rtl8169.c revision 1.71 1 /* $NetBSD: rtl8169.c,v 1.71 2006/11/25 02:42:18 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if (sc->rtk_type == RTK_8169) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if (sc->rtk_type == RTK_8169) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if (sc->rtk_type == RTK_8139CPLUS) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, RTK_LDPS, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578 /* Reset the adapter. */
579 re_reset(sc);
580
581 if (sc->rtk_type == RTK_8169) {
582 uint32_t hwrev;
583
584 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
585 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
586 if (hwrev == (0x1 << 28)) {
587 sc->sc_rev = 4;
588 } else if (hwrev == (0x1 << 26)) {
589 sc->sc_rev = 3;
590 } else if (hwrev == (0x1 << 23)) {
591 sc->sc_rev = 2;
592 } else
593 sc->sc_rev = 1;
594
595 /* Set RX length mask */
596
597 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
598
599 /* Force station address autoload from the EEPROM */
600
601 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
602 for (i = 0; i < RTK_TIMEOUT; i++) {
603 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
604 == 0)
605 break;
606 DELAY(100);
607 }
608 if (i == RTK_TIMEOUT)
609 aprint_error("%s: eeprom autoload timed out\n",
610 sc->sc_dev.dv_xname);
611
612 for (i = 0; i < ETHER_ADDR_LEN; i++)
613 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
614
615 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
616 } else {
617
618 /* Set RX length mask */
619
620 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
621
622 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
623 addr_len = RTK_EEADDR_LEN1;
624 else
625 addr_len = RTK_EEADDR_LEN0;
626
627 /*
628 * Get station address from the EEPROM.
629 */
630 for (i = 0; i < 3; i++) {
631 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
632 eaddr[(i * 2) + 0] = val & 0xff;
633 eaddr[(i * 2) + 1] = val >> 8;
634 }
635
636 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
637 }
638
639 aprint_normal("%s: Ethernet address %s\n",
640 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
641
642 if (sc->re_ldata.re_tx_desc_cnt >
643 PAGE_SIZE / sizeof(struct re_desc)) {
644 sc->re_ldata.re_tx_desc_cnt =
645 PAGE_SIZE / sizeof(struct re_desc);
646 }
647
648 aprint_verbose("%s: using %d tx descriptors\n",
649 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
650 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
651
652 /* Allocate DMA'able memory for the TX ring */
653 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
654 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
655 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
656 aprint_error("%s: can't allocate tx listseg, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_0;
659 }
660
661 /* Load the map for the TX ring. */
662 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
663 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
664 (caddr_t *)&sc->re_ldata.re_tx_list,
665 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
666 aprint_error("%s: can't map tx list, error = %d\n",
667 sc->sc_dev.dv_xname, error);
668 goto fail_1;
669 }
670 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
671
672 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
673 RE_TX_LIST_SZ(sc), 0, 0,
674 &sc->re_ldata.re_tx_list_map)) != 0) {
675 aprint_error("%s: can't create tx list map, error = %d\n",
676 sc->sc_dev.dv_xname, error);
677 goto fail_2;
678 }
679
680
681 if ((error = bus_dmamap_load(sc->sc_dmat,
682 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
683 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
684 aprint_error("%s: can't load tx list, error = %d\n",
685 sc->sc_dev.dv_xname, error);
686 goto fail_3;
687 }
688
689 /* Create DMA maps for TX buffers */
690 for (i = 0; i < RE_TX_QLEN; i++) {
691 error = bus_dmamap_create(sc->sc_dmat,
692 round_page(IP_MAXPACKET),
693 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
694 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
695 if (error) {
696 aprint_error("%s: can't create DMA map for TX\n",
697 sc->sc_dev.dv_xname);
698 goto fail_4;
699 }
700 }
701
702 /* Allocate DMA'able memory for the RX ring */
703 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
704 if ((error = bus_dmamem_alloc(sc->sc_dmat,
705 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
706 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
707 aprint_error("%s: can't allocate rx listseg, error = %d\n",
708 sc->sc_dev.dv_xname, error);
709 goto fail_4;
710 }
711
712 /* Load the map for the RX ring. */
713 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
714 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
715 (caddr_t *)&sc->re_ldata.re_rx_list,
716 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
717 aprint_error("%s: can't map rx list, error = %d\n",
718 sc->sc_dev.dv_xname, error);
719 goto fail_5;
720 }
721 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
722
723 if ((error = bus_dmamap_create(sc->sc_dmat,
724 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
725 &sc->re_ldata.re_rx_list_map)) != 0) {
726 aprint_error("%s: can't create rx list map, error = %d\n",
727 sc->sc_dev.dv_xname, error);
728 goto fail_6;
729 }
730
731 if ((error = bus_dmamap_load(sc->sc_dmat,
732 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
733 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
734 aprint_error("%s: can't load rx list, error = %d\n",
735 sc->sc_dev.dv_xname, error);
736 goto fail_7;
737 }
738
739 /* Create DMA maps for RX buffers */
740 for (i = 0; i < RE_RX_DESC_CNT; i++) {
741 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
742 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
743 if (error) {
744 aprint_error("%s: can't create DMA map for RX\n",
745 sc->sc_dev.dv_xname);
746 goto fail_8;
747 }
748 }
749
750 /*
751 * Record interface as attached. From here, we should not fail.
752 */
753 sc->sc_flags |= RTK_ATTACHED;
754
755 ifp = &sc->ethercom.ec_if;
756 ifp->if_softc = sc;
757 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
758 ifp->if_mtu = ETHERMTU;
759 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
760 ifp->if_ioctl = re_ioctl;
761 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
762
763 /*
764 * This is a way to disable hw VLAN tagging by default
765 * (RE_VLAN is undefined), as it is problematic. PR 32643
766 */
767
768 #ifdef RE_VLAN
769 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
770 #endif
771 ifp->if_start = re_start;
772 ifp->if_stop = re_stop;
773
774 /*
775 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
776 * so we have a workaround to handle the bug by padding
777 * such packets manually.
778 */
779 ifp->if_capabilities |=
780 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
781 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
782 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
783 IFCAP_TSOv4;
784 ifp->if_watchdog = re_watchdog;
785 ifp->if_init = re_init;
786 if (sc->rtk_type == RTK_8169)
787 ifp->if_baudrate = 1000000000;
788 else
789 ifp->if_baudrate = 100000000;
790 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
791 ifp->if_capenable = ifp->if_capabilities;
792 IFQ_SET_READY(&ifp->if_snd);
793
794 callout_init(&sc->rtk_tick_ch);
795
796 /* Do MII setup */
797 sc->mii.mii_ifp = ifp;
798 sc->mii.mii_readreg = re_miibus_readreg;
799 sc->mii.mii_writereg = re_miibus_writereg;
800 sc->mii.mii_statchg = re_miibus_statchg;
801 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
802 re_ifmedia_sts);
803 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
804 MII_OFFSET_ANY, 0);
805 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
806
807 /*
808 * Call MI attach routine.
809 */
810 if_attach(ifp);
811 ether_ifattach(ifp, eaddr);
812
813
814 /*
815 * Make sure the interface is shutdown during reboot.
816 */
817 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
818 if (sc->sc_sdhook == NULL)
819 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
820 sc->sc_dev.dv_xname);
821 /*
822 * Add a suspend hook to make sure we come back up after a
823 * resume.
824 */
825 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
826 re_power, sc);
827 if (sc->sc_powerhook == NULL)
828 aprint_error("%s: WARNING: unable to establish power hook\n",
829 sc->sc_dev.dv_xname);
830
831
832 return;
833
834 fail_8:
835 /* Destroy DMA maps for RX buffers. */
836 for (i = 0; i < RE_RX_DESC_CNT; i++)
837 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
838 bus_dmamap_destroy(sc->sc_dmat,
839 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
840
841 /* Free DMA'able memory for the RX ring. */
842 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
843 fail_7:
844 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
845 fail_6:
846 bus_dmamem_unmap(sc->sc_dmat,
847 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
848 fail_5:
849 bus_dmamem_free(sc->sc_dmat,
850 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
851
852 fail_4:
853 /* Destroy DMA maps for TX buffers. */
854 for (i = 0; i < RE_TX_QLEN; i++)
855 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
856 bus_dmamap_destroy(sc->sc_dmat,
857 sc->re_ldata.re_txq[i].txq_dmamap);
858
859 /* Free DMA'able memory for the TX ring. */
860 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
861 fail_3:
862 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
863 fail_2:
864 bus_dmamem_unmap(sc->sc_dmat,
865 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
866 fail_1:
867 bus_dmamem_free(sc->sc_dmat,
868 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
869 fail_0:
870 return;
871 }
872
873
874 /*
875 * re_activate:
876 * Handle device activation/deactivation requests.
877 */
878 int
879 re_activate(struct device *self, enum devact act)
880 {
881 struct rtk_softc *sc = (void *)self;
882 int s, error = 0;
883
884 s = splnet();
885 switch (act) {
886 case DVACT_ACTIVATE:
887 error = EOPNOTSUPP;
888 break;
889 case DVACT_DEACTIVATE:
890 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
891 if_deactivate(&sc->ethercom.ec_if);
892 break;
893 }
894 splx(s);
895
896 return error;
897 }
898
899 /*
900 * re_detach:
901 * Detach a rtk interface.
902 */
903 int
904 re_detach(struct rtk_softc *sc)
905 {
906 struct ifnet *ifp = &sc->ethercom.ec_if;
907 int i;
908
909 /*
910 * Succeed now if there isn't any work to do.
911 */
912 if ((sc->sc_flags & RTK_ATTACHED) == 0)
913 return 0;
914
915 /* Unhook our tick handler. */
916 callout_stop(&sc->rtk_tick_ch);
917
918 /* Detach all PHYs. */
919 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
920
921 /* Delete all remaining media. */
922 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
923
924 ether_ifdetach(ifp);
925 if_detach(ifp);
926
927 /* Destroy DMA maps for RX buffers. */
928 for (i = 0; i < RE_RX_DESC_CNT; i++)
929 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
932
933 /* Free DMA'able memory for the RX ring. */
934 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
935 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
936 bus_dmamem_unmap(sc->sc_dmat,
937 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
938 bus_dmamem_free(sc->sc_dmat,
939 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
940
941 /* Destroy DMA maps for TX buffers. */
942 for (i = 0; i < RE_TX_QLEN; i++)
943 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
944 bus_dmamap_destroy(sc->sc_dmat,
945 sc->re_ldata.re_txq[i].txq_dmamap);
946
947 /* Free DMA'able memory for the TX ring. */
948 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
949 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
950 bus_dmamem_unmap(sc->sc_dmat,
951 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
952 bus_dmamem_free(sc->sc_dmat,
953 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
954
955
956 shutdownhook_disestablish(sc->sc_sdhook);
957 powerhook_disestablish(sc->sc_powerhook);
958
959 return 0;
960 }
961
962 /*
963 * re_enable:
964 * Enable the RTL81X9 chip.
965 */
966 static int
967 re_enable(struct rtk_softc *sc)
968 {
969
970 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
971 if ((*sc->sc_enable)(sc) != 0) {
972 aprint_error("%s: device enable failed\n",
973 sc->sc_dev.dv_xname);
974 return EIO;
975 }
976 sc->sc_flags |= RTK_ENABLED;
977 }
978 return 0;
979 }
980
981 /*
982 * re_disable:
983 * Disable the RTL81X9 chip.
984 */
985 static void
986 re_disable(struct rtk_softc *sc)
987 {
988
989 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
990 (*sc->sc_disable)(sc);
991 sc->sc_flags &= ~RTK_ENABLED;
992 }
993 }
994
995 /*
996 * re_power:
997 * Power management (suspend/resume) hook.
998 */
999 void
1000 re_power(int why, void *arg)
1001 {
1002 struct rtk_softc *sc = (void *)arg;
1003 struct ifnet *ifp = &sc->ethercom.ec_if;
1004 int s;
1005
1006 s = splnet();
1007 switch (why) {
1008 case PWR_SUSPEND:
1009 case PWR_STANDBY:
1010 re_stop(ifp, 0);
1011 if (sc->sc_power != NULL)
1012 (*sc->sc_power)(sc, why);
1013 break;
1014 case PWR_RESUME:
1015 if (ifp->if_flags & IFF_UP) {
1016 if (sc->sc_power != NULL)
1017 (*sc->sc_power)(sc, why);
1018 re_init(ifp);
1019 }
1020 break;
1021 case PWR_SOFTSUSPEND:
1022 case PWR_SOFTSTANDBY:
1023 case PWR_SOFTRESUME:
1024 break;
1025 }
1026 splx(s);
1027 }
1028
1029
1030 static int
1031 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1032 {
1033 struct mbuf *n = NULL;
1034 bus_dmamap_t map;
1035 struct re_desc *d;
1036 struct re_rxsoft *rxs;
1037 uint32_t cmdstat;
1038 int error;
1039
1040 if (m == NULL) {
1041 MGETHDR(n, M_DONTWAIT, MT_DATA);
1042 if (n == NULL)
1043 return ENOBUFS;
1044
1045 MCLGET(n, M_DONTWAIT);
1046 if ((n->m_flags & M_EXT) == 0) {
1047 m_freem(n);
1048 return ENOBUFS;
1049 }
1050 m = n;
1051 } else
1052 m->m_data = m->m_ext.ext_buf;
1053
1054 /*
1055 * Initialize mbuf length fields and fixup
1056 * alignment so that the frame payload is
1057 * longword aligned.
1058 */
1059 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1060 m->m_data += RE_ETHER_ALIGN;
1061
1062 rxs = &sc->re_ldata.re_rxsoft[idx];
1063 map = rxs->rxs_dmamap;
1064 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1065 BUS_DMA_READ|BUS_DMA_NOWAIT);
1066
1067 if (error)
1068 goto out;
1069
1070 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1071 BUS_DMASYNC_PREREAD);
1072
1073 d = &sc->re_ldata.re_rx_list[idx];
1074 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1075 cmdstat = le32toh(d->re_cmdstat);
1076 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1077 if (cmdstat & RE_RDESC_STAT_OWN) {
1078 aprint_error("%s: tried to map busy RX descriptor\n",
1079 sc->sc_dev.dv_xname);
1080 goto out;
1081 }
1082
1083 rxs->rxs_mbuf = m;
1084
1085 cmdstat = map->dm_segs[0].ds_len;
1086 if (idx == (RE_RX_DESC_CNT - 1))
1087 cmdstat |= RE_RDESC_CMD_EOR;
1088 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1089 d->re_cmdstat = htole32(cmdstat);
1090 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091 cmdstat |= RE_RDESC_CMD_OWN;
1092 d->re_cmdstat = htole32(cmdstat);
1093 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1094
1095 return 0;
1096 out:
1097 if (n != NULL)
1098 m_freem(n);
1099 return ENOMEM;
1100 }
1101
1102 static int
1103 re_tx_list_init(struct rtk_softc *sc)
1104 {
1105 int i;
1106
1107 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1108 for (i = 0; i < RE_TX_QLEN; i++) {
1109 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1110 }
1111
1112 bus_dmamap_sync(sc->sc_dmat,
1113 sc->re_ldata.re_tx_list_map, 0,
1114 sc->re_ldata.re_tx_list_map->dm_mapsize,
1115 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1116 sc->re_ldata.re_txq_prodidx = 0;
1117 sc->re_ldata.re_txq_considx = 0;
1118 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1119 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1120 sc->re_ldata.re_tx_nextfree = 0;
1121
1122 return 0;
1123 }
1124
1125 static int
1126 re_rx_list_init(struct rtk_softc *sc)
1127 {
1128 int i;
1129
1130 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1131
1132 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1133 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1134 return ENOBUFS;
1135 }
1136
1137 sc->re_ldata.re_rx_prodidx = 0;
1138 sc->re_head = sc->re_tail = NULL;
1139
1140 return 0;
1141 }
1142
1143 /*
1144 * RX handler for C+ and 8169. For the gigE chips, we support
1145 * the reception of jumbo frames that have been fragmented
1146 * across multiple 2K mbuf cluster buffers.
1147 */
1148 static void
1149 re_rxeof(struct rtk_softc *sc)
1150 {
1151 struct mbuf *m;
1152 struct ifnet *ifp;
1153 int i, total_len;
1154 struct re_desc *cur_rx;
1155 struct re_rxsoft *rxs;
1156 uint32_t rxstat, rxvlan;
1157
1158 ifp = &sc->ethercom.ec_if;
1159
1160 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1161 cur_rx = &sc->re_ldata.re_rx_list[i];
1162 RE_RXDESCSYNC(sc, i,
1163 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1164 rxstat = le32toh(cur_rx->re_cmdstat);
1165 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1166 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1167 break;
1168 }
1169 total_len = rxstat & sc->re_rxlenmask;
1170 rxvlan = le32toh(cur_rx->re_vlanctl);
1171 rxs = &sc->re_ldata.re_rxsoft[i];
1172 m = rxs->rxs_mbuf;
1173
1174 /* Invalidate the RX mbuf and unload its map */
1175
1176 bus_dmamap_sync(sc->sc_dmat,
1177 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1178 BUS_DMASYNC_POSTREAD);
1179 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1180
1181 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1182 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1183 if (sc->re_head == NULL)
1184 sc->re_head = sc->re_tail = m;
1185 else {
1186 m->m_flags &= ~M_PKTHDR;
1187 sc->re_tail->m_next = m;
1188 sc->re_tail = m;
1189 }
1190 re_newbuf(sc, i, NULL);
1191 continue;
1192 }
1193
1194 /*
1195 * NOTE: for the 8139C+, the frame length field
1196 * is always 12 bits in size, but for the gigE chips,
1197 * it is 13 bits (since the max RX frame length is 16K).
1198 * Unfortunately, all 32 bits in the status word
1199 * were already used, so to make room for the extra
1200 * length bit, RealTek took out the 'frame alignment
1201 * error' bit and shifted the other status bits
1202 * over one slot. The OWN, EOR, FS and LS bits are
1203 * still in the same places. We have already extracted
1204 * the frame length and checked the OWN bit, so rather
1205 * than using an alternate bit mapping, we shift the
1206 * status bits one space to the right so we can evaluate
1207 * them using the 8169 status as though it was in the
1208 * same format as that of the 8139C+.
1209 */
1210 if (sc->rtk_type == RTK_8169)
1211 rxstat >>= 1;
1212
1213 if ((rxstat & RE_RDESC_STAT_RXERRSUM) != 0) {
1214 #ifdef RE_DEBUG
1215 aprint_error("%s: RX error (rxstat = 0x%08x)",
1216 sc->sc_dev.dv_xname, rxstat);
1217 if (rxstat & RE_RDESC_STAT_FRALIGN)
1218 aprint_error(", frame alignment error");
1219 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1220 aprint_error(", out of buffer space");
1221 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1222 aprint_error(", FIFO overrun");
1223 if (rxstat & RE_RDESC_STAT_GIANT)
1224 aprint_error(", giant packet");
1225 if (rxstat & RE_RDESC_STAT_RUNT)
1226 aprint_error(", runt packet");
1227 if (rxstat & RE_RDESC_STAT_CRCERR)
1228 aprint_error(", CRC error");
1229 aprint_error("\n");
1230 #endif
1231 ifp->if_ierrors++;
1232 /*
1233 * If this is part of a multi-fragment packet,
1234 * discard all the pieces.
1235 */
1236 if (sc->re_head != NULL) {
1237 m_freem(sc->re_head);
1238 sc->re_head = sc->re_tail = NULL;
1239 }
1240 re_newbuf(sc, i, m);
1241 continue;
1242 }
1243
1244 /*
1245 * If allocating a replacement mbuf fails,
1246 * reload the current one.
1247 */
1248
1249 if (re_newbuf(sc, i, NULL) != 0) {
1250 ifp->if_ierrors++;
1251 if (sc->re_head != NULL) {
1252 m_freem(sc->re_head);
1253 sc->re_head = sc->re_tail = NULL;
1254 }
1255 re_newbuf(sc, i, m);
1256 continue;
1257 }
1258
1259 if (sc->re_head != NULL) {
1260 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1261 /*
1262 * Special case: if there's 4 bytes or less
1263 * in this buffer, the mbuf can be discarded:
1264 * the last 4 bytes is the CRC, which we don't
1265 * care about anyway.
1266 */
1267 if (m->m_len <= ETHER_CRC_LEN) {
1268 sc->re_tail->m_len -=
1269 (ETHER_CRC_LEN - m->m_len);
1270 m_freem(m);
1271 } else {
1272 m->m_len -= ETHER_CRC_LEN;
1273 m->m_flags &= ~M_PKTHDR;
1274 sc->re_tail->m_next = m;
1275 }
1276 m = sc->re_head;
1277 sc->re_head = sc->re_tail = NULL;
1278 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1279 } else
1280 m->m_pkthdr.len = m->m_len =
1281 (total_len - ETHER_CRC_LEN);
1282
1283 ifp->if_ipackets++;
1284 m->m_pkthdr.rcvif = ifp;
1285
1286 /* Do RX checksumming */
1287
1288 /* Check IP header checksum */
1289 if (rxstat & RE_RDESC_STAT_PROTOID) {
1290 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1291 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1292 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1293 }
1294
1295 /* Check TCP/UDP checksum */
1296 if (RE_TCPPKT(rxstat)) {
1297 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1298 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1299 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1300 } else if (RE_UDPPKT(rxstat)) {
1301 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1302 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1303 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1304 }
1305
1306 #ifdef RE_VLAN
1307 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1308 VLAN_INPUT_TAG(ifp, m,
1309 be16toh(rxvlan & RE_RDESC_VLANCTL_DATA),
1310 continue);
1311 }
1312 #endif
1313 #if NBPFILTER > 0
1314 if (ifp->if_bpf)
1315 bpf_mtap(ifp->if_bpf, m);
1316 #endif
1317 (*ifp->if_input)(ifp, m);
1318 }
1319
1320 sc->re_ldata.re_rx_prodidx = i;
1321 }
1322
1323 static void
1324 re_txeof(struct rtk_softc *sc)
1325 {
1326 struct ifnet *ifp;
1327 struct re_txq *txq;
1328 uint32_t txstat;
1329 int idx, descidx;
1330
1331 ifp = &sc->ethercom.ec_if;
1332
1333 for (idx = sc->re_ldata.re_txq_considx;
1334 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1335 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1336 txq = &sc->re_ldata.re_txq[idx];
1337 KASSERT(txq->txq_mbuf != NULL);
1338
1339 descidx = txq->txq_descidx;
1340 RE_TXDESCSYNC(sc, descidx,
1341 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1342 txstat =
1343 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1344 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1345 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1346 if (txstat & RE_TDESC_CMD_OWN) {
1347 break;
1348 }
1349
1350 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1351 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1352 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1353 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1354 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1355 m_freem(txq->txq_mbuf);
1356 txq->txq_mbuf = NULL;
1357
1358 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1359 ifp->if_collisions++;
1360 if (txstat & RE_TDESC_STAT_TXERRSUM)
1361 ifp->if_oerrors++;
1362 else
1363 ifp->if_opackets++;
1364 }
1365
1366 sc->re_ldata.re_txq_considx = idx;
1367
1368 if (sc->re_ldata.re_txq_free > 0)
1369 ifp->if_flags &= ~IFF_OACTIVE;
1370
1371 /*
1372 * If not all descriptors have been released reaped yet,
1373 * reload the timer so that we will eventually get another
1374 * interrupt that will cause us to re-enter this routine.
1375 * This is done in case the transmitter has gone idle.
1376 */
1377 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1378 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1379 else
1380 ifp->if_timer = 0;
1381 }
1382
1383 /*
1384 * Stop all chip I/O so that the kernel's probe routines don't
1385 * get confused by errant DMAs when rebooting.
1386 */
1387 static void
1388 re_shutdown(void *vsc)
1389
1390 {
1391 struct rtk_softc *sc = vsc;
1392
1393 re_stop(&sc->ethercom.ec_if, 0);
1394 }
1395
1396
1397 static void
1398 re_tick(void *xsc)
1399 {
1400 struct rtk_softc *sc = xsc;
1401 int s;
1402
1403 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1404 s = splnet();
1405
1406 mii_tick(&sc->mii);
1407 splx(s);
1408
1409 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1410 }
1411
1412 #ifdef DEVICE_POLLING
1413 static void
1414 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1415 {
1416 struct rtk_softc *sc = ifp->if_softc;
1417
1418 RTK_LOCK(sc);
1419 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1420 ether_poll_deregister(ifp);
1421 cmd = POLL_DEREGISTER;
1422 }
1423 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1424 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1425 goto done;
1426 }
1427
1428 sc->rxcycles = count;
1429 re_rxeof(sc);
1430 re_txeof(sc);
1431
1432 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1433 (*ifp->if_start)(ifp);
1434
1435 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1436 uint16_t status;
1437
1438 status = CSR_READ_2(sc, RTK_ISR);
1439 if (status == 0xffff)
1440 goto done;
1441 if (status)
1442 CSR_WRITE_2(sc, RTK_ISR, status);
1443
1444 /*
1445 * XXX check behaviour on receiver stalls.
1446 */
1447
1448 if (status & RTK_ISR_SYSTEM_ERR) {
1449 re_init(sc);
1450 }
1451 }
1452 done:
1453 RTK_UNLOCK(sc);
1454 }
1455 #endif /* DEVICE_POLLING */
1456
1457 int
1458 re_intr(void *arg)
1459 {
1460 struct rtk_softc *sc = arg;
1461 struct ifnet *ifp;
1462 uint16_t status;
1463 int handled = 0;
1464
1465 ifp = &sc->ethercom.ec_if;
1466
1467 if ((ifp->if_flags & IFF_UP) == 0)
1468 return 0;
1469
1470 #ifdef DEVICE_POLLING
1471 if (ifp->if_flags & IFF_POLLING)
1472 goto done;
1473 if ((ifp->if_capenable & IFCAP_POLLING) &&
1474 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1475 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1476 re_poll(ifp, 0, 1);
1477 goto done;
1478 }
1479 #endif /* DEVICE_POLLING */
1480
1481 for (;;) {
1482
1483 status = CSR_READ_2(sc, RTK_ISR);
1484 /* If the card has gone away the read returns 0xffff. */
1485 if (status == 0xffff)
1486 break;
1487 if (status) {
1488 handled = 1;
1489 CSR_WRITE_2(sc, RTK_ISR, status);
1490 }
1491
1492 if ((status & RTK_INTRS_CPLUS) == 0)
1493 break;
1494
1495 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1496 re_rxeof(sc);
1497
1498 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1499 RTK_ISR_TX_DESC_UNAVAIL))
1500 re_txeof(sc);
1501
1502 if (status & RTK_ISR_SYSTEM_ERR) {
1503 re_init(ifp);
1504 }
1505
1506 if (status & RTK_ISR_LINKCHG) {
1507 callout_stop(&sc->rtk_tick_ch);
1508 re_tick(sc);
1509 }
1510 }
1511
1512 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1513 re_start(ifp);
1514
1515 #ifdef DEVICE_POLLING
1516 done:
1517 #endif
1518
1519 return handled;
1520 }
1521
1522
1523
1524 /*
1525 * Main transmit routine for C+ and gigE NICs.
1526 */
1527
1528 static void
1529 re_start(struct ifnet *ifp)
1530 {
1531 struct rtk_softc *sc;
1532 struct mbuf *m;
1533 bus_dmamap_t map;
1534 struct re_txq *txq;
1535 struct re_desc *d;
1536 #ifdef RE_VLAN
1537 struct m_tag *mtag;
1538 #endif
1539 uint32_t cmdstat, re_flags;
1540 int ofree, idx, error, nsegs, seg;
1541 int startdesc, curdesc, lastdesc;
1542 boolean_t pad;
1543
1544 sc = ifp->if_softc;
1545 ofree = sc->re_ldata.re_txq_free;
1546
1547 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1548
1549 IFQ_POLL(&ifp->if_snd, m);
1550 if (m == NULL)
1551 break;
1552
1553 if (sc->re_ldata.re_txq_free == 0 ||
1554 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1555 /* no more free slots left */
1556 ifp->if_flags |= IFF_OACTIVE;
1557 break;
1558 }
1559
1560 /*
1561 * Set up checksum offload. Note: checksum offload bits must
1562 * appear in all descriptors of a multi-descriptor transmit
1563 * attempt. (This is according to testing done with an 8169
1564 * chip. I'm not sure if this is a requirement or a bug.)
1565 */
1566
1567 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1568 uint32_t segsz = m->m_pkthdr.segsz;
1569
1570 re_flags = RE_TDESC_CMD_LGSEND |
1571 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1572 } else {
1573 /*
1574 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1575 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1576 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1577 */
1578 re_flags = 0;
1579 if ((m->m_pkthdr.csum_flags &
1580 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1581 != 0) {
1582 re_flags |= RE_TDESC_CMD_IPCSUM;
1583 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1584 re_flags |= RE_TDESC_CMD_TCPCSUM;
1585 } else if (m->m_pkthdr.csum_flags &
1586 M_CSUM_UDPv4) {
1587 re_flags |= RE_TDESC_CMD_UDPCSUM;
1588 }
1589 }
1590 }
1591
1592 txq = &sc->re_ldata.re_txq[idx];
1593 map = txq->txq_dmamap;
1594 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1595 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1596
1597 if (error) {
1598 /* XXX try to defrag if EFBIG? */
1599 aprint_error("%s: can't map mbuf (error %d)\n",
1600 sc->sc_dev.dv_xname, error);
1601
1602 IFQ_DEQUEUE(&ifp->if_snd, m);
1603 m_freem(m);
1604 ifp->if_oerrors++;
1605 continue;
1606 }
1607
1608 nsegs = map->dm_nsegs;
1609 pad = FALSE;
1610 if (m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1611 (re_flags & RE_TDESC_CMD_IPCSUM) != 0) {
1612 pad = TRUE;
1613 nsegs++;
1614 }
1615
1616 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1617 /*
1618 * Not enough free descriptors to transmit this packet.
1619 */
1620 ifp->if_flags |= IFF_OACTIVE;
1621 bus_dmamap_unload(sc->sc_dmat, map);
1622 break;
1623 }
1624
1625 IFQ_DEQUEUE(&ifp->if_snd, m);
1626
1627 /*
1628 * Make sure that the caches are synchronized before we
1629 * ask the chip to start DMA for the packet data.
1630 */
1631 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1632 BUS_DMASYNC_PREWRITE);
1633
1634 /*
1635 * Map the segment array into descriptors.
1636 * Note that we set the start-of-frame and
1637 * end-of-frame markers for either TX or RX,
1638 * but they really only have meaning in the TX case.
1639 * (In the RX case, it's the chip that tells us
1640 * where packets begin and end.)
1641 * We also keep track of the end of the ring
1642 * and set the end-of-ring bits as needed,
1643 * and we set the ownership bits in all except
1644 * the very first descriptor. (The caller will
1645 * set this descriptor later when it start
1646 * transmission or reception.)
1647 */
1648 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1649 lastdesc = -1;
1650 for (seg = 0; seg < map->dm_nsegs;
1651 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1652 d = &sc->re_ldata.re_tx_list[curdesc];
1653 #ifdef DIAGNOSTIC
1654 RE_TXDESCSYNC(sc, curdesc,
1655 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1656 cmdstat = le32toh(d->re_cmdstat);
1657 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1658 if (cmdstat & RE_TDESC_STAT_OWN) {
1659 panic("%s: tried to map busy TX descriptor",
1660 sc->sc_dev.dv_xname);
1661 }
1662 #endif
1663
1664 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1665 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1666 if (seg == 0)
1667 cmdstat |= RE_TDESC_CMD_SOF;
1668 else
1669 cmdstat |= RE_TDESC_CMD_OWN;
1670 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1671 cmdstat |= RE_TDESC_CMD_EOR;
1672 if (seg == nsegs - 1) {
1673 cmdstat |= RE_TDESC_CMD_EOF;
1674 lastdesc = curdesc;
1675 }
1676 d->re_cmdstat = htole32(cmdstat);
1677 RE_TXDESCSYNC(sc, curdesc,
1678 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1679 }
1680 if (pad) {
1681 bus_addr_t paddaddr;
1682
1683 d = &sc->re_ldata.re_tx_list[curdesc];
1684 paddaddr = RE_TXPADDADDR(sc);
1685 re_set_bufaddr(d, paddaddr);
1686 cmdstat = re_flags |
1687 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1688 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1689 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1690 cmdstat |= RE_TDESC_CMD_EOR;
1691 d->re_cmdstat = htole32(cmdstat);
1692 RE_TXDESCSYNC(sc, curdesc,
1693 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1694 lastdesc = curdesc;
1695 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1696 }
1697 KASSERT(lastdesc != -1);
1698
1699 /*
1700 * Set up hardware VLAN tagging. Note: vlan tag info must
1701 * appear in the first descriptor of a multi-descriptor
1702 * transmission attempt.
1703 */
1704
1705 #ifdef RE_VLAN
1706 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1707 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1708 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1709 RE_TDESC_VLANCTL_TAG);
1710 }
1711 #endif
1712
1713 /* Transfer ownership of packet to the chip. */
1714
1715 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1716 htole32(RE_TDESC_CMD_OWN);
1717 RE_TXDESCSYNC(sc, startdesc,
1718 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1719
1720 /* update info of TX queue and descriptors */
1721 txq->txq_mbuf = m;
1722 txq->txq_descidx = lastdesc;
1723 txq->txq_nsegs = nsegs;
1724
1725 sc->re_ldata.re_txq_free--;
1726 sc->re_ldata.re_tx_free -= nsegs;
1727 sc->re_ldata.re_tx_nextfree = curdesc;
1728
1729 #if NBPFILTER > 0
1730 /*
1731 * If there's a BPF listener, bounce a copy of this frame
1732 * to him.
1733 */
1734 if (ifp->if_bpf)
1735 bpf_mtap(ifp->if_bpf, m);
1736 #endif
1737 }
1738
1739 if (sc->re_ldata.re_txq_free < ofree) {
1740 /*
1741 * TX packets are enqueued.
1742 */
1743 sc->re_ldata.re_txq_prodidx = idx;
1744
1745 /*
1746 * Start the transmitter to poll.
1747 *
1748 * RealTek put the TX poll request register in a different
1749 * location on the 8169 gigE chip. I don't know why.
1750 */
1751 if (sc->rtk_type == RTK_8169)
1752 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1753 else
1754 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1755
1756 /*
1757 * Use the countdown timer for interrupt moderation.
1758 * 'TX done' interrupts are disabled. Instead, we reset the
1759 * countdown timer, which will begin counting until it hits
1760 * the value in the TIMERINT register, and then trigger an
1761 * interrupt. Each time we write to the TIMERCNT register,
1762 * the timer count is reset to 0.
1763 */
1764 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1765
1766 /*
1767 * Set a timeout in case the chip goes out to lunch.
1768 */
1769 ifp->if_timer = 5;
1770 }
1771 }
1772
1773 static int
1774 re_init(struct ifnet *ifp)
1775 {
1776 struct rtk_softc *sc = ifp->if_softc;
1777 uint8_t *enaddr;
1778 uint32_t rxcfg = 0;
1779 uint32_t reg;
1780 int error;
1781
1782 if ((error = re_enable(sc)) != 0)
1783 goto out;
1784
1785 /*
1786 * Cancel pending I/O and free all RX/TX buffers.
1787 */
1788 re_stop(ifp, 0);
1789
1790 re_reset(sc);
1791
1792 /*
1793 * Enable C+ RX and TX mode, as well as VLAN stripping and
1794 * RX checksum offload. We must configure the C+ register
1795 * before all others.
1796 */
1797 reg = 0;
1798
1799 /*
1800 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1801 * FreeBSD drivers set these bits anyway (for 8139C+?).
1802 * So far, it works.
1803 */
1804
1805 /*
1806 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1807 * For 8169S/8110S rev 2 and above, do not set bit 14.
1808 */
1809 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1810 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1811
1812 if (1) {/* not for 8169S ? */
1813 reg |=
1814 #ifdef RE_VLAN
1815 RTK_CPLUSCMD_VLANSTRIP |
1816 #endif
1817 (ifp->if_capenable &
1818 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1819 IFCAP_CSUM_UDPv4_Rx) ?
1820 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1821 }
1822
1823 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1824 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1825
1826 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1827 if (sc->rtk_type == RTK_8169)
1828 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1829
1830 DELAY(10000);
1831
1832 /*
1833 * Init our MAC address. Even though the chipset
1834 * documentation doesn't mention it, we need to enter "Config
1835 * register write enable" mode to modify the ID registers.
1836 */
1837 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1838 enaddr = LLADDR(ifp->if_sadl);
1839 reg = enaddr[0] | (enaddr[1] << 8) |
1840 (enaddr[2] << 16) | (enaddr[3] << 24);
1841 CSR_WRITE_4(sc, RTK_IDR0, reg);
1842 reg = enaddr[4] | (enaddr[5] << 8);
1843 CSR_WRITE_4(sc, RTK_IDR4, reg);
1844 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1845
1846 /*
1847 * For C+ mode, initialize the RX descriptors and mbufs.
1848 */
1849 re_rx_list_init(sc);
1850 re_tx_list_init(sc);
1851
1852 /*
1853 * Load the addresses of the RX and TX lists into the chip.
1854 */
1855 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1856 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1857 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1858 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1859
1860 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1861 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1862 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1863 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1864
1865 /*
1866 * Enable transmit and receive.
1867 */
1868 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1869
1870 /*
1871 * Set the initial TX and RX configuration.
1872 */
1873 if (sc->re_testmode) {
1874 if (sc->rtk_type == RTK_8169)
1875 CSR_WRITE_4(sc, RTK_TXCFG,
1876 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1877 else
1878 CSR_WRITE_4(sc, RTK_TXCFG,
1879 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1880 } else
1881 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1882
1883 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1884
1885 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1886
1887 /* Set the individual bit to receive frames for this host only. */
1888 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1889 rxcfg |= RTK_RXCFG_RX_INDIV;
1890
1891 /* If we want promiscuous mode, set the allframes bit. */
1892 if (ifp->if_flags & IFF_PROMISC)
1893 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1894 else
1895 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1896 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1897
1898 /*
1899 * Set capture broadcast bit to capture broadcast frames.
1900 */
1901 if (ifp->if_flags & IFF_BROADCAST)
1902 rxcfg |= RTK_RXCFG_RX_BROAD;
1903 else
1904 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1905 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1906
1907 /*
1908 * Program the multicast filter, if necessary.
1909 */
1910 rtk_setmulti(sc);
1911
1912 #ifdef DEVICE_POLLING
1913 /*
1914 * Disable interrupts if we are polling.
1915 */
1916 if (ifp->if_flags & IFF_POLLING)
1917 CSR_WRITE_2(sc, RTK_IMR, 0);
1918 else /* otherwise ... */
1919 #endif /* DEVICE_POLLING */
1920 /*
1921 * Enable interrupts.
1922 */
1923 if (sc->re_testmode)
1924 CSR_WRITE_2(sc, RTK_IMR, 0);
1925 else
1926 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1927
1928 /* Start RX/TX process. */
1929 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1930 #ifdef notdef
1931 /* Enable receiver and transmitter. */
1932 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1933 #endif
1934
1935 /*
1936 * Initialize the timer interrupt register so that
1937 * a timer interrupt will be generated once the timer
1938 * reaches a certain number of ticks. The timer is
1939 * reloaded on each transmit. This gives us TX interrupt
1940 * moderation, which dramatically improves TX frame rate.
1941 */
1942
1943 if (sc->rtk_type == RTK_8169)
1944 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1945 else
1946 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1947
1948 /*
1949 * For 8169 gigE NICs, set the max allowed RX packet
1950 * size so we can receive jumbo frames.
1951 */
1952 if (sc->rtk_type == RTK_8169)
1953 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1954
1955 if (sc->re_testmode)
1956 return 0;
1957
1958 mii_mediachg(&sc->mii);
1959
1960 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1961
1962 ifp->if_flags |= IFF_RUNNING;
1963 ifp->if_flags &= ~IFF_OACTIVE;
1964
1965 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1966
1967 out:
1968 if (error) {
1969 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1970 ifp->if_timer = 0;
1971 aprint_error("%s: interface not running\n",
1972 sc->sc_dev.dv_xname);
1973 }
1974
1975 return error;
1976 }
1977
1978 /*
1979 * Set media options.
1980 */
1981 static int
1982 re_ifmedia_upd(struct ifnet *ifp)
1983 {
1984 struct rtk_softc *sc;
1985
1986 sc = ifp->if_softc;
1987
1988 return mii_mediachg(&sc->mii);
1989 }
1990
1991 /*
1992 * Report current media status.
1993 */
1994 static void
1995 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1996 {
1997 struct rtk_softc *sc;
1998
1999 sc = ifp->if_softc;
2000
2001 mii_pollstat(&sc->mii);
2002 ifmr->ifm_active = sc->mii.mii_media_active;
2003 ifmr->ifm_status = sc->mii.mii_media_status;
2004 }
2005
2006 static int
2007 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2008 {
2009 struct rtk_softc *sc = ifp->if_softc;
2010 struct ifreq *ifr = (struct ifreq *) data;
2011 int s, error = 0;
2012
2013 s = splnet();
2014
2015 switch (command) {
2016 case SIOCSIFMTU:
2017 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2018 error = EINVAL;
2019 ifp->if_mtu = ifr->ifr_mtu;
2020 break;
2021 case SIOCGIFMEDIA:
2022 case SIOCSIFMEDIA:
2023 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2024 break;
2025 default:
2026 error = ether_ioctl(ifp, command, data);
2027 if (error == ENETRESET) {
2028 if (ifp->if_flags & IFF_RUNNING)
2029 rtk_setmulti(sc);
2030 error = 0;
2031 }
2032 break;
2033 }
2034
2035 splx(s);
2036
2037 return error;
2038 }
2039
2040 static void
2041 re_watchdog(struct ifnet *ifp)
2042 {
2043 struct rtk_softc *sc;
2044 int s;
2045
2046 sc = ifp->if_softc;
2047 s = splnet();
2048 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2049 ifp->if_oerrors++;
2050
2051 re_txeof(sc);
2052 re_rxeof(sc);
2053
2054 re_init(ifp);
2055
2056 splx(s);
2057 }
2058
2059 /*
2060 * Stop the adapter and free any mbufs allocated to the
2061 * RX and TX lists.
2062 */
2063 static void
2064 re_stop(struct ifnet *ifp, int disable)
2065 {
2066 int i;
2067 struct rtk_softc *sc = ifp->if_softc;
2068
2069 callout_stop(&sc->rtk_tick_ch);
2070
2071 #ifdef DEVICE_POLLING
2072 ether_poll_deregister(ifp);
2073 #endif /* DEVICE_POLLING */
2074
2075 mii_down(&sc->mii);
2076
2077 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2078 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2079
2080 if (sc->re_head != NULL) {
2081 m_freem(sc->re_head);
2082 sc->re_head = sc->re_tail = NULL;
2083 }
2084
2085 /* Free the TX list buffers. */
2086 for (i = 0; i < RE_TX_QLEN; i++) {
2087 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2088 bus_dmamap_unload(sc->sc_dmat,
2089 sc->re_ldata.re_txq[i].txq_dmamap);
2090 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2091 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2092 }
2093 }
2094
2095 /* Free the RX list buffers. */
2096 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2097 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2098 bus_dmamap_unload(sc->sc_dmat,
2099 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2100 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2101 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2102 }
2103 }
2104
2105 if (disable)
2106 re_disable(sc);
2107
2108 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2109 ifp->if_timer = 0;
2110 }
2111