rtl8169.c revision 1.65 1 /* $NetBSD: rtl8169.c,v 1.65 2006/11/18 00:21:36 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if (sc->rtk_type == RTK_8169) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if (sc->rtk_type == RTK_8169) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if (sc->rtk_type == RTK_8139CPLUS) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, 0x82, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578
579 /* XXX JRS: bus-attach-independent code begins approximately here */
580
581 /* Reset the adapter. */
582 re_reset(sc);
583
584 if (sc->rtk_type == RTK_8169) {
585 uint32_t hwrev;
586
587 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
588 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
589 if (hwrev == (0x1 << 28)) {
590 sc->sc_rev = 4;
591 } else if (hwrev == (0x1 << 26)) {
592 sc->sc_rev = 3;
593 } else if (hwrev == (0x1 << 23)) {
594 sc->sc_rev = 2;
595 } else
596 sc->sc_rev = 1;
597
598 /* Set RX length mask */
599
600 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
601
602 /* Force station address autoload from the EEPROM */
603
604 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
605 for (i = 0; i < RTK_TIMEOUT; i++) {
606 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
607 == 0)
608 break;
609 DELAY(100);
610 }
611 if (i == RTK_TIMEOUT)
612 aprint_error("%s: eeprom autoload timed out\n",
613 sc->sc_dev.dv_xname);
614
615 for (i = 0; i < ETHER_ADDR_LEN; i++)
616 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
617
618 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
619 } else {
620
621 /* Set RX length mask */
622
623 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
624
625 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
626 addr_len = RTK_EEADDR_LEN1;
627 else
628 addr_len = RTK_EEADDR_LEN0;
629
630 /*
631 * Get station address from the EEPROM.
632 */
633 for (i = 0; i < 3; i++) {
634 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
635 eaddr[(i * 2) + 0] = val & 0xff;
636 eaddr[(i * 2) + 1] = val >> 8;
637 }
638
639 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
640 }
641
642 aprint_normal("%s: Ethernet address %s\n",
643 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
644
645 if (sc->re_ldata.re_tx_desc_cnt >
646 PAGE_SIZE / sizeof(struct re_desc)) {
647 sc->re_ldata.re_tx_desc_cnt =
648 PAGE_SIZE / sizeof(struct re_desc);
649 }
650
651 aprint_verbose("%s: using %d tx descriptors\n",
652 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
653 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
654
655 /* Allocate DMA'able memory for the TX ring */
656 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
657 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
658 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
659 aprint_error("%s: can't allocate tx listseg, error = %d\n",
660 sc->sc_dev.dv_xname, error);
661 goto fail_0;
662 }
663
664 /* Load the map for the TX ring. */
665 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
666 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
667 (caddr_t *)&sc->re_ldata.re_tx_list,
668 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
669 aprint_error("%s: can't map tx list, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_1;
672 }
673 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
674
675 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
676 RE_TX_LIST_SZ(sc), 0, 0,
677 &sc->re_ldata.re_tx_list_map)) != 0) {
678 aprint_error("%s: can't create tx list map, error = %d\n",
679 sc->sc_dev.dv_xname, error);
680 goto fail_2;
681 }
682
683
684 if ((error = bus_dmamap_load(sc->sc_dmat,
685 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
686 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
687 aprint_error("%s: can't load tx list, error = %d\n",
688 sc->sc_dev.dv_xname, error);
689 goto fail_3;
690 }
691
692 /* Create DMA maps for TX buffers */
693 for (i = 0; i < RE_TX_QLEN; i++) {
694 error = bus_dmamap_create(sc->sc_dmat,
695 round_page(IP_MAXPACKET),
696 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
697 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
698 if (error) {
699 aprint_error("%s: can't create DMA map for TX\n",
700 sc->sc_dev.dv_xname);
701 goto fail_4;
702 }
703 }
704
705 /* Allocate DMA'able memory for the RX ring */
706 if ((error = bus_dmamem_alloc(sc->sc_dmat,
707 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
708 RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
709 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
710 aprint_error("%s: can't allocate rx listseg, error = %d\n",
711 sc->sc_dev.dv_xname, error);
712 goto fail_4;
713 }
714
715 /* Load the map for the RX ring. */
716 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
717 sc->re_ldata.re_rx_listnseg, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
718 (caddr_t *)&sc->re_ldata.re_rx_list,
719 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
720 aprint_error("%s: can't map rx list, error = %d\n",
721 sc->sc_dev.dv_xname, error);
722 goto fail_5;
723 }
724 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN);
725
726 if ((error = bus_dmamap_create(sc->sc_dmat,
727 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 1,
728 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 0, 0,
729 &sc->re_ldata.re_rx_list_map)) != 0) {
730 aprint_error("%s: can't create rx list map, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_6;
733 }
734
735 if ((error = bus_dmamap_load(sc->sc_dmat,
736 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
737 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, NULL, BUS_DMA_NOWAIT)) != 0) {
738 aprint_error("%s: can't load rx list, error = %d\n",
739 sc->sc_dev.dv_xname, error);
740 goto fail_7;
741 }
742
743 /* Create DMA maps for RX buffers */
744 for (i = 0; i < RE_RX_DESC_CNT; i++) {
745 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
746 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
747 if (error) {
748 aprint_error("%s: can't create DMA map for RX\n",
749 sc->sc_dev.dv_xname);
750 goto fail_8;
751 }
752 }
753
754 /*
755 * Record interface as attached. From here, we should not fail.
756 */
757 sc->sc_flags |= RTK_ATTACHED;
758
759 ifp = &sc->ethercom.ec_if;
760 ifp->if_softc = sc;
761 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
762 ifp->if_mtu = ETHERMTU;
763 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
764 ifp->if_ioctl = re_ioctl;
765 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
766
767 /*
768 * This is a way to disable hw VLAN tagging by default
769 * (RE_VLAN is undefined), as it is problematic. PR 32643
770 */
771
772 #ifdef RE_VLAN
773 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
774 #endif
775 ifp->if_start = re_start;
776 ifp->if_stop = re_stop;
777
778 /*
779 * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
780 */
781
782 ifp->if_capabilities |=
783 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
784 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
785 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
786 IFCAP_TSOv4;
787 ifp->if_watchdog = re_watchdog;
788 ifp->if_init = re_init;
789 if (sc->rtk_type == RTK_8169)
790 ifp->if_baudrate = 1000000000;
791 else
792 ifp->if_baudrate = 100000000;
793 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
794 ifp->if_capenable = ifp->if_capabilities;
795 IFQ_SET_READY(&ifp->if_snd);
796
797 callout_init(&sc->rtk_tick_ch);
798
799 /* Do MII setup */
800 sc->mii.mii_ifp = ifp;
801 sc->mii.mii_readreg = re_miibus_readreg;
802 sc->mii.mii_writereg = re_miibus_writereg;
803 sc->mii.mii_statchg = re_miibus_statchg;
804 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
805 re_ifmedia_sts);
806 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
807 MII_OFFSET_ANY, 0);
808 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
809
810 /*
811 * Call MI attach routine.
812 */
813 if_attach(ifp);
814 ether_ifattach(ifp, eaddr);
815
816
817 /*
818 * Make sure the interface is shutdown during reboot.
819 */
820 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
821 if (sc->sc_sdhook == NULL)
822 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
823 sc->sc_dev.dv_xname);
824 /*
825 * Add a suspend hook to make sure we come back up after a
826 * resume.
827 */
828 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
829 re_power, sc);
830 if (sc->sc_powerhook == NULL)
831 aprint_error("%s: WARNING: unable to establish power hook\n",
832 sc->sc_dev.dv_xname);
833
834
835 return;
836
837 fail_8:
838 /* Destroy DMA maps for RX buffers. */
839 for (i = 0; i < RE_RX_DESC_CNT; i++)
840 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
841 bus_dmamap_destroy(sc->sc_dmat,
842 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
843
844 /* Free DMA'able memory for the RX ring. */
845 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
846 fail_7:
847 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
848 fail_6:
849 bus_dmamem_unmap(sc->sc_dmat,
850 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
851 fail_5:
852 bus_dmamem_free(sc->sc_dmat,
853 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
854
855 fail_4:
856 /* Destroy DMA maps for TX buffers. */
857 for (i = 0; i < RE_TX_QLEN; i++)
858 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
859 bus_dmamap_destroy(sc->sc_dmat,
860 sc->re_ldata.re_txq[i].txq_dmamap);
861
862 /* Free DMA'able memory for the TX ring. */
863 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
864 fail_3:
865 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
866 fail_2:
867 bus_dmamem_unmap(sc->sc_dmat,
868 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
869 fail_1:
870 bus_dmamem_free(sc->sc_dmat,
871 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
872 fail_0:
873 return;
874 }
875
876
877 /*
878 * re_activate:
879 * Handle device activation/deactivation requests.
880 */
881 int
882 re_activate(struct device *self, enum devact act)
883 {
884 struct rtk_softc *sc = (void *)self;
885 int s, error = 0;
886
887 s = splnet();
888 switch (act) {
889 case DVACT_ACTIVATE:
890 error = EOPNOTSUPP;
891 break;
892 case DVACT_DEACTIVATE:
893 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
894 if_deactivate(&sc->ethercom.ec_if);
895 break;
896 }
897 splx(s);
898
899 return error;
900 }
901
902 /*
903 * re_detach:
904 * Detach a rtk interface.
905 */
906 int
907 re_detach(struct rtk_softc *sc)
908 {
909 struct ifnet *ifp = &sc->ethercom.ec_if;
910 int i;
911
912 /*
913 * Succeed now if there isn't any work to do.
914 */
915 if ((sc->sc_flags & RTK_ATTACHED) == 0)
916 return 0;
917
918 /* Unhook our tick handler. */
919 callout_stop(&sc->rtk_tick_ch);
920
921 /* Detach all PHYs. */
922 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
923
924 /* Delete all remaining media. */
925 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
926
927 ether_ifdetach(ifp);
928 if_detach(ifp);
929
930 /* Destroy DMA maps for RX buffers. */
931 for (i = 0; i < RE_RX_DESC_CNT; i++)
932 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
933 bus_dmamap_destroy(sc->sc_dmat,
934 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
935
936 /* Free DMA'able memory for the RX ring. */
937 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
938 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
939 bus_dmamem_unmap(sc->sc_dmat,
940 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
941 bus_dmamem_free(sc->sc_dmat,
942 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
943
944 /* Destroy DMA maps for TX buffers. */
945 for (i = 0; i < RE_TX_QLEN; i++)
946 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
947 bus_dmamap_destroy(sc->sc_dmat,
948 sc->re_ldata.re_txq[i].txq_dmamap);
949
950 /* Free DMA'able memory for the TX ring. */
951 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
952 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
953 bus_dmamem_unmap(sc->sc_dmat,
954 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
955 bus_dmamem_free(sc->sc_dmat,
956 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
957
958
959 shutdownhook_disestablish(sc->sc_sdhook);
960 powerhook_disestablish(sc->sc_powerhook);
961
962 return 0;
963 }
964
965 /*
966 * re_enable:
967 * Enable the RTL81X9 chip.
968 */
969 static int
970 re_enable(struct rtk_softc *sc)
971 {
972
973 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
974 if ((*sc->sc_enable)(sc) != 0) {
975 aprint_error("%s: device enable failed\n",
976 sc->sc_dev.dv_xname);
977 return EIO;
978 }
979 sc->sc_flags |= RTK_ENABLED;
980 }
981 return 0;
982 }
983
984 /*
985 * re_disable:
986 * Disable the RTL81X9 chip.
987 */
988 static void
989 re_disable(struct rtk_softc *sc)
990 {
991
992 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
993 (*sc->sc_disable)(sc);
994 sc->sc_flags &= ~RTK_ENABLED;
995 }
996 }
997
998 /*
999 * re_power:
1000 * Power management (suspend/resume) hook.
1001 */
1002 void
1003 re_power(int why, void *arg)
1004 {
1005 struct rtk_softc *sc = (void *)arg;
1006 struct ifnet *ifp = &sc->ethercom.ec_if;
1007 int s;
1008
1009 s = splnet();
1010 switch (why) {
1011 case PWR_SUSPEND:
1012 case PWR_STANDBY:
1013 re_stop(ifp, 0);
1014 if (sc->sc_power != NULL)
1015 (*sc->sc_power)(sc, why);
1016 break;
1017 case PWR_RESUME:
1018 if (ifp->if_flags & IFF_UP) {
1019 if (sc->sc_power != NULL)
1020 (*sc->sc_power)(sc, why);
1021 re_init(ifp);
1022 }
1023 break;
1024 case PWR_SOFTSUSPEND:
1025 case PWR_SOFTSTANDBY:
1026 case PWR_SOFTRESUME:
1027 break;
1028 }
1029 splx(s);
1030 }
1031
1032
1033 static int
1034 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1035 {
1036 struct mbuf *n = NULL;
1037 bus_dmamap_t map;
1038 struct re_desc *d;
1039 struct re_rxsoft *rxs;
1040 uint32_t cmdstat;
1041 int error;
1042
1043 if (m == NULL) {
1044 MGETHDR(n, M_DONTWAIT, MT_DATA);
1045 if (n == NULL)
1046 return ENOBUFS;
1047
1048 MCLGET(n, M_DONTWAIT);
1049 if ((n->m_flags & M_EXT) == 0) {
1050 m_freem(n);
1051 return ENOBUFS;
1052 }
1053 m = n;
1054 } else
1055 m->m_data = m->m_ext.ext_buf;
1056
1057 /*
1058 * Initialize mbuf length fields and fixup
1059 * alignment so that the frame payload is
1060 * longword aligned.
1061 */
1062 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1063 m->m_data += RE_ETHER_ALIGN;
1064
1065 rxs = &sc->re_ldata.re_rxsoft[idx];
1066 map = rxs->rxs_dmamap;
1067 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1068 BUS_DMA_READ|BUS_DMA_NOWAIT);
1069
1070 if (error)
1071 goto out;
1072
1073 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1074 BUS_DMASYNC_PREREAD);
1075
1076 d = &sc->re_ldata.re_rx_list[idx];
1077 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1078 cmdstat = le32toh(d->re_cmdstat);
1079 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1080 if (cmdstat & RE_RDESC_STAT_OWN) {
1081 aprint_error("%s: tried to map busy RX descriptor\n",
1082 sc->sc_dev.dv_xname);
1083 goto out;
1084 }
1085
1086 rxs->rxs_mbuf = m;
1087
1088 cmdstat = map->dm_segs[0].ds_len;
1089 if (idx == (RE_RX_DESC_CNT - 1))
1090 cmdstat |= RE_RDESC_CMD_EOR;
1091 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1092 d->re_cmdstat = htole32(cmdstat);
1093 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1094 cmdstat |= RE_RDESC_CMD_OWN;
1095 d->re_cmdstat = htole32(cmdstat);
1096 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097
1098 return 0;
1099 out:
1100 if (n != NULL)
1101 m_freem(n);
1102 return ENOMEM;
1103 }
1104
1105 static int
1106 re_tx_list_init(struct rtk_softc *sc)
1107 {
1108 int i;
1109
1110 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1111 for (i = 0; i < RE_TX_QLEN; i++) {
1112 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1113 }
1114
1115 bus_dmamap_sync(sc->sc_dmat,
1116 sc->re_ldata.re_tx_list_map, 0,
1117 sc->re_ldata.re_tx_list_map->dm_mapsize,
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 sc->re_ldata.re_txq_prodidx = 0;
1120 sc->re_ldata.re_txq_considx = 0;
1121 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1122 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1123 sc->re_ldata.re_tx_nextfree = 0;
1124
1125 return 0;
1126 }
1127
1128 static int
1129 re_rx_list_init(struct rtk_softc *sc)
1130 {
1131 int i;
1132
1133 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1134
1135 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1136 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1137 return ENOBUFS;
1138 }
1139
1140 sc->re_ldata.re_rx_prodidx = 0;
1141 sc->re_head = sc->re_tail = NULL;
1142
1143 return 0;
1144 }
1145
1146 /*
1147 * RX handler for C+ and 8169. For the gigE chips, we support
1148 * the reception of jumbo frames that have been fragmented
1149 * across multiple 2K mbuf cluster buffers.
1150 */
1151 static void
1152 re_rxeof(struct rtk_softc *sc)
1153 {
1154 struct mbuf *m;
1155 struct ifnet *ifp;
1156 int i, total_len;
1157 struct re_desc *cur_rx;
1158 struct re_rxsoft *rxs;
1159 uint32_t rxstat, rxvlan;
1160
1161 ifp = &sc->ethercom.ec_if;
1162
1163 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1164 cur_rx = &sc->re_ldata.re_rx_list[i];
1165 RE_RXDESCSYNC(sc, i,
1166 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1167 rxstat = le32toh(cur_rx->re_cmdstat);
1168 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1169 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1170 break;
1171 }
1172 total_len = rxstat & sc->re_rxlenmask;
1173 rxvlan = le32toh(cur_rx->re_vlanctl);
1174 rxs = &sc->re_ldata.re_rxsoft[i];
1175 m = rxs->rxs_mbuf;
1176
1177 /* Invalidate the RX mbuf and unload its map */
1178
1179 bus_dmamap_sync(sc->sc_dmat,
1180 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1181 BUS_DMASYNC_POSTREAD);
1182 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1183
1184 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1185 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1186 if (sc->re_head == NULL)
1187 sc->re_head = sc->re_tail = m;
1188 else {
1189 m->m_flags &= ~M_PKTHDR;
1190 sc->re_tail->m_next = m;
1191 sc->re_tail = m;
1192 }
1193 re_newbuf(sc, i, NULL);
1194 continue;
1195 }
1196
1197 /*
1198 * NOTE: for the 8139C+, the frame length field
1199 * is always 12 bits in size, but for the gigE chips,
1200 * it is 13 bits (since the max RX frame length is 16K).
1201 * Unfortunately, all 32 bits in the status word
1202 * were already used, so to make room for the extra
1203 * length bit, RealTek took out the 'frame alignment
1204 * error' bit and shifted the other status bits
1205 * over one slot. The OWN, EOR, FS and LS bits are
1206 * still in the same places. We have already extracted
1207 * the frame length and checked the OWN bit, so rather
1208 * than using an alternate bit mapping, we shift the
1209 * status bits one space to the right so we can evaluate
1210 * them using the 8169 status as though it was in the
1211 * same format as that of the 8139C+.
1212 */
1213 if (sc->rtk_type == RTK_8169)
1214 rxstat >>= 1;
1215
1216 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1217 ifp->if_ierrors++;
1218 /*
1219 * If this is part of a multi-fragment packet,
1220 * discard all the pieces.
1221 */
1222 if (sc->re_head != NULL) {
1223 m_freem(sc->re_head);
1224 sc->re_head = sc->re_tail = NULL;
1225 }
1226 re_newbuf(sc, i, m);
1227 continue;
1228 }
1229
1230 /*
1231 * If allocating a replacement mbuf fails,
1232 * reload the current one.
1233 */
1234
1235 if (re_newbuf(sc, i, NULL) != 0) {
1236 ifp->if_ierrors++;
1237 if (sc->re_head != NULL) {
1238 m_freem(sc->re_head);
1239 sc->re_head = sc->re_tail = NULL;
1240 }
1241 re_newbuf(sc, i, m);
1242 continue;
1243 }
1244
1245 if (sc->re_head != NULL) {
1246 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1247 /*
1248 * Special case: if there's 4 bytes or less
1249 * in this buffer, the mbuf can be discarded:
1250 * the last 4 bytes is the CRC, which we don't
1251 * care about anyway.
1252 */
1253 if (m->m_len <= ETHER_CRC_LEN) {
1254 sc->re_tail->m_len -=
1255 (ETHER_CRC_LEN - m->m_len);
1256 m_freem(m);
1257 } else {
1258 m->m_len -= ETHER_CRC_LEN;
1259 m->m_flags &= ~M_PKTHDR;
1260 sc->re_tail->m_next = m;
1261 }
1262 m = sc->re_head;
1263 sc->re_head = sc->re_tail = NULL;
1264 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1265 } else
1266 m->m_pkthdr.len = m->m_len =
1267 (total_len - ETHER_CRC_LEN);
1268
1269 ifp->if_ipackets++;
1270 m->m_pkthdr.rcvif = ifp;
1271
1272 /* Do RX checksumming if enabled */
1273
1274 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1275
1276 /* Check IP header checksum */
1277 if (rxstat & RE_RDESC_STAT_PROTOID)
1278 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1279 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1280 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1281 }
1282
1283 /* Check TCP/UDP checksum */
1284 if (RE_TCPPKT(rxstat) &&
1285 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1286 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1287 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1288 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1289 }
1290 if (RE_UDPPKT(rxstat) &&
1291 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1292 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1293 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1294 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1295 }
1296
1297 #ifdef RE_VLAN
1298 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1299 VLAN_INPUT_TAG(ifp, m,
1300 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1301 continue);
1302 }
1303 #endif
1304 #if NBPFILTER > 0
1305 if (ifp->if_bpf)
1306 bpf_mtap(ifp->if_bpf, m);
1307 #endif
1308 (*ifp->if_input)(ifp, m);
1309 }
1310
1311 sc->re_ldata.re_rx_prodidx = i;
1312 }
1313
1314 static void
1315 re_txeof(struct rtk_softc *sc)
1316 {
1317 struct ifnet *ifp;
1318 struct re_txq *txq;
1319 uint32_t txstat;
1320 int idx, descidx;
1321
1322 ifp = &sc->ethercom.ec_if;
1323
1324 for (idx = sc->re_ldata.re_txq_considx;
1325 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1326 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1327 txq = &sc->re_ldata.re_txq[idx];
1328 KASSERT(txq->txq_mbuf != NULL);
1329
1330 descidx = txq->txq_descidx;
1331 RE_TXDESCSYNC(sc, descidx,
1332 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1333 txstat =
1334 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1335 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1336 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1337 if (txstat & RE_TDESC_CMD_OWN) {
1338 break;
1339 }
1340
1341 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1342 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1343 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1344 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1345 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1346 m_freem(txq->txq_mbuf);
1347 txq->txq_mbuf = NULL;
1348
1349 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1350 ifp->if_collisions++;
1351 if (txstat & RE_TDESC_STAT_TXERRSUM)
1352 ifp->if_oerrors++;
1353 else
1354 ifp->if_opackets++;
1355 }
1356
1357 sc->re_ldata.re_txq_considx = idx;
1358
1359 if (sc->re_ldata.re_txq_free > 0)
1360 ifp->if_flags &= ~IFF_OACTIVE;
1361
1362 /*
1363 * If not all descriptors have been released reaped yet,
1364 * reload the timer so that we will eventually get another
1365 * interrupt that will cause us to re-enter this routine.
1366 * This is done in case the transmitter has gone idle.
1367 */
1368 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1369 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1370 else
1371 ifp->if_timer = 0;
1372 }
1373
1374 /*
1375 * Stop all chip I/O so that the kernel's probe routines don't
1376 * get confused by errant DMAs when rebooting.
1377 */
1378 static void
1379 re_shutdown(void *vsc)
1380
1381 {
1382 struct rtk_softc *sc = vsc;
1383
1384 re_stop(&sc->ethercom.ec_if, 0);
1385 }
1386
1387
1388 static void
1389 re_tick(void *xsc)
1390 {
1391 struct rtk_softc *sc = xsc;
1392 int s;
1393
1394 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1395 s = splnet();
1396
1397 mii_tick(&sc->mii);
1398 splx(s);
1399
1400 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1401 }
1402
1403 #ifdef DEVICE_POLLING
1404 static void
1405 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1406 {
1407 struct rtk_softc *sc = ifp->if_softc;
1408
1409 RTK_LOCK(sc);
1410 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1411 ether_poll_deregister(ifp);
1412 cmd = POLL_DEREGISTER;
1413 }
1414 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1415 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1416 goto done;
1417 }
1418
1419 sc->rxcycles = count;
1420 re_rxeof(sc);
1421 re_txeof(sc);
1422
1423 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1424 (*ifp->if_start)(ifp);
1425
1426 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1427 uint16_t status;
1428
1429 status = CSR_READ_2(sc, RTK_ISR);
1430 if (status == 0xffff)
1431 goto done;
1432 if (status)
1433 CSR_WRITE_2(sc, RTK_ISR, status);
1434
1435 /*
1436 * XXX check behaviour on receiver stalls.
1437 */
1438
1439 if (status & RTK_ISR_SYSTEM_ERR) {
1440 re_init(sc);
1441 }
1442 }
1443 done:
1444 RTK_UNLOCK(sc);
1445 }
1446 #endif /* DEVICE_POLLING */
1447
1448 int
1449 re_intr(void *arg)
1450 {
1451 struct rtk_softc *sc = arg;
1452 struct ifnet *ifp;
1453 uint16_t status;
1454 int handled = 0;
1455
1456 ifp = &sc->ethercom.ec_if;
1457
1458 if ((ifp->if_flags & IFF_UP) == 0)
1459 return 0;
1460
1461 #ifdef DEVICE_POLLING
1462 if (ifp->if_flags & IFF_POLLING)
1463 goto done;
1464 if ((ifp->if_capenable & IFCAP_POLLING) &&
1465 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1466 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1467 re_poll(ifp, 0, 1);
1468 goto done;
1469 }
1470 #endif /* DEVICE_POLLING */
1471
1472 for (;;) {
1473
1474 status = CSR_READ_2(sc, RTK_ISR);
1475 /* If the card has gone away the read returns 0xffff. */
1476 if (status == 0xffff)
1477 break;
1478 if (status) {
1479 handled = 1;
1480 CSR_WRITE_2(sc, RTK_ISR, status);
1481 }
1482
1483 if ((status & RTK_INTRS_CPLUS) == 0)
1484 break;
1485
1486 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1487 re_rxeof(sc);
1488
1489 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1490 RTK_ISR_TX_DESC_UNAVAIL))
1491 re_txeof(sc);
1492
1493 if (status & RTK_ISR_SYSTEM_ERR) {
1494 re_init(ifp);
1495 }
1496
1497 if (status & RTK_ISR_LINKCHG) {
1498 callout_stop(&sc->rtk_tick_ch);
1499 re_tick(sc);
1500 }
1501 }
1502
1503 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1504 re_start(ifp);
1505
1506 #ifdef DEVICE_POLLING
1507 done:
1508 #endif
1509
1510 return handled;
1511 }
1512
1513
1514
1515 /*
1516 * Main transmit routine for C+ and gigE NICs.
1517 */
1518
1519 static void
1520 re_start(struct ifnet *ifp)
1521 {
1522 struct rtk_softc *sc;
1523 struct mbuf *m;
1524 bus_dmamap_t map;
1525 struct re_txq *txq;
1526 struct re_desc *d;
1527 #ifdef RE_VLAN
1528 struct m_tag *mtag;
1529 #endif
1530 uint32_t cmdstat, re_flags;
1531 int ofree, idx, error, nsegs, seg;
1532 int startdesc, curdesc, lastdesc;
1533 boolean_t pad;
1534
1535 sc = ifp->if_softc;
1536 ofree = sc->re_ldata.re_txq_free;
1537
1538 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1539
1540 IFQ_POLL(&ifp->if_snd, m);
1541 if (m == NULL)
1542 break;
1543
1544 if (sc->re_ldata.re_txq_free == 0 ||
1545 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1546 /* no more free slots left */
1547 ifp->if_flags |= IFF_OACTIVE;
1548 break;
1549 }
1550
1551 /*
1552 * Set up checksum offload. Note: checksum offload bits must
1553 * appear in all descriptors of a multi-descriptor transmit
1554 * attempt. (This is according to testing done with an 8169
1555 * chip. I'm not sure if this is a requirement or a bug.)
1556 */
1557
1558 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1559 uint32_t segsz = m->m_pkthdr.segsz;
1560
1561 re_flags = RE_TDESC_CMD_LGSEND |
1562 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1563 } else {
1564 /*
1565 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1566 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1567 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1568 */
1569 re_flags = 0;
1570 if ((m->m_pkthdr.csum_flags &
1571 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1572 != 0) {
1573 re_flags |= RE_TDESC_CMD_IPCSUM;
1574 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1575 re_flags |= RE_TDESC_CMD_TCPCSUM;
1576 } else if (m->m_pkthdr.csum_flags &
1577 M_CSUM_UDPv4) {
1578 re_flags |= RE_TDESC_CMD_UDPCSUM;
1579 }
1580 }
1581 }
1582
1583 txq = &sc->re_ldata.re_txq[idx];
1584 map = txq->txq_dmamap;
1585 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1586 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1587
1588 if (error) {
1589 /* XXX try to defrag if EFBIG? */
1590 aprint_error("%s: can't map mbuf (error %d)\n",
1591 sc->sc_dev.dv_xname, error);
1592
1593 IFQ_DEQUEUE(&ifp->if_snd, m);
1594 m_freem(m);
1595 ifp->if_oerrors++;
1596 continue;
1597 }
1598
1599 nsegs = map->dm_nsegs;
1600 pad = FALSE;
1601 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1602 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1603 pad = TRUE;
1604 nsegs++;
1605 }
1606
1607 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1608 /*
1609 * Not enough free descriptors to transmit this packet.
1610 */
1611 ifp->if_flags |= IFF_OACTIVE;
1612 bus_dmamap_unload(sc->sc_dmat, map);
1613 break;
1614 }
1615
1616 IFQ_DEQUEUE(&ifp->if_snd, m);
1617
1618 /*
1619 * Make sure that the caches are synchronized before we
1620 * ask the chip to start DMA for the packet data.
1621 */
1622 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1623 BUS_DMASYNC_PREWRITE);
1624
1625 /*
1626 * Map the segment array into descriptors.
1627 * Note that we set the start-of-frame and
1628 * end-of-frame markers for either TX or RX,
1629 * but they really only have meaning in the TX case.
1630 * (In the RX case, it's the chip that tells us
1631 * where packets begin and end.)
1632 * We also keep track of the end of the ring
1633 * and set the end-of-ring bits as needed,
1634 * and we set the ownership bits in all except
1635 * the very first descriptor. (The caller will
1636 * set this descriptor later when it start
1637 * transmission or reception.)
1638 */
1639 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1640 lastdesc = -1;
1641 for (seg = 0; seg < map->dm_nsegs;
1642 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1643 d = &sc->re_ldata.re_tx_list[curdesc];
1644 #ifdef DIAGNISTIC
1645 RE_TXDESCSYNC(sc, curdesc,
1646 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1647 cmdstat = le32toh(d->re_cmdstat);
1648 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1649 if (cmdstat & RE_TDESC_STAT_OWN) {
1650 panic("%s: tried to map busy TX descriptor",
1651 sc->sc_dev.dv_xname);
1652 }
1653 #endif
1654
1655 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1656 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1657 if (seg == 0)
1658 cmdstat |= RE_TDESC_CMD_SOF;
1659 else
1660 cmdstat |= RE_TDESC_CMD_OWN;
1661 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1662 cmdstat |= RE_TDESC_CMD_EOR;
1663 if (seg == nsegs - 1) {
1664 cmdstat |= RE_TDESC_CMD_EOF;
1665 lastdesc = curdesc;
1666 }
1667 d->re_cmdstat = htole32(cmdstat);
1668 RE_TXDESCSYNC(sc, curdesc,
1669 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1670 }
1671 if (pad) {
1672 bus_addr_t paddaddr;
1673
1674 d = &sc->re_ldata.re_tx_list[curdesc];
1675 paddaddr = RE_TXPADDADDR(sc);
1676 re_set_bufaddr(d, paddaddr);
1677 cmdstat = re_flags |
1678 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1679 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1680 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1681 cmdstat |= RE_TDESC_CMD_EOR;
1682 d->re_cmdstat = htole32(cmdstat);
1683 RE_TXDESCSYNC(sc, curdesc,
1684 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1685 lastdesc = curdesc;
1686 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1687 }
1688 KASSERT(lastdesc != -1);
1689
1690 /*
1691 * Set up hardware VLAN tagging. Note: vlan tag info must
1692 * appear in the first descriptor of a multi-descriptor
1693 * transmission attempt.
1694 */
1695
1696 #ifdef RE_VLAN
1697 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1698 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1699 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1700 RE_TDESC_VLANCTL_TAG);
1701 }
1702 #endif
1703
1704 /* Transfer ownership of packet to the chip. */
1705
1706 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1707 htole32(RE_TDESC_CMD_OWN);
1708 RE_TXDESCSYNC(sc, startdesc,
1709 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1710
1711 /* update info of TX queue and descriptors */
1712 txq->txq_mbuf = m;
1713 txq->txq_descidx = lastdesc;
1714 txq->txq_nsegs = nsegs;
1715
1716 sc->re_ldata.re_txq_free--;
1717 sc->re_ldata.re_tx_free -= nsegs;
1718 sc->re_ldata.re_tx_nextfree = curdesc;
1719
1720 #if NBPFILTER > 0
1721 /*
1722 * If there's a BPF listener, bounce a copy of this frame
1723 * to him.
1724 */
1725 if (ifp->if_bpf)
1726 bpf_mtap(ifp->if_bpf, m);
1727 #endif
1728 }
1729
1730 if (sc->re_ldata.re_txq_free < ofree) {
1731 /*
1732 * TX packets are enqueued.
1733 */
1734 sc->re_ldata.re_txq_prodidx = idx;
1735
1736 /*
1737 * Start the transmitter to poll.
1738 *
1739 * RealTek put the TX poll request register in a different
1740 * location on the 8169 gigE chip. I don't know why.
1741 */
1742 if (sc->rtk_type == RTK_8169)
1743 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1744 else
1745 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1746
1747 /*
1748 * Use the countdown timer for interrupt moderation.
1749 * 'TX done' interrupts are disabled. Instead, we reset the
1750 * countdown timer, which will begin counting until it hits
1751 * the value in the TIMERINT register, and then trigger an
1752 * interrupt. Each time we write to the TIMERCNT register,
1753 * the timer count is reset to 0.
1754 */
1755 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1756
1757 /*
1758 * Set a timeout in case the chip goes out to lunch.
1759 */
1760 ifp->if_timer = 5;
1761 }
1762 }
1763
1764 static int
1765 re_init(struct ifnet *ifp)
1766 {
1767 struct rtk_softc *sc = ifp->if_softc;
1768 uint8_t *enaddr;
1769 uint32_t rxcfg = 0;
1770 uint32_t reg;
1771 int error;
1772
1773 if ((error = re_enable(sc)) != 0)
1774 goto out;
1775
1776 /*
1777 * Cancel pending I/O and free all RX/TX buffers.
1778 */
1779 re_stop(ifp, 0);
1780
1781 re_reset(sc);
1782
1783 /*
1784 * Enable C+ RX and TX mode, as well as VLAN stripping and
1785 * RX checksum offload. We must configure the C+ register
1786 * before all others.
1787 */
1788 reg = 0;
1789
1790 /*
1791 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1792 * FreeBSD drivers set these bits anyway (for 8139C+?).
1793 * So far, it works.
1794 */
1795
1796 /*
1797 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1798 * For 8169S/8110S rev 2 and above, do not set bit 14.
1799 */
1800 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1801 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1802
1803 if (1) {/* not for 8169S ? */
1804 reg |=
1805 #ifdef RE_VLAN
1806 RTK_CPLUSCMD_VLANSTRIP |
1807 #endif
1808 (ifp->if_capenable &
1809 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1810 IFCAP_CSUM_UDPv4_Rx) ?
1811 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1812 }
1813
1814 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1815 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1816
1817 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1818 if (sc->rtk_type == RTK_8169)
1819 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1820
1821 DELAY(10000);
1822
1823 /*
1824 * Init our MAC address. Even though the chipset
1825 * documentation doesn't mention it, we need to enter "Config
1826 * register write enable" mode to modify the ID registers.
1827 */
1828 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1829 enaddr = LLADDR(ifp->if_sadl);
1830 reg = enaddr[0] | (enaddr[1] << 8) |
1831 (enaddr[2] << 16) | (enaddr[3] << 24);
1832 CSR_WRITE_4(sc, RTK_IDR0, reg);
1833 reg = enaddr[4] | (enaddr[5] << 8);
1834 CSR_WRITE_4(sc, RTK_IDR4, reg);
1835 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1836
1837 /*
1838 * For C+ mode, initialize the RX descriptors and mbufs.
1839 */
1840 re_rx_list_init(sc);
1841 re_tx_list_init(sc);
1842
1843 /*
1844 * Load the addresses of the RX and TX lists into the chip.
1845 */
1846 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1847 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1848 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1849 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1850
1851 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1852 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1853 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1854 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1855
1856 /*
1857 * Enable transmit and receive.
1858 */
1859 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1860
1861 /*
1862 * Set the initial TX and RX configuration.
1863 */
1864 if (sc->re_testmode) {
1865 if (sc->rtk_type == RTK_8169)
1866 CSR_WRITE_4(sc, RTK_TXCFG,
1867 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1868 else
1869 CSR_WRITE_4(sc, RTK_TXCFG,
1870 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1871 } else
1872 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1873
1874 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1875
1876 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1877
1878 /* Set the individual bit to receive frames for this host only. */
1879 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1880 rxcfg |= RTK_RXCFG_RX_INDIV;
1881
1882 /* If we want promiscuous mode, set the allframes bit. */
1883 if (ifp->if_flags & IFF_PROMISC)
1884 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1885 else
1886 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1887 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1888
1889 /*
1890 * Set capture broadcast bit to capture broadcast frames.
1891 */
1892 if (ifp->if_flags & IFF_BROADCAST)
1893 rxcfg |= RTK_RXCFG_RX_BROAD;
1894 else
1895 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1896 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1897
1898 /*
1899 * Program the multicast filter, if necessary.
1900 */
1901 rtk_setmulti(sc);
1902
1903 #ifdef DEVICE_POLLING
1904 /*
1905 * Disable interrupts if we are polling.
1906 */
1907 if (ifp->if_flags & IFF_POLLING)
1908 CSR_WRITE_2(sc, RTK_IMR, 0);
1909 else /* otherwise ... */
1910 #endif /* DEVICE_POLLING */
1911 /*
1912 * Enable interrupts.
1913 */
1914 if (sc->re_testmode)
1915 CSR_WRITE_2(sc, RTK_IMR, 0);
1916 else
1917 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1918
1919 /* Start RX/TX process. */
1920 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1921 #ifdef notdef
1922 /* Enable receiver and transmitter. */
1923 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1924 #endif
1925
1926 /*
1927 * Initialize the timer interrupt register so that
1928 * a timer interrupt will be generated once the timer
1929 * reaches a certain number of ticks. The timer is
1930 * reloaded on each transmit. This gives us TX interrupt
1931 * moderation, which dramatically improves TX frame rate.
1932 */
1933
1934 if (sc->rtk_type == RTK_8169)
1935 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1936 else
1937 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1938
1939 /*
1940 * For 8169 gigE NICs, set the max allowed RX packet
1941 * size so we can receive jumbo frames.
1942 */
1943 if (sc->rtk_type == RTK_8169)
1944 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1945
1946 if (sc->re_testmode)
1947 return 0;
1948
1949 mii_mediachg(&sc->mii);
1950
1951 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1952
1953 ifp->if_flags |= IFF_RUNNING;
1954 ifp->if_flags &= ~IFF_OACTIVE;
1955
1956 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1957
1958 out:
1959 if (error) {
1960 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1961 ifp->if_timer = 0;
1962 aprint_error("%s: interface not running\n",
1963 sc->sc_dev.dv_xname);
1964 }
1965
1966 return error;
1967 }
1968
1969 /*
1970 * Set media options.
1971 */
1972 static int
1973 re_ifmedia_upd(struct ifnet *ifp)
1974 {
1975 struct rtk_softc *sc;
1976
1977 sc = ifp->if_softc;
1978
1979 return mii_mediachg(&sc->mii);
1980 }
1981
1982 /*
1983 * Report current media status.
1984 */
1985 static void
1986 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1987 {
1988 struct rtk_softc *sc;
1989
1990 sc = ifp->if_softc;
1991
1992 mii_pollstat(&sc->mii);
1993 ifmr->ifm_active = sc->mii.mii_media_active;
1994 ifmr->ifm_status = sc->mii.mii_media_status;
1995 }
1996
1997 static int
1998 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1999 {
2000 struct rtk_softc *sc = ifp->if_softc;
2001 struct ifreq *ifr = (struct ifreq *) data;
2002 int s, error = 0;
2003
2004 s = splnet();
2005
2006 switch (command) {
2007 case SIOCSIFMTU:
2008 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2009 error = EINVAL;
2010 ifp->if_mtu = ifr->ifr_mtu;
2011 break;
2012 case SIOCGIFMEDIA:
2013 case SIOCSIFMEDIA:
2014 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2015 break;
2016 default:
2017 error = ether_ioctl(ifp, command, data);
2018 if (error == ENETRESET) {
2019 if (ifp->if_flags & IFF_RUNNING)
2020 rtk_setmulti(sc);
2021 error = 0;
2022 }
2023 break;
2024 }
2025
2026 splx(s);
2027
2028 return error;
2029 }
2030
2031 static void
2032 re_watchdog(struct ifnet *ifp)
2033 {
2034 struct rtk_softc *sc;
2035 int s;
2036
2037 sc = ifp->if_softc;
2038 s = splnet();
2039 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2040 ifp->if_oerrors++;
2041
2042 re_txeof(sc);
2043 re_rxeof(sc);
2044
2045 re_init(ifp);
2046
2047 splx(s);
2048 }
2049
2050 /*
2051 * Stop the adapter and free any mbufs allocated to the
2052 * RX and TX lists.
2053 */
2054 static void
2055 re_stop(struct ifnet *ifp, int disable)
2056 {
2057 int i;
2058 struct rtk_softc *sc = ifp->if_softc;
2059
2060 callout_stop(&sc->rtk_tick_ch);
2061
2062 #ifdef DEVICE_POLLING
2063 ether_poll_deregister(ifp);
2064 #endif /* DEVICE_POLLING */
2065
2066 mii_down(&sc->mii);
2067
2068 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2069 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2070
2071 if (sc->re_head != NULL) {
2072 m_freem(sc->re_head);
2073 sc->re_head = sc->re_tail = NULL;
2074 }
2075
2076 /* Free the TX list buffers. */
2077 for (i = 0; i < RE_TX_QLEN; i++) {
2078 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2079 bus_dmamap_unload(sc->sc_dmat,
2080 sc->re_ldata.re_txq[i].txq_dmamap);
2081 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2082 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2083 }
2084 }
2085
2086 /* Free the RX list buffers. */
2087 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2088 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2089 bus_dmamap_unload(sc->sc_dmat,
2090 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2091 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2092 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2093 }
2094 }
2095
2096 if (disable)
2097 re_disable(sc);
2098
2099 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2100 ifp->if_timer = 0;
2101 }
2102