rtl8169.c revision 1.72.2.7 1 /* $NetBSD: rtl8169.c,v 1.72.2.7 2007/02/24 13:25:29 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if (sc->rtk_type == RTK_8169) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if (sc->rtk_type == RTK_8169) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if (sc->rtk_type == RTK_8139CPLUS) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, RTK_LDPS, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578 /* Reset the adapter. */
579 re_reset(sc);
580
581 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
582 addr_len = RTK_EEADDR_LEN1;
583 else
584 addr_len = RTK_EEADDR_LEN0;
585
586 /*
587 * Get station address from the EEPROM.
588 */
589 for (i = 0; i < 3; i++) {
590 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
591 eaddr[(i * 2) + 0] = val & 0xff;
592 eaddr[(i * 2) + 1] = val >> 8;
593 }
594
595 if (sc->rtk_type == RTK_8169) {
596 uint32_t hwrev;
597
598 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
599 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
600 /* These rev numbers are taken from Realtek's driver */
601 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
602 sc->sc_rev = 15;
603 } else if (hwrev == RTK_HWREV_8100E) {
604 sc->sc_rev = 14;
605 } else if (hwrev == RTK_HWREV_8101E) {
606 sc->sc_rev = 13;
607 } else if (hwrev == RTK_HWREV_8168_SPIN2) {
608 sc->sc_rev = 12;
609 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
610 sc->sc_rev = 11;
611 } else if (hwrev == RTK_HWREV_8169_8110SC) {
612 sc->sc_rev = 5;
613 } else if (hwrev == RTK_HWREV_8169_8110SB) {
614 sc->sc_rev = 4;
615 } else if (hwrev == RTK_HWREV_8169S) {
616 sc->sc_rev = 3;
617 } else if (hwrev == RTK_HWREV_8110S) {
618 sc->sc_rev = 2;
619 } else /* RTK_HWREV_8169 */
620 sc->sc_rev = 1;
621
622 /* Set RX length mask */
623 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
624 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
625 } else {
626 /* Set RX length mask */
627 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
628 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
629 }
630
631 aprint_normal("%s: Ethernet address %s\n",
632 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
633
634 if (sc->re_ldata.re_tx_desc_cnt >
635 PAGE_SIZE / sizeof(struct re_desc)) {
636 sc->re_ldata.re_tx_desc_cnt =
637 PAGE_SIZE / sizeof(struct re_desc);
638 }
639
640 aprint_verbose("%s: using %d tx descriptors\n",
641 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
642 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
643
644 /* Allocate DMA'able memory for the TX ring */
645 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
646 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
647 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
648 aprint_error("%s: can't allocate tx listseg, error = %d\n",
649 sc->sc_dev.dv_xname, error);
650 goto fail_0;
651 }
652
653 /* Load the map for the TX ring. */
654 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
655 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
656 (caddr_t *)&sc->re_ldata.re_tx_list,
657 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
658 aprint_error("%s: can't map tx list, error = %d\n",
659 sc->sc_dev.dv_xname, error);
660 goto fail_1;
661 }
662 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
663
664 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
665 RE_TX_LIST_SZ(sc), 0, 0,
666 &sc->re_ldata.re_tx_list_map)) != 0) {
667 aprint_error("%s: can't create tx list map, error = %d\n",
668 sc->sc_dev.dv_xname, error);
669 goto fail_2;
670 }
671
672
673 if ((error = bus_dmamap_load(sc->sc_dmat,
674 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
675 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
676 aprint_error("%s: can't load tx list, error = %d\n",
677 sc->sc_dev.dv_xname, error);
678 goto fail_3;
679 }
680
681 /* Create DMA maps for TX buffers */
682 for (i = 0; i < RE_TX_QLEN; i++) {
683 error = bus_dmamap_create(sc->sc_dmat,
684 round_page(IP_MAXPACKET),
685 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
686 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
687 if (error) {
688 aprint_error("%s: can't create DMA map for TX\n",
689 sc->sc_dev.dv_xname);
690 goto fail_4;
691 }
692 }
693
694 /* Allocate DMA'able memory for the RX ring */
695 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
696 if ((error = bus_dmamem_alloc(sc->sc_dmat,
697 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
698 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
699 aprint_error("%s: can't allocate rx listseg, error = %d\n",
700 sc->sc_dev.dv_xname, error);
701 goto fail_4;
702 }
703
704 /* Load the map for the RX ring. */
705 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
706 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
707 (caddr_t *)&sc->re_ldata.re_rx_list,
708 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
709 aprint_error("%s: can't map rx list, error = %d\n",
710 sc->sc_dev.dv_xname, error);
711 goto fail_5;
712 }
713 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
714
715 if ((error = bus_dmamap_create(sc->sc_dmat,
716 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
717 &sc->re_ldata.re_rx_list_map)) != 0) {
718 aprint_error("%s: can't create rx list map, error = %d\n",
719 sc->sc_dev.dv_xname, error);
720 goto fail_6;
721 }
722
723 if ((error = bus_dmamap_load(sc->sc_dmat,
724 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
725 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
726 aprint_error("%s: can't load rx list, error = %d\n",
727 sc->sc_dev.dv_xname, error);
728 goto fail_7;
729 }
730
731 /* Create DMA maps for RX buffers */
732 for (i = 0; i < RE_RX_DESC_CNT; i++) {
733 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
734 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
735 if (error) {
736 aprint_error("%s: can't create DMA map for RX\n",
737 sc->sc_dev.dv_xname);
738 goto fail_8;
739 }
740 }
741
742 /*
743 * Record interface as attached. From here, we should not fail.
744 */
745 sc->sc_flags |= RTK_ATTACHED;
746
747 ifp = &sc->ethercom.ec_if;
748 ifp->if_softc = sc;
749 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
750 ifp->if_mtu = ETHERMTU;
751 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 ifp->if_ioctl = re_ioctl;
753 sc->ethercom.ec_capabilities |=
754 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
755 ifp->if_start = re_start;
756 ifp->if_stop = re_stop;
757
758 /*
759 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
760 * so we have a workaround to handle the bug by padding
761 * such packets manually.
762 */
763 ifp->if_capabilities |=
764 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
765 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
766 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
767 IFCAP_TSOv4;
768 ifp->if_watchdog = re_watchdog;
769 ifp->if_init = re_init;
770 if (sc->rtk_type == RTK_8169)
771 ifp->if_baudrate = 1000000000;
772 else
773 ifp->if_baudrate = 100000000;
774 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
775 ifp->if_capenable = ifp->if_capabilities;
776 IFQ_SET_READY(&ifp->if_snd);
777
778 callout_init(&sc->rtk_tick_ch);
779
780 /* Do MII setup */
781 sc->mii.mii_ifp = ifp;
782 sc->mii.mii_readreg = re_miibus_readreg;
783 sc->mii.mii_writereg = re_miibus_writereg;
784 sc->mii.mii_statchg = re_miibus_statchg;
785 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
786 re_ifmedia_sts);
787 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
788 MII_OFFSET_ANY, 0);
789 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
790
791 /*
792 * Call MI attach routine.
793 */
794 if_attach(ifp);
795 ether_ifattach(ifp, eaddr);
796
797
798 /*
799 * Make sure the interface is shutdown during reboot.
800 */
801 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
802 if (sc->sc_sdhook == NULL)
803 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
804 sc->sc_dev.dv_xname);
805 /*
806 * Add a suspend hook to make sure we come back up after a
807 * resume.
808 */
809 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
810 re_power, sc);
811 if (sc->sc_powerhook == NULL)
812 aprint_error("%s: WARNING: unable to establish power hook\n",
813 sc->sc_dev.dv_xname);
814
815
816 return;
817
818 fail_8:
819 /* Destroy DMA maps for RX buffers. */
820 for (i = 0; i < RE_RX_DESC_CNT; i++)
821 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
822 bus_dmamap_destroy(sc->sc_dmat,
823 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
824
825 /* Free DMA'able memory for the RX ring. */
826 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
827 fail_7:
828 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
829 fail_6:
830 bus_dmamem_unmap(sc->sc_dmat,
831 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
832 fail_5:
833 bus_dmamem_free(sc->sc_dmat,
834 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
835
836 fail_4:
837 /* Destroy DMA maps for TX buffers. */
838 for (i = 0; i < RE_TX_QLEN; i++)
839 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
840 bus_dmamap_destroy(sc->sc_dmat,
841 sc->re_ldata.re_txq[i].txq_dmamap);
842
843 /* Free DMA'able memory for the TX ring. */
844 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
845 fail_3:
846 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
847 fail_2:
848 bus_dmamem_unmap(sc->sc_dmat,
849 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
850 fail_1:
851 bus_dmamem_free(sc->sc_dmat,
852 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
853 fail_0:
854 return;
855 }
856
857
858 /*
859 * re_activate:
860 * Handle device activation/deactivation requests.
861 */
862 int
863 re_activate(struct device *self, enum devact act)
864 {
865 struct rtk_softc *sc = (void *)self;
866 int s, error = 0;
867
868 s = splnet();
869 switch (act) {
870 case DVACT_ACTIVATE:
871 error = EOPNOTSUPP;
872 break;
873 case DVACT_DEACTIVATE:
874 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
875 if_deactivate(&sc->ethercom.ec_if);
876 break;
877 }
878 splx(s);
879
880 return error;
881 }
882
883 /*
884 * re_detach:
885 * Detach a rtk interface.
886 */
887 int
888 re_detach(struct rtk_softc *sc)
889 {
890 struct ifnet *ifp = &sc->ethercom.ec_if;
891 int i;
892
893 /*
894 * Succeed now if there isn't any work to do.
895 */
896 if ((sc->sc_flags & RTK_ATTACHED) == 0)
897 return 0;
898
899 /* Unhook our tick handler. */
900 callout_stop(&sc->rtk_tick_ch);
901
902 /* Detach all PHYs. */
903 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
904
905 /* Delete all remaining media. */
906 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
907
908 ether_ifdetach(ifp);
909 if_detach(ifp);
910
911 /* Destroy DMA maps for RX buffers. */
912 for (i = 0; i < RE_RX_DESC_CNT; i++)
913 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
914 bus_dmamap_destroy(sc->sc_dmat,
915 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
916
917 /* Free DMA'able memory for the RX ring. */
918 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
919 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
920 bus_dmamem_unmap(sc->sc_dmat,
921 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
922 bus_dmamem_free(sc->sc_dmat,
923 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
924
925 /* Destroy DMA maps for TX buffers. */
926 for (i = 0; i < RE_TX_QLEN; i++)
927 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
928 bus_dmamap_destroy(sc->sc_dmat,
929 sc->re_ldata.re_txq[i].txq_dmamap);
930
931 /* Free DMA'able memory for the TX ring. */
932 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
933 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
934 bus_dmamem_unmap(sc->sc_dmat,
935 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
936 bus_dmamem_free(sc->sc_dmat,
937 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
938
939
940 shutdownhook_disestablish(sc->sc_sdhook);
941 powerhook_disestablish(sc->sc_powerhook);
942
943 return 0;
944 }
945
946 /*
947 * re_enable:
948 * Enable the RTL81X9 chip.
949 */
950 static int
951 re_enable(struct rtk_softc *sc)
952 {
953
954 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
955 if ((*sc->sc_enable)(sc) != 0) {
956 aprint_error("%s: device enable failed\n",
957 sc->sc_dev.dv_xname);
958 return EIO;
959 }
960 sc->sc_flags |= RTK_ENABLED;
961 }
962 return 0;
963 }
964
965 /*
966 * re_disable:
967 * Disable the RTL81X9 chip.
968 */
969 static void
970 re_disable(struct rtk_softc *sc)
971 {
972
973 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
974 (*sc->sc_disable)(sc);
975 sc->sc_flags &= ~RTK_ENABLED;
976 }
977 }
978
979 /*
980 * re_power:
981 * Power management (suspend/resume) hook.
982 */
983 void
984 re_power(int why, void *arg)
985 {
986 struct rtk_softc *sc = (void *)arg;
987 struct ifnet *ifp = &sc->ethercom.ec_if;
988 int s;
989
990 s = splnet();
991 switch (why) {
992 case PWR_SUSPEND:
993 case PWR_STANDBY:
994 re_stop(ifp, 0);
995 if (sc->sc_power != NULL)
996 (*sc->sc_power)(sc, why);
997 break;
998 case PWR_RESUME:
999 if (ifp->if_flags & IFF_UP) {
1000 if (sc->sc_power != NULL)
1001 (*sc->sc_power)(sc, why);
1002 re_init(ifp);
1003 }
1004 break;
1005 case PWR_SOFTSUSPEND:
1006 case PWR_SOFTSTANDBY:
1007 case PWR_SOFTRESUME:
1008 break;
1009 }
1010 splx(s);
1011 }
1012
1013
1014 static int
1015 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1016 {
1017 struct mbuf *n = NULL;
1018 bus_dmamap_t map;
1019 struct re_desc *d;
1020 struct re_rxsoft *rxs;
1021 uint32_t cmdstat;
1022 int error;
1023
1024 if (m == NULL) {
1025 MGETHDR(n, M_DONTWAIT, MT_DATA);
1026 if (n == NULL)
1027 return ENOBUFS;
1028
1029 MCLGET(n, M_DONTWAIT);
1030 if ((n->m_flags & M_EXT) == 0) {
1031 m_freem(n);
1032 return ENOBUFS;
1033 }
1034 m = n;
1035 } else
1036 m->m_data = m->m_ext.ext_buf;
1037
1038 /*
1039 * Initialize mbuf length fields and fixup
1040 * alignment so that the frame payload is
1041 * longword aligned.
1042 */
1043 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1044 m->m_data += RE_ETHER_ALIGN;
1045
1046 rxs = &sc->re_ldata.re_rxsoft[idx];
1047 map = rxs->rxs_dmamap;
1048 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1049 BUS_DMA_READ|BUS_DMA_NOWAIT);
1050
1051 if (error)
1052 goto out;
1053
1054 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1055 BUS_DMASYNC_PREREAD);
1056
1057 d = &sc->re_ldata.re_rx_list[idx];
1058 #ifdef DIAGNOSTIC
1059 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1060 cmdstat = le32toh(d->re_cmdstat);
1061 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1062 if (cmdstat & RE_RDESC_STAT_OWN) {
1063 panic("%s: tried to map busy RX descriptor",
1064 sc->sc_dev.dv_xname);
1065 }
1066 #endif
1067
1068 rxs->rxs_mbuf = m;
1069
1070 d->re_vlanctl = 0;
1071 cmdstat = map->dm_segs[0].ds_len;
1072 if (idx == (RE_RX_DESC_CNT - 1))
1073 cmdstat |= RE_RDESC_CMD_EOR;
1074 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1075 d->re_cmdstat = htole32(cmdstat);
1076 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1077 cmdstat |= RE_RDESC_CMD_OWN;
1078 d->re_cmdstat = htole32(cmdstat);
1079 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1080
1081 return 0;
1082 out:
1083 if (n != NULL)
1084 m_freem(n);
1085 return ENOMEM;
1086 }
1087
1088 static int
1089 re_tx_list_init(struct rtk_softc *sc)
1090 {
1091 int i;
1092
1093 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1094 for (i = 0; i < RE_TX_QLEN; i++) {
1095 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1096 }
1097
1098 bus_dmamap_sync(sc->sc_dmat,
1099 sc->re_ldata.re_tx_list_map, 0,
1100 sc->re_ldata.re_tx_list_map->dm_mapsize,
1101 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1102 sc->re_ldata.re_txq_prodidx = 0;
1103 sc->re_ldata.re_txq_considx = 0;
1104 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1105 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1106 sc->re_ldata.re_tx_nextfree = 0;
1107
1108 return 0;
1109 }
1110
1111 static int
1112 re_rx_list_init(struct rtk_softc *sc)
1113 {
1114 int i;
1115
1116 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1117
1118 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1119 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1120 return ENOBUFS;
1121 }
1122
1123 sc->re_ldata.re_rx_prodidx = 0;
1124 sc->re_head = sc->re_tail = NULL;
1125
1126 return 0;
1127 }
1128
1129 /*
1130 * RX handler for C+ and 8169. For the gigE chips, we support
1131 * the reception of jumbo frames that have been fragmented
1132 * across multiple 2K mbuf cluster buffers.
1133 */
1134 static void
1135 re_rxeof(struct rtk_softc *sc)
1136 {
1137 struct mbuf *m;
1138 struct ifnet *ifp;
1139 int i, total_len;
1140 struct re_desc *cur_rx;
1141 struct re_rxsoft *rxs;
1142 uint32_t rxstat, rxvlan;
1143
1144 ifp = &sc->ethercom.ec_if;
1145
1146 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1147 cur_rx = &sc->re_ldata.re_rx_list[i];
1148 RE_RXDESCSYNC(sc, i,
1149 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1150 rxstat = le32toh(cur_rx->re_cmdstat);
1151 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1152 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1153 break;
1154 }
1155 total_len = rxstat & sc->re_rxlenmask;
1156 rxvlan = le32toh(cur_rx->re_vlanctl);
1157 rxs = &sc->re_ldata.re_rxsoft[i];
1158 m = rxs->rxs_mbuf;
1159
1160 /* Invalidate the RX mbuf and unload its map */
1161
1162 bus_dmamap_sync(sc->sc_dmat,
1163 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1164 BUS_DMASYNC_POSTREAD);
1165 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1166
1167 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1168 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1169 if (sc->re_head == NULL)
1170 sc->re_head = sc->re_tail = m;
1171 else {
1172 m->m_flags &= ~M_PKTHDR;
1173 sc->re_tail->m_next = m;
1174 sc->re_tail = m;
1175 }
1176 re_newbuf(sc, i, NULL);
1177 continue;
1178 }
1179
1180 /*
1181 * NOTE: for the 8139C+, the frame length field
1182 * is always 12 bits in size, but for the gigE chips,
1183 * it is 13 bits (since the max RX frame length is 16K).
1184 * Unfortunately, all 32 bits in the status word
1185 * were already used, so to make room for the extra
1186 * length bit, RealTek took out the 'frame alignment
1187 * error' bit and shifted the other status bits
1188 * over one slot. The OWN, EOR, FS and LS bits are
1189 * still in the same places. We have already extracted
1190 * the frame length and checked the OWN bit, so rather
1191 * than using an alternate bit mapping, we shift the
1192 * status bits one space to the right so we can evaluate
1193 * them using the 8169 status as though it was in the
1194 * same format as that of the 8139C+.
1195 */
1196 if (sc->rtk_type == RTK_8169)
1197 rxstat >>= 1;
1198
1199 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1200 #ifdef RE_DEBUG
1201 aprint_error("%s: RX error (rxstat = 0x%08x)",
1202 sc->sc_dev.dv_xname, rxstat);
1203 if (rxstat & RE_RDESC_STAT_FRALIGN)
1204 aprint_error(", frame alignment error");
1205 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1206 aprint_error(", out of buffer space");
1207 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1208 aprint_error(", FIFO overrun");
1209 if (rxstat & RE_RDESC_STAT_GIANT)
1210 aprint_error(", giant packet");
1211 if (rxstat & RE_RDESC_STAT_RUNT)
1212 aprint_error(", runt packet");
1213 if (rxstat & RE_RDESC_STAT_CRCERR)
1214 aprint_error(", CRC error");
1215 aprint_error("\n");
1216 #endif
1217 ifp->if_ierrors++;
1218 /*
1219 * If this is part of a multi-fragment packet,
1220 * discard all the pieces.
1221 */
1222 if (sc->re_head != NULL) {
1223 m_freem(sc->re_head);
1224 sc->re_head = sc->re_tail = NULL;
1225 }
1226 re_newbuf(sc, i, m);
1227 continue;
1228 }
1229
1230 /*
1231 * If allocating a replacement mbuf fails,
1232 * reload the current one.
1233 */
1234
1235 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1236 ifp->if_ierrors++;
1237 if (sc->re_head != NULL) {
1238 m_freem(sc->re_head);
1239 sc->re_head = sc->re_tail = NULL;
1240 }
1241 re_newbuf(sc, i, m);
1242 continue;
1243 }
1244
1245 if (sc->re_head != NULL) {
1246 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1247 /*
1248 * Special case: if there's 4 bytes or less
1249 * in this buffer, the mbuf can be discarded:
1250 * the last 4 bytes is the CRC, which we don't
1251 * care about anyway.
1252 */
1253 if (m->m_len <= ETHER_CRC_LEN) {
1254 sc->re_tail->m_len -=
1255 (ETHER_CRC_LEN - m->m_len);
1256 m_freem(m);
1257 } else {
1258 m->m_len -= ETHER_CRC_LEN;
1259 m->m_flags &= ~M_PKTHDR;
1260 sc->re_tail->m_next = m;
1261 }
1262 m = sc->re_head;
1263 sc->re_head = sc->re_tail = NULL;
1264 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1265 } else
1266 m->m_pkthdr.len = m->m_len =
1267 (total_len - ETHER_CRC_LEN);
1268
1269 ifp->if_ipackets++;
1270 m->m_pkthdr.rcvif = ifp;
1271
1272 /* Do RX checksumming */
1273
1274 /* Check IP header checksum */
1275 if (rxstat & RE_RDESC_STAT_PROTOID) {
1276 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1277 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1278 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1279 }
1280
1281 /* Check TCP/UDP checksum */
1282 if (RE_TCPPKT(rxstat)) {
1283 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1284 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1285 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1286 } else if (RE_UDPPKT(rxstat)) {
1287 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1288 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1289 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1290 }
1291
1292 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1293 VLAN_INPUT_TAG(ifp, m,
1294 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1295 continue);
1296 }
1297 #if NBPFILTER > 0
1298 if (ifp->if_bpf)
1299 bpf_mtap(ifp->if_bpf, m);
1300 #endif
1301 (*ifp->if_input)(ifp, m);
1302 }
1303
1304 sc->re_ldata.re_rx_prodidx = i;
1305 }
1306
1307 static void
1308 re_txeof(struct rtk_softc *sc)
1309 {
1310 struct ifnet *ifp;
1311 struct re_txq *txq;
1312 uint32_t txstat;
1313 int idx, descidx;
1314
1315 ifp = &sc->ethercom.ec_if;
1316
1317 for (idx = sc->re_ldata.re_txq_considx;
1318 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1319 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1320 txq = &sc->re_ldata.re_txq[idx];
1321 KASSERT(txq->txq_mbuf != NULL);
1322
1323 descidx = txq->txq_descidx;
1324 RE_TXDESCSYNC(sc, descidx,
1325 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1326 txstat =
1327 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1328 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1329 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1330 if (txstat & RE_TDESC_CMD_OWN) {
1331 break;
1332 }
1333
1334 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1335 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1336 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1337 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1338 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1339 m_freem(txq->txq_mbuf);
1340 txq->txq_mbuf = NULL;
1341
1342 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1343 ifp->if_collisions++;
1344 if (txstat & RE_TDESC_STAT_TXERRSUM)
1345 ifp->if_oerrors++;
1346 else
1347 ifp->if_opackets++;
1348 }
1349
1350 sc->re_ldata.re_txq_considx = idx;
1351
1352 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1353 ifp->if_flags &= ~IFF_OACTIVE;
1354
1355 /*
1356 * If not all descriptors have been released reaped yet,
1357 * reload the timer so that we will eventually get another
1358 * interrupt that will cause us to re-enter this routine.
1359 * This is done in case the transmitter has gone idle.
1360 */
1361 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1362 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1363 else
1364 ifp->if_timer = 0;
1365 }
1366
1367 /*
1368 * Stop all chip I/O so that the kernel's probe routines don't
1369 * get confused by errant DMAs when rebooting.
1370 */
1371 static void
1372 re_shutdown(void *vsc)
1373
1374 {
1375 struct rtk_softc *sc = vsc;
1376
1377 re_stop(&sc->ethercom.ec_if, 0);
1378 }
1379
1380
1381 static void
1382 re_tick(void *xsc)
1383 {
1384 struct rtk_softc *sc = xsc;
1385 int s;
1386
1387 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1388 s = splnet();
1389
1390 mii_tick(&sc->mii);
1391 splx(s);
1392
1393 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1394 }
1395
1396 #ifdef DEVICE_POLLING
1397 static void
1398 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1399 {
1400 struct rtk_softc *sc = ifp->if_softc;
1401
1402 RTK_LOCK(sc);
1403 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1404 ether_poll_deregister(ifp);
1405 cmd = POLL_DEREGISTER;
1406 }
1407 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1408 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1409 goto done;
1410 }
1411
1412 sc->rxcycles = count;
1413 re_rxeof(sc);
1414 re_txeof(sc);
1415
1416 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1417 (*ifp->if_start)(ifp);
1418
1419 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1420 uint16_t status;
1421
1422 status = CSR_READ_2(sc, RTK_ISR);
1423 if (status == 0xffff)
1424 goto done;
1425 if (status)
1426 CSR_WRITE_2(sc, RTK_ISR, status);
1427
1428 /*
1429 * XXX check behaviour on receiver stalls.
1430 */
1431
1432 if (status & RTK_ISR_SYSTEM_ERR) {
1433 re_init(sc);
1434 }
1435 }
1436 done:
1437 RTK_UNLOCK(sc);
1438 }
1439 #endif /* DEVICE_POLLING */
1440
1441 int
1442 re_intr(void *arg)
1443 {
1444 struct rtk_softc *sc = arg;
1445 struct ifnet *ifp;
1446 uint16_t status;
1447 int handled = 0;
1448
1449 ifp = &sc->ethercom.ec_if;
1450
1451 if ((ifp->if_flags & IFF_UP) == 0)
1452 return 0;
1453
1454 #ifdef DEVICE_POLLING
1455 if (ifp->if_flags & IFF_POLLING)
1456 goto done;
1457 if ((ifp->if_capenable & IFCAP_POLLING) &&
1458 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1459 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1460 re_poll(ifp, 0, 1);
1461 goto done;
1462 }
1463 #endif /* DEVICE_POLLING */
1464
1465 for (;;) {
1466
1467 status = CSR_READ_2(sc, RTK_ISR);
1468 /* If the card has gone away the read returns 0xffff. */
1469 if (status == 0xffff)
1470 break;
1471 if (status) {
1472 handled = 1;
1473 CSR_WRITE_2(sc, RTK_ISR, status);
1474 }
1475
1476 if ((status & RTK_INTRS_CPLUS) == 0)
1477 break;
1478
1479 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1480 re_rxeof(sc);
1481
1482 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1483 RTK_ISR_TX_DESC_UNAVAIL))
1484 re_txeof(sc);
1485
1486 if (status & RTK_ISR_SYSTEM_ERR) {
1487 re_init(ifp);
1488 }
1489
1490 if (status & RTK_ISR_LINKCHG) {
1491 callout_stop(&sc->rtk_tick_ch);
1492 re_tick(sc);
1493 }
1494 }
1495
1496 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1497 re_start(ifp);
1498
1499 #ifdef DEVICE_POLLING
1500 done:
1501 #endif
1502
1503 return handled;
1504 }
1505
1506
1507
1508 /*
1509 * Main transmit routine for C+ and gigE NICs.
1510 */
1511
1512 static void
1513 re_start(struct ifnet *ifp)
1514 {
1515 struct rtk_softc *sc;
1516 struct mbuf *m;
1517 bus_dmamap_t map;
1518 struct re_txq *txq;
1519 struct re_desc *d;
1520 struct m_tag *mtag;
1521 uint32_t cmdstat, re_flags;
1522 int ofree, idx, error, nsegs, seg;
1523 int startdesc, curdesc, lastdesc;
1524 boolean_t pad;
1525
1526 sc = ifp->if_softc;
1527 ofree = sc->re_ldata.re_txq_free;
1528
1529 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1530
1531 IFQ_POLL(&ifp->if_snd, m);
1532 if (m == NULL)
1533 break;
1534
1535 if (sc->re_ldata.re_txq_free == 0 ||
1536 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1537 /* no more free slots left */
1538 ifp->if_flags |= IFF_OACTIVE;
1539 break;
1540 }
1541
1542 /*
1543 * Set up checksum offload. Note: checksum offload bits must
1544 * appear in all descriptors of a multi-descriptor transmit
1545 * attempt. (This is according to testing done with an 8169
1546 * chip. I'm not sure if this is a requirement or a bug.)
1547 */
1548
1549 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1550 uint32_t segsz = m->m_pkthdr.segsz;
1551
1552 re_flags = RE_TDESC_CMD_LGSEND |
1553 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1554 } else {
1555 /*
1556 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1557 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1558 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1559 */
1560 re_flags = 0;
1561 if ((m->m_pkthdr.csum_flags &
1562 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1563 != 0) {
1564 re_flags |= RE_TDESC_CMD_IPCSUM;
1565 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1566 re_flags |= RE_TDESC_CMD_TCPCSUM;
1567 } else if (m->m_pkthdr.csum_flags &
1568 M_CSUM_UDPv4) {
1569 re_flags |= RE_TDESC_CMD_UDPCSUM;
1570 }
1571 }
1572 }
1573
1574 txq = &sc->re_ldata.re_txq[idx];
1575 map = txq->txq_dmamap;
1576 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1577 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1578
1579 if (__predict_false(error)) {
1580 /* XXX try to defrag if EFBIG? */
1581 aprint_error("%s: can't map mbuf (error %d)\n",
1582 sc->sc_dev.dv_xname, error);
1583
1584 IFQ_DEQUEUE(&ifp->if_snd, m);
1585 m_freem(m);
1586 ifp->if_oerrors++;
1587 continue;
1588 }
1589
1590 nsegs = map->dm_nsegs;
1591 pad = FALSE;
1592 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1593 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1594 pad = TRUE;
1595 nsegs++;
1596 }
1597
1598 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1599 /*
1600 * Not enough free descriptors to transmit this packet.
1601 */
1602 ifp->if_flags |= IFF_OACTIVE;
1603 bus_dmamap_unload(sc->sc_dmat, map);
1604 break;
1605 }
1606
1607 IFQ_DEQUEUE(&ifp->if_snd, m);
1608
1609 /*
1610 * Make sure that the caches are synchronized before we
1611 * ask the chip to start DMA for the packet data.
1612 */
1613 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1614 BUS_DMASYNC_PREWRITE);
1615
1616 /*
1617 * Map the segment array into descriptors.
1618 * Note that we set the start-of-frame and
1619 * end-of-frame markers for either TX or RX,
1620 * but they really only have meaning in the TX case.
1621 * (In the RX case, it's the chip that tells us
1622 * where packets begin and end.)
1623 * We also keep track of the end of the ring
1624 * and set the end-of-ring bits as needed,
1625 * and we set the ownership bits in all except
1626 * the very first descriptor. (The caller will
1627 * set this descriptor later when it start
1628 * transmission or reception.)
1629 */
1630 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1631 lastdesc = -1;
1632 for (seg = 0; seg < map->dm_nsegs;
1633 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1634 d = &sc->re_ldata.re_tx_list[curdesc];
1635 #ifdef DIAGNOSTIC
1636 RE_TXDESCSYNC(sc, curdesc,
1637 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1638 cmdstat = le32toh(d->re_cmdstat);
1639 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1640 if (cmdstat & RE_TDESC_STAT_OWN) {
1641 panic("%s: tried to map busy TX descriptor",
1642 sc->sc_dev.dv_xname);
1643 }
1644 #endif
1645
1646 d->re_vlanctl = 0;
1647 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1648 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1649 if (seg == 0)
1650 cmdstat |= RE_TDESC_CMD_SOF;
1651 else
1652 cmdstat |= RE_TDESC_CMD_OWN;
1653 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1654 cmdstat |= RE_TDESC_CMD_EOR;
1655 if (seg == nsegs - 1) {
1656 cmdstat |= RE_TDESC_CMD_EOF;
1657 lastdesc = curdesc;
1658 }
1659 d->re_cmdstat = htole32(cmdstat);
1660 RE_TXDESCSYNC(sc, curdesc,
1661 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1662 }
1663 if (__predict_false(pad)) {
1664 bus_addr_t paddaddr;
1665
1666 d = &sc->re_ldata.re_tx_list[curdesc];
1667 d->re_vlanctl = 0;
1668 paddaddr = RE_TXPADDADDR(sc);
1669 re_set_bufaddr(d, paddaddr);
1670 cmdstat = re_flags |
1671 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1672 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1673 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1674 cmdstat |= RE_TDESC_CMD_EOR;
1675 d->re_cmdstat = htole32(cmdstat);
1676 RE_TXDESCSYNC(sc, curdesc,
1677 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1678 lastdesc = curdesc;
1679 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1680 }
1681 KASSERT(lastdesc != -1);
1682
1683 /*
1684 * Set up hardware VLAN tagging. Note: vlan tag info must
1685 * appear in the first descriptor of a multi-descriptor
1686 * transmission attempt.
1687 */
1688 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1689 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1690 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1691 RE_TDESC_VLANCTL_TAG);
1692 }
1693
1694 /* Transfer ownership of packet to the chip. */
1695
1696 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1697 htole32(RE_TDESC_CMD_OWN);
1698 RE_TXDESCSYNC(sc, startdesc,
1699 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1700
1701 /* update info of TX queue and descriptors */
1702 txq->txq_mbuf = m;
1703 txq->txq_descidx = lastdesc;
1704 txq->txq_nsegs = nsegs;
1705
1706 sc->re_ldata.re_txq_free--;
1707 sc->re_ldata.re_tx_free -= nsegs;
1708 sc->re_ldata.re_tx_nextfree = curdesc;
1709
1710 #if NBPFILTER > 0
1711 /*
1712 * If there's a BPF listener, bounce a copy of this frame
1713 * to him.
1714 */
1715 if (ifp->if_bpf)
1716 bpf_mtap(ifp->if_bpf, m);
1717 #endif
1718 }
1719
1720 if (sc->re_ldata.re_txq_free < ofree) {
1721 /*
1722 * TX packets are enqueued.
1723 */
1724 sc->re_ldata.re_txq_prodidx = idx;
1725
1726 /*
1727 * Start the transmitter to poll.
1728 *
1729 * RealTek put the TX poll request register in a different
1730 * location on the 8169 gigE chip. I don't know why.
1731 */
1732 if (sc->rtk_type == RTK_8169)
1733 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1734 else
1735 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1736
1737 /*
1738 * Use the countdown timer for interrupt moderation.
1739 * 'TX done' interrupts are disabled. Instead, we reset the
1740 * countdown timer, which will begin counting until it hits
1741 * the value in the TIMERINT register, and then trigger an
1742 * interrupt. Each time we write to the TIMERCNT register,
1743 * the timer count is reset to 0.
1744 */
1745 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1746
1747 /*
1748 * Set a timeout in case the chip goes out to lunch.
1749 */
1750 ifp->if_timer = 5;
1751 }
1752 }
1753
1754 static int
1755 re_init(struct ifnet *ifp)
1756 {
1757 struct rtk_softc *sc = ifp->if_softc;
1758 uint8_t *enaddr;
1759 uint32_t rxcfg = 0;
1760 uint32_t reg;
1761 int error;
1762
1763 if ((error = re_enable(sc)) != 0)
1764 goto out;
1765
1766 /*
1767 * Cancel pending I/O and free all RX/TX buffers.
1768 */
1769 re_stop(ifp, 0);
1770
1771 re_reset(sc);
1772
1773 /*
1774 * Enable C+ RX and TX mode, as well as VLAN stripping and
1775 * RX checksum offload. We must configure the C+ register
1776 * before all others.
1777 */
1778 reg = 0;
1779
1780 /*
1781 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1782 * FreeBSD drivers set these bits anyway (for 8139C+?).
1783 * So far, it works.
1784 */
1785
1786 /*
1787 * XXX: For 8169 and 8169S revs below 2, set bit 14.
1788 * For 8169S/8110S rev 2 and above, do not set bit 14.
1789 */
1790 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1791 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1792
1793 if (1) {/* not for 8169S ? */
1794 reg |=
1795 RTK_CPLUSCMD_VLANSTRIP |
1796 (ifp->if_capenable &
1797 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1798 IFCAP_CSUM_UDPv4_Rx) ?
1799 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1800 }
1801
1802 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1803 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1804
1805 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1806 if (sc->rtk_type == RTK_8169)
1807 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1808
1809 DELAY(10000);
1810
1811 /*
1812 * Init our MAC address. Even though the chipset
1813 * documentation doesn't mention it, we need to enter "Config
1814 * register write enable" mode to modify the ID registers.
1815 */
1816 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1817 enaddr = LLADDR(ifp->if_sadl);
1818 reg = enaddr[0] | (enaddr[1] << 8) |
1819 (enaddr[2] << 16) | (enaddr[3] << 24);
1820 CSR_WRITE_4(sc, RTK_IDR0, reg);
1821 reg = enaddr[4] | (enaddr[5] << 8);
1822 CSR_WRITE_4(sc, RTK_IDR4, reg);
1823 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1824
1825 /*
1826 * For C+ mode, initialize the RX descriptors and mbufs.
1827 */
1828 re_rx_list_init(sc);
1829 re_tx_list_init(sc);
1830
1831 /*
1832 * Load the addresses of the RX and TX lists into the chip.
1833 */
1834 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1835 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1836 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1837 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1838
1839 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1840 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1841 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1842 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1843
1844 /*
1845 * Enable transmit and receive.
1846 */
1847 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1848
1849 /*
1850 * Set the initial TX and RX configuration.
1851 */
1852 if (sc->re_testmode) {
1853 if (sc->rtk_type == RTK_8169)
1854 CSR_WRITE_4(sc, RTK_TXCFG,
1855 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1856 else
1857 CSR_WRITE_4(sc, RTK_TXCFG,
1858 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1859 } else
1860 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1861
1862 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1863
1864 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1865
1866 /* Set the individual bit to receive frames for this host only. */
1867 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1868 rxcfg |= RTK_RXCFG_RX_INDIV;
1869
1870 /* If we want promiscuous mode, set the allframes bit. */
1871 if (ifp->if_flags & IFF_PROMISC)
1872 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1873 else
1874 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1875 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1876
1877 /*
1878 * Set capture broadcast bit to capture broadcast frames.
1879 */
1880 if (ifp->if_flags & IFF_BROADCAST)
1881 rxcfg |= RTK_RXCFG_RX_BROAD;
1882 else
1883 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1884 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1885
1886 /*
1887 * Program the multicast filter, if necessary.
1888 */
1889 rtk_setmulti(sc);
1890
1891 #ifdef DEVICE_POLLING
1892 /*
1893 * Disable interrupts if we are polling.
1894 */
1895 if (ifp->if_flags & IFF_POLLING)
1896 CSR_WRITE_2(sc, RTK_IMR, 0);
1897 else /* otherwise ... */
1898 #endif /* DEVICE_POLLING */
1899 /*
1900 * Enable interrupts.
1901 */
1902 if (sc->re_testmode)
1903 CSR_WRITE_2(sc, RTK_IMR, 0);
1904 else
1905 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1906
1907 /* Start RX/TX process. */
1908 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1909 #ifdef notdef
1910 /* Enable receiver and transmitter. */
1911 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1912 #endif
1913
1914 /*
1915 * Initialize the timer interrupt register so that
1916 * a timer interrupt will be generated once the timer
1917 * reaches a certain number of ticks. The timer is
1918 * reloaded on each transmit. This gives us TX interrupt
1919 * moderation, which dramatically improves TX frame rate.
1920 */
1921
1922 if (sc->rtk_type == RTK_8169)
1923 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1924 else
1925 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1926
1927 /*
1928 * For 8169 gigE NICs, set the max allowed RX packet
1929 * size so we can receive jumbo frames.
1930 */
1931 if (sc->rtk_type == RTK_8169)
1932 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1933
1934 if (sc->re_testmode)
1935 return 0;
1936
1937 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1938
1939 ifp->if_flags |= IFF_RUNNING;
1940 ifp->if_flags &= ~IFF_OACTIVE;
1941
1942 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1943
1944 out:
1945 if (error) {
1946 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1947 ifp->if_timer = 0;
1948 aprint_error("%s: interface not running\n",
1949 sc->sc_dev.dv_xname);
1950 }
1951
1952 return error;
1953 }
1954
1955 /*
1956 * Set media options.
1957 */
1958 static int
1959 re_ifmedia_upd(struct ifnet *ifp)
1960 {
1961 struct rtk_softc *sc;
1962
1963 sc = ifp->if_softc;
1964
1965 return mii_mediachg(&sc->mii);
1966 }
1967
1968 /*
1969 * Report current media status.
1970 */
1971 static void
1972 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1973 {
1974 struct rtk_softc *sc;
1975
1976 sc = ifp->if_softc;
1977
1978 mii_pollstat(&sc->mii);
1979 ifmr->ifm_active = sc->mii.mii_media_active;
1980 ifmr->ifm_status = sc->mii.mii_media_status;
1981 }
1982
1983 static int
1984 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1985 {
1986 struct rtk_softc *sc = ifp->if_softc;
1987 struct ifreq *ifr = (struct ifreq *) data;
1988 int s, error = 0;
1989
1990 s = splnet();
1991
1992 switch (command) {
1993 case SIOCSIFMTU:
1994 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1995 error = EINVAL;
1996 ifp->if_mtu = ifr->ifr_mtu;
1997 break;
1998 case SIOCGIFMEDIA:
1999 case SIOCSIFMEDIA:
2000 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2001 break;
2002 default:
2003 error = ether_ioctl(ifp, command, data);
2004 if (error == ENETRESET) {
2005 if (ifp->if_flags & IFF_RUNNING)
2006 rtk_setmulti(sc);
2007 error = 0;
2008 }
2009 break;
2010 }
2011
2012 splx(s);
2013
2014 return error;
2015 }
2016
2017 static void
2018 re_watchdog(struct ifnet *ifp)
2019 {
2020 struct rtk_softc *sc;
2021 int s;
2022
2023 sc = ifp->if_softc;
2024 s = splnet();
2025 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2026 ifp->if_oerrors++;
2027
2028 re_txeof(sc);
2029 re_rxeof(sc);
2030
2031 re_init(ifp);
2032
2033 splx(s);
2034 }
2035
2036 /*
2037 * Stop the adapter and free any mbufs allocated to the
2038 * RX and TX lists.
2039 */
2040 static void
2041 re_stop(struct ifnet *ifp, int disable)
2042 {
2043 int i;
2044 struct rtk_softc *sc = ifp->if_softc;
2045
2046 callout_stop(&sc->rtk_tick_ch);
2047
2048 #ifdef DEVICE_POLLING
2049 ether_poll_deregister(ifp);
2050 #endif /* DEVICE_POLLING */
2051
2052 mii_down(&sc->mii);
2053
2054 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2055 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2056
2057 if (sc->re_head != NULL) {
2058 m_freem(sc->re_head);
2059 sc->re_head = sc->re_tail = NULL;
2060 }
2061
2062 /* Free the TX list buffers. */
2063 for (i = 0; i < RE_TX_QLEN; i++) {
2064 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2065 bus_dmamap_unload(sc->sc_dmat,
2066 sc->re_ldata.re_txq[i].txq_dmamap);
2067 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2068 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2069 }
2070 }
2071
2072 /* Free the RX list buffers. */
2073 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2074 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2075 bus_dmamap_unload(sc->sc_dmat,
2076 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2077 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2078 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2079 }
2080 }
2081
2082 if (disable)
2083 re_disable(sc);
2084
2085 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2086 ifp->if_timer = 0;
2087 }
2088