) {
    484 		aprint_error("%s: diagnostic failed, failed to receive packet "
    485 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    486 		error = EIO;
    487 		goto done;
    488 	}
    489 
    490 	/*
    491 	 * The packet should have been dumped into the first
    492 	 * entry in the RX DMA ring. Grab it from there.
    493 	 */
    494 
    495 	rxs = &sc->re_ldata.re_rxsoft[0];
    496 	dmamap = rxs->rxs_dmamap;
    497 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    498 	    BUS_DMASYNC_POSTREAD);
    499 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    500 
    501 	m0 = rxs->rxs_mbuf;
    502 	rxs->rxs_mbuf = NULL;
    503 	eh = mtod(m0, struct ether_header *);
    504 
    505 	RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    506 	cur_rx = &sc->re_ldata.re_rx_list[0];
    507 	rxstat = le32toh(cur_rx->re_cmdstat);
    508 	total_len = rxstat & sc->re_rxlenmask;
    509 
    510 	if (total_len != ETHER_MIN_LEN) {
    511 		aprint_error("%s: diagnostic failed, received short packet\n",
    512 		    sc->sc_dev.dv_xname);
    513 		error = EIO;
    514 		goto done;
    515 	}
    516 
    517 	/* Test that the received packet data matches what we sent. */
    518 
    519 	if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    520 	    memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    521 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    522 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    523 		    sc->sc_dev.dv_xname);
    524 		aprint_error("%s: expected TX data: %s",
    525 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    526 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    527 		aprint_error("%s: received RX data: %s",
    528 		    sc->sc_dev.dv_xname,
    529 		    ether_sprintf(eh->ether_dhost));
    530 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    531 		    ntohs(eh->ether_type));
    532 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    533 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    534 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    535 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    536 		aprint_error("%s: Read the re(4) man page for more details.\n",
    537 		    sc->sc_dev.dv_xname);
    538 		error = EIO;
    539 	}
    540 
    541  done:
    542 	/* Turn interface off, release resources */
    543 
    544 	sc->re_testmode = 0;
    545 	ifp->if_flags &= ~IFF_PROMISC;
    546 	re_stop(ifp, 0);
    547 	if (m0 != NULL)
    548 		m_freem(m0);
    549 
    550 	return error;
    551 }
    552 
    553 
    554 /*
    555  * Attach the interface. Allocate softc structures, do ifmedia
    556  * setup and ethernet/BPF attach.
    557  */
    558 void
    559 re_attach(struct rtk_softc *sc)
    560 {
    561 	u_char			eaddr[ETHER_ADDR_LEN];
    562 	uint16_t		val;
    563 	struct ifnet		*ifp;
    564 	int			error = 0, i, addr_len;
    565 
    566 
    567 	/* XXX JRS: bus-attach-independent code begins approximately here */
    568 
    569 	/* Reset the adapter. */
    570 	re_reset(sc);
    571 
    572 	if (sc->rtk_type == RTK_8169) {
    573 		uint32_t hwrev;
    574 
    575 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    576 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    577 		if (hwrev == (0x1 << 28)) {
    578 			sc->sc_rev = 4;
    579 		} else if (hwrev == (0x1 << 26)) {
    580 			sc->sc_rev = 3;
    581 		} else if (hwrev == (0x1 << 23)) {
    582 			sc->sc_rev = 2;
    583 		} else
    584 			sc->sc_rev = 1;
    585 
    586 		/* Set RX length mask */
    587 
    588 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
    589 
    590 		/* Force station address autoload from the EEPROM */
    591 
    592 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    593 		for (i = 0; i < RTK_TIMEOUT; i++) {
    594 			if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
    595 			    == 0)
    596 				break;
    597 			DELAY(100);
    598 		}
    599 		if (i == RTK_TIMEOUT)
    600 			aprint_error("%s: eeprom autoload timed out\n",
    601 			    sc->sc_dev.dv_xname);
    602 
    603 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    604 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    605 
    606 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
    607 	} else {
    608 
    609 		/* Set RX length mask */
    610 
    611 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
    612 
    613 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    614 			addr_len = RTK_EEADDR_LEN1;
    615 		else
    616 			addr_len = RTK_EEADDR_LEN0;
    617 
    618 		/*
    619 		 * Get station address from the EEPROM.
    620 		 */
    621 		for (i = 0; i < 3; i++) {
    622 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    623 			eaddr[(i * 2) + 0] = val & 0xff;
    624 			eaddr[(i * 2) + 1] = val >> 8;
    625 		}
    626 
    627 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
    628 	}
    629 
    630 	aprint_normal("%s: Ethernet address %s\n",
    631 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    632 
    633 	if (sc->re_ldata.re_tx_desc_cnt >
    634 	    PAGE_SIZE / sizeof(struct re_desc)) {
    635 		sc->re_ldata.re_tx_desc_cnt =
    636 		    PAGE_SIZE / sizeof(struct re_desc);
    637 	}
    638 
    639 	aprint_verbose("%s: using %d tx descriptors\n",
    640 	    sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
    641 
    642 	/* Allocate DMA'able memory for the TX ring */
    643 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
    644 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
    645 	    &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    646 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    647 		    sc->sc_dev.dv_xname, error);
    648 		goto fail_0;
    649 	}
    650 
    651 	/* Load the map for the TX ring. */
    652 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
    653 	    sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
    654 	    (caddr_t *)&sc->re_ldata.re_tx_list,
    655 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    656 		aprint_error("%s: can't map tx list, error = %d\n",
    657 		    sc->sc_dev.dv_xname, error);
    658 	  	goto fail_1;
    659 	}
    660 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
    661 
    662 	if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
    663 	    RE_TX_LIST_SZ(sc), 0, 0,
    664 	    &sc->re_ldata.re_tx_list_map)) != 0) {
    665 		aprint_error("%s: can't create tx list map, error = %d\n",
    666 		    sc->sc_dev.dv_xname, error);
    667 		goto fail_2;
    668 	}
    669 
    670 
    671 	if ((error = bus_dmamap_load(sc->sc_dmat,
    672 	    sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
    673 	    RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    674 		aprint_error("%s: can't load tx list, error = %d\n",
    675 		    sc->sc_dev.dv_xname, error);
    676 		goto fail_3;
    677 	}
    678 
    679 	/* Create DMA maps for TX buffers */
    680 	for (i = 0; i < RE_TX_QLEN; i++) {
    681 		error = bus_dmamap_create(sc->sc_dmat,
    682 		    round_page(IP_MAXPACKET),
    683 		    RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
    684 		    0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
    685 		if (error) {
    686 			aprint_error("%s: can't create DMA map for TX\n",
    687 			    sc->sc_dev.dv_xname);
    688 			goto fail_4;
    689 		}
    690 	}
    691 
    692 	/* Allocate DMA'able memory for the RX ring */
    693 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    694 	    RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
    695 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
    696 	    &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    697 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    698 		    sc->sc_dev.dv_xname, error);
    699 		goto fail_4;
    700 	}
    701 
    702 	/* Load the map for the RX ring. */
    703 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
    704 	    sc->re_ldata.re_rx_listnseg, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
    705 	    (caddr_t *)&sc->re_ldata.re_rx_list,
    706 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    707 		aprint_error("%s: can't map rx list, error = %d\n",
    708 		    sc->sc_dev.dv_xname, error);
    709 		goto fail_5;
    710 	}
    711 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN);
    712 
    713 	if ((error = bus_dmamap_create(sc->sc_dmat,
    714 	    RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 1,
    715 	    RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 0, 0,
    716 	    &sc->re_ldata.re_rx_list_map)) != 0) {
    717 		aprint_error("%s: can't create rx list map, error = %d\n",
    718 		    sc->sc_dev.dv_xname, error);
    719 		goto fail_6;
    720 	}
    721 
    722 	if ((error = bus_dmamap_load(sc->sc_dmat,
    723 	    sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
    724 	    RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, NULL, BUS_DMA_NOWAIT)) != 0) {
    725 		aprint_error("%s: can't load rx list, error = %d\n",
    726 		    sc->sc_dev.dv_xname, error);
    727 		goto fail_7;
    728 	}
    729 
    730 	/* Create DMA maps for RX buffers */
    731 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
    732 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    733 		    0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    734 		if (error) {
    735 			aprint_error("%s: can't create DMA map for RX\n",
    736 			    sc->sc_dev.dv_xname);
    737 			goto fail_8;
    738 		}
    739 	}
    740 
    741 	/*
    742 	 * Record interface as attached. From here, we should not fail.
    743 	 */
    744 	sc->sc_flags |= RTK_ATTACHED;
    745 
    746 	ifp = &sc->ethercom.ec_if;
    747 	ifp->if_softc = sc;
    748 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    749 	ifp->if_mtu = ETHERMTU;
    750 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    751 	ifp->if_ioctl = re_ioctl;
    752 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    753 
    754 	/*
    755 	 * This is a way to disable hw VLAN tagging by default
    756 	 * (RE_VLAN is undefined), as it is problematic. PR 32643
    757 	 */
    758 
    759 #ifdef RE_VLAN
    760 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    761 #endif
    762 	ifp->if_start = re_start;
    763 	ifp->if_stop = re_stop;
    764 
    765 	/*
    766 	 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
    767 	 */
    768 
    769 	ifp->if_capabilities |=
    770 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    771 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    772 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    773 	    IFCAP_TSOv4;
    774 	ifp->if_watchdog = re_watchdog;
    775 	ifp->if_init = re_init;
    776 	if (sc->rtk_type == RTK_8169)
    777 		ifp->if_baudrate = 1000000000;
    778 	else
    779 		ifp->if_baudrate = 100000000;
    780 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
    781 	ifp->if_capenable = ifp->if_capabilities;
    782 	IFQ_SET_READY(&ifp->if_snd);
    783 
    784 	callout_init(&sc->rtk_tick_ch);
    785 
    786 	/* Do MII setup */
    787 	sc->mii.mii_ifp = ifp;
    788 	sc->mii.mii_readreg = re_miibus_readreg;
    789 	sc->mii.mii_writereg = re_miibus_writereg;
    790 	sc->mii.mii_statchg = re_miibus_statchg;
    791 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    792 	    re_ifmedia_sts);
    793 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    794 	    MII_OFFSET_ANY, 0);
    795 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    796 
    797 	/*
    798 	 * Call MI attach routine.
    799 	 */
    800 	if_attach(ifp);
    801 	ether_ifattach(ifp, eaddr);
    802 
    803 
    804 	/*
    805 	 * Make sure the interface is shutdown during reboot.
    806 	 */
    807 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    808 	if (sc->sc_sdhook == NULL)
    809 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    810 		    sc->sc_dev.dv_xname);
    811 	/*
    812 	 * Add a suspend hook to make sure we come back up after a
    813 	 * resume.
    814 	 */
    815 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    816 	    re_power, sc);
    817 	if (sc->sc_powerhook == NULL)
    818 		aprint_error("%s: WARNING: unable to establish power hook\n",
    819 		    sc->sc_dev.dv_xname);
    820 
    821 
    822 	return;
    823 
    824  fail_8:
    825 	/* Destroy DMA maps for RX buffers. */
    826 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    827 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    828 			bus_dmamap_destroy(sc->sc_dmat,
    829 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    830 
    831 	/* Free DMA'able memory for the RX ring. */
    832 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    833  fail_7:
    834 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    835  fail_6:
    836 	bus_dmamem_unmap(sc->sc_dmat,
    837 	    (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
    838  fail_5:
    839 	bus_dmamem_free(sc->sc_dmat,
    840 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    841 
    842  fail_4:
    843 	/* Destroy DMA maps for TX buffers. */
    844 	for (i = 0; i < RE_TX_QLEN; i++)
    845 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    846 			bus_dmamap_destroy(sc->sc_dmat,
    847 			    sc->re_ldata.re_txq[i].txq_dmamap);
    848 
    849 	/* Free DMA'able memory for the TX ring. */
    850 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    851  fail_3:
    852 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    853  fail_2:
    854 	bus_dmamem_unmap(sc->sc_dmat,
    855 	    (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    856  fail_1:
    857 	bus_dmamem_free(sc->sc_dmat,
    858 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    859  fail_0:
    860 	return;
    861 }
    862 
    863 
    864 /*
    865  * re_activate:
    866  *     Handle device activation/deactivation requests.
    867  */
    868 int
    869 re_activate(struct device *self, enum devact act)
    870 {
    871 	struct rtk_softc *sc = (void *)self;
    872 	int s, error = 0;
    873 
    874 	s = splnet();
    875 	switch (act) {
    876 	case DVACT_ACTIVATE:
    877 		error = EOPNOTSUPP;
    878 		break;
    879 	case DVACT_DEACTIVATE:
    880 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    881 		if_deactivate(&sc->ethercom.ec_if);
    882 		break;
    883 	}
    884 	splx(s);
    885 
    886 	return error;
    887 }
    888 
    889 /*
    890  * re_detach:
    891  *     Detach a rtk interface.
    892  */
    893 int
    894 re_detach(struct rtk_softc *sc)
    895 {
    896 	struct ifnet *ifp = &sc->ethercom.ec_if;
    897 	int i;
    898 
    899 	/*
    900 	 * Succeed now if there isn't any work to do.
    901 	 */
    902 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    903 		return 0;
    904 
    905 	/* Unhook our tick handler. */
    906 	callout_stop(&sc->rtk_tick_ch);
    907 
    908 	/* Detach all PHYs. */
    909 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    910 
    911 	/* Delete all remaining media. */
    912 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    913 
    914 	ether_ifdetach(ifp);
    915 	if_detach(ifp);
    916 
    917 	/* Destroy DMA maps for RX buffers. */
    918 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    919 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    920 			bus_dmamap_destroy(sc->sc_dmat,
    921 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    922 
    923 	/* Free DMA'able memory for the RX ring. */
    924 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    925 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    926 	bus_dmamem_unmap(sc->sc_dmat,
    927 	    (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
    928 	bus_dmamem_free(sc->sc_dmat,
    929 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    930 
    931 	/* Destroy DMA maps for TX buffers. */
    932 	for (i = 0; i < RE_TX_QLEN; i++)
    933 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    934 			bus_dmamap_destroy(sc->sc_dmat,
    935 			    sc->re_ldata.re_txq[i].txq_dmamap);
    936 
    937 	/* Free DMA'able memory for the TX ring. */
    938 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    939 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    940 	bus_dmamem_unmap(sc->sc_dmat,
    941 	    (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    942 	bus_dmamem_free(sc->sc_dmat,
    943 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    944 
    945 
    946 	shutdownhook_disestablish(sc->sc_sdhook);
    947 	powerhook_disestablish(sc->sc_powerhook);
    948 
    949 	return 0;
    950 }
    951 
    952 /*
    953  * re_enable:
    954  *     Enable the RTL81X9 chip.
    955  */
    956 static int
    957 re_enable(struct rtk_softc *sc)
    958 {
    959 
    960 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    961 		if ((*sc->sc_enable)(sc) != 0) {
    962 			aprint_error("%s: device enable failed\n",
    963 			    sc->sc_dev.dv_xname);
    964 			return EIO;
    965 		}
    966 		sc->sc_flags |= RTK_ENABLED;
    967 	}
    968 	return 0;
    969 }
    970 
    971 /*
    972  * re_disable:
    973  *     Disable the RTL81X9 chip.
    974  */
    975 static void
    976 re_disable(struct rtk_softc *sc)
    977 {
    978 
    979 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    980 		(*sc->sc_disable)(sc);
    981 		sc->sc_flags &= ~RTK_ENABLED;
    982 	}
    983 }
    984 
    985 /*
    986  * re_power:
    987  *     Power management (suspend/resume) hook.
    988  */
    989 void
    990 re_power(int why, void *arg)
    991 {
    992 	struct rtk_softc *sc = (void *)arg;
    993 	struct ifnet *ifp = &sc->ethercom.ec_if;
    994 	int s;
    995 
    996 	s = splnet();
    997 	switch (why) {
    998 	case PWR_SUSPEND:
    999 	case PWR_STANDBY:
   1000 		re_stop(ifp, 0);
   1001 		if (sc->sc_power != NULL)
   1002 			(*sc->sc_power)(sc, why);
   1003 		break;
   1004 	case PWR_RESUME:
   1005 		if (ifp->if_flags & IFF_UP) {
   1006 			if (sc->sc_power != NULL)
   1007 				(*sc->sc_power)(sc, why);
   1008 			re_init(ifp);
   1009 		}
   1010 		break;
   1011 	case PWR_SOFTSUSPEND:
   1012 	case PWR_SOFTSTANDBY:
   1013 	case PWR_SOFTRESUME:
   1014 		break;
   1015 	}
   1016 	splx(s);
   1017 }
   1018 
   1019 
   1020 static int
   1021 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1022 {
   1023 	struct mbuf		*n = NULL;
   1024 	bus_dmamap_t		map;
   1025 	struct re_desc		*d;
   1026 	struct re_rxsoft	*rxs;
   1027 	uint32_t		cmdstat;
   1028 	int			error;
   1029 
   1030 	if (m == NULL) {
   1031 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1032 		if (n == NULL)
   1033 			return ENOBUFS;
   1034 
   1035 		MCLGET(n, M_DONTWAIT);
   1036 		if ((n->m_flags & M_EXT) == 0) {
   1037 			m_freem(n);
   1038 			return ENOBUFS;
   1039 		}
   1040 		m = n;
   1041 	} else
   1042 		m->m_data = m->m_ext.ext_buf;
   1043 
   1044 	/*
   1045 	 * Initialize mbuf length fields and fixup
   1046 	 * alignment so that the frame payload is
   1047 	 * longword aligned.
   1048 	 */
   1049 	m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
   1050 	m->m_data += RE_ETHER_ALIGN;
   1051 
   1052 	rxs = &sc->re_ldata.re_rxsoft[idx];
   1053 	map = rxs->rxs_dmamap;
   1054 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1055 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1056 
   1057 	if (error)
   1058 		goto out;
   1059 
   1060 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1061 	    BUS_DMASYNC_PREREAD);
   1062 
   1063 	d = &sc->re_ldata.re_rx_list[idx];
   1064 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1065 	cmdstat = le32toh(d->re_cmdstat);
   1066 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1067 	if (cmdstat & RE_RDESC_STAT_OWN) {
   1068 		aprint_error("%s: tried to map busy RX descriptor\n",
   1069 		    sc->sc_dev.dv_xname);
   1070 		goto out;
   1071 	}
   1072 
   1073 	rxs->rxs_mbuf = m;
   1074 
   1075 	cmdstat = map->dm_segs[0].ds_len;
   1076 	if (idx == (RE_RX_DESC_CNT - 1))
   1077 		cmdstat |= RE_RDESC_CMD_EOR;
   1078 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(map->dm_segs[0].ds_addr));
   1079 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(map->dm_segs[0].ds_addr));
   1080 	d->re_cmdstat = htole32(cmdstat);
   1081 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1082 	cmdstat |= RE_RDESC_CMD_OWN;
   1083 	d->re_cmdstat = htole32(cmdstat);
   1084 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1085 
   1086 	return 0;
   1087  out:
   1088 	if (n != NULL)
   1089 		m_freem(n);
   1090 	return ENOMEM;
   1091 }
   1092 
   1093 static int
   1094 re_tx_list_init(struct rtk_softc *sc)
   1095 {
   1096 	int i;
   1097 
   1098 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
   1099 	for (i = 0; i < RE_TX_QLEN; i++) {
   1100 		sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   1101 	}
   1102 
   1103 	bus_dmamap_sync(sc->sc_dmat,
   1104 	    sc->re_ldata.re_tx_list_map, 0,
   1105 	    sc->re_ldata.re_tx_list_map->dm_mapsize,
   1106 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1107 	sc->re_ldata.re_txq_prodidx = 0;
   1108 	sc->re_ldata.re_txq_considx = 0;
   1109 	sc->re_ldata.re_txq_free = RE_TX_QLEN;
   1110 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
   1111 	sc->re_ldata.re_tx_nextfree = 0;
   1112 
   1113 	return 0;
   1114 }
   1115 
   1116 static int
   1117 re_rx_list_init(struct rtk_softc *sc)
   1118 {
   1119 	int			i;
   1120 
   1121 	memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
   1122 
   1123 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   1124 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1125 			return ENOBUFS;
   1126 	}
   1127 
   1128 	sc->re_ldata.re_rx_prodidx = 0;
   1129 	sc->re_head = sc->re_tail = NULL;
   1130 
   1131 	return 0;
   1132 }
   1133 
   1134 /*
   1135  * RX handler for C+ and 8169. For the gigE chips, we support
   1136  * the reception of jumbo frames that have been fragmented
   1137  * across multiple 2K mbuf cluster buffers.
   1138  */
   1139 static void
   1140 re_rxeof(struct rtk_softc *sc)
   1141 {
   1142 	struct mbuf		*m;
   1143 	struct ifnet		*ifp;
   1144 	int			i, total_len;
   1145 	struct re_desc		*cur_rx;
   1146 	struct re_rxsoft	*rxs;
   1147 	uint32_t		rxstat, rxvlan;
   1148 
   1149 	ifp = &sc->ethercom.ec_if;
   1150 
   1151 	for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
   1152 		cur_rx = &sc->re_ldata.re_rx_list[i];
   1153 		RE_RXDESCSYNC(sc, i,
   1154 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1155 		rxstat = le32toh(cur_rx->re_cmdstat);
   1156 		RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1157 		if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
   1158 			break;
   1159 		}
   1160 		total_len = rxstat & sc->re_rxlenmask;
   1161 		rxvlan = le32toh(cur_rx->re_vlanctl);
   1162 		rxs = &sc->re_ldata.re_rxsoft[i];
   1163 		m = rxs->rxs_mbuf;
   1164 
   1165 		/* Invalidate the RX mbuf and unload its map */
   1166 
   1167 		bus_dmamap_sync(sc->sc_dmat,
   1168 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1169 		    BUS_DMASYNC_POSTREAD);
   1170 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1171 
   1172 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
   1173 			m->m_len = MCLBYTES - RE_ETHER_ALIGN;
   1174 			if (sc->re_head == NULL)
   1175 				sc->re_head = sc->re_tail = m;
   1176 			else {
   1177 				m->m_flags &= ~M_PKTHDR;
   1178 				sc->re_tail->m_next = m;
   1179 				sc->re_tail = m;
   1180 			}
   1181 			re_newbuf(sc, i, NULL);
   1182 			continue;
   1183 		}
   1184 
   1185 		/*
   1186 		 * NOTE: for the 8139C+, the frame length field
   1187 		 * is always 12 bits in size, but for the gigE chips,
   1188 		 * it is 13 bits (since the max RX frame length is 16K).
   1189 		 * Unfortunately, all 32 bits in the status word
   1190 		 * were already used, so to make room for the extra
   1191 		 * length bit, RealTek took out the 'frame alignment
   1192 		 * error' bit and shifted the other status bits
   1193 		 * over one slot. The OWN, EOR, FS and LS bits are
   1194 		 * still in the same places. We have already extracted
   1195 		 * the frame length and checked the OWN bit, so rather
   1196 		 * than using an alternate bit mapping, we shift the
   1197 		 * status bits one space to the right so we can evaluate
   1198 		 * them using the 8169 status as though it was in the
   1199 		 * same format as that of the 8139C+.
   1200 		 */
   1201 		if (sc->rtk_type == RTK_8169)
   1202 			rxstat >>= 1;
   1203 
   1204 		if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
   1205 			ifp->if_ierrors++;
   1206 			/*
   1207 			 * If this is part of a multi-fragment packet,
   1208 			 * discard all the pieces.
   1209 			 */
   1210 			if (sc->re_head != NULL) {
   1211 				m_freem(sc->re_head);
   1212 				sc->re_head = sc->re_tail = NULL;
   1213 			}
   1214 			re_newbuf(sc, i, m);
   1215 			continue;
   1216 		}
   1217 
   1218 		/*
   1219 		 * If allocating a replacement mbuf fails,
   1220 		 * reload the current one.
   1221 		 */
   1222 
   1223 		if (re_newbuf(sc, i, NULL) != 0) {
   1224 			ifp->if_ierrors++;
   1225 			if (sc->re_head != NULL) {
   1226 				m_freem(sc->re_head);
   1227 				sc->re_head = sc->re_tail = NULL;
   1228 			}
   1229 			re_newbuf(sc, i, m);
   1230 			continue;
   1231 		}
   1232 
   1233 		if (sc->re_head != NULL) {
   1234 			m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
   1235 			/*
   1236 			 * Special case: if there's 4 bytes or less
   1237 			 * in this buffer, the mbuf can be discarded:
   1238 			 * the last 4 bytes is the CRC, which we don't
   1239 			 * care about anyway.
   1240 			 */
   1241 			if (m->m_len <= ETHER_CRC_LEN) {
   1242 				sc->re_tail->m_len -=
   1243 				    (ETHER_CRC_LEN - m->m_len);
   1244 				m_freem(m);
   1245 			} else {
   1246 				m->m_len -= ETHER_CRC_LEN;
   1247 				m->m_flags &= ~M_PKTHDR;
   1248 				sc->re_tail->m_next = m;
   1249 			}
   1250 			m = sc->re_head;
   1251 			sc->re_head = sc->re_tail = NULL;
   1252 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1253 		} else
   1254 			m->m_pkthdr.len = m->m_len =
   1255 			    (total_len - ETHER_CRC_LEN);
   1256 
   1257 		ifp->if_ipackets++;
   1258 		m->m_pkthdr.rcvif = ifp;
   1259 
   1260 		/* Do RX checksumming if enabled */
   1261 
   1262 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   1263 
   1264 			/* Check IP header checksum */
   1265 			if (rxstat & RE_RDESC_STAT_PROTOID)
   1266 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1267 			if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1268 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1269 		}
   1270 
   1271 		/* Check TCP/UDP checksum */
   1272 		if (RE_TCPPKT(rxstat) &&
   1273 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
   1274 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1275 			if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1276 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1277 		}
   1278 		if (RE_UDPPKT(rxstat) &&
   1279 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
   1280 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1281 			if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
   1282 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1283 		}
   1284 
   1285 #ifdef RE_VLAN
   1286 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
   1287 			VLAN_INPUT_TAG(ifp, m,
   1288 			     be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
   1289 			     continue);
   1290 		}
   1291 #endif
   1292 #if NBPFILTER > 0
   1293 		if (ifp->if_bpf)
   1294 			bpf_mtap(ifp->if_bpf, m);
   1295 #endif
   1296 		(*ifp->if_input)(ifp, m);
   1297 	}
   1298 
   1299 	sc->re_ldata.re_rx_prodidx = i;
   1300 }
   1301 
   1302 static void
   1303 re_txeof(struct rtk_softc *sc)
   1304 {
   1305 	struct ifnet		*ifp;
   1306 	struct re_txq		*txq;
   1307 	uint32_t		txstat;
   1308 	int			idx, descidx;
   1309 
   1310 	ifp = &sc->ethercom.ec_if;
   1311 
   1312 	for (idx = sc->re_ldata.re_txq_considx;
   1313 	    sc->re_ldata.re_txq_free < RE_TX_QLEN;
   1314 	    idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
   1315 		txq = &sc->re_ldata.re_txq[idx];
   1316 		KASSERT(txq->txq_mbuf != NULL);
   1317 
   1318 		descidx = txq->txq_descidx;
   1319 		RE_TXDESCSYNC(sc, descidx,
   1320 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1321 		txstat =
   1322 		    le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
   1323 		RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1324 		KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
   1325 		if (txstat & RE_TDESC_CMD_OWN) {
   1326 			break;
   1327 		}
   1328 
   1329 		sc->re_ldata.re_tx_free += txq->txq_nsegs;
   1330 		KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
   1331 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1332 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1333 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1334 		m_freem(txq->txq_mbuf);
   1335 		txq->txq_mbuf = NULL;
   1336 
   1337 		if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
   1338 			ifp->if_collisions++;
   1339 		if (txstat & RE_TDESC_STAT_TXERRSUM)
   1340 			ifp->if_oerrors++;
   1341 		else
   1342 			ifp->if_opackets++;
   1343 	}
   1344 
   1345 	sc->re_ldata.re_txq_considx = idx;
   1346 
   1347 	if (sc->re_ldata.re_txq_free > 0)
   1348 		ifp->if_flags &= ~IFF_OACTIVE;
   1349 
   1350 	/*
   1351 	 * If not all descriptors have been released reaped yet,
   1352 	 * reload the timer so that we will eventually get another
   1353 	 * interrupt that will cause us to re-enter this routine.
   1354 	 * This is done in case the transmitter has gone idle.
   1355 	 */
   1356 	if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
   1357 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1358 	else
   1359 		ifp->if_timer = 0;
   1360 }
   1361 
   1362 /*
   1363  * Stop all chip I/O so that the kernel's probe routines don't
   1364  * get confused by errant DMAs when rebooting.
   1365  */
   1366 static void
   1367 re_shutdown(void *vsc)
   1368 
   1369 {
   1370 	struct rtk_softc	*sc = vsc;
   1371 
   1372 	re_stop(&sc->ethercom.ec_if, 0);
   1373 }
   1374 
   1375 
   1376 static void
   1377 re_tick(void *xsc)
   1378 {
   1379 	struct rtk_softc	*sc = xsc;
   1380 	int s;
   1381 
   1382 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1383 	s = splnet();
   1384 
   1385 	mii_tick(&sc->mii);
   1386 	splx(s);
   1387 
   1388 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1389 }
   1390 
   1391 #ifdef DEVICE_POLLING
   1392 static void
   1393 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1394 {
   1395 	struct rtk_softc *sc = ifp->if_softc;
   1396 
   1397 	RTK_LOCK(sc);
   1398 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
   1399 		ether_poll_deregister(ifp);
   1400 		cmd = POLL_DEREGISTER;
   1401 	}
   1402 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1403 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1404 		goto done;
   1405 	}
   1406 
   1407 	sc->rxcycles = count;
   1408 	re_rxeof(sc);
   1409 	re_txeof(sc);
   1410 
   1411 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1412 		(*ifp->if_start)(ifp);
   1413 
   1414 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1415 		uint16_t       status;
   1416 
   1417 		status = CSR_READ_2(sc, RTK_ISR);
   1418 		if (status == 0xffff)
   1419 			goto done;
   1420 		if (status)
   1421 			CSR_WRITE_2(sc, RTK_ISR, status);
   1422 
   1423 		/*
   1424 		 * XXX check behaviour on receiver stalls.
   1425 		 */
   1426 
   1427 		if (status & RTK_ISR_SYSTEM_ERR) {
   1428 			re_init(sc);
   1429 		}
   1430 	}
   1431  done:
   1432 	RTK_UNLOCK(sc);
   1433 }
   1434 #endif /* DEVICE_POLLING */
   1435 
   1436 int
   1437 re_intr(void *arg)
   1438 {
   1439 	struct rtk_softc	*sc = arg;
   1440 	struct ifnet		*ifp;
   1441 	uint16_t		status;
   1442 	int			handled = 0;
   1443 
   1444 	ifp = &sc->ethercom.ec_if;
   1445 
   1446 	if ((ifp->if_flags & IFF_UP) == 0)
   1447 		return 0;
   1448 
   1449 #ifdef DEVICE_POLLING
   1450 	if (ifp->if_flags & IFF_POLLING)
   1451 		goto done;
   1452 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1453 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1454 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1455 		re_poll(ifp, 0, 1);
   1456 		goto done;
   1457 	}
   1458 #endif /* DEVICE_POLLING */
   1459 
   1460 	for (;;) {
   1461 
   1462 		status = CSR_READ_2(sc, RTK_ISR);
   1463 		/* If the card has gone away the read returns 0xffff. */
   1464 		if (status == 0xffff)
   1465 			break;
   1466 		if (status) {
   1467 			handled = 1;
   1468 			CSR_WRITE_2(sc, RTK_ISR, status);
   1469 		}
   1470 
   1471 		if ((status & RTK_INTRS_CPLUS) == 0)
   1472 			break;
   1473 
   1474 		if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
   1475 			re_rxeof(sc);
   1476 
   1477 		if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
   1478 		    RTK_ISR_TX_DESC_UNAVAIL))
   1479 			re_txeof(sc);
   1480 
   1481 		if (status & RTK_ISR_SYSTEM_ERR) {
   1482 			re_init(ifp);
   1483 		}
   1484 
   1485 		if (status & RTK_ISR_LINKCHG) {
   1486 			callout_stop(&sc->rtk_tick_ch);
   1487 			re_tick(sc);
   1488 		}
   1489 	}
   1490 
   1491 	if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
   1492 		re_start(ifp);
   1493 
   1494 #ifdef DEVICE_POLLING
   1495  done:
   1496 #endif
   1497 
   1498 	return handled;
   1499 }
   1500 
   1501 
   1502 
   1503 /*
   1504  * Main transmit routine for C+ and gigE NICs.
   1505  */
   1506 
   1507 static void
   1508 re_start(struct ifnet *ifp)
   1509 {
   1510 	struct rtk_softc	*sc;
   1511 	struct mbuf		*m;
   1512 	bus_dmamap_t		map;
   1513 	struct re_txq		*txq;
   1514 	struct re_desc		*d;
   1515 #ifdef RE_VLAN
   1516 	struct m_tag		*mtag;
   1517 #endif
   1518 	uint32_t		cmdstat, re_flags;
   1519 	int			ofree, idx, error, nsegs, seg;
   1520 	int			startdesc, curdesc, lastdesc;
   1521 	boolean_t		pad;
   1522 
   1523 	sc = ifp->if_softc;
   1524 	ofree = sc->re_ldata.re_txq_free;
   1525 
   1526 	for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
   1527 
   1528 		IFQ_POLL(&ifp->if_snd, m);
   1529 		if (m == NULL)
   1530 			break;
   1531 
   1532 		if (sc->re_ldata.re_txq_free == 0 ||
   1533 		    sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
   1534 			/* no more free slots left */
   1535 			ifp->if_flags |= IFF_OACTIVE;
   1536 			break;
   1537 		}
   1538 
   1539 		/*
   1540 		 * Set up checksum offload. Note: checksum offload bits must
   1541 		 * appear in all descriptors of a multi-descriptor transmit
   1542 		 * attempt. (This is according to testing done with an 8169
   1543 		 * chip. I'm not sure if this is a requirement or a bug.)
   1544 		 */
   1545 
   1546 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1547 			uint32_t segsz = m->m_pkthdr.segsz;
   1548 
   1549 			re_flags = RE_TDESC_CMD_LGSEND |
   1550 			    (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
   1551 		} else {
   1552 			/*
   1553 			 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
   1554 			 * is requested.  otherwise, RE_TDESC_CMD_TCPCSUM/
   1555 			 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
   1556 			 */
   1557 			re_flags = 0;
   1558 			if ((m->m_pkthdr.csum_flags &
   1559 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1560 			    != 0) {
   1561 				re_flags |= RE_TDESC_CMD_IPCSUM;
   1562 				if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1563 					re_flags |= RE_TDESC_CMD_TCPCSUM;
   1564 				} else if (m->m_pkthdr.csum_flags &
   1565 				    M_CSUM_UDPv4) {
   1566 					re_flags |= RE_TDESC_CMD_UDPCSUM;
   1567 				}
   1568 			}
   1569 		}
   1570 
   1571 		txq = &sc->re_ldata.re_txq[idx];
   1572 		map = txq->txq_dmamap;
   1573 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1574 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1575 
   1576 		if (error) {
   1577 			/* XXX try to defrag if EFBIG? */
   1578 			aprint_error("%s: can't map mbuf (error %d)\n",
   1579 			    sc->sc_dev.dv_xname, error);
   1580 
   1581 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1582 			m_freem(m);
   1583 			ifp->if_oerrors++;
   1584 			continue;
   1585 		}
   1586 
   1587 		nsegs = map->dm_nsegs;
   1588 		pad = FALSE;
   1589 		if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
   1590 		    (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
   1591 			pad = TRUE;
   1592 			nsegs++;
   1593 		}
   1594 
   1595 		if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
   1596 			/*
   1597 			 * Not enough free descriptors to transmit this packet.
   1598 			 */
   1599 			ifp->if_flags |= IFF_OACTIVE;
   1600 			bus_dmamap_unload(sc->sc_dmat, map);
   1601 			break;
   1602 		}
   1603 
   1604 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1605 
   1606 		/*
   1607 		 * Make sure that the caches are synchronized before we
   1608 		 * ask the chip to start DMA for the packet data.
   1609 		 */
   1610 		bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1611 		    BUS_DMASYNC_PREWRITE);
   1612 
   1613 		/*
   1614 		 * Map the segment array into descriptors.
   1615 		 * Note that we set the start-of-frame and
   1616 		 * end-of-frame markers for either TX or RX,
   1617 		 * but they really only have meaning in the TX case.
   1618 		 * (In the RX case, it's the chip that tells us
   1619 		 *  where packets begin and end.)
   1620 		 * We also keep track of the end of the ring
   1621 		 * and set the end-of-ring bits as needed,
   1622 		 * and we set the ownership bits in all except
   1623 		 * the very first descriptor. (The caller will
   1624 		 * set this descriptor later when it start
   1625 		 * transmission or reception.)
   1626 		 */
   1627 		curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
   1628 		lastdesc = -1;
   1629 		for (seg = 0; seg < map->dm_nsegs;
   1630 		    seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
   1631 			d = &sc->re_ldata.re_tx_list[curdesc];
   1632 #ifdef DIAGNISTIC
   1633 			RE_TXDESCSYNC(sc, curdesc,
   1634 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1635 			cmdstat = le32toh(d->re_cmdstat);
   1636 			RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
   1637 			if (cmdstat & RE_TDESC_STAT_OWN) {
   1638 				panic("%s: tried to map busy TX descriptor",
   1639 				    sc->sc_dev.dv_xname);
   1640 			}
   1641 #endif
   1642 
   1643 			d->re_bufaddr_lo =
   1644 			    htole32(RE_ADDR_LO(map->dm_segs[seg].ds_addr));
   1645 			d->re_bufaddr_hi =
   1646 			    htole32(RE_ADDR_HI(map->dm_segs[seg].ds_addr));
   1647 			cmdstat = re_flags | map->dm_segs[seg].ds_len;
   1648 			if (seg == 0)
   1649 				cmdstat |= RE_TDESC_CMD_SOF;
   1650 			else
   1651 				cmdstat |= RE_TDESC_CMD_OWN;
   1652 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1653 				cmdstat |= RE_TDESC_CMD_EOR;
   1654 			if (seg == nsegs - 1) {
   1655 				cmdstat |= RE_TDESC_CMD_EOF;
   1656 				lastdesc = curdesc;
   1657 			}
   1658 			d->re_cmdstat = htole32(cmdstat);
   1659 			RE_TXDESCSYNC(sc, curdesc,
   1660 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1661 		}
   1662 		if (pad) {
   1663 			bus_addr_t paddaddr;
   1664 
   1665 			d = &sc->re_ldata.re_tx_list[curdesc];
   1666 			paddaddr = RE_TXPADDADDR(sc);
   1667 			d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddaddr));
   1668 			d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddaddr));
   1669 			cmdstat = re_flags |
   1670 			    RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
   1671 			    (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
   1672 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1673 				cmdstat |= RE_TDESC_CMD_EOR;
   1674 			d->re_cmdstat = htole32(cmdstat);
   1675 			RE_TXDESCSYNC(sc, curdesc,
   1676 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1677 			lastdesc = curdesc;
   1678 			curdesc = RE_NEXT_TX_DESC(sc, curdesc);
   1679 		}
   1680 		KASSERT(lastdesc != -1);
   1681 
   1682 		/*
   1683 		 * Set up hardware VLAN tagging. Note: vlan tag info must
   1684 		 * appear in the first descriptor of a multi-descriptor
   1685 		 * transmission attempt.
   1686 		 */
   1687 
   1688 #ifdef RE_VLAN
   1689 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1690 			sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
   1691 			    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1692 			    RE_TDESC_VLANCTL_TAG);
   1693 		}
   1694 #endif
   1695 
   1696 		/* Transfer ownership of packet to the chip. */
   1697 
   1698 		sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
   1699 		    htole32(RE_TDESC_CMD_OWN);
   1700 		RE_TXDESCSYNC(sc, startdesc,
   1701 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1702 
   1703 		/* update info of TX queue and descriptors */
   1704 		txq->txq_mbuf = m;
   1705 		txq->txq_descidx = lastdesc;
   1706 		txq->txq_nsegs = nsegs;
   1707 
   1708 		sc->re_ldata.re_txq_free--;
   1709 		sc->re_ldata.re_tx_free -= nsegs;
   1710 		sc->re_ldata.re_tx_nextfree = curdesc;
   1711 
   1712 #if NBPFILTER > 0
   1713 		/*
   1714 		 * If there's a BPF listener, bounce a copy of this frame
   1715 		 * to him.
   1716 		 */
   1717 		if (ifp->if_bpf)
   1718 			bpf_mtap(ifp->if_bpf, m);
   1719 #endif
   1720 	}
   1721 
   1722 	if (sc->re_ldata.re_txq_free < ofree) {
   1723 		/*
   1724 		 * TX packets are enqueued.
   1725 		 */
   1726 		sc->re_ldata.re_txq_prodidx = idx;
   1727 
   1728 		/*
   1729 		 * Start the transmitter to poll.
   1730 		 *
   1731 		 * RealTek put the TX poll request register in a different
   1732 		 * location on the 8169 gigE chip. I don't know why.
   1733 		 */
   1734 		if (sc->rtk_type == RTK_8169)
   1735 			CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1736 		else
   1737 			CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1738 
   1739 		/*
   1740 		 * Use the countdown timer for interrupt moderation.
   1741 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1742 		 * countdown timer, which will begin counting until it hits
   1743 		 * the value in the TIMERINT register, and then trigger an
   1744 		 * interrupt. Each time we write to the TIMERCNT register,
   1745 		 * the timer count is reset to 0.
   1746 		 */
   1747 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1748 
   1749 		/*
   1750 		 * Set a timeout in case the chip goes out to lunch.
   1751 		 */
   1752 		ifp->if_timer = 5;
   1753 	}
   1754 }
   1755 
   1756 static int
   1757 re_init(struct ifnet *ifp)
   1758 {
   1759 	struct rtk_softc	*sc = ifp->if_softc;
   1760 	uint8_t			*enaddr;
   1761 	uint32_t		rxcfg = 0;
   1762 	uint32_t		reg;
   1763 	int error;
   1764 
   1765 	if ((error = re_enable(sc)) != 0)
   1766 		goto out;
   1767 
   1768 	/*
   1769 	 * Cancel pending I/O and free all RX/TX buffers.
   1770 	 */
   1771 	re_stop(ifp, 0);
   1772 
   1773 	re_reset(sc);
   1774 
   1775 	/*
   1776 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1777 	 * RX checksum offload. We must configure the C+ register
   1778 	 * before all others.
   1779 	 */
   1780 	reg = 0;
   1781 
   1782 	/*
   1783 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1784 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1785 	 * So far, it works.
   1786 	 */
   1787 
   1788 	/*
   1789 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1790 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1791 	 */
   1792 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1793 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1794 
   1795 	if (1)  {/* not for 8169S ? */
   1796 		reg |=
   1797 #ifdef RE_VLAN
   1798 		    RTK_CPLUSCMD_VLANSTRIP |
   1799 #endif
   1800 		    (ifp->if_capenable &
   1801 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
   1802 		     IFCAP_CSUM_UDPv4_Rx) ?
   1803 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1804 	}
   1805 
   1806 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1807 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1808 
   1809 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1810 	if (sc->rtk_type == RTK_8169)
   1811 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1812 
   1813 	DELAY(10000);
   1814 
   1815 	/*
   1816 	 * Init our MAC address.  Even though the chipset
   1817 	 * documentation doesn't mention it, we need to enter "Config
   1818 	 * register write enable" mode to modify the ID registers.
   1819 	 */
   1820 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1821 	enaddr = LLADDR(ifp->if_sadl);
   1822 	reg = enaddr[0] | (enaddr[1] << 8) |
   1823 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1824 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1825 	reg = enaddr[4] | (enaddr[5] << 8);
   1826 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1827 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1828 
   1829 	/*
   1830 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1831 	 */
   1832 	re_rx_list_init(sc);
   1833 	re_tx_list_init(sc);
   1834 
   1835 	/*
   1836 	 * Load the addresses of the RX and TX lists into the chip.
   1837 	 */
   1838 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1839 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1840 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1841 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1842 
   1843 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1844 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1845 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1846 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1847 
   1848 	/*
   1849 	 * Enable transmit and receive.
   1850 	 */
   1851 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1852 
   1853 	/*
   1854 	 * Set the initial TX and RX configuration.
   1855 	 */
   1856 	if (sc->re_testmode) {
   1857 		if (sc->rtk_type == RTK_8169)
   1858 			CSR_WRITE_4(sc, RTK_TXCFG,
   1859 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1860 		else
   1861 			CSR_WRITE_4(sc, RTK_TXCFG,
   1862 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1863 	} else
   1864 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1865 
   1866 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1867 
   1868 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1869 
   1870 	/* Set the individual bit to receive frames for this host only. */
   1871 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1872 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1873 
   1874 	/* If we want promiscuous mode, set the allframes bit. */
   1875 	if (ifp->if_flags & IFF_PROMISC)
   1876 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1877 	else
   1878 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1879 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1880 
   1881 	/*
   1882 	 * Set capture broadcast bit to capture broadcast frames.
   1883 	 */
   1884 	if (ifp->if_flags & IFF_BROADCAST)
   1885 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1886 	else
   1887 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1888 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1889 
   1890 	/*
   1891 	 * Program the multicast filter, if necessary.
   1892 	 */
   1893 	rtk_setmulti(sc);
   1894 
   1895 #ifdef DEVICE_POLLING
   1896 	/*
   1897 	 * Disable interrupts if we are polling.
   1898 	 */
   1899 	if (ifp->if_flags & IFF_POLLING)
   1900 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1901 	else	/* otherwise ... */
   1902 #endif /* DEVICE_POLLING */
   1903 	/*
   1904 	 * Enable interrupts.
   1905 	 */
   1906 	if (sc->re_testmode)
   1907 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1908 	else
   1909 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1910 
   1911 	/* Start RX/TX process. */
   1912 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1913 #ifdef notdef
   1914 	/* Enable receiver and transmitter. */
   1915 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1916 #endif
   1917 
   1918 	/*
   1919 	 * Initialize the timer interrupt register so that
   1920 	 * a timer interrupt will be generated once the timer
   1921 	 * reaches a certain number of ticks. The timer is
   1922 	 * reloaded on each transmit. This gives us TX interrupt
   1923 	 * moderation, which dramatically improves TX frame rate.
   1924 	 */
   1925 
   1926 	if (sc->rtk_type == RTK_8169)
   1927 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1928 	else
   1929 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1930 
   1931 	/*
   1932 	 * For 8169 gigE NICs, set the max allowed RX packet
   1933 	 * size so we can receive jumbo frames.
   1934 	 */
   1935 	if (sc->rtk_type == RTK_8169)
   1936 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1937 
   1938 	if (sc->re_testmode)
   1939 		return 0;
   1940 
   1941 	mii_mediachg(&sc->mii);
   1942 
   1943 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1944 
   1945 	ifp->if_flags |= IFF_RUNNING;
   1946 	ifp->if_flags &= ~IFF_OACTIVE;
   1947 
   1948 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1949 
   1950  out:
   1951 	if (error) {
   1952 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1953 		ifp->if_timer = 0;
   1954 		aprint_error("%s: interface not running\n",
   1955 		    sc->sc_dev.dv_xname);
   1956 	}
   1957 
   1958 	return error;
   1959 }
   1960 
   1961 /*
   1962  * Set media options.
   1963  */
   1964 static int
   1965 re_ifmedia_upd(struct ifnet *ifp)
   1966 {
   1967 	struct rtk_softc	*sc;
   1968 
   1969 	sc = ifp->if_softc;
   1970 
   1971 	return mii_mediachg(&sc->mii);
   1972 }
   1973 
   1974 /*
   1975  * Report current media status.
   1976  */
   1977 static void
   1978 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1979 {
   1980 	struct rtk_softc	*sc;
   1981 
   1982 	sc = ifp->if_softc;
   1983 
   1984 	mii_pollstat(&sc->mii);
   1985 	ifmr->ifm_active = sc->mii.mii_media_active;
   1986 	ifmr->ifm_status = sc->mii.mii_media_status;
   1987 }
   1988 
   1989 static int
   1990 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1991 {
   1992 	struct rtk_softc	*sc = ifp->if_softc;
   1993 	struct ifreq		*ifr = (struct ifreq *) data;
   1994 	int			s, error = 0;
   1995 
   1996 	s = splnet();
   1997 
   1998 	switch (command) {
   1999 	case SIOCSIFMTU:
   2000 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
   2001 			error = EINVAL;
   2002 		ifp->if_mtu = ifr->ifr_mtu;
   2003 		break;
   2004 	case SIOCGIFMEDIA:
   2005 	case SIOCSIFMEDIA:
   2006 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   2007 		break;
   2008 	default:
   2009 		error = ether_ioctl(ifp, command, data);
   2010 		if (error == ENETRESET) {
   2011 			if (ifp->if_flags & IFF_RUNNING)
   2012 				rtk_setmulti(sc);
   2013 			error = 0;
   2014 		}
   2015 		break;
   2016 	}
   2017 
   2018 	splx(s);
   2019 
   2020 	return error;
   2021 }
   2022 
   2023 static void
   2024 re_watchdog(struct ifnet *ifp)
   2025 {
   2026 	struct rtk_softc	*sc;
   2027 	int			s;
   2028 
   2029 	sc = ifp->if_softc;
   2030 	s = splnet();
   2031 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2032 	ifp->if_oerrors++;
   2033 
   2034 	re_txeof(sc);
   2035 	re_rxeof(sc);
   2036 
   2037 	re_init(ifp);
   2038 
   2039 	splx(s);
   2040 }
   2041 
   2042 /*
   2043  * Stop the adapter and free any mbufs allocated to the
   2044  * RX and TX lists.
   2045  */
   2046 static void
   2047 re_stop(struct ifnet *ifp, int disable)
   2048 {
   2049 	int		i;
   2050 	struct rtk_softc *sc = ifp->if_softc;
   2051 
   2052 	callout_stop(&sc->rtk_tick_ch);
   2053 
   2054 #ifdef DEVICE_POLLING
   2055 	ether_poll_deregister(ifp);
   2056 #endif /* DEVICE_POLLING */
   2057 
   2058 	mii_down(&sc->mii);
   2059 
   2060 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2061 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2062 
   2063 	if (sc->re_head != NULL) {
   2064 		m_freem(sc->re_head);
   2065 		sc->re_head = sc->re_tail = NULL;
   2066 	}
   2067 
   2068 	/* Free the TX list buffers. */
   2069 	for (i = 0; i < RE_TX_QLEN; i++) {
   2070 		if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
   2071 			bus_dmamap_unload(sc->sc_dmat,
   2072 			    sc->re_ldata.re_txq[i].txq_dmamap);
   2073 			m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
   2074 			sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   2075 		}
   2076 	}
   2077 
   2078 	/* Free the RX list buffers. */
   2079 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   2080 		if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
   2081 			bus_dmamap_unload(sc->sc_dmat,
   2082 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   2083 			m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
   2084 			sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
   2085 		}
   2086 	}
   2087 
   2088 	if (disable)
   2089 		re_disable(sc);
   2090 
   2091 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2092 	ifp->if_timer = 0;
   2093 }
   2094