rtl8169.c revision 1.72.2.4 1 /* $NetBSD: rtl8169.c,v 1.72.2.4 2007/02/10 14:25:58 tron Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if (sc->rtk_type == RTK_8169) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if (sc->rtk_type == RTK_8169) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if (sc->rtk_type == RTK_8139CPLUS) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, RTK_LDPS, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578 /* Reset the adapter. */
579 re_reset(sc);
580
581 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
582 addr_len = RTK_EEADDR_LEN1;
583 else
584 addr_len = RTK_EEADDR_LEN0;
585
586 /*
587 * Get station address from the EEPROM.
588 */
589 for (i = 0; i < 3; i++) {
590 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
591 eaddr[(i * 2) + 0] = val & 0xff;
592 eaddr[(i * 2) + 1] = val >> 8;
593 }
594
595 if (sc->rtk_type == RTK_8169) {
596 uint32_t hwrev;
597
598 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
599 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
600 if (hwrev == (0x1 << 28)) {
601 sc->sc_rev = 4;
602 } else if (hwrev == (0x1 << 26)) {
603 sc->sc_rev = 3;
604 } else if (hwrev == (0x1 << 23)) {
605 sc->sc_rev = 2;
606 } else
607 sc->sc_rev = 1;
608
609 /* Set RX length mask */
610 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
611 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
612 } else {
613 /* Set RX length mask */
614 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
615 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
616 }
617
618 aprint_normal("%s: Ethernet address %s\n",
619 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
620
621 if (sc->re_ldata.re_tx_desc_cnt >
622 PAGE_SIZE / sizeof(struct re_desc)) {
623 sc->re_ldata.re_tx_desc_cnt =
624 PAGE_SIZE / sizeof(struct re_desc);
625 }
626
627 aprint_verbose("%s: using %d tx descriptors\n",
628 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
629 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
630
631 /* Allocate DMA'able memory for the TX ring */
632 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
633 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
634 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
635 aprint_error("%s: can't allocate tx listseg, error = %d\n",
636 sc->sc_dev.dv_xname, error);
637 goto fail_0;
638 }
639
640 /* Load the map for the TX ring. */
641 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
642 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
643 (caddr_t *)&sc->re_ldata.re_tx_list,
644 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
645 aprint_error("%s: can't map tx list, error = %d\n",
646 sc->sc_dev.dv_xname, error);
647 goto fail_1;
648 }
649 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
650
651 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
652 RE_TX_LIST_SZ(sc), 0, 0,
653 &sc->re_ldata.re_tx_list_map)) != 0) {
654 aprint_error("%s: can't create tx list map, error = %d\n",
655 sc->sc_dev.dv_xname, error);
656 goto fail_2;
657 }
658
659
660 if ((error = bus_dmamap_load(sc->sc_dmat,
661 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
662 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
663 aprint_error("%s: can't load tx list, error = %d\n",
664 sc->sc_dev.dv_xname, error);
665 goto fail_3;
666 }
667
668 /* Create DMA maps for TX buffers */
669 for (i = 0; i < RE_TX_QLEN; i++) {
670 error = bus_dmamap_create(sc->sc_dmat,
671 round_page(IP_MAXPACKET),
672 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
673 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
674 if (error) {
675 aprint_error("%s: can't create DMA map for TX\n",
676 sc->sc_dev.dv_xname);
677 goto fail_4;
678 }
679 }
680
681 /* Allocate DMA'able memory for the RX ring */
682 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
683 if ((error = bus_dmamem_alloc(sc->sc_dmat,
684 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
685 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
686 aprint_error("%s: can't allocate rx listseg, error = %d\n",
687 sc->sc_dev.dv_xname, error);
688 goto fail_4;
689 }
690
691 /* Load the map for the RX ring. */
692 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
693 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
694 (caddr_t *)&sc->re_ldata.re_rx_list,
695 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
696 aprint_error("%s: can't map rx list, error = %d\n",
697 sc->sc_dev.dv_xname, error);
698 goto fail_5;
699 }
700 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
701
702 if ((error = bus_dmamap_create(sc->sc_dmat,
703 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
704 &sc->re_ldata.re_rx_list_map)) != 0) {
705 aprint_error("%s: can't create rx list map, error = %d\n",
706 sc->sc_dev.dv_xname, error);
707 goto fail_6;
708 }
709
710 if ((error = bus_dmamap_load(sc->sc_dmat,
711 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
712 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
713 aprint_error("%s: can't load rx list, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_7;
716 }
717
718 /* Create DMA maps for RX buffers */
719 for (i = 0; i < RE_RX_DESC_CNT; i++) {
720 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
721 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
722 if (error) {
723 aprint_error("%s: can't create DMA map for RX\n",
724 sc->sc_dev.dv_xname);
725 goto fail_8;
726 }
727 }
728
729 /*
730 * Record interface as attached. From here, we should not fail.
731 */
732 sc->sc_flags |= RTK_ATTACHED;
733
734 ifp = &sc->ethercom.ec_if;
735 ifp->if_softc = sc;
736 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
737 ifp->if_mtu = ETHERMTU;
738 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
739 ifp->if_ioctl = re_ioctl;
740 sc->ethercom.ec_capabilities |=
741 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
742 ifp->if_start = re_start;
743 ifp->if_stop = re_stop;
744
745 /*
746 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
747 * so we have a workaround to handle the bug by padding
748 * such packets manually.
749 */
750 ifp->if_capabilities |=
751 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
752 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
753 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
754 IFCAP_TSOv4;
755 ifp->if_watchdog = re_watchdog;
756 ifp->if_init = re_init;
757 if (sc->rtk_type == RTK_8169)
758 ifp->if_baudrate = 1000000000;
759 else
760 ifp->if_baudrate = 100000000;
761 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
762 ifp->if_capenable = ifp->if_capabilities;
763 IFQ_SET_READY(&ifp->if_snd);
764
765 callout_init(&sc->rtk_tick_ch);
766
767 /* Do MII setup */
768 sc->mii.mii_ifp = ifp;
769 sc->mii.mii_readreg = re_miibus_readreg;
770 sc->mii.mii_writereg = re_miibus_writereg;
771 sc->mii.mii_statchg = re_miibus_statchg;
772 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
773 re_ifmedia_sts);
774 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
775 MII_OFFSET_ANY, 0);
776 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
777
778 /*
779 * Call MI attach routine.
780 */
781 if_attach(ifp);
782 ether_ifattach(ifp, eaddr);
783
784
785 /*
786 * Make sure the interface is shutdown during reboot.
787 */
788 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
789 if (sc->sc_sdhook == NULL)
790 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
791 sc->sc_dev.dv_xname);
792 /*
793 * Add a suspend hook to make sure we come back up after a
794 * resume.
795 */
796 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
797 re_power, sc);
798 if (sc->sc_powerhook == NULL)
799 aprint_error("%s: WARNING: unable to establish power hook\n",
800 sc->sc_dev.dv_xname);
801
802
803 return;
804
805 fail_8:
806 /* Destroy DMA maps for RX buffers. */
807 for (i = 0; i < RE_RX_DESC_CNT; i++)
808 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
809 bus_dmamap_destroy(sc->sc_dmat,
810 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
811
812 /* Free DMA'able memory for the RX ring. */
813 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
814 fail_7:
815 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
816 fail_6:
817 bus_dmamem_unmap(sc->sc_dmat,
818 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
819 fail_5:
820 bus_dmamem_free(sc->sc_dmat,
821 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
822
823 fail_4:
824 /* Destroy DMA maps for TX buffers. */
825 for (i = 0; i < RE_TX_QLEN; i++)
826 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
827 bus_dmamap_destroy(sc->sc_dmat,
828 sc->re_ldata.re_txq[i].txq_dmamap);
829
830 /* Free DMA'able memory for the TX ring. */
831 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
832 fail_3:
833 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
834 fail_2:
835 bus_dmamem_unmap(sc->sc_dmat,
836 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
837 fail_1:
838 bus_dmamem_free(sc->sc_dmat,
839 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
840 fail_0:
841 return;
842 }
843
844
845 /*
846 * re_activate:
847 * Handle device activation/deactivation requests.
848 */
849 int
850 re_activate(struct device *self, enum devact act)
851 {
852 struct rtk_softc *sc = (void *)self;
853 int s, error = 0;
854
855 s = splnet();
856 switch (act) {
857 case DVACT_ACTIVATE:
858 error = EOPNOTSUPP;
859 break;
860 case DVACT_DEACTIVATE:
861 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
862 if_deactivate(&sc->ethercom.ec_if);
863 break;
864 }
865 splx(s);
866
867 return error;
868 }
869
870 /*
871 * re_detach:
872 * Detach a rtk interface.
873 */
874 int
875 re_detach(struct rtk_softc *sc)
876 {
877 struct ifnet *ifp = &sc->ethercom.ec_if;
878 int i;
879
880 /*
881 * Succeed now if there isn't any work to do.
882 */
883 if ((sc->sc_flags & RTK_ATTACHED) == 0)
884 return 0;
885
886 /* Unhook our tick handler. */
887 callout_stop(&sc->rtk_tick_ch);
888
889 /* Detach all PHYs. */
890 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
891
892 /* Delete all remaining media. */
893 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
894
895 ether_ifdetach(ifp);
896 if_detach(ifp);
897
898 /* Destroy DMA maps for RX buffers. */
899 for (i = 0; i < RE_RX_DESC_CNT; i++)
900 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
901 bus_dmamap_destroy(sc->sc_dmat,
902 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
903
904 /* Free DMA'able memory for the RX ring. */
905 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
906 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
907 bus_dmamem_unmap(sc->sc_dmat,
908 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
909 bus_dmamem_free(sc->sc_dmat,
910 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
911
912 /* Destroy DMA maps for TX buffers. */
913 for (i = 0; i < RE_TX_QLEN; i++)
914 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
915 bus_dmamap_destroy(sc->sc_dmat,
916 sc->re_ldata.re_txq[i].txq_dmamap);
917
918 /* Free DMA'able memory for the TX ring. */
919 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
920 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
921 bus_dmamem_unmap(sc->sc_dmat,
922 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
923 bus_dmamem_free(sc->sc_dmat,
924 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
925
926
927 shutdownhook_disestablish(sc->sc_sdhook);
928 powerhook_disestablish(sc->sc_powerhook);
929
930 return 0;
931 }
932
933 /*
934 * re_enable:
935 * Enable the RTL81X9 chip.
936 */
937 static int
938 re_enable(struct rtk_softc *sc)
939 {
940
941 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
942 if ((*sc->sc_enable)(sc) != 0) {
943 aprint_error("%s: device enable failed\n",
944 sc->sc_dev.dv_xname);
945 return EIO;
946 }
947 sc->sc_flags |= RTK_ENABLED;
948 }
949 return 0;
950 }
951
952 /*
953 * re_disable:
954 * Disable the RTL81X9 chip.
955 */
956 static void
957 re_disable(struct rtk_softc *sc)
958 {
959
960 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
961 (*sc->sc_disable)(sc);
962 sc->sc_flags &= ~RTK_ENABLED;
963 }
964 }
965
966 /*
967 * re_power:
968 * Power management (suspend/resume) hook.
969 */
970 void
971 re_power(int why, void *arg)
972 {
973 struct rtk_softc *sc = (void *)arg;
974 struct ifnet *ifp = &sc->ethercom.ec_if;
975 int s;
976
977 s = splnet();
978 switch (why) {
979 case PWR_SUSPEND:
980 case PWR_STANDBY:
981 re_stop(ifp, 0);
982 if (sc->sc_power != NULL)
983 (*sc->sc_power)(sc, why);
984 break;
985 case PWR_RESUME:
986 if (ifp->if_flags & IFF_UP) {
987 if (sc->sc_power != NULL)
988 (*sc->sc_power)(sc, why);
989 re_init(ifp);
990 }
991 break;
992 case PWR_SOFTSUSPEND:
993 case PWR_SOFTSTANDBY:
994 case PWR_SOFTRESUME:
995 break;
996 }
997 splx(s);
998 }
999
1000
1001 static int
1002 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1003 {
1004 struct mbuf *n = NULL;
1005 bus_dmamap_t map;
1006 struct re_desc *d;
1007 struct re_rxsoft *rxs;
1008 uint32_t cmdstat;
1009 int error;
1010
1011 if (m == NULL) {
1012 MGETHDR(n, M_DONTWAIT, MT_DATA);
1013 if (n == NULL)
1014 return ENOBUFS;
1015
1016 MCLGET(n, M_DONTWAIT);
1017 if ((n->m_flags & M_EXT) == 0) {
1018 m_freem(n);
1019 return ENOBUFS;
1020 }
1021 m = n;
1022 } else
1023 m->m_data = m->m_ext.ext_buf;
1024
1025 /*
1026 * Initialize mbuf length fields and fixup
1027 * alignment so that the frame payload is
1028 * longword aligned.
1029 */
1030 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1031 m->m_data += RE_ETHER_ALIGN;
1032
1033 rxs = &sc->re_ldata.re_rxsoft[idx];
1034 map = rxs->rxs_dmamap;
1035 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1036 BUS_DMA_READ|BUS_DMA_NOWAIT);
1037
1038 if (error)
1039 goto out;
1040
1041 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1042 BUS_DMASYNC_PREREAD);
1043
1044 d = &sc->re_ldata.re_rx_list[idx];
1045 #ifdef DIAGNOSTIC
1046 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1047 cmdstat = le32toh(d->re_cmdstat);
1048 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1049 if (cmdstat & RE_RDESC_STAT_OWN) {
1050 panic("%s: tried to map busy RX descriptor",
1051 sc->sc_dev.dv_xname);
1052 }
1053 #endif
1054
1055 rxs->rxs_mbuf = m;
1056
1057 d->re_vlanctl = 0;
1058 cmdstat = map->dm_segs[0].ds_len;
1059 if (idx == (RE_RX_DESC_CNT - 1))
1060 cmdstat |= RE_RDESC_CMD_EOR;
1061 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1062 d->re_cmdstat = htole32(cmdstat);
1063 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1064 cmdstat |= RE_RDESC_CMD_OWN;
1065 d->re_cmdstat = htole32(cmdstat);
1066 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1067
1068 return 0;
1069 out:
1070 if (n != NULL)
1071 m_freem(n);
1072 return ENOMEM;
1073 }
1074
1075 static int
1076 re_tx_list_init(struct rtk_softc *sc)
1077 {
1078 int i;
1079
1080 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1081 for (i = 0; i < RE_TX_QLEN; i++) {
1082 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1083 }
1084
1085 bus_dmamap_sync(sc->sc_dmat,
1086 sc->re_ldata.re_tx_list_map, 0,
1087 sc->re_ldata.re_tx_list_map->dm_mapsize,
1088 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1089 sc->re_ldata.re_txq_prodidx = 0;
1090 sc->re_ldata.re_txq_considx = 0;
1091 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1092 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1093 sc->re_ldata.re_tx_nextfree = 0;
1094
1095 return 0;
1096 }
1097
1098 static int
1099 re_rx_list_init(struct rtk_softc *sc)
1100 {
1101 int i;
1102
1103 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1104
1105 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1106 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1107 return ENOBUFS;
1108 }
1109
1110 sc->re_ldata.re_rx_prodidx = 0;
1111 sc->re_head = sc->re_tail = NULL;
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * RX handler for C+ and 8169. For the gigE chips, we support
1118 * the reception of jumbo frames that have been fragmented
1119 * across multiple 2K mbuf cluster buffers.
1120 */
1121 static void
1122 re_rxeof(struct rtk_softc *sc)
1123 {
1124 struct mbuf *m;
1125 struct ifnet *ifp;
1126 int i, total_len;
1127 struct re_desc *cur_rx;
1128 struct re_rxsoft *rxs;
1129 uint32_t rxstat, rxvlan;
1130
1131 ifp = &sc->ethercom.ec_if;
1132
1133 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1134 cur_rx = &sc->re_ldata.re_rx_list[i];
1135 RE_RXDESCSYNC(sc, i,
1136 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1137 rxstat = le32toh(cur_rx->re_cmdstat);
1138 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1139 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1140 break;
1141 }
1142 total_len = rxstat & sc->re_rxlenmask;
1143 rxvlan = le32toh(cur_rx->re_vlanctl);
1144 rxs = &sc->re_ldata.re_rxsoft[i];
1145 m = rxs->rxs_mbuf;
1146
1147 /* Invalidate the RX mbuf and unload its map */
1148
1149 bus_dmamap_sync(sc->sc_dmat,
1150 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1151 BUS_DMASYNC_POSTREAD);
1152 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1153
1154 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1155 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1156 if (sc->re_head == NULL)
1157 sc->re_head = sc->re_tail = m;
1158 else {
1159 m->m_flags &= ~M_PKTHDR;
1160 sc->re_tail->m_next = m;
1161 sc->re_tail = m;
1162 }
1163 re_newbuf(sc, i, NULL);
1164 continue;
1165 }
1166
1167 /*
1168 * NOTE: for the 8139C+, the frame length field
1169 * is always 12 bits in size, but for the gigE chips,
1170 * it is 13 bits (since the max RX frame length is 16K).
1171 * Unfortunately, all 32 bits in the status word
1172 * were already used, so to make room for the extra
1173 * length bit, RealTek took out the 'frame alignment
1174 * error' bit and shifted the other status bits
1175 * over one slot. The OWN, EOR, FS and LS bits are
1176 * still in the same places. We have already extracted
1177 * the frame length and checked the OWN bit, so rather
1178 * than using an alternate bit mapping, we shift the
1179 * status bits one space to the right so we can evaluate
1180 * them using the 8169 status as though it was in the
1181 * same format as that of the 8139C+.
1182 */
1183 if (sc->rtk_type == RTK_8169)
1184 rxstat >>= 1;
1185
1186 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1187 #ifdef RE_DEBUG
1188 aprint_error("%s: RX error (rxstat = 0x%08x)",
1189 sc->sc_dev.dv_xname, rxstat);
1190 if (rxstat & RE_RDESC_STAT_FRALIGN)
1191 aprint_error(", frame alignment error");
1192 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1193 aprint_error(", out of buffer space");
1194 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1195 aprint_error(", FIFO overrun");
1196 if (rxstat & RE_RDESC_STAT_GIANT)
1197 aprint_error(", giant packet");
1198 if (rxstat & RE_RDESC_STAT_RUNT)
1199 aprint_error(", runt packet");
1200 if (rxstat & RE_RDESC_STAT_CRCERR)
1201 aprint_error(", CRC error");
1202 aprint_error("\n");
1203 #endif
1204 ifp->if_ierrors++;
1205 /*
1206 * If this is part of a multi-fragment packet,
1207 * discard all the pieces.
1208 */
1209 if (sc->re_head != NULL) {
1210 m_freem(sc->re_head);
1211 sc->re_head = sc->re_tail = NULL;
1212 }
1213 re_newbuf(sc, i, m);
1214 continue;
1215 }
1216
1217 /*
1218 * If allocating a replacement mbuf fails,
1219 * reload the current one.
1220 */
1221
1222 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1223 ifp->if_ierrors++;
1224 if (sc->re_head != NULL) {
1225 m_freem(sc->re_head);
1226 sc->re_head = sc->re_tail = NULL;
1227 }
1228 re_newbuf(sc, i, m);
1229 continue;
1230 }
1231
1232 if (sc->re_head != NULL) {
1233 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1234 /*
1235 * Special case: if there's 4 bytes or less
1236 * in this buffer, the mbuf can be discarded:
1237 * the last 4 bytes is the CRC, which we don't
1238 * care about anyway.
1239 */
1240 if (m->m_len <= ETHER_CRC_LEN) {
1241 sc->re_tail->m_len -=
1242 (ETHER_CRC_LEN - m->m_len);
1243 m_freem(m);
1244 } else {
1245 m->m_len -= ETHER_CRC_LEN;
1246 m->m_flags &= ~M_PKTHDR;
1247 sc->re_tail->m_next = m;
1248 }
1249 m = sc->re_head;
1250 sc->re_head = sc->re_tail = NULL;
1251 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1252 } else
1253 m->m_pkthdr.len = m->m_len =
1254 (total_len - ETHER_CRC_LEN);
1255
1256 ifp->if_ipackets++;
1257 m->m_pkthdr.rcvif = ifp;
1258
1259 /* Do RX checksumming */
1260
1261 /* Check IP header checksum */
1262 if (rxstat & RE_RDESC_STAT_PROTOID) {
1263 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1264 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1265 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1266 }
1267
1268 /* Check TCP/UDP checksum */
1269 if (RE_TCPPKT(rxstat)) {
1270 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1271 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1273 } else if (RE_UDPPKT(rxstat)) {
1274 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1275 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1276 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1277 }
1278
1279 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1280 VLAN_INPUT_TAG(ifp, m,
1281 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1282 continue);
1283 }
1284 #if NBPFILTER > 0
1285 if (ifp->if_bpf)
1286 bpf_mtap(ifp->if_bpf, m);
1287 #endif
1288 (*ifp->if_input)(ifp, m);
1289 }
1290
1291 sc->re_ldata.re_rx_prodidx = i;
1292 }
1293
1294 static void
1295 re_txeof(struct rtk_softc *sc)
1296 {
1297 struct ifnet *ifp;
1298 struct re_txq *txq;
1299 uint32_t txstat;
1300 int idx, descidx;
1301
1302 ifp = &sc->ethercom.ec_if;
1303
1304 for (idx = sc->re_ldata.re_txq_considx;
1305 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1306 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1307 txq = &sc->re_ldata.re_txq[idx];
1308 KASSERT(txq->txq_mbuf != NULL);
1309
1310 descidx = txq->txq_descidx;
1311 RE_TXDESCSYNC(sc, descidx,
1312 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1313 txstat =
1314 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1315 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1316 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1317 if (txstat & RE_TDESC_CMD_OWN) {
1318 break;
1319 }
1320
1321 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1322 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1323 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1324 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1325 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1326 m_freem(txq->txq_mbuf);
1327 txq->txq_mbuf = NULL;
1328
1329 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1330 ifp->if_collisions++;
1331 if (txstat & RE_TDESC_STAT_TXERRSUM)
1332 ifp->if_oerrors++;
1333 else
1334 ifp->if_opackets++;
1335 }
1336
1337 sc->re_ldata.re_txq_considx = idx;
1338
1339 if (sc->re_ldata.re_txq_free > 0)
1340 ifp->if_flags &= ~IFF_OACTIVE;
1341
1342 /*
1343 * If not all descriptors have been released reaped yet,
1344 * reload the timer so that we will eventually get another
1345 * interrupt that will cause us to re-enter this routine.
1346 * This is done in case the transmitter has gone idle.
1347 */
1348 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1349 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1350 else
1351 ifp->if_timer = 0;
1352 }
1353
1354 /*
1355 * Stop all chip I/O so that the kernel's probe routines don't
1356 * get confused by errant DMAs when rebooting.
1357 */
1358 static void
1359 re_shutdown(void *vsc)
1360
1361 {
1362 struct rtk_softc *sc = vsc;
1363
1364 re_stop(&sc->ethercom.ec_if, 0);
1365 }
1366
1367
1368 static void
1369 re_tick(void *xsc)
1370 {
1371 struct rtk_softc *sc = xsc;
1372 int s;
1373
1374 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1375 s = splnet();
1376
1377 mii_tick(&sc->mii);
1378 splx(s);
1379
1380 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1381 }
1382
1383 #ifdef DEVICE_POLLING
1384 static void
1385 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1386 {
1387 struct rtk_softc *sc = ifp->if_softc;
1388
1389 RTK_LOCK(sc);
1390 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1391 ether_poll_deregister(ifp);
1392 cmd = POLL_DEREGISTER;
1393 }
1394 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1395 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1396 goto done;
1397 }
1398
1399 sc->rxcycles = count;
1400 re_rxeof(sc);
1401 re_txeof(sc);
1402
1403 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1404 (*ifp->if_start)(ifp);
1405
1406 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1407 uint16_t status;
1408
1409 status = CSR_READ_2(sc, RTK_ISR);
1410 if (status == 0xffff)
1411 goto done;
1412 if (status)
1413 CSR_WRITE_2(sc, RTK_ISR, status);
1414
1415 /*
1416 * XXX check behaviour on receiver stalls.
1417 */
1418
1419 if (status & RTK_ISR_SYSTEM_ERR) {
1420 re_init(sc);
1421 }
1422 }
1423 done:
1424 RTK_UNLOCK(sc);
1425 }
1426 #endif /* DEVICE_POLLING */
1427
1428 int
1429 re_intr(void *arg)
1430 {
1431 struct rtk_softc *sc = arg;
1432 struct ifnet *ifp;
1433 uint16_t status;
1434 int handled = 0;
1435
1436 ifp = &sc->ethercom.ec_if;
1437
1438 if ((ifp->if_flags & IFF_UP) == 0)
1439 return 0;
1440
1441 #ifdef DEVICE_POLLING
1442 if (ifp->if_flags & IFF_POLLING)
1443 goto done;
1444 if ((ifp->if_capenable & IFCAP_POLLING) &&
1445 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1446 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1447 re_poll(ifp, 0, 1);
1448 goto done;
1449 }
1450 #endif /* DEVICE_POLLING */
1451
1452 for (;;) {
1453
1454 status = CSR_READ_2(sc, RTK_ISR);
1455 /* If the card has gone away the read returns 0xffff. */
1456 if (status == 0xffff)
1457 break;
1458 if (status) {
1459 handled = 1;
1460 CSR_WRITE_2(sc, RTK_ISR, status);
1461 }
1462
1463 if ((status & RTK_INTRS_CPLUS) == 0)
1464 break;
1465
1466 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1467 re_rxeof(sc);
1468
1469 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1470 RTK_ISR_TX_DESC_UNAVAIL))
1471 re_txeof(sc);
1472
1473 if (status & RTK_ISR_SYSTEM_ERR) {
1474 re_init(ifp);
1475 }
1476
1477 if (status & RTK_ISR_LINKCHG) {
1478 callout_stop(&sc->rtk_tick_ch);
1479 re_tick(sc);
1480 }
1481 }
1482
1483 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1484 re_start(ifp);
1485
1486 #ifdef DEVICE_POLLING
1487 done:
1488 #endif
1489
1490 return handled;
1491 }
1492
1493
1494
1495 /*
1496 * Main transmit routine for C+ and gigE NICs.
1497 */
1498
1499 static void
1500 re_start(struct ifnet *ifp)
1501 {
1502 struct rtk_softc *sc;
1503 struct mbuf *m;
1504 bus_dmamap_t map;
1505 struct re_txq *txq;
1506 struct re_desc *d;
1507 struct m_tag *mtag;
1508 uint32_t cmdstat, re_flags;
1509 int ofree, idx, error, nsegs, seg;
1510 int startdesc, curdesc, lastdesc;
1511 boolean_t pad;
1512
1513 sc = ifp->if_softc;
1514 ofree = sc->re_ldata.re_txq_free;
1515
1516 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1517
1518 IFQ_POLL(&ifp->if_snd, m);
1519 if (m == NULL)
1520 break;
1521
1522 if (sc->re_ldata.re_txq_free == 0 ||
1523 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1524 /* no more free slots left */
1525 ifp->if_flags |= IFF_OACTIVE;
1526 break;
1527 }
1528
1529 /*
1530 * Set up checksum offload. Note: checksum offload bits must
1531 * appear in all descriptors of a multi-descriptor transmit
1532 * attempt. (This is according to testing done with an 8169
1533 * chip. I'm not sure if this is a requirement or a bug.)
1534 */
1535
1536 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1537 uint32_t segsz = m->m_pkthdr.segsz;
1538
1539 re_flags = RE_TDESC_CMD_LGSEND |
1540 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1541 } else {
1542 /*
1543 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1544 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1545 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1546 */
1547 re_flags = 0;
1548 if ((m->m_pkthdr.csum_flags &
1549 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1550 != 0) {
1551 re_flags |= RE_TDESC_CMD_IPCSUM;
1552 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1553 re_flags |= RE_TDESC_CMD_TCPCSUM;
1554 } else if (m->m_pkthdr.csum_flags &
1555 M_CSUM_UDPv4) {
1556 re_flags |= RE_TDESC_CMD_UDPCSUM;
1557 }
1558 }
1559 }
1560
1561 txq = &sc->re_ldata.re_txq[idx];
1562 map = txq->txq_dmamap;
1563 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1564 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1565
1566 if (__predict_false(error)) {
1567 /* XXX try to defrag if EFBIG? */
1568 aprint_error("%s: can't map mbuf (error %d)\n",
1569 sc->sc_dev.dv_xname, error);
1570
1571 IFQ_DEQUEUE(&ifp->if_snd, m);
1572 m_freem(m);
1573 ifp->if_oerrors++;
1574 continue;
1575 }
1576
1577 nsegs = map->dm_nsegs;
1578 pad = FALSE;
1579 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1580 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1581 pad = TRUE;
1582 nsegs++;
1583 }
1584
1585 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1586 /*
1587 * Not enough free descriptors to transmit this packet.
1588 */
1589 ifp->if_flags |= IFF_OACTIVE;
1590 bus_dmamap_unload(sc->sc_dmat, map);
1591 break;
1592 }
1593
1594 IFQ_DEQUEUE(&ifp->if_snd, m);
1595
1596 /*
1597 * Make sure that the caches are synchronized before we
1598 * ask the chip to start DMA for the packet data.
1599 */
1600 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1601 BUS_DMASYNC_PREWRITE);
1602
1603 /*
1604 * Map the segment array into descriptors.
1605 * Note that we set the start-of-frame and
1606 * end-of-frame markers for either TX or RX,
1607 * but they really only have meaning in the TX case.
1608 * (In the RX case, it's the chip that tells us
1609 * where packets begin and end.)
1610 * We also keep track of the end of the ring
1611 * and set the end-of-ring bits as needed,
1612 * and we set the ownership bits in all except
1613 * the very first descriptor. (The caller will
1614 * set this descriptor later when it start
1615 * transmission or reception.)
1616 */
1617 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1618 lastdesc = -1;
1619 for (seg = 0; seg < map->dm_nsegs;
1620 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1621 d = &sc->re_ldata.re_tx_list[curdesc];
1622 #ifdef DIAGNOSTIC
1623 RE_TXDESCSYNC(sc, curdesc,
1624 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1625 cmdstat = le32toh(d->re_cmdstat);
1626 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1627 if (cmdstat & RE_TDESC_STAT_OWN) {
1628 panic("%s: tried to map busy TX descriptor",
1629 sc->sc_dev.dv_xname);
1630 }
1631 #endif
1632
1633 d->re_vlanctl = 0;
1634 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1635 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1636 if (seg == 0)
1637 cmdstat |= RE_TDESC_CMD_SOF;
1638 else
1639 cmdstat |= RE_TDESC_CMD_OWN;
1640 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1641 cmdstat |= RE_TDESC_CMD_EOR;
1642 if (seg == nsegs - 1) {
1643 cmdstat |= RE_TDESC_CMD_EOF;
1644 lastdesc = curdesc;
1645 }
1646 d->re_cmdstat = htole32(cmdstat);
1647 RE_TXDESCSYNC(sc, curdesc,
1648 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1649 }
1650 if (__predict_false(pad)) {
1651 bus_addr_t paddaddr;
1652
1653 d = &sc->re_ldata.re_tx_list[curdesc];
1654 d->re_vlanctl = 0;
1655 paddaddr = RE_TXPADDADDR(sc);
1656 re_set_bufaddr(d, paddaddr);
1657 cmdstat = re_flags |
1658 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1659 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1660 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1661 cmdstat |= RE_TDESC_CMD_EOR;
1662 d->re_cmdstat = htole32(cmdstat);
1663 RE_TXDESCSYNC(sc, curdesc,
1664 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1665 lastdesc = curdesc;
1666 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1667 }
1668 KASSERT(lastdesc != -1);
1669
1670 /*
1671 * Set up hardware VLAN tagging. Note: vlan tag info must
1672 * appear in the first descriptor of a multi-descriptor
1673 * transmission attempt.
1674 */
1675 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1676 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1677 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1678 RE_TDESC_VLANCTL_TAG);
1679 }
1680
1681 /* Transfer ownership of packet to the chip. */
1682
1683 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1684 htole32(RE_TDESC_CMD_OWN);
1685 RE_TXDESCSYNC(sc, startdesc,
1686 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1687
1688 /* update info of TX queue and descriptors */
1689 txq->txq_mbuf = m;
1690 txq->txq_descidx = lastdesc;
1691 txq->txq_nsegs = nsegs;
1692
1693 sc->re_ldata.re_txq_free--;
1694 sc->re_ldata.re_tx_free -= nsegs;
1695 sc->re_ldata.re_tx_nextfree = curdesc;
1696
1697 #if NBPFILTER > 0
1698 /*
1699 * If there's a BPF listener, bounce a copy of this frame
1700 * to him.
1701 */
1702 if (ifp->if_bpf)
1703 bpf_mtap(ifp->if_bpf, m);
1704 #endif
1705 }
1706
1707 if (sc->re_ldata.re_txq_free < ofree) {
1708 /*
1709 * TX packets are enqueued.
1710 */
1711 sc->re_ldata.re_txq_prodidx = idx;
1712
1713 /*
1714 * Start the transmitter to poll.
1715 *
1716 * RealTek put the TX poll request register in a different
1717 * location on the 8169 gigE chip. I don't know why.
1718 */
1719 if (sc->rtk_type == RTK_8169)
1720 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1721 else
1722 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1723
1724 /*
1725 * Use the countdown timer for interrupt moderation.
1726 * 'TX done' interrupts are disabled. Instead, we reset the
1727 * countdown timer, which will begin counting until it hits
1728 * the value in the TIMERINT register, and then trigger an
1729 * interrupt. Each time we write to the TIMERCNT register,
1730 * the timer count is reset to 0.
1731 */
1732 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1733
1734 /*
1735 * Set a timeout in case the chip goes out to lunch.
1736 */
1737 ifp->if_timer = 5;
1738 }
1739 }
1740
1741 static int
1742 re_init(struct ifnet *ifp)
1743 {
1744 struct rtk_softc *sc = ifp->if_softc;
1745 uint8_t *enaddr;
1746 uint32_t rxcfg = 0;
1747 uint32_t reg;
1748 int error;
1749
1750 if ((error = re_enable(sc)) != 0)
1751 goto out;
1752
1753 /*
1754 * Cancel pending I/O and free all RX/TX buffers.
1755 */
1756 re_stop(ifp, 0);
1757
1758 re_reset(sc);
1759
1760 /*
1761 * Enable C+ RX and TX mode, as well as VLAN stripping and
1762 * RX checksum offload. We must configure the C+ register
1763 * before all others.
1764 */
1765 reg = 0;
1766
1767 /*
1768 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1769 * FreeBSD drivers set these bits anyway (for 8139C+?).
1770 * So far, it works.
1771 */
1772
1773 /*
1774 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1775 * For 8169S/8110S rev 2 and above, do not set bit 14.
1776 */
1777 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1778 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1779
1780 if (1) {/* not for 8169S ? */
1781 reg |=
1782 RTK_CPLUSCMD_VLANSTRIP |
1783 (ifp->if_capenable &
1784 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1785 IFCAP_CSUM_UDPv4_Rx) ?
1786 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1787 }
1788
1789 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1790 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1791
1792 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1793 if (sc->rtk_type == RTK_8169)
1794 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1795
1796 DELAY(10000);
1797
1798 /*
1799 * Init our MAC address. Even though the chipset
1800 * documentation doesn't mention it, we need to enter "Config
1801 * register write enable" mode to modify the ID registers.
1802 */
1803 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1804 enaddr = LLADDR(ifp->if_sadl);
1805 reg = enaddr[0] | (enaddr[1] << 8) |
1806 (enaddr[2] << 16) | (enaddr[3] << 24);
1807 CSR_WRITE_4(sc, RTK_IDR0, reg);
1808 reg = enaddr[4] | (enaddr[5] << 8);
1809 CSR_WRITE_4(sc, RTK_IDR4, reg);
1810 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1811
1812 /*
1813 * For C+ mode, initialize the RX descriptors and mbufs.
1814 */
1815 re_rx_list_init(sc);
1816 re_tx_list_init(sc);
1817
1818 /*
1819 * Load the addresses of the RX and TX lists into the chip.
1820 */
1821 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1822 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1823 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1824 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1825
1826 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1827 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1828 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1829 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1830
1831 /*
1832 * Enable transmit and receive.
1833 */
1834 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1835
1836 /*
1837 * Set the initial TX and RX configuration.
1838 */
1839 if (sc->re_testmode) {
1840 if (sc->rtk_type == RTK_8169)
1841 CSR_WRITE_4(sc, RTK_TXCFG,
1842 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1843 else
1844 CSR_WRITE_4(sc, RTK_TXCFG,
1845 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1846 } else
1847 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1848
1849 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1850
1851 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1852
1853 /* Set the individual bit to receive frames for this host only. */
1854 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1855 rxcfg |= RTK_RXCFG_RX_INDIV;
1856
1857 /* If we want promiscuous mode, set the allframes bit. */
1858 if (ifp->if_flags & IFF_PROMISC)
1859 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1860 else
1861 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1862 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1863
1864 /*
1865 * Set capture broadcast bit to capture broadcast frames.
1866 */
1867 if (ifp->if_flags & IFF_BROADCAST)
1868 rxcfg |= RTK_RXCFG_RX_BROAD;
1869 else
1870 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1871 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1872
1873 /*
1874 * Program the multicast filter, if necessary.
1875 */
1876 rtk_setmulti(sc);
1877
1878 #ifdef DEVICE_POLLING
1879 /*
1880 * Disable interrupts if we are polling.
1881 */
1882 if (ifp->if_flags & IFF_POLLING)
1883 CSR_WRITE_2(sc, RTK_IMR, 0);
1884 else /* otherwise ... */
1885 #endif /* DEVICE_POLLING */
1886 /*
1887 * Enable interrupts.
1888 */
1889 if (sc->re_testmode)
1890 CSR_WRITE_2(sc, RTK_IMR, 0);
1891 else
1892 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1893
1894 /* Start RX/TX process. */
1895 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1896 #ifdef notdef
1897 /* Enable receiver and transmitter. */
1898 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1899 #endif
1900
1901 /*
1902 * Initialize the timer interrupt register so that
1903 * a timer interrupt will be generated once the timer
1904 * reaches a certain number of ticks. The timer is
1905 * reloaded on each transmit. This gives us TX interrupt
1906 * moderation, which dramatically improves TX frame rate.
1907 */
1908
1909 if (sc->rtk_type == RTK_8169)
1910 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1911 else
1912 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1913
1914 /*
1915 * For 8169 gigE NICs, set the max allowed RX packet
1916 * size so we can receive jumbo frames.
1917 */
1918 if (sc->rtk_type == RTK_8169)
1919 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1920
1921 if (sc->re_testmode)
1922 return 0;
1923
1924 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1925
1926 ifp->if_flags |= IFF_RUNNING;
1927 ifp->if_flags &= ~IFF_OACTIVE;
1928
1929 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1930
1931 out:
1932 if (error) {
1933 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1934 ifp->if_timer = 0;
1935 aprint_error("%s: interface not running\n",
1936 sc->sc_dev.dv_xname);
1937 }
1938
1939 return error;
1940 }
1941
1942 /*
1943 * Set media options.
1944 */
1945 static int
1946 re_ifmedia_upd(struct ifnet *ifp)
1947 {
1948 struct rtk_softc *sc;
1949
1950 sc = ifp->if_softc;
1951
1952 return mii_mediachg(&sc->mii);
1953 }
1954
1955 /*
1956 * Report current media status.
1957 */
1958 static void
1959 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1960 {
1961 struct rtk_softc *sc;
1962
1963 sc = ifp->if_softc;
1964
1965 mii_pollstat(&sc->mii);
1966 ifmr->ifm_active = sc->mii.mii_media_active;
1967 ifmr->ifm_status = sc->mii.mii_media_status;
1968 }
1969
1970 static int
1971 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1972 {
1973 struct rtk_softc *sc = ifp->if_softc;
1974 struct ifreq *ifr = (struct ifreq *) data;
1975 int s, error = 0;
1976
1977 s = splnet();
1978
1979 switch (command) {
1980 case SIOCSIFMTU:
1981 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1982 error = EINVAL;
1983 ifp->if_mtu = ifr->ifr_mtu;
1984 break;
1985 case SIOCGIFMEDIA:
1986 case SIOCSIFMEDIA:
1987 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1988 break;
1989 default:
1990 error = ether_ioctl(ifp, command, data);
1991 if (error == ENETRESET) {
1992 if (ifp->if_flags & IFF_RUNNING)
1993 rtk_setmulti(sc);
1994 error = 0;
1995 }
1996 break;
1997 }
1998
1999 splx(s);
2000
2001 return error;
2002 }
2003
2004 static void
2005 re_watchdog(struct ifnet *ifp)
2006 {
2007 struct rtk_softc *sc;
2008 int s;
2009
2010 sc = ifp->if_softc;
2011 s = splnet();
2012 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2013 ifp->if_oerrors++;
2014
2015 re_txeof(sc);
2016 re_rxeof(sc);
2017
2018 re_init(ifp);
2019
2020 splx(s);
2021 }
2022
2023 /*
2024 * Stop the adapter and free any mbufs allocated to the
2025 * RX and TX lists.
2026 */
2027 static void
2028 re_stop(struct ifnet *ifp, int disable)
2029 {
2030 int i;
2031 struct rtk_softc *sc = ifp->if_softc;
2032
2033 callout_stop(&sc->rtk_tick_ch);
2034
2035 #ifdef DEVICE_POLLING
2036 ether_poll_deregister(ifp);
2037 #endif /* DEVICE_POLLING */
2038
2039 mii_down(&sc->mii);
2040
2041 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2042 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2043
2044 if (sc->re_head != NULL) {
2045 m_freem(sc->re_head);
2046 sc->re_head = sc->re_tail = NULL;
2047 }
2048
2049 /* Free the TX list buffers. */
2050 for (i = 0; i < RE_TX_QLEN; i++) {
2051 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2052 bus_dmamap_unload(sc->sc_dmat,
2053 sc->re_ldata.re_txq[i].txq_dmamap);
2054 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2055 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2056 }
2057 }
2058
2059 /* Free the RX list buffers. */
2060 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2061 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2062 bus_dmamap_unload(sc->sc_dmat,
2063 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2064 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2065 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2066 }
2067 }
2068
2069 if (disable)
2070 re_disable(sc);
2071
2072 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2073 ifp->if_timer = 0;
2074 }
2075