rtl8169.c revision 1.70 1 /* $NetBSD: rtl8169.c,v 1.70 2006/11/24 16:30:45 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if (sc->rtk_type == RTK_8169) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if (sc->rtk_type == RTK_8169) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if (sc->rtk_type == RTK_8139CPLUS) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, RTK_LDPS, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578 /* Reset the adapter. */
579 re_reset(sc);
580
581 if (sc->rtk_type == RTK_8169) {
582 uint32_t hwrev;
583
584 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
585 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
586 if (hwrev == (0x1 << 28)) {
587 sc->sc_rev = 4;
588 } else if (hwrev == (0x1 << 26)) {
589 sc->sc_rev = 3;
590 } else if (hwrev == (0x1 << 23)) {
591 sc->sc_rev = 2;
592 } else
593 sc->sc_rev = 1;
594
595 /* Set RX length mask */
596
597 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
598
599 /* Force station address autoload from the EEPROM */
600
601 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
602 for (i = 0; i < RTK_TIMEOUT; i++) {
603 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
604 == 0)
605 break;
606 DELAY(100);
607 }
608 if (i == RTK_TIMEOUT)
609 aprint_error("%s: eeprom autoload timed out\n",
610 sc->sc_dev.dv_xname);
611
612 for (i = 0; i < ETHER_ADDR_LEN; i++)
613 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
614
615 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
616 } else {
617
618 /* Set RX length mask */
619
620 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
621
622 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
623 addr_len = RTK_EEADDR_LEN1;
624 else
625 addr_len = RTK_EEADDR_LEN0;
626
627 /*
628 * Get station address from the EEPROM.
629 */
630 for (i = 0; i < 3; i++) {
631 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
632 eaddr[(i * 2) + 0] = val & 0xff;
633 eaddr[(i * 2) + 1] = val >> 8;
634 }
635
636 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
637 }
638
639 aprint_normal("%s: Ethernet address %s\n",
640 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
641
642 if (sc->re_ldata.re_tx_desc_cnt >
643 PAGE_SIZE / sizeof(struct re_desc)) {
644 sc->re_ldata.re_tx_desc_cnt =
645 PAGE_SIZE / sizeof(struct re_desc);
646 }
647
648 aprint_verbose("%s: using %d tx descriptors\n",
649 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
650 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
651
652 /* Allocate DMA'able memory for the TX ring */
653 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
654 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
655 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
656 aprint_error("%s: can't allocate tx listseg, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_0;
659 }
660
661 /* Load the map for the TX ring. */
662 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
663 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
664 (caddr_t *)&sc->re_ldata.re_tx_list,
665 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
666 aprint_error("%s: can't map tx list, error = %d\n",
667 sc->sc_dev.dv_xname, error);
668 goto fail_1;
669 }
670 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
671
672 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
673 RE_TX_LIST_SZ(sc), 0, 0,
674 &sc->re_ldata.re_tx_list_map)) != 0) {
675 aprint_error("%s: can't create tx list map, error = %d\n",
676 sc->sc_dev.dv_xname, error);
677 goto fail_2;
678 }
679
680
681 if ((error = bus_dmamap_load(sc->sc_dmat,
682 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
683 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
684 aprint_error("%s: can't load tx list, error = %d\n",
685 sc->sc_dev.dv_xname, error);
686 goto fail_3;
687 }
688
689 /* Create DMA maps for TX buffers */
690 for (i = 0; i < RE_TX_QLEN; i++) {
691 error = bus_dmamap_create(sc->sc_dmat,
692 round_page(IP_MAXPACKET),
693 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
694 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
695 if (error) {
696 aprint_error("%s: can't create DMA map for TX\n",
697 sc->sc_dev.dv_xname);
698 goto fail_4;
699 }
700 }
701
702 /* Allocate DMA'able memory for the RX ring */
703 if ((error = bus_dmamem_alloc(sc->sc_dmat,
704 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
705 RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
706 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
707 aprint_error("%s: can't allocate rx listseg, error = %d\n",
708 sc->sc_dev.dv_xname, error);
709 goto fail_4;
710 }
711
712 /* Load the map for the RX ring. */
713 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
714 sc->re_ldata.re_rx_listnseg, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN,
715 (caddr_t *)&sc->re_ldata.re_rx_list,
716 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
717 aprint_error("%s: can't map rx list, error = %d\n",
718 sc->sc_dev.dv_xname, error);
719 goto fail_5;
720 }
721 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN);
722
723 if ((error = bus_dmamap_create(sc->sc_dmat,
724 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 1,
725 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, 0, 0,
726 &sc->re_ldata.re_rx_list_map)) != 0) {
727 aprint_error("%s: can't create rx list map, error = %d\n",
728 sc->sc_dev.dv_xname, error);
729 goto fail_6;
730 }
731
732 if ((error = bus_dmamap_load(sc->sc_dmat,
733 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
734 RE_RX_LIST_SZ + RE_IP4CSUMTX_PADLEN, NULL, BUS_DMA_NOWAIT)) != 0) {
735 aprint_error("%s: can't load rx list, error = %d\n",
736 sc->sc_dev.dv_xname, error);
737 goto fail_7;
738 }
739
740 /* Create DMA maps for RX buffers */
741 for (i = 0; i < RE_RX_DESC_CNT; i++) {
742 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
743 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
744 if (error) {
745 aprint_error("%s: can't create DMA map for RX\n",
746 sc->sc_dev.dv_xname);
747 goto fail_8;
748 }
749 }
750
751 /*
752 * Record interface as attached. From here, we should not fail.
753 */
754 sc->sc_flags |= RTK_ATTACHED;
755
756 ifp = &sc->ethercom.ec_if;
757 ifp->if_softc = sc;
758 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
759 ifp->if_mtu = ETHERMTU;
760 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
761 ifp->if_ioctl = re_ioctl;
762 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
763
764 /*
765 * This is a way to disable hw VLAN tagging by default
766 * (RE_VLAN is undefined), as it is problematic. PR 32643
767 */
768
769 #ifdef RE_VLAN
770 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
771 #endif
772 ifp->if_start = re_start;
773 ifp->if_stop = re_stop;
774
775 /*
776 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
777 * so we have a workaround to handle the bug by padding
778 * such packets manually.
779 */
780 ifp->if_capabilities |=
781 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
782 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
783 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
784 IFCAP_TSOv4;
785 ifp->if_watchdog = re_watchdog;
786 ifp->if_init = re_init;
787 if (sc->rtk_type == RTK_8169)
788 ifp->if_baudrate = 1000000000;
789 else
790 ifp->if_baudrate = 100000000;
791 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
792 ifp->if_capenable = ifp->if_capabilities;
793 IFQ_SET_READY(&ifp->if_snd);
794
795 callout_init(&sc->rtk_tick_ch);
796
797 /* Do MII setup */
798 sc->mii.mii_ifp = ifp;
799 sc->mii.mii_readreg = re_miibus_readreg;
800 sc->mii.mii_writereg = re_miibus_writereg;
801 sc->mii.mii_statchg = re_miibus_statchg;
802 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
803 re_ifmedia_sts);
804 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
805 MII_OFFSET_ANY, 0);
806 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
807
808 /*
809 * Call MI attach routine.
810 */
811 if_attach(ifp);
812 ether_ifattach(ifp, eaddr);
813
814
815 /*
816 * Make sure the interface is shutdown during reboot.
817 */
818 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
819 if (sc->sc_sdhook == NULL)
820 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
821 sc->sc_dev.dv_xname);
822 /*
823 * Add a suspend hook to make sure we come back up after a
824 * resume.
825 */
826 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
827 re_power, sc);
828 if (sc->sc_powerhook == NULL)
829 aprint_error("%s: WARNING: unable to establish power hook\n",
830 sc->sc_dev.dv_xname);
831
832
833 return;
834
835 fail_8:
836 /* Destroy DMA maps for RX buffers. */
837 for (i = 0; i < RE_RX_DESC_CNT; i++)
838 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
839 bus_dmamap_destroy(sc->sc_dmat,
840 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
841
842 /* Free DMA'able memory for the RX ring. */
843 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
844 fail_7:
845 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
846 fail_6:
847 bus_dmamem_unmap(sc->sc_dmat,
848 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
849 fail_5:
850 bus_dmamem_free(sc->sc_dmat,
851 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
852
853 fail_4:
854 /* Destroy DMA maps for TX buffers. */
855 for (i = 0; i < RE_TX_QLEN; i++)
856 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
857 bus_dmamap_destroy(sc->sc_dmat,
858 sc->re_ldata.re_txq[i].txq_dmamap);
859
860 /* Free DMA'able memory for the TX ring. */
861 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
862 fail_3:
863 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
864 fail_2:
865 bus_dmamem_unmap(sc->sc_dmat,
866 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
867 fail_1:
868 bus_dmamem_free(sc->sc_dmat,
869 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
870 fail_0:
871 return;
872 }
873
874
875 /*
876 * re_activate:
877 * Handle device activation/deactivation requests.
878 */
879 int
880 re_activate(struct device *self, enum devact act)
881 {
882 struct rtk_softc *sc = (void *)self;
883 int s, error = 0;
884
885 s = splnet();
886 switch (act) {
887 case DVACT_ACTIVATE:
888 error = EOPNOTSUPP;
889 break;
890 case DVACT_DEACTIVATE:
891 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
892 if_deactivate(&sc->ethercom.ec_if);
893 break;
894 }
895 splx(s);
896
897 return error;
898 }
899
900 /*
901 * re_detach:
902 * Detach a rtk interface.
903 */
904 int
905 re_detach(struct rtk_softc *sc)
906 {
907 struct ifnet *ifp = &sc->ethercom.ec_if;
908 int i;
909
910 /*
911 * Succeed now if there isn't any work to do.
912 */
913 if ((sc->sc_flags & RTK_ATTACHED) == 0)
914 return 0;
915
916 /* Unhook our tick handler. */
917 callout_stop(&sc->rtk_tick_ch);
918
919 /* Detach all PHYs. */
920 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
921
922 /* Delete all remaining media. */
923 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
924
925 ether_ifdetach(ifp);
926 if_detach(ifp);
927
928 /* Destroy DMA maps for RX buffers. */
929 for (i = 0; i < RE_RX_DESC_CNT; i++)
930 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
931 bus_dmamap_destroy(sc->sc_dmat,
932 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
933
934 /* Free DMA'able memory for the RX ring. */
935 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
936 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
937 bus_dmamem_unmap(sc->sc_dmat,
938 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
939 bus_dmamem_free(sc->sc_dmat,
940 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
941
942 /* Destroy DMA maps for TX buffers. */
943 for (i = 0; i < RE_TX_QLEN; i++)
944 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
945 bus_dmamap_destroy(sc->sc_dmat,
946 sc->re_ldata.re_txq[i].txq_dmamap);
947
948 /* Free DMA'able memory for the TX ring. */
949 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
950 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
951 bus_dmamem_unmap(sc->sc_dmat,
952 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
953 bus_dmamem_free(sc->sc_dmat,
954 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
955
956
957 shutdownhook_disestablish(sc->sc_sdhook);
958 powerhook_disestablish(sc->sc_powerhook);
959
960 return 0;
961 }
962
963 /*
964 * re_enable:
965 * Enable the RTL81X9 chip.
966 */
967 static int
968 re_enable(struct rtk_softc *sc)
969 {
970
971 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
972 if ((*sc->sc_enable)(sc) != 0) {
973 aprint_error("%s: device enable failed\n",
974 sc->sc_dev.dv_xname);
975 return EIO;
976 }
977 sc->sc_flags |= RTK_ENABLED;
978 }
979 return 0;
980 }
981
982 /*
983 * re_disable:
984 * Disable the RTL81X9 chip.
985 */
986 static void
987 re_disable(struct rtk_softc *sc)
988 {
989
990 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
991 (*sc->sc_disable)(sc);
992 sc->sc_flags &= ~RTK_ENABLED;
993 }
994 }
995
996 /*
997 * re_power:
998 * Power management (suspend/resume) hook.
999 */
1000 void
1001 re_power(int why, void *arg)
1002 {
1003 struct rtk_softc *sc = (void *)arg;
1004 struct ifnet *ifp = &sc->ethercom.ec_if;
1005 int s;
1006
1007 s = splnet();
1008 switch (why) {
1009 case PWR_SUSPEND:
1010 case PWR_STANDBY:
1011 re_stop(ifp, 0);
1012 if (sc->sc_power != NULL)
1013 (*sc->sc_power)(sc, why);
1014 break;
1015 case PWR_RESUME:
1016 if (ifp->if_flags & IFF_UP) {
1017 if (sc->sc_power != NULL)
1018 (*sc->sc_power)(sc, why);
1019 re_init(ifp);
1020 }
1021 break;
1022 case PWR_SOFTSUSPEND:
1023 case PWR_SOFTSTANDBY:
1024 case PWR_SOFTRESUME:
1025 break;
1026 }
1027 splx(s);
1028 }
1029
1030
1031 static int
1032 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1033 {
1034 struct mbuf *n = NULL;
1035 bus_dmamap_t map;
1036 struct re_desc *d;
1037 struct re_rxsoft *rxs;
1038 uint32_t cmdstat;
1039 int error;
1040
1041 if (m == NULL) {
1042 MGETHDR(n, M_DONTWAIT, MT_DATA);
1043 if (n == NULL)
1044 return ENOBUFS;
1045
1046 MCLGET(n, M_DONTWAIT);
1047 if ((n->m_flags & M_EXT) == 0) {
1048 m_freem(n);
1049 return ENOBUFS;
1050 }
1051 m = n;
1052 } else
1053 m->m_data = m->m_ext.ext_buf;
1054
1055 /*
1056 * Initialize mbuf length fields and fixup
1057 * alignment so that the frame payload is
1058 * longword aligned.
1059 */
1060 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1061 m->m_data += RE_ETHER_ALIGN;
1062
1063 rxs = &sc->re_ldata.re_rxsoft[idx];
1064 map = rxs->rxs_dmamap;
1065 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1066 BUS_DMA_READ|BUS_DMA_NOWAIT);
1067
1068 if (error)
1069 goto out;
1070
1071 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1072 BUS_DMASYNC_PREREAD);
1073
1074 d = &sc->re_ldata.re_rx_list[idx];
1075 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1076 cmdstat = le32toh(d->re_cmdstat);
1077 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1078 if (cmdstat & RE_RDESC_STAT_OWN) {
1079 aprint_error("%s: tried to map busy RX descriptor\n",
1080 sc->sc_dev.dv_xname);
1081 goto out;
1082 }
1083
1084 rxs->rxs_mbuf = m;
1085
1086 cmdstat = map->dm_segs[0].ds_len;
1087 if (idx == (RE_RX_DESC_CNT - 1))
1088 cmdstat |= RE_RDESC_CMD_EOR;
1089 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1090 d->re_cmdstat = htole32(cmdstat);
1091 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1092 cmdstat |= RE_RDESC_CMD_OWN;
1093 d->re_cmdstat = htole32(cmdstat);
1094 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1095
1096 return 0;
1097 out:
1098 if (n != NULL)
1099 m_freem(n);
1100 return ENOMEM;
1101 }
1102
1103 static int
1104 re_tx_list_init(struct rtk_softc *sc)
1105 {
1106 int i;
1107
1108 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1109 for (i = 0; i < RE_TX_QLEN; i++) {
1110 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1111 }
1112
1113 bus_dmamap_sync(sc->sc_dmat,
1114 sc->re_ldata.re_tx_list_map, 0,
1115 sc->re_ldata.re_tx_list_map->dm_mapsize,
1116 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1117 sc->re_ldata.re_txq_prodidx = 0;
1118 sc->re_ldata.re_txq_considx = 0;
1119 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1120 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1121 sc->re_ldata.re_tx_nextfree = 0;
1122
1123 return 0;
1124 }
1125
1126 static int
1127 re_rx_list_init(struct rtk_softc *sc)
1128 {
1129 int i;
1130
1131 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1132
1133 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1134 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1135 return ENOBUFS;
1136 }
1137
1138 sc->re_ldata.re_rx_prodidx = 0;
1139 sc->re_head = sc->re_tail = NULL;
1140
1141 return 0;
1142 }
1143
1144 /*
1145 * RX handler for C+ and 8169. For the gigE chips, we support
1146 * the reception of jumbo frames that have been fragmented
1147 * across multiple 2K mbuf cluster buffers.
1148 */
1149 static void
1150 re_rxeof(struct rtk_softc *sc)
1151 {
1152 struct mbuf *m;
1153 struct ifnet *ifp;
1154 int i, total_len;
1155 struct re_desc *cur_rx;
1156 struct re_rxsoft *rxs;
1157 uint32_t rxstat, rxvlan;
1158
1159 ifp = &sc->ethercom.ec_if;
1160
1161 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1162 cur_rx = &sc->re_ldata.re_rx_list[i];
1163 RE_RXDESCSYNC(sc, i,
1164 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1165 rxstat = le32toh(cur_rx->re_cmdstat);
1166 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1167 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1168 break;
1169 }
1170 total_len = rxstat & sc->re_rxlenmask;
1171 rxvlan = le32toh(cur_rx->re_vlanctl);
1172 rxs = &sc->re_ldata.re_rxsoft[i];
1173 m = rxs->rxs_mbuf;
1174
1175 /* Invalidate the RX mbuf and unload its map */
1176
1177 bus_dmamap_sync(sc->sc_dmat,
1178 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1179 BUS_DMASYNC_POSTREAD);
1180 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1181
1182 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1183 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1184 if (sc->re_head == NULL)
1185 sc->re_head = sc->re_tail = m;
1186 else {
1187 m->m_flags &= ~M_PKTHDR;
1188 sc->re_tail->m_next = m;
1189 sc->re_tail = m;
1190 }
1191 re_newbuf(sc, i, NULL);
1192 continue;
1193 }
1194
1195 /*
1196 * NOTE: for the 8139C+, the frame length field
1197 * is always 12 bits in size, but for the gigE chips,
1198 * it is 13 bits (since the max RX frame length is 16K).
1199 * Unfortunately, all 32 bits in the status word
1200 * were already used, so to make room for the extra
1201 * length bit, RealTek took out the 'frame alignment
1202 * error' bit and shifted the other status bits
1203 * over one slot. The OWN, EOR, FS and LS bits are
1204 * still in the same places. We have already extracted
1205 * the frame length and checked the OWN bit, so rather
1206 * than using an alternate bit mapping, we shift the
1207 * status bits one space to the right so we can evaluate
1208 * them using the 8169 status as though it was in the
1209 * same format as that of the 8139C+.
1210 */
1211 if (sc->rtk_type == RTK_8169)
1212 rxstat >>= 1;
1213
1214 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1215 #ifdef RE_DEBUG
1216 aprint_error("%s: RX error (rxstat = 0x%08x)",
1217 sc->sc_dev.dv_xname, rxstat);
1218 if (rxstat & RE_RDESC_STAT_FRALIGN)
1219 aprint_error(", frame alignment error");
1220 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1221 aprint_error(", out of buffer space");
1222 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1223 aprint_error(", FIFO overrun");
1224 if (rxstat & RE_RDESC_STAT_GIANT)
1225 aprint_error(", giant packet");
1226 if (rxstat & RE_RDESC_STAT_RUNT)
1227 aprint_error(", runt packet");
1228 if (rxstat & RE_RDESC_STAT_CRCERR)
1229 aprint_error(", CRC error");
1230 aprint_error("\n");
1231 #endif
1232 ifp->if_ierrors++;
1233 /*
1234 * If this is part of a multi-fragment packet,
1235 * discard all the pieces.
1236 */
1237 if (sc->re_head != NULL) {
1238 m_freem(sc->re_head);
1239 sc->re_head = sc->re_tail = NULL;
1240 }
1241 re_newbuf(sc, i, m);
1242 continue;
1243 }
1244
1245 /*
1246 * If allocating a replacement mbuf fails,
1247 * reload the current one.
1248 */
1249
1250 if (re_newbuf(sc, i, NULL) != 0) {
1251 ifp->if_ierrors++;
1252 if (sc->re_head != NULL) {
1253 m_freem(sc->re_head);
1254 sc->re_head = sc->re_tail = NULL;
1255 }
1256 re_newbuf(sc, i, m);
1257 continue;
1258 }
1259
1260 if (sc->re_head != NULL) {
1261 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1262 /*
1263 * Special case: if there's 4 bytes or less
1264 * in this buffer, the mbuf can be discarded:
1265 * the last 4 bytes is the CRC, which we don't
1266 * care about anyway.
1267 */
1268 if (m->m_len <= ETHER_CRC_LEN) {
1269 sc->re_tail->m_len -=
1270 (ETHER_CRC_LEN - m->m_len);
1271 m_freem(m);
1272 } else {
1273 m->m_len -= ETHER_CRC_LEN;
1274 m->m_flags &= ~M_PKTHDR;
1275 sc->re_tail->m_next = m;
1276 }
1277 m = sc->re_head;
1278 sc->re_head = sc->re_tail = NULL;
1279 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1280 } else
1281 m->m_pkthdr.len = m->m_len =
1282 (total_len - ETHER_CRC_LEN);
1283
1284 ifp->if_ipackets++;
1285 m->m_pkthdr.rcvif = ifp;
1286
1287 /* Do RX checksumming */
1288
1289 /* Check IP header checksum */
1290 if (rxstat & RE_RDESC_STAT_PROTOID) {
1291 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1292 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1293 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1294 }
1295
1296 /* Check TCP/UDP checksum */
1297 if (RE_TCPPKT(rxstat)) {
1298 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1299 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1300 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1301 } else if (RE_UDPPKT(rxstat)) {
1302 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1303 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1304 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1305 }
1306
1307 #ifdef RE_VLAN
1308 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1309 VLAN_INPUT_TAG(ifp, m,
1310 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1311 continue);
1312 }
1313 #endif
1314 #if NBPFILTER > 0
1315 if (ifp->if_bpf)
1316 bpf_mtap(ifp->if_bpf, m);
1317 #endif
1318 (*ifp->if_input)(ifp, m);
1319 }
1320
1321 sc->re_ldata.re_rx_prodidx = i;
1322 }
1323
1324 static void
1325 re_txeof(struct rtk_softc *sc)
1326 {
1327 struct ifnet *ifp;
1328 struct re_txq *txq;
1329 uint32_t txstat;
1330 int idx, descidx;
1331
1332 ifp = &sc->ethercom.ec_if;
1333
1334 for (idx = sc->re_ldata.re_txq_considx;
1335 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1336 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1337 txq = &sc->re_ldata.re_txq[idx];
1338 KASSERT(txq->txq_mbuf != NULL);
1339
1340 descidx = txq->txq_descidx;
1341 RE_TXDESCSYNC(sc, descidx,
1342 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1343 txstat =
1344 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1345 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1346 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1347 if (txstat & RE_TDESC_CMD_OWN) {
1348 break;
1349 }
1350
1351 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1352 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1353 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1354 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1355 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1356 m_freem(txq->txq_mbuf);
1357 txq->txq_mbuf = NULL;
1358
1359 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1360 ifp->if_collisions++;
1361 if (txstat & RE_TDESC_STAT_TXERRSUM)
1362 ifp->if_oerrors++;
1363 else
1364 ifp->if_opackets++;
1365 }
1366
1367 sc->re_ldata.re_txq_considx = idx;
1368
1369 if (sc->re_ldata.re_txq_free > 0)
1370 ifp->if_flags &= ~IFF_OACTIVE;
1371
1372 /*
1373 * If not all descriptors have been released reaped yet,
1374 * reload the timer so that we will eventually get another
1375 * interrupt that will cause us to re-enter this routine.
1376 * This is done in case the transmitter has gone idle.
1377 */
1378 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1379 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1380 else
1381 ifp->if_timer = 0;
1382 }
1383
1384 /*
1385 * Stop all chip I/O so that the kernel's probe routines don't
1386 * get confused by errant DMAs when rebooting.
1387 */
1388 static void
1389 re_shutdown(void *vsc)
1390
1391 {
1392 struct rtk_softc *sc = vsc;
1393
1394 re_stop(&sc->ethercom.ec_if, 0);
1395 }
1396
1397
1398 static void
1399 re_tick(void *xsc)
1400 {
1401 struct rtk_softc *sc = xsc;
1402 int s;
1403
1404 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1405 s = splnet();
1406
1407 mii_tick(&sc->mii);
1408 splx(s);
1409
1410 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1411 }
1412
1413 #ifdef DEVICE_POLLING
1414 static void
1415 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1416 {
1417 struct rtk_softc *sc = ifp->if_softc;
1418
1419 RTK_LOCK(sc);
1420 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1421 ether_poll_deregister(ifp);
1422 cmd = POLL_DEREGISTER;
1423 }
1424 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1425 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1426 goto done;
1427 }
1428
1429 sc->rxcycles = count;
1430 re_rxeof(sc);
1431 re_txeof(sc);
1432
1433 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1434 (*ifp->if_start)(ifp);
1435
1436 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1437 uint16_t status;
1438
1439 status = CSR_READ_2(sc, RTK_ISR);
1440 if (status == 0xffff)
1441 goto done;
1442 if (status)
1443 CSR_WRITE_2(sc, RTK_ISR, status);
1444
1445 /*
1446 * XXX check behaviour on receiver stalls.
1447 */
1448
1449 if (status & RTK_ISR_SYSTEM_ERR) {
1450 re_init(sc);
1451 }
1452 }
1453 done:
1454 RTK_UNLOCK(sc);
1455 }
1456 #endif /* DEVICE_POLLING */
1457
1458 int
1459 re_intr(void *arg)
1460 {
1461 struct rtk_softc *sc = arg;
1462 struct ifnet *ifp;
1463 uint16_t status;
1464 int handled = 0;
1465
1466 ifp = &sc->ethercom.ec_if;
1467
1468 if ((ifp->if_flags & IFF_UP) == 0)
1469 return 0;
1470
1471 #ifdef DEVICE_POLLING
1472 if (ifp->if_flags & IFF_POLLING)
1473 goto done;
1474 if ((ifp->if_capenable & IFCAP_POLLING) &&
1475 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1476 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1477 re_poll(ifp, 0, 1);
1478 goto done;
1479 }
1480 #endif /* DEVICE_POLLING */
1481
1482 for (;;) {
1483
1484 status = CSR_READ_2(sc, RTK_ISR);
1485 /* If the card has gone away the read returns 0xffff. */
1486 if (status == 0xffff)
1487 break;
1488 if (status) {
1489 handled = 1;
1490 CSR_WRITE_2(sc, RTK_ISR, status);
1491 }
1492
1493 if ((status & RTK_INTRS_CPLUS) == 0)
1494 break;
1495
1496 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1497 re_rxeof(sc);
1498
1499 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1500 RTK_ISR_TX_DESC_UNAVAIL))
1501 re_txeof(sc);
1502
1503 if (status & RTK_ISR_SYSTEM_ERR) {
1504 re_init(ifp);
1505 }
1506
1507 if (status & RTK_ISR_LINKCHG) {
1508 callout_stop(&sc->rtk_tick_ch);
1509 re_tick(sc);
1510 }
1511 }
1512
1513 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1514 re_start(ifp);
1515
1516 #ifdef DEVICE_POLLING
1517 done:
1518 #endif
1519
1520 return handled;
1521 }
1522
1523
1524
1525 /*
1526 * Main transmit routine for C+ and gigE NICs.
1527 */
1528
1529 static void
1530 re_start(struct ifnet *ifp)
1531 {
1532 struct rtk_softc *sc;
1533 struct mbuf *m;
1534 bus_dmamap_t map;
1535 struct re_txq *txq;
1536 struct re_desc *d;
1537 #ifdef RE_VLAN
1538 struct m_tag *mtag;
1539 #endif
1540 uint32_t cmdstat, re_flags;
1541 int ofree, idx, error, nsegs, seg;
1542 int startdesc, curdesc, lastdesc;
1543 boolean_t pad;
1544
1545 sc = ifp->if_softc;
1546 ofree = sc->re_ldata.re_txq_free;
1547
1548 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1549
1550 IFQ_POLL(&ifp->if_snd, m);
1551 if (m == NULL)
1552 break;
1553
1554 if (sc->re_ldata.re_txq_free == 0 ||
1555 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1556 /* no more free slots left */
1557 ifp->if_flags |= IFF_OACTIVE;
1558 break;
1559 }
1560
1561 /*
1562 * Set up checksum offload. Note: checksum offload bits must
1563 * appear in all descriptors of a multi-descriptor transmit
1564 * attempt. (This is according to testing done with an 8169
1565 * chip. I'm not sure if this is a requirement or a bug.)
1566 */
1567
1568 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1569 uint32_t segsz = m->m_pkthdr.segsz;
1570
1571 re_flags = RE_TDESC_CMD_LGSEND |
1572 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1573 } else {
1574 /*
1575 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1576 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1577 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1578 */
1579 re_flags = 0;
1580 if ((m->m_pkthdr.csum_flags &
1581 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1582 != 0) {
1583 re_flags |= RE_TDESC_CMD_IPCSUM;
1584 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1585 re_flags |= RE_TDESC_CMD_TCPCSUM;
1586 } else if (m->m_pkthdr.csum_flags &
1587 M_CSUM_UDPv4) {
1588 re_flags |= RE_TDESC_CMD_UDPCSUM;
1589 }
1590 }
1591 }
1592
1593 txq = &sc->re_ldata.re_txq[idx];
1594 map = txq->txq_dmamap;
1595 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1596 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1597
1598 if (error) {
1599 /* XXX try to defrag if EFBIG? */
1600 aprint_error("%s: can't map mbuf (error %d)\n",
1601 sc->sc_dev.dv_xname, error);
1602
1603 IFQ_DEQUEUE(&ifp->if_snd, m);
1604 m_freem(m);
1605 ifp->if_oerrors++;
1606 continue;
1607 }
1608
1609 nsegs = map->dm_nsegs;
1610 pad = FALSE;
1611 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1612 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1613 pad = TRUE;
1614 nsegs++;
1615 }
1616
1617 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1618 /*
1619 * Not enough free descriptors to transmit this packet.
1620 */
1621 ifp->if_flags |= IFF_OACTIVE;
1622 bus_dmamap_unload(sc->sc_dmat, map);
1623 break;
1624 }
1625
1626 IFQ_DEQUEUE(&ifp->if_snd, m);
1627
1628 /*
1629 * Make sure that the caches are synchronized before we
1630 * ask the chip to start DMA for the packet data.
1631 */
1632 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1633 BUS_DMASYNC_PREWRITE);
1634
1635 /*
1636 * Map the segment array into descriptors.
1637 * Note that we set the start-of-frame and
1638 * end-of-frame markers for either TX or RX,
1639 * but they really only have meaning in the TX case.
1640 * (In the RX case, it's the chip that tells us
1641 * where packets begin and end.)
1642 * We also keep track of the end of the ring
1643 * and set the end-of-ring bits as needed,
1644 * and we set the ownership bits in all except
1645 * the very first descriptor. (The caller will
1646 * set this descriptor later when it start
1647 * transmission or reception.)
1648 */
1649 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1650 lastdesc = -1;
1651 for (seg = 0; seg < map->dm_nsegs;
1652 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1653 d = &sc->re_ldata.re_tx_list[curdesc];
1654 #ifdef DIAGNOSTIC
1655 RE_TXDESCSYNC(sc, curdesc,
1656 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1657 cmdstat = le32toh(d->re_cmdstat);
1658 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1659 if (cmdstat & RE_TDESC_STAT_OWN) {
1660 panic("%s: tried to map busy TX descriptor",
1661 sc->sc_dev.dv_xname);
1662 }
1663 #endif
1664
1665 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1666 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1667 if (seg == 0)
1668 cmdstat |= RE_TDESC_CMD_SOF;
1669 else
1670 cmdstat |= RE_TDESC_CMD_OWN;
1671 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1672 cmdstat |= RE_TDESC_CMD_EOR;
1673 if (seg == nsegs - 1) {
1674 cmdstat |= RE_TDESC_CMD_EOF;
1675 lastdesc = curdesc;
1676 }
1677 d->re_cmdstat = htole32(cmdstat);
1678 RE_TXDESCSYNC(sc, curdesc,
1679 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1680 }
1681 if (pad) {
1682 bus_addr_t paddaddr;
1683
1684 d = &sc->re_ldata.re_tx_list[curdesc];
1685 paddaddr = RE_TXPADDADDR(sc);
1686 re_set_bufaddr(d, paddaddr);
1687 cmdstat = re_flags |
1688 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1689 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1690 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1691 cmdstat |= RE_TDESC_CMD_EOR;
1692 d->re_cmdstat = htole32(cmdstat);
1693 RE_TXDESCSYNC(sc, curdesc,
1694 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1695 lastdesc = curdesc;
1696 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1697 }
1698 KASSERT(lastdesc != -1);
1699
1700 /*
1701 * Set up hardware VLAN tagging. Note: vlan tag info must
1702 * appear in the first descriptor of a multi-descriptor
1703 * transmission attempt.
1704 */
1705
1706 #ifdef RE_VLAN
1707 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1708 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1709 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1710 RE_TDESC_VLANCTL_TAG);
1711 }
1712 #endif
1713
1714 /* Transfer ownership of packet to the chip. */
1715
1716 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1717 htole32(RE_TDESC_CMD_OWN);
1718 RE_TXDESCSYNC(sc, startdesc,
1719 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1720
1721 /* update info of TX queue and descriptors */
1722 txq->txq_mbuf = m;
1723 txq->txq_descidx = lastdesc;
1724 txq->txq_nsegs = nsegs;
1725
1726 sc->re_ldata.re_txq_free--;
1727 sc->re_ldata.re_tx_free -= nsegs;
1728 sc->re_ldata.re_tx_nextfree = curdesc;
1729
1730 #if NBPFILTER > 0
1731 /*
1732 * If there's a BPF listener, bounce a copy of this frame
1733 * to him.
1734 */
1735 if (ifp->if_bpf)
1736 bpf_mtap(ifp->if_bpf, m);
1737 #endif
1738 }
1739
1740 if (sc->re_ldata.re_txq_free < ofree) {
1741 /*
1742 * TX packets are enqueued.
1743 */
1744 sc->re_ldata.re_txq_prodidx = idx;
1745
1746 /*
1747 * Start the transmitter to poll.
1748 *
1749 * RealTek put the TX poll request register in a different
1750 * location on the 8169 gigE chip. I don't know why.
1751 */
1752 if (sc->rtk_type == RTK_8169)
1753 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1754 else
1755 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1756
1757 /*
1758 * Use the countdown timer for interrupt moderation.
1759 * 'TX done' interrupts are disabled. Instead, we reset the
1760 * countdown timer, which will begin counting until it hits
1761 * the value in the TIMERINT register, and then trigger an
1762 * interrupt. Each time we write to the TIMERCNT register,
1763 * the timer count is reset to 0.
1764 */
1765 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1766
1767 /*
1768 * Set a timeout in case the chip goes out to lunch.
1769 */
1770 ifp->if_timer = 5;
1771 }
1772 }
1773
1774 static int
1775 re_init(struct ifnet *ifp)
1776 {
1777 struct rtk_softc *sc = ifp->if_softc;
1778 uint8_t *enaddr;
1779 uint32_t rxcfg = 0;
1780 uint32_t reg;
1781 int error;
1782
1783 if ((error = re_enable(sc)) != 0)
1784 goto out;
1785
1786 /*
1787 * Cancel pending I/O and free all RX/TX buffers.
1788 */
1789 re_stop(ifp, 0);
1790
1791 re_reset(sc);
1792
1793 /*
1794 * Enable C+ RX and TX mode, as well as VLAN stripping and
1795 * RX checksum offload. We must configure the C+ register
1796 * before all others.
1797 */
1798 reg = 0;
1799
1800 /*
1801 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1802 * FreeBSD drivers set these bits anyway (for 8139C+?).
1803 * So far, it works.
1804 */
1805
1806 /*
1807 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1808 * For 8169S/8110S rev 2 and above, do not set bit 14.
1809 */
1810 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1811 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1812
1813 if (1) {/* not for 8169S ? */
1814 reg |=
1815 #ifdef RE_VLAN
1816 RTK_CPLUSCMD_VLANSTRIP |
1817 #endif
1818 (ifp->if_capenable &
1819 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1820 IFCAP_CSUM_UDPv4_Rx) ?
1821 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1822 }
1823
1824 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1825 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1826
1827 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1828 if (sc->rtk_type == RTK_8169)
1829 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1830
1831 DELAY(10000);
1832
1833 /*
1834 * Init our MAC address. Even though the chipset
1835 * documentation doesn't mention it, we need to enter "Config
1836 * register write enable" mode to modify the ID registers.
1837 */
1838 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1839 enaddr = LLADDR(ifp->if_sadl);
1840 reg = enaddr[0] | (enaddr[1] << 8) |
1841 (enaddr[2] << 16) | (enaddr[3] << 24);
1842 CSR_WRITE_4(sc, RTK_IDR0, reg);
1843 reg = enaddr[4] | (enaddr[5] << 8);
1844 CSR_WRITE_4(sc, RTK_IDR4, reg);
1845 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1846
1847 /*
1848 * For C+ mode, initialize the RX descriptors and mbufs.
1849 */
1850 re_rx_list_init(sc);
1851 re_tx_list_init(sc);
1852
1853 /*
1854 * Load the addresses of the RX and TX lists into the chip.
1855 */
1856 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1857 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1858 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1859 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1860
1861 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1862 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1863 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1864 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1865
1866 /*
1867 * Enable transmit and receive.
1868 */
1869 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1870
1871 /*
1872 * Set the initial TX and RX configuration.
1873 */
1874 if (sc->re_testmode) {
1875 if (sc->rtk_type == RTK_8169)
1876 CSR_WRITE_4(sc, RTK_TXCFG,
1877 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1878 else
1879 CSR_WRITE_4(sc, RTK_TXCFG,
1880 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1881 } else
1882 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1883
1884 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1885
1886 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1887
1888 /* Set the individual bit to receive frames for this host only. */
1889 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1890 rxcfg |= RTK_RXCFG_RX_INDIV;
1891
1892 /* If we want promiscuous mode, set the allframes bit. */
1893 if (ifp->if_flags & IFF_PROMISC)
1894 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1895 else
1896 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1897 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1898
1899 /*
1900 * Set capture broadcast bit to capture broadcast frames.
1901 */
1902 if (ifp->if_flags & IFF_BROADCAST)
1903 rxcfg |= RTK_RXCFG_RX_BROAD;
1904 else
1905 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1906 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1907
1908 /*
1909 * Program the multicast filter, if necessary.
1910 */
1911 rtk_setmulti(sc);
1912
1913 #ifdef DEVICE_POLLING
1914 /*
1915 * Disable interrupts if we are polling.
1916 */
1917 if (ifp->if_flags & IFF_POLLING)
1918 CSR_WRITE_2(sc, RTK_IMR, 0);
1919 else /* otherwise ... */
1920 #endif /* DEVICE_POLLING */
1921 /*
1922 * Enable interrupts.
1923 */
1924 if (sc->re_testmode)
1925 CSR_WRITE_2(sc, RTK_IMR, 0);
1926 else
1927 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1928
1929 /* Start RX/TX process. */
1930 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1931 #ifdef notdef
1932 /* Enable receiver and transmitter. */
1933 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1934 #endif
1935
1936 /*
1937 * Initialize the timer interrupt register so that
1938 * a timer interrupt will be generated once the timer
1939 * reaches a certain number of ticks. The timer is
1940 * reloaded on each transmit. This gives us TX interrupt
1941 * moderation, which dramatically improves TX frame rate.
1942 */
1943
1944 if (sc->rtk_type == RTK_8169)
1945 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1946 else
1947 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1948
1949 /*
1950 * For 8169 gigE NICs, set the max allowed RX packet
1951 * size so we can receive jumbo frames.
1952 */
1953 if (sc->rtk_type == RTK_8169)
1954 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1955
1956 if (sc->re_testmode)
1957 return 0;
1958
1959 mii_mediachg(&sc->mii);
1960
1961 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1962
1963 ifp->if_flags |= IFF_RUNNING;
1964 ifp->if_flags &= ~IFF_OACTIVE;
1965
1966 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1967
1968 out:
1969 if (error) {
1970 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1971 ifp->if_timer = 0;
1972 aprint_error("%s: interface not running\n",
1973 sc->sc_dev.dv_xname);
1974 }
1975
1976 return error;
1977 }
1978
1979 /*
1980 * Set media options.
1981 */
1982 static int
1983 re_ifmedia_upd(struct ifnet *ifp)
1984 {
1985 struct rtk_softc *sc;
1986
1987 sc = ifp->if_softc;
1988
1989 return mii_mediachg(&sc->mii);
1990 }
1991
1992 /*
1993 * Report current media status.
1994 */
1995 static void
1996 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1997 {
1998 struct rtk_softc *sc;
1999
2000 sc = ifp->if_softc;
2001
2002 mii_pollstat(&sc->mii);
2003 ifmr->ifm_active = sc->mii.mii_media_active;
2004 ifmr->ifm_status = sc->mii.mii_media_status;
2005 }
2006
2007 static int
2008 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2009 {
2010 struct rtk_softc *sc = ifp->if_softc;
2011 struct ifreq *ifr = (struct ifreq *) data;
2012 int s, error = 0;
2013
2014 s = splnet();
2015
2016 switch (command) {
2017 case SIOCSIFMTU:
2018 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2019 error = EINVAL;
2020 ifp->if_mtu = ifr->ifr_mtu;
2021 break;
2022 case SIOCGIFMEDIA:
2023 case SIOCSIFMEDIA:
2024 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2025 break;
2026 default:
2027 error = ether_ioctl(ifp, command, data);
2028 if (error == ENETRESET) {
2029 if (ifp->if_flags & IFF_RUNNING)
2030 rtk_setmulti(sc);
2031 error = 0;
2032 }
2033 break;
2034 }
2035
2036 splx(s);
2037
2038 return error;
2039 }
2040
2041 static void
2042 re_watchdog(struct ifnet *ifp)
2043 {
2044 struct rtk_softc *sc;
2045 int s;
2046
2047 sc = ifp->if_softc;
2048 s = splnet();
2049 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2050 ifp->if_oerrors++;
2051
2052 re_txeof(sc);
2053 re_rxeof(sc);
2054
2055 re_init(ifp);
2056
2057 splx(s);
2058 }
2059
2060 /*
2061 * Stop the adapter and free any mbufs allocated to the
2062 * RX and TX lists.
2063 */
2064 static void
2065 re_stop(struct ifnet *ifp, int disable)
2066 {
2067 int i;
2068 struct rtk_softc *sc = ifp->if_softc;
2069
2070 callout_stop(&sc->rtk_tick_ch);
2071
2072 #ifdef DEVICE_POLLING
2073 ether_poll_deregister(ifp);
2074 #endif /* DEVICE_POLLING */
2075
2076 mii_down(&sc->mii);
2077
2078 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2079 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2080
2081 if (sc->re_head != NULL) {
2082 m_freem(sc->re_head);
2083 sc->re_head = sc->re_tail = NULL;
2084 }
2085
2086 /* Free the TX list buffers. */
2087 for (i = 0; i < RE_TX_QLEN; i++) {
2088 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2089 bus_dmamap_unload(sc->sc_dmat,
2090 sc->re_ldata.re_txq[i].txq_dmamap);
2091 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2092 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2093 }
2094 }
2095
2096 /* Free the RX list buffers. */
2097 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2098 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2099 bus_dmamap_unload(sc->sc_dmat,
2100 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2101 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2102 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2103 }
2104 }
2105
2106 if (disable)
2107 re_disable(sc);
2108
2109 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2110 ifp->if_timer = 0;
2111 }
2112