rtl8169.c revision 1.64 1 /* $NetBSD: rtl8169.c,v 1.64 2006/11/17 21:49:49 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if (sc->rtk_type == RTK_8169) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if (sc->rtk_type == RTK_8169) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if (sc->rtk_type == RTK_8139CPLUS) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, 0x82, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578
579 /* XXX JRS: bus-attach-independent code begins approximately here */
580
581 /* Reset the adapter. */
582 re_reset(sc);
583
584 if (sc->rtk_type == RTK_8169) {
585 uint32_t hwrev;
586
587 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
588 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
589 if (hwrev == (0x1 << 28)) {
590 sc->sc_rev = 4;
591 } else if (hwrev == (0x1 << 26)) {
592 sc->sc_rev = 3;
593 } else if (hwrev == (0x1 << 23)) {
594 sc->sc_rev = 2;
595 } else
596 sc->sc_rev = 1;
597
598 /* Set RX length mask */
599
600 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
601
602 /* Force station address autoload from the EEPROM */
603
604 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
605 for (i = 0; i < RTK_TIMEOUT; i++) {
606 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
607 == 0)
608 break;
609 DELAY(100);
610 }
611 if (i == RTK_TIMEOUT)
612 aprint_error("%s: eeprom autoload timed out\n",
613 sc->sc_dev.dv_xname);
614
615 for (i = 0; i < ETHER_ADDR_LEN; i++)
616 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
617
618 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
619 } else {
620
621 /* Set RX length mask */
622
623 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
624
625 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
626 addr_len = RTK_EEADDR_LEN1;
627 else
628 addr_len = RTK_EEADDR_LEN0;
629
630 /*
631 * Get station address from the EEPROM.
632 */
633 for (i = 0; i < 3; i++) {
634 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
635 eaddr[(i * 2) + 0] = val & 0xff;
636 eaddr[(i * 2) + 1] = val >> 8;
637 }
638
639 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
640 }
641
642 aprint_normal("%s: Ethernet address %s\n",
643 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
644
645 if (sc->re_ldata.re_tx_desc_cnt >
646 PAGE_SIZE / sizeof(struct re_desc)) {
647 sc->re_ldata.re_tx_desc_cnt =
648 PAGE_SIZE / sizeof(struct re_desc);
649 }
650
651 aprint_verbose("%s: using %d tx descriptors\n",
652 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
653
654 /* Allocate DMA'able memory for the TX ring */
655 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
656 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
657 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
658 aprint_error("%s: can't allocate tx listseg, error = %d\n",
659 sc->sc_dev.dv_xname, error);
660 goto fail_0;
661 }
662
663 /* Load the map for the TX ring. */
664 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
665 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
666 (caddr_t *)&sc->re_ldata.re_tx_list,
667 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
668 aprint_error("%s: can't map tx list, error = %d\n",
669 sc->sc_dev.dv_xname, error);
670 goto fail_1;
671 }
672 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
673
674 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
675 RE_TX_LIST_SZ(sc), 0, 0,
676 &sc->re_ldata.re_tx_list_map)) != 0) {
677 aprint_error("%s: can't create tx list map, error = %d\n",
678 sc->sc_dev.dv_xname, error);
679 goto fail_2;
680 }
681
682
683 if ((error = bus_dmamap_load(sc->sc_dmat,
684 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
685 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
686 aprint_error("%s: can't load tx list, error = %d\n",
687 sc->sc_dev.dv_xname, error);
688 goto fail_3;
689 }
690
691 /* Create DMA maps for TX buffers */
692 for (i = 0; i < RE_TX_QLEN; i++) {
693 error = bus_dmamap_create(sc->sc_dmat,
694 round_page(IP_MAXPACKET),
695 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
696 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
697 if (error) {
698 aprint_error("%s: can't create DMA map for TX\n",
699 sc->sc_dev.dv_xname);
700 goto fail_4;
701 }
702 }
703
704 /* Allocate DMA'able memory for the RX ring */
705 if ((error = bus_dmamem_alloc(sc->sc_dmat,
706 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
707 RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
708 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
709 aprint_error("%s: can't allocate rx listseg, error = %d\n",
710 sc->sc_dev.dv_xname, error);
711 goto fail_4;
712 }
713
714 /* Load the map for the RX ring. */
715 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
716 sc->re_ldata.re_rx_listnseg, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
717 (caddr_t *)&sc->re_ldata.re_rx_list,
718 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
719 aprint_error("%s: can't map rx list, error = %d\n",
720 sc->sc_dev.dv_xname, error);
721 goto fail_5;
722 }
723 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN);
724
725 if ((error = bus_dmamap_create(sc->sc_dmat,
726 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 1,
727 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 0, 0,
728 &sc->re_ldata.re_rx_list_map)) != 0) {
729 aprint_error("%s: can't create rx list map, error = %d\n",
730 sc->sc_dev.dv_xname, error);
731 goto fail_6;
732 }
733
734 if ((error = bus_dmamap_load(sc->sc_dmat,
735 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
736 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, NULL, BUS_DMA_NOWAIT)) != 0) {
737 aprint_error("%s: can't load rx list, error = %d\n",
738 sc->sc_dev.dv_xname, error);
739 goto fail_7;
740 }
741
742 /* Create DMA maps for RX buffers */
743 for (i = 0; i < RE_RX_DESC_CNT; i++) {
744 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
745 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
746 if (error) {
747 aprint_error("%s: can't create DMA map for RX\n",
748 sc->sc_dev.dv_xname);
749 goto fail_8;
750 }
751 }
752
753 /*
754 * Record interface as attached. From here, we should not fail.
755 */
756 sc->sc_flags |= RTK_ATTACHED;
757
758 ifp = &sc->ethercom.ec_if;
759 ifp->if_softc = sc;
760 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
761 ifp->if_mtu = ETHERMTU;
762 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
763 ifp->if_ioctl = re_ioctl;
764 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
765
766 /*
767 * This is a way to disable hw VLAN tagging by default
768 * (RE_VLAN is undefined), as it is problematic. PR 32643
769 */
770
771 #ifdef RE_VLAN
772 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
773 #endif
774 ifp->if_start = re_start;
775 ifp->if_stop = re_stop;
776
777 /*
778 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
779 */
780
781 ifp->if_capabilities |=
782 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
783 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
784 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
785 IFCAP_TSOv4;
786 ifp->if_watchdog = re_watchdog;
787 ifp->if_init = re_init;
788 if (sc->rtk_type == RTK_8169)
789 ifp->if_baudrate = 1000000000;
790 else
791 ifp->if_baudrate = 100000000;
792 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
793 ifp->if_capenable = ifp->if_capabilities;
794 IFQ_SET_READY(&ifp->if_snd);
795
796 callout_init(&sc->rtk_tick_ch);
797
798 /* Do MII setup */
799 sc->mii.mii_ifp = ifp;
800 sc->mii.mii_readreg = re_miibus_readreg;
801 sc->mii.mii_writereg = re_miibus_writereg;
802 sc->mii.mii_statchg = re_miibus_statchg;
803 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
804 re_ifmedia_sts);
805 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
806 MII_OFFSET_ANY, 0);
807 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
808
809 /*
810 * Call MI attach routine.
811 */
812 if_attach(ifp);
813 ether_ifattach(ifp, eaddr);
814
815
816 /*
817 * Make sure the interface is shutdown during reboot.
818 */
819 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
820 if (sc->sc_sdhook == NULL)
821 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
822 sc->sc_dev.dv_xname);
823 /*
824 * Add a suspend hook to make sure we come back up after a
825 * resume.
826 */
827 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
828 re_power, sc);
829 if (sc->sc_powerhook == NULL)
830 aprint_error("%s: WARNING: unable to establish power hook\n",
831 sc->sc_dev.dv_xname);
832
833
834 return;
835
836 fail_8:
837 /* Destroy DMA maps for RX buffers. */
838 for (i = 0; i < RE_RX_DESC_CNT; i++)
839 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
840 bus_dmamap_destroy(sc->sc_dmat,
841 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
842
843 /* Free DMA'able memory for the RX ring. */
844 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
845 fail_7:
846 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
847 fail_6:
848 bus_dmamem_unmap(sc->sc_dmat,
849 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
850 fail_5:
851 bus_dmamem_free(sc->sc_dmat,
852 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
853
854 fail_4:
855 /* Destroy DMA maps for TX buffers. */
856 for (i = 0; i < RE_TX_QLEN; i++)
857 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
858 bus_dmamap_destroy(sc->sc_dmat,
859 sc->re_ldata.re_txq[i].txq_dmamap);
860
861 /* Free DMA'able memory for the TX ring. */
862 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
863 fail_3:
864 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
865 fail_2:
866 bus_dmamem_unmap(sc->sc_dmat,
867 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
868 fail_1:
869 bus_dmamem_free(sc->sc_dmat,
870 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
871 fail_0:
872 return;
873 }
874
875
876 /*
877 * re_activate:
878 * Handle device activation/deactivation requests.
879 */
880 int
881 re_activate(struct device *self, enum devact act)
882 {
883 struct rtk_softc *sc = (void *)self;
884 int s, error = 0;
885
886 s = splnet();
887 switch (act) {
888 case DVACT_ACTIVATE:
889 error = EOPNOTSUPP;
890 break;
891 case DVACT_DEACTIVATE:
892 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
893 if_deactivate(&sc->ethercom.ec_if);
894 break;
895 }
896 splx(s);
897
898 return error;
899 }
900
901 /*
902 * re_detach:
903 * Detach a rtk interface.
904 */
905 int
906 re_detach(struct rtk_softc *sc)
907 {
908 struct ifnet *ifp = &sc->ethercom.ec_if;
909 int i;
910
911 /*
912 * Succeed now if there isn't any work to do.
913 */
914 if ((sc->sc_flags & RTK_ATTACHED) == 0)
915 return 0;
916
917 /* Unhook our tick handler. */
918 callout_stop(&sc->rtk_tick_ch);
919
920 /* Detach all PHYs. */
921 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
922
923 /* Delete all remaining media. */
924 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
925
926 ether_ifdetach(ifp);
927 if_detach(ifp);
928
929 /* Destroy DMA maps for RX buffers. */
930 for (i = 0; i < RE_RX_DESC_CNT; i++)
931 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
934
935 /* Free DMA'able memory for the RX ring. */
936 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
937 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
938 bus_dmamem_unmap(sc->sc_dmat,
939 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
940 bus_dmamem_free(sc->sc_dmat,
941 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
942
943 /* Destroy DMA maps for TX buffers. */
944 for (i = 0; i < RE_TX_QLEN; i++)
945 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
946 bus_dmamap_destroy(sc->sc_dmat,
947 sc->re_ldata.re_txq[i].txq_dmamap);
948
949 /* Free DMA'able memory for the TX ring. */
950 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
951 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
952 bus_dmamem_unmap(sc->sc_dmat,
953 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
954 bus_dmamem_free(sc->sc_dmat,
955 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
956
957
958 shutdownhook_disestablish(sc->sc_sdhook);
959 powerhook_disestablish(sc->sc_powerhook);
960
961 return 0;
962 }
963
964 /*
965 * re_enable:
966 * Enable the RTL81X9 chip.
967 */
968 static int
969 re_enable(struct rtk_softc *sc)
970 {
971
972 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
973 if ((*sc->sc_enable)(sc) != 0) {
974 aprint_error("%s: device enable failed\n",
975 sc->sc_dev.dv_xname);
976 return EIO;
977 }
978 sc->sc_flags |= RTK_ENABLED;
979 }
980 return 0;
981 }
982
983 /*
984 * re_disable:
985 * Disable the RTL81X9 chip.
986 */
987 static void
988 re_disable(struct rtk_softc *sc)
989 {
990
991 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
992 (*sc->sc_disable)(sc);
993 sc->sc_flags &= ~RTK_ENABLED;
994 }
995 }
996
997 /*
998 * re_power:
999 * Power management (suspend/resume) hook.
1000 */
1001 void
1002 re_power(int why, void *arg)
1003 {
1004 struct rtk_softc *sc = (void *)arg;
1005 struct ifnet *ifp = &sc->ethercom.ec_if;
1006 int s;
1007
1008 s = splnet();
1009 switch (why) {
1010 case PWR_SUSPEND:
1011 case PWR_STANDBY:
1012 re_stop(ifp, 0);
1013 if (sc->sc_power != NULL)
1014 (*sc->sc_power)(sc, why);
1015 break;
1016 case PWR_RESUME:
1017 if (ifp->if_flags & IFF_UP) {
1018 if (sc->sc_power != NULL)
1019 (*sc->sc_power)(sc, why);
1020 re_init(ifp);
1021 }
1022 break;
1023 case PWR_SOFTSUSPEND:
1024 case PWR_SOFTSTANDBY:
1025 case PWR_SOFTRESUME:
1026 break;
1027 }
1028 splx(s);
1029 }
1030
1031
1032 static int
1033 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1034 {
1035 struct mbuf *n = NULL;
1036 bus_dmamap_t map;
1037 struct re_desc *d;
1038 struct re_rxsoft *rxs;
1039 uint32_t cmdstat;
1040 int error;
1041
1042 if (m == NULL) {
1043 MGETHDR(n, M_DONTWAIT, MT_DATA);
1044 if (n == NULL)
1045 return ENOBUFS;
1046
1047 MCLGET(n, M_DONTWAIT);
1048 if ((n->m_flags & M_EXT) == 0) {
1049 m_freem(n);
1050 return ENOBUFS;
1051 }
1052 m = n;
1053 } else
1054 m->m_data = m->m_ext.ext_buf;
1055
1056 /*
1057 * Initialize mbuf length fields and fixup
1058 * alignment so that the frame payload is
1059 * longword aligned.
1060 */
1061 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1062 m->m_data += RE_ETHER_ALIGN;
1063
1064 rxs = &sc->re_ldata.re_rxsoft[idx];
1065 map = rxs->rxs_dmamap;
1066 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1067 BUS_DMA_READ|BUS_DMA_NOWAIT);
1068
1069 if (error)
1070 goto out;
1071
1072 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1073 BUS_DMASYNC_PREREAD);
1074
1075 d = &sc->re_ldata.re_rx_list[idx];
1076 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1077 cmdstat = le32toh(d->re_cmdstat);
1078 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1079 if (cmdstat & RE_RDESC_STAT_OWN) {
1080 aprint_error("%s: tried to map busy RX descriptor\n",
1081 sc->sc_dev.dv_xname);
1082 goto out;
1083 }
1084
1085 rxs->rxs_mbuf = m;
1086
1087 cmdstat = map->dm_segs[0].ds_len;
1088 if (idx == (RE_RX_DESC_CNT - 1))
1089 cmdstat |= RE_RDESC_CMD_EOR;
1090 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1091 d->re_cmdstat = htole32(cmdstat);
1092 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1093 cmdstat |= RE_RDESC_CMD_OWN;
1094 d->re_cmdstat = htole32(cmdstat);
1095 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1096
1097 return 0;
1098 out:
1099 if (n != NULL)
1100 m_freem(n);
1101 return ENOMEM;
1102 }
1103
1104 static int
1105 re_tx_list_init(struct rtk_softc *sc)
1106 {
1107 int i;
1108
1109 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1110 for (i = 0; i < RE_TX_QLEN; i++) {
1111 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1112 }
1113
1114 bus_dmamap_sync(sc->sc_dmat,
1115 sc->re_ldata.re_tx_list_map, 0,
1116 sc->re_ldata.re_tx_list_map->dm_mapsize,
1117 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1118 sc->re_ldata.re_txq_prodidx = 0;
1119 sc->re_ldata.re_txq_considx = 0;
1120 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1121 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1122 sc->re_ldata.re_tx_nextfree = 0;
1123
1124 return 0;
1125 }
1126
1127 static int
1128 re_rx_list_init(struct rtk_softc *sc)
1129 {
1130 int i;
1131
1132 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1133
1134 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1135 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1136 return ENOBUFS;
1137 }
1138
1139 sc->re_ldata.re_rx_prodidx = 0;
1140 sc->re_head = sc->re_tail = NULL;
1141
1142 return 0;
1143 }
1144
1145 /*
1146 * RX handler for C+ and 8169. For the gigE chips, we support
1147 * the reception of jumbo frames that have been fragmented
1148 * across multiple 2K mbuf cluster buffers.
1149 */
1150 static void
1151 re_rxeof(struct rtk_softc *sc)
1152 {
1153 struct mbuf *m;
1154 struct ifnet *ifp;
1155 int i, total_len;
1156 struct re_desc *cur_rx;
1157 struct re_rxsoft *rxs;
1158 uint32_t rxstat, rxvlan;
1159
1160 ifp = &sc->ethercom.ec_if;
1161
1162 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1163 cur_rx = &sc->re_ldata.re_rx_list[i];
1164 RE_RXDESCSYNC(sc, i,
1165 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1166 rxstat = le32toh(cur_rx->re_cmdstat);
1167 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1168 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1169 break;
1170 }
1171 total_len = rxstat & sc->re_rxlenmask;
1172 rxvlan = le32toh(cur_rx->re_vlanctl);
1173 rxs = &sc->re_ldata.re_rxsoft[i];
1174 m = rxs->rxs_mbuf;
1175
1176 /* Invalidate the RX mbuf and unload its map */
1177
1178 bus_dmamap_sync(sc->sc_dmat,
1179 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1180 BUS_DMASYNC_POSTREAD);
1181 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1182
1183 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1184 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1185 if (sc->re_head == NULL)
1186 sc->re_head = sc->re_tail = m;
1187 else {
1188 m->m_flags &= ~M_PKTHDR;
1189 sc->re_tail->m_next = m;
1190 sc->re_tail = m;
1191 }
1192 re_newbuf(sc, i, NULL);
1193 continue;
1194 }
1195
1196 /*
1197 * NOTE: for the 8139C+, the frame length field
1198 * is always 12 bits in size, but for the gigE chips,
1199 * it is 13 bits (since the max RX frame length is 16K).
1200 * Unfortunately, all 32 bits in the status word
1201 * were already used, so to make room for the extra
1202 * length bit, RealTek took out the 'frame alignment
1203 * error' bit and shifted the other status bits
1204 * over one slot. The OWN, EOR, FS and LS bits are
1205 * still in the same places. We have already extracted
1206 * the frame length and checked the OWN bit, so rather
1207 * than using an alternate bit mapping, we shift the
1208 * status bits one space to the right so we can evaluate
1209 * them using the 8169 status as though it was in the
1210 * same format as that of the 8139C+.
1211 */
1212 if (sc->rtk_type == RTK_8169)
1213 rxstat >>= 1;
1214
1215 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1216 ifp->if_ierrors++;
1217 /*
1218 * If this is part of a multi-fragment packet,
1219 * discard all the pieces.
1220 */
1221 if (sc->re_head != NULL) {
1222 m_freem(sc->re_head);
1223 sc->re_head = sc->re_tail = NULL;
1224 }
1225 re_newbuf(sc, i, m);
1226 continue;
1227 }
1228
1229 /*
1230 * If allocating a replacement mbuf fails,
1231 * reload the current one.
1232 */
1233
1234 if (re_newbuf(sc, i, NULL) != 0) {
1235 ifp->if_ierrors++;
1236 if (sc->re_head != NULL) {
1237 m_freem(sc->re_head);
1238 sc->re_head = sc->re_tail = NULL;
1239 }
1240 re_newbuf(sc, i, m);
1241 continue;
1242 }
1243
1244 if (sc->re_head != NULL) {
1245 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1246 /*
1247 * Special case: if there's 4 bytes or less
1248 * in this buffer, the mbuf can be discarded:
1249 * the last 4 bytes is the CRC, which we don't
1250 * care about anyway.
1251 */
1252 if (m->m_len <= ETHER_CRC_LEN) {
1253 sc->re_tail->m_len -=
1254 (ETHER_CRC_LEN - m->m_len);
1255 m_freem(m);
1256 } else {
1257 m->m_len -= ETHER_CRC_LEN;
1258 m->m_flags &= ~M_PKTHDR;
1259 sc->re_tail->m_next = m;
1260 }
1261 m = sc->re_head;
1262 sc->re_head = sc->re_tail = NULL;
1263 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1264 } else
1265 m->m_pkthdr.len = m->m_len =
1266 (total_len - ETHER_CRC_LEN);
1267
1268 ifp->if_ipackets++;
1269 m->m_pkthdr.rcvif = ifp;
1270
1271 /* Do RX checksumming if enabled */
1272
1273 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1274
1275 /* Check IP header checksum */
1276 if (rxstat & RE_RDESC_STAT_PROTOID)
1277 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1278 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1279 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1280 }
1281
1282 /* Check TCP/UDP checksum */
1283 if (RE_TCPPKT(rxstat) &&
1284 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1285 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1286 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1287 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1288 }
1289 if (RE_UDPPKT(rxstat) &&
1290 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1291 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1292 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 }
1295
1296 #ifdef RE_VLAN
1297 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1298 VLAN_INPUT_TAG(ifp, m,
1299 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1300 continue);
1301 }
1302 #endif
1303 #if NBPFILTER > 0
1304 if (ifp->if_bpf)
1305 bpf_mtap(ifp->if_bpf, m);
1306 #endif
1307 (*ifp->if_input)(ifp, m);
1308 }
1309
1310 sc->re_ldata.re_rx_prodidx = i;
1311 }
1312
1313 static void
1314 re_txeof(struct rtk_softc *sc)
1315 {
1316 struct ifnet *ifp;
1317 struct re_txq *txq;
1318 uint32_t txstat;
1319 int idx, descidx;
1320
1321 ifp = &sc->ethercom.ec_if;
1322
1323 for (idx = sc->re_ldata.re_txq_considx;
1324 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1325 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1326 txq = &sc->re_ldata.re_txq[idx];
1327 KASSERT(txq->txq_mbuf != NULL);
1328
1329 descidx = txq->txq_descidx;
1330 RE_TXDESCSYNC(sc, descidx,
1331 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1332 txstat =
1333 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1334 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1335 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1336 if (txstat & RE_TDESC_CMD_OWN) {
1337 break;
1338 }
1339
1340 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1341 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1342 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1343 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1344 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1345 m_freem(txq->txq_mbuf);
1346 txq->txq_mbuf = NULL;
1347
1348 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1349 ifp->if_collisions++;
1350 if (txstat & RE_TDESC_STAT_TXERRSUM)
1351 ifp->if_oerrors++;
1352 else
1353 ifp->if_opackets++;
1354 }
1355
1356 sc->re_ldata.re_txq_considx = idx;
1357
1358 if (sc->re_ldata.re_txq_free > 0)
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360
1361 /*
1362 * If not all descriptors have been released reaped yet,
1363 * reload the timer so that we will eventually get another
1364 * interrupt that will cause us to re-enter this routine.
1365 * This is done in case the transmitter has gone idle.
1366 */
1367 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1368 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1369 else
1370 ifp->if_timer = 0;
1371 }
1372
1373 /*
1374 * Stop all chip I/O so that the kernel's probe routines don't
1375 * get confused by errant DMAs when rebooting.
1376 */
1377 static void
1378 re_shutdown(void *vsc)
1379
1380 {
1381 struct rtk_softc *sc = vsc;
1382
1383 re_stop(&sc->ethercom.ec_if, 0);
1384 }
1385
1386
1387 static void
1388 re_tick(void *xsc)
1389 {
1390 struct rtk_softc *sc = xsc;
1391 int s;
1392
1393 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1394 s = splnet();
1395
1396 mii_tick(&sc->mii);
1397 splx(s);
1398
1399 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1400 }
1401
1402 #ifdef DEVICE_POLLING
1403 static void
1404 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1405 {
1406 struct rtk_softc *sc = ifp->if_softc;
1407
1408 RTK_LOCK(sc);
1409 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1410 ether_poll_deregister(ifp);
1411 cmd = POLL_DEREGISTER;
1412 }
1413 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1414 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1415 goto done;
1416 }
1417
1418 sc->rxcycles = count;
1419 re_rxeof(sc);
1420 re_txeof(sc);
1421
1422 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1423 (*ifp->if_start)(ifp);
1424
1425 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1426 uint16_t status;
1427
1428 status = CSR_READ_2(sc, RTK_ISR);
1429 if (status == 0xffff)
1430 goto done;
1431 if (status)
1432 CSR_WRITE_2(sc, RTK_ISR, status);
1433
1434 /*
1435 * XXX check behaviour on receiver stalls.
1436 */
1437
1438 if (status & RTK_ISR_SYSTEM_ERR) {
1439 re_init(sc);
1440 }
1441 }
1442 done:
1443 RTK_UNLOCK(sc);
1444 }
1445 #endif /* DEVICE_POLLING */
1446
1447 int
1448 re_intr(void *arg)
1449 {
1450 struct rtk_softc *sc = arg;
1451 struct ifnet *ifp;
1452 uint16_t status;
1453 int handled = 0;
1454
1455 ifp = &sc->ethercom.ec_if;
1456
1457 if ((ifp->if_flags & IFF_UP) == 0)
1458 return 0;
1459
1460 #ifdef DEVICE_POLLING
1461 if (ifp->if_flags & IFF_POLLING)
1462 goto done;
1463 if ((ifp->if_capenable & IFCAP_POLLING) &&
1464 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1465 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1466 re_poll(ifp, 0, 1);
1467 goto done;
1468 }
1469 #endif /* DEVICE_POLLING */
1470
1471 for (;;) {
1472
1473 status = CSR_READ_2(sc, RTK_ISR);
1474 /* If the card has gone away the read returns 0xffff. */
1475 if (status == 0xffff)
1476 break;
1477 if (status) {
1478 handled = 1;
1479 CSR_WRITE_2(sc, RTK_ISR, status);
1480 }
1481
1482 if ((status & RTK_INTRS_CPLUS) == 0)
1483 break;
1484
1485 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1486 re_rxeof(sc);
1487
1488 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1489 RTK_ISR_TX_DESC_UNAVAIL))
1490 re_txeof(sc);
1491
1492 if (status & RTK_ISR_SYSTEM_ERR) {
1493 re_init(ifp);
1494 }
1495
1496 if (status & RTK_ISR_LINKCHG) {
1497 callout_stop(&sc->rtk_tick_ch);
1498 re_tick(sc);
1499 }
1500 }
1501
1502 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1503 re_start(ifp);
1504
1505 #ifdef DEVICE_POLLING
1506 done:
1507 #endif
1508
1509 return handled;
1510 }
1511
1512
1513
1514 /*
1515 * Main transmit routine for C+ and gigE NICs.
1516 */
1517
1518 static void
1519 re_start(struct ifnet *ifp)
1520 {
1521 struct rtk_softc *sc;
1522 struct mbuf *m;
1523 bus_dmamap_t map;
1524 struct re_txq *txq;
1525 struct re_desc *d;
1526 #ifdef RE_VLAN
1527 struct m_tag *mtag;
1528 #endif
1529 uint32_t cmdstat, re_flags;
1530 int ofree, idx, error, nsegs, seg;
1531 int startdesc, curdesc, lastdesc;
1532 boolean_t pad;
1533
1534 sc = ifp->if_softc;
1535 ofree = sc->re_ldata.re_txq_free;
1536
1537 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1538
1539 IFQ_POLL(&ifp->if_snd, m);
1540 if (m == NULL)
1541 break;
1542
1543 if (sc->re_ldata.re_txq_free == 0 ||
1544 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1545 /* no more free slots left */
1546 ifp->if_flags |= IFF_OACTIVE;
1547 break;
1548 }
1549
1550 /*
1551 * Set up checksum offload. Note: checksum offload bits must
1552 * appear in all descriptors of a multi-descriptor transmit
1553 * attempt. (This is according to testing done with an 8169
1554 * chip. I'm not sure if this is a requirement or a bug.)
1555 */
1556
1557 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1558 uint32_t segsz = m->m_pkthdr.segsz;
1559
1560 re_flags = RE_TDESC_CMD_LGSEND |
1561 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1562 } else {
1563 /*
1564 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1565 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1566 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1567 */
1568 re_flags = 0;
1569 if ((m->m_pkthdr.csum_flags &
1570 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1571 != 0) {
1572 re_flags |= RE_TDESC_CMD_IPCSUM;
1573 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1574 re_flags |= RE_TDESC_CMD_TCPCSUM;
1575 } else if (m->m_pkthdr.csum_flags &
1576 M_CSUM_UDPv4) {
1577 re_flags |= RE_TDESC_CMD_UDPCSUM;
1578 }
1579 }
1580 }
1581
1582 txq = &sc->re_ldata.re_txq[idx];
1583 map = txq->txq_dmamap;
1584 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1585 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1586
1587 if (error) {
1588 /* XXX try to defrag if EFBIG? */
1589 aprint_error("%s: can't map mbuf (error %d)\n",
1590 sc->sc_dev.dv_xname, error);
1591
1592 IFQ_DEQUEUE(&ifp->if_snd, m);
1593 m_freem(m);
1594 ifp->if_oerrors++;
1595 continue;
1596 }
1597
1598 nsegs = map->dm_nsegs;
1599 pad = FALSE;
1600 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1601 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1602 pad = TRUE;
1603 nsegs++;
1604 }
1605
1606 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1607 /*
1608 * Not enough free descriptors to transmit this packet.
1609 */
1610 ifp->if_flags |= IFF_OACTIVE;
1611 bus_dmamap_unload(sc->sc_dmat, map);
1612 break;
1613 }
1614
1615 IFQ_DEQUEUE(&ifp->if_snd, m);
1616
1617 /*
1618 * Make sure that the caches are synchronized before we
1619 * ask the chip to start DMA for the packet data.
1620 */
1621 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1622 BUS_DMASYNC_PREWRITE);
1623
1624 /*
1625 * Map the segment array into descriptors.
1626 * Note that we set the start-of-frame and
1627 * end-of-frame markers for either TX or RX,
1628 * but they really only have meaning in the TX case.
1629 * (In the RX case, it's the chip that tells us
1630 * where packets begin and end.)
1631 * We also keep track of the end of the ring
1632 * and set the end-of-ring bits as needed,
1633 * and we set the ownership bits in all except
1634 * the very first descriptor. (The caller will
1635 * set this descriptor later when it start
1636 * transmission or reception.)
1637 */
1638 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1639 lastdesc = -1;
1640 for (seg = 0; seg < map->dm_nsegs;
1641 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1642 d = &sc->re_ldata.re_tx_list[curdesc];
1643 #ifdef DIAGNISTIC
1644 RE_TXDESCSYNC(sc, curdesc,
1645 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1646 cmdstat = le32toh(d->re_cmdstat);
1647 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1648 if (cmdstat & RE_TDESC_STAT_OWN) {
1649 panic("%s: tried to map busy TX descriptor",
1650 sc->sc_dev.dv_xname);
1651 }
1652 #endif
1653
1654 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1655 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1656 if (seg == 0)
1657 cmdstat |= RE_TDESC_CMD_SOF;
1658 else
1659 cmdstat |= RE_TDESC_CMD_OWN;
1660 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1661 cmdstat |= RE_TDESC_CMD_EOR;
1662 if (seg == nsegs - 1) {
1663 cmdstat |= RE_TDESC_CMD_EOF;
1664 lastdesc = curdesc;
1665 }
1666 d->re_cmdstat = htole32(cmdstat);
1667 RE_TXDESCSYNC(sc, curdesc,
1668 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1669 }
1670 if (pad) {
1671 bus_addr_t paddaddr;
1672
1673 d = &sc->re_ldata.re_tx_list[curdesc];
1674 paddaddr = RE_TXPADDADDR(sc);
1675 re_set_bufaddr(d, paddaddr);
1676 cmdstat = re_flags |
1677 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1678 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1679 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1680 cmdstat |= RE_TDESC_CMD_EOR;
1681 d->re_cmdstat = htole32(cmdstat);
1682 RE_TXDESCSYNC(sc, curdesc,
1683 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1684 lastdesc = curdesc;
1685 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1686 }
1687 KASSERT(lastdesc != -1);
1688
1689 /*
1690 * Set up hardware VLAN tagging. Note: vlan tag info must
1691 * appear in the first descriptor of a multi-descriptor
1692 * transmission attempt.
1693 */
1694
1695 #ifdef RE_VLAN
1696 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1697 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1698 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1699 RE_TDESC_VLANCTL_TAG);
1700 }
1701 #endif
1702
1703 /* Transfer ownership of packet to the chip. */
1704
1705 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1706 htole32(RE_TDESC_CMD_OWN);
1707 RE_TXDESCSYNC(sc, startdesc,
1708 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1709
1710 /* update info of TX queue and descriptors */
1711 txq->txq_mbuf = m;
1712 txq->txq_descidx = lastdesc;
1713 txq->txq_nsegs = nsegs;
1714
1715 sc->re_ldata.re_txq_free--;
1716 sc->re_ldata.re_tx_free -= nsegs;
1717 sc->re_ldata.re_tx_nextfree = curdesc;
1718
1719 #if NBPFILTER > 0
1720 /*
1721 * If there's a BPF listener, bounce a copy of this frame
1722 * to him.
1723 */
1724 if (ifp->if_bpf)
1725 bpf_mtap(ifp->if_bpf, m);
1726 #endif
1727 }
1728
1729 if (sc->re_ldata.re_txq_free < ofree) {
1730 /*
1731 * TX packets are enqueued.
1732 */
1733 sc->re_ldata.re_txq_prodidx = idx;
1734
1735 /*
1736 * Start the transmitter to poll.
1737 *
1738 * RealTek put the TX poll request register in a different
1739 * location on the 8169 gigE chip. I don't know why.
1740 */
1741 if (sc->rtk_type == RTK_8169)
1742 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1743 else
1744 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1745
1746 /*
1747 * Use the countdown timer for interrupt moderation.
1748 * 'TX done' interrupts are disabled. Instead, we reset the
1749 * countdown timer, which will begin counting until it hits
1750 * the value in the TIMERINT register, and then trigger an
1751 * interrupt. Each time we write to the TIMERCNT register,
1752 * the timer count is reset to 0.
1753 */
1754 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1755
1756 /*
1757 * Set a timeout in case the chip goes out to lunch.
1758 */
1759 ifp->if_timer = 5;
1760 }
1761 }
1762
1763 static int
1764 re_init(struct ifnet *ifp)
1765 {
1766 struct rtk_softc *sc = ifp->if_softc;
1767 uint8_t *enaddr;
1768 uint32_t rxcfg = 0;
1769 uint32_t reg;
1770 int error;
1771
1772 if ((error = re_enable(sc)) != 0)
1773 goto out;
1774
1775 /*
1776 * Cancel pending I/O and free all RX/TX buffers.
1777 */
1778 re_stop(ifp, 0);
1779
1780 re_reset(sc);
1781
1782 /*
1783 * Enable C+ RX and TX mode, as well as VLAN stripping and
1784 * RX checksum offload. We must configure the C+ register
1785 * before all others.
1786 */
1787 reg = 0;
1788
1789 /*
1790 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1791 * FreeBSD drivers set these bits anyway (for 8139C+?).
1792 * So far, it works.
1793 */
1794
1795 /*
1796 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1797 * For 8169S/8110S rev 2 and above, do not set bit 14.
1798 */
1799 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1800 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1801
1802 if (1) {/* not for 8169S ? */
1803 reg |=
1804 #ifdef RE_VLAN
1805 RTK_CPLUSCMD_VLANSTRIP |
1806 #endif
1807 (ifp->if_capenable &
1808 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1809 IFCAP_CSUM_UDPv4_Rx) ?
1810 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1811 }
1812
1813 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1814 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1815
1816 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1817 if (sc->rtk_type == RTK_8169)
1818 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1819
1820 DELAY(10000);
1821
1822 /*
1823 * Init our MAC address. Even though the chipset
1824 * documentation doesn't mention it, we need to enter "Config
1825 * register write enable" mode to modify the ID registers.
1826 */
1827 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1828 enaddr = LLADDR(ifp->if_sadl);
1829 reg = enaddr[0] | (enaddr[1] << 8) |
1830 (enaddr[2] << 16) | (enaddr[3] << 24);
1831 CSR_WRITE_4(sc, RTK_IDR0, reg);
1832 reg = enaddr[4] | (enaddr[5] << 8);
1833 CSR_WRITE_4(sc, RTK_IDR4, reg);
1834 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1835
1836 /*
1837 * For C+ mode, initialize the RX descriptors and mbufs.
1838 */
1839 re_rx_list_init(sc);
1840 re_tx_list_init(sc);
1841
1842 /*
1843 * Load the addresses of the RX and TX lists into the chip.
1844 */
1845 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1846 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1847 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1848 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1849
1850 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1851 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1852 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1853 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1854
1855 /*
1856 * Enable transmit and receive.
1857 */
1858 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1859
1860 /*
1861 * Set the initial TX and RX configuration.
1862 */
1863 if (sc->re_testmode) {
1864 if (sc->rtk_type == RTK_8169)
1865 CSR_WRITE_4(sc, RTK_TXCFG,
1866 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1867 else
1868 CSR_WRITE_4(sc, RTK_TXCFG,
1869 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1870 } else
1871 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1872
1873 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1874
1875 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1876
1877 /* Set the individual bit to receive frames for this host only. */
1878 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1879 rxcfg |= RTK_RXCFG_RX_INDIV;
1880
1881 /* If we want promiscuous mode, set the allframes bit. */
1882 if (ifp->if_flags & IFF_PROMISC)
1883 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1884 else
1885 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1886 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1887
1888 /*
1889 * Set capture broadcast bit to capture broadcast frames.
1890 */
1891 if (ifp->if_flags & IFF_BROADCAST)
1892 rxcfg |= RTK_RXCFG_RX_BROAD;
1893 else
1894 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1895 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1896
1897 /*
1898 * Program the multicast filter, if necessary.
1899 */
1900 rtk_setmulti(sc);
1901
1902 #ifdef DEVICE_POLLING
1903 /*
1904 * Disable interrupts if we are polling.
1905 */
1906 if (ifp->if_flags & IFF_POLLING)
1907 CSR_WRITE_2(sc, RTK_IMR, 0);
1908 else /* otherwise ... */
1909 #endif /* DEVICE_POLLING */
1910 /*
1911 * Enable interrupts.
1912 */
1913 if (sc->re_testmode)
1914 CSR_WRITE_2(sc, RTK_IMR, 0);
1915 else
1916 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1917
1918 /* Start RX/TX process. */
1919 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1920 #ifdef notdef
1921 /* Enable receiver and transmitter. */
1922 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1923 #endif
1924
1925 /*
1926 * Initialize the timer interrupt register so that
1927 * a timer interrupt will be generated once the timer
1928 * reaches a certain number of ticks. The timer is
1929 * reloaded on each transmit. This gives us TX interrupt
1930 * moderation, which dramatically improves TX frame rate.
1931 */
1932
1933 if (sc->rtk_type == RTK_8169)
1934 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1935 else
1936 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1937
1938 /*
1939 * For 8169 gigE NICs, set the max allowed RX packet
1940 * size so we can receive jumbo frames.
1941 */
1942 if (sc->rtk_type == RTK_8169)
1943 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1944
1945 if (sc->re_testmode)
1946 return 0;
1947
1948 mii_mediachg(&sc->mii);
1949
1950 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1951
1952 ifp->if_flags |= IFF_RUNNING;
1953 ifp->if_flags &= ~IFF_OACTIVE;
1954
1955 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1956
1957 out:
1958 if (error) {
1959 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1960 ifp->if_timer = 0;
1961 aprint_error("%s: interface not running\n",
1962 sc->sc_dev.dv_xname);
1963 }
1964
1965 return error;
1966 }
1967
1968 /*
1969 * Set media options.
1970 */
1971 static int
1972 re_ifmedia_upd(struct ifnet *ifp)
1973 {
1974 struct rtk_softc *sc;
1975
1976 sc = ifp->if_softc;
1977
1978 return mii_mediachg(&sc->mii);
1979 }
1980
1981 /*
1982 * Report current media status.
1983 */
1984 static void
1985 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1986 {
1987 struct rtk_softc *sc;
1988
1989 sc = ifp->if_softc;
1990
1991 mii_pollstat(&sc->mii);
1992 ifmr->ifm_active = sc->mii.mii_media_active;
1993 ifmr->ifm_status = sc->mii.mii_media_status;
1994 }
1995
1996 static int
1997 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1998 {
1999 struct rtk_softc *sc = ifp->if_softc;
2000 struct ifreq *ifr = (struct ifreq *) data;
2001 int s, error = 0;
2002
2003 s = splnet();
2004
2005 switch (command) {
2006 case SIOCSIFMTU:
2007 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2008 error = EINVAL;
2009 ifp->if_mtu = ifr->ifr_mtu;
2010 break;
2011 case SIOCGIFMEDIA:
2012 case SIOCSIFMEDIA:
2013 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2014 break;
2015 default:
2016 error = ether_ioctl(ifp, command, data);
2017 if (error == ENETRESET) {
2018 if (ifp->if_flags & IFF_RUNNING)
2019 rtk_setmulti(sc);
2020 error = 0;
2021 }
2022 break;
2023 }
2024
2025 splx(s);
2026
2027 return error;
2028 }
2029
2030 static void
2031 re_watchdog(struct ifnet *ifp)
2032 {
2033 struct rtk_softc *sc;
2034 int s;
2035
2036 sc = ifp->if_softc;
2037 s = splnet();
2038 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2039 ifp->if_oerrors++;
2040
2041 re_txeof(sc);
2042 re_rxeof(sc);
2043
2044 re_init(ifp);
2045
2046 splx(s);
2047 }
2048
2049 /*
2050 * Stop the adapter and free any mbufs allocated to the
2051 * RX and TX lists.
2052 */
2053 static void
2054 re_stop(struct ifnet *ifp, int disable)
2055 {
2056 int i;
2057 struct rtk_softc *sc = ifp->if_softc;
2058
2059 callout_stop(&sc->rtk_tick_ch);
2060
2061 #ifdef DEVICE_POLLING
2062 ether_poll_deregister(ifp);
2063 #endif /* DEVICE_POLLING */
2064
2065 mii_down(&sc->mii);
2066
2067 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2068 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2069
2070 if (sc->re_head != NULL) {
2071 m_freem(sc->re_head);
2072 sc->re_head = sc->re_tail = NULL;
2073 }
2074
2075 /* Free the TX list buffers. */
2076 for (i = 0; i < RE_TX_QLEN; i++) {
2077 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2078 bus_dmamap_unload(sc->sc_dmat,
2079 sc->re_ldata.re_txq[i].txq_dmamap);
2080 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2081 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2082 }
2083 }
2084
2085 /* Free the RX list buffers. */
2086 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2087 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2088 bus_dmamap_unload(sc->sc_dmat,
2089 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2090 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2091 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2092 }
2093 }
2094
2095 if (disable)
2096 re_disable(sc);
2097
2098 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2099 ifp->if_timer = 0;
2100 }
2101