rtl8169.c revision 1.72.2.7.2.2 1 /* $NetBSD: rtl8169.c,v 1.72.2.7.2.2 2008/06/03 20:47:19 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
156
157 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
158 static int re_rx_list_init(struct rtk_softc *);
159 static int re_tx_list_init(struct rtk_softc *);
160 static void re_rxeof(struct rtk_softc *);
161 static void re_txeof(struct rtk_softc *);
162 static void re_tick(void *);
163 static void re_start(struct ifnet *);
164 static int re_ioctl(struct ifnet *, u_long, caddr_t);
165 static int re_init(struct ifnet *);
166 static void re_stop(struct ifnet *, int);
167 static void re_watchdog(struct ifnet *);
168
169 static void re_shutdown(void *);
170 static int re_enable(struct rtk_softc *);
171 static void re_disable(struct rtk_softc *);
172 static void re_power(int, void *);
173
174 static int re_ifmedia_upd(struct ifnet *);
175 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176
177 static int re_gmii_readreg(struct device *, int, int);
178 static void re_gmii_writereg(struct device *, int, int, int);
179
180 static int re_miibus_readreg(struct device *, int, int);
181 static void re_miibus_writereg(struct device *, int, int, int);
182 static void re_miibus_statchg(struct device *);
183
184 static void re_reset(struct rtk_softc *);
185
186 static inline void
187 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
188 {
189
190 d->re_bufaddr_lo = htole32((uint32_t)addr);
191 if (sizeof(bus_addr_t) == sizeof(uint64_t))
192 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
193 else
194 d->re_bufaddr_hi = 0;
195 }
196
197 static int
198 re_gmii_readreg(struct device *self, int phy, int reg)
199 {
200 struct rtk_softc *sc = (void *)self;
201 uint32_t rval;
202 int i;
203
204 if (phy != 7)
205 return 0;
206
207 /* Let the rgephy driver read the GMEDIASTAT register */
208
209 if (reg == RTK_GMEDIASTAT) {
210 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
211 return rval;
212 }
213
214 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
215 DELAY(1000);
216
217 for (i = 0; i < RTK_TIMEOUT; i++) {
218 rval = CSR_READ_4(sc, RTK_PHYAR);
219 if (rval & RTK_PHYAR_BUSY)
220 break;
221 DELAY(100);
222 }
223
224 if (i == RTK_TIMEOUT) {
225 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
226 return 0;
227 }
228
229 return rval & RTK_PHYAR_PHYDATA;
230 }
231
232 static void
233 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
234 {
235 struct rtk_softc *sc = (void *)dev;
236 uint32_t rval;
237 int i;
238
239 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
240 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
241 DELAY(1000);
242
243 for (i = 0; i < RTK_TIMEOUT; i++) {
244 rval = CSR_READ_4(sc, RTK_PHYAR);
245 if (!(rval & RTK_PHYAR_BUSY))
246 break;
247 DELAY(100);
248 }
249
250 if (i == RTK_TIMEOUT) {
251 aprint_error("%s: PHY write reg %x <- %x failed\n",
252 sc->sc_dev.dv_xname, reg, data);
253 }
254 }
255
256 static int
257 re_miibus_readreg(struct device *dev, int phy, int reg)
258 {
259 struct rtk_softc *sc = (void *)dev;
260 uint16_t rval = 0;
261 uint16_t re8139_reg = 0;
262 int s;
263
264 s = splnet();
265
266 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
267 rval = re_gmii_readreg(dev, phy, reg);
268 splx(s);
269 return rval;
270 }
271
272 /* Pretend the internal PHY is only at address 0 */
273 if (phy) {
274 splx(s);
275 return 0;
276 }
277 switch (reg) {
278 case MII_BMCR:
279 re8139_reg = RTK_BMCR;
280 break;
281 case MII_BMSR:
282 re8139_reg = RTK_BMSR;
283 break;
284 case MII_ANAR:
285 re8139_reg = RTK_ANAR;
286 break;
287 case MII_ANER:
288 re8139_reg = RTK_ANER;
289 break;
290 case MII_ANLPAR:
291 re8139_reg = RTK_LPAR;
292 break;
293 case MII_PHYIDR1:
294 case MII_PHYIDR2:
295 splx(s);
296 return 0;
297 /*
298 * Allow the rlphy driver to read the media status
299 * register. If we have a link partner which does not
300 * support NWAY, this is the register which will tell
301 * us the results of parallel detection.
302 */
303 case RTK_MEDIASTAT:
304 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
305 splx(s);
306 return rval;
307 default:
308 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
309 splx(s);
310 return 0;
311 }
312 rval = CSR_READ_2(sc, re8139_reg);
313 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
314 /* 8139C+ has different bit layout. */
315 rval &= ~(BMCR_LOOP | BMCR_ISO);
316 }
317 splx(s);
318 return rval;
319 }
320
321 static void
322 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
323 {
324 struct rtk_softc *sc = (void *)dev;
325 uint16_t re8139_reg = 0;
326 int s;
327
328 s = splnet();
329
330 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
331 re_gmii_writereg(dev, phy, reg, data);
332 splx(s);
333 return;
334 }
335
336 /* Pretend the internal PHY is only at address 0 */
337 if (phy) {
338 splx(s);
339 return;
340 }
341 switch (reg) {
342 case MII_BMCR:
343 re8139_reg = RTK_BMCR;
344 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
345 /* 8139C+ has different bit layout. */
346 data &= ~(BMCR_LOOP | BMCR_ISO);
347 }
348 break;
349 case MII_BMSR:
350 re8139_reg = RTK_BMSR;
351 break;
352 case MII_ANAR:
353 re8139_reg = RTK_ANAR;
354 break;
355 case MII_ANER:
356 re8139_reg = RTK_ANER;
357 break;
358 case MII_ANLPAR:
359 re8139_reg = RTK_LPAR;
360 break;
361 case MII_PHYIDR1:
362 case MII_PHYIDR2:
363 splx(s);
364 return;
365 break;
366 default:
367 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
368 splx(s);
369 return;
370 }
371 CSR_WRITE_2(sc, re8139_reg, data);
372 splx(s);
373 return;
374 }
375
376 static void
377 re_miibus_statchg(struct device *dev)
378 {
379
380 return;
381 }
382
383 static void
384 re_reset(struct rtk_softc *sc)
385 {
386 int i;
387
388 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
389
390 for (i = 0; i < RTK_TIMEOUT; i++) {
391 DELAY(10);
392 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
393 break;
394 }
395 if (i == RTK_TIMEOUT)
396 aprint_error("%s: reset never completed!\n",
397 sc->sc_dev.dv_xname);
398
399 /*
400 * NB: Realtek-supplied Linux driver does this only for
401 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
402 */
403 if (1) /* XXX check softc flag for 8169s version */
404 CSR_WRITE_1(sc, RTK_LDPS, 1);
405
406 return;
407 }
408
409 /*
410 * The following routine is designed to test for a defect on some
411 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
412 * lines connected to the bus, however for a 32-bit only card, they
413 * should be pulled high. The result of this defect is that the
414 * NIC will not work right if you plug it into a 64-bit slot: DMA
415 * operations will be done with 64-bit transfers, which will fail
416 * because the 64-bit data lines aren't connected.
417 *
418 * There's no way to work around this (short of talking a soldering
419 * iron to the board), however we can detect it. The method we use
420 * here is to put the NIC into digital loopback mode, set the receiver
421 * to promiscuous mode, and then try to send a frame. We then compare
422 * the frame data we sent to what was received. If the data matches,
423 * then the NIC is working correctly, otherwise we know the user has
424 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
425 * slot. In the latter case, there's no way the NIC can work correctly,
426 * so we print out a message on the console and abort the device attach.
427 */
428
429 int
430 re_diag(struct rtk_softc *sc)
431 {
432 struct ifnet *ifp = &sc->ethercom.ec_if;
433 struct mbuf *m0;
434 struct ether_header *eh;
435 struct re_rxsoft *rxs;
436 struct re_desc *cur_rx;
437 bus_dmamap_t dmamap;
438 uint16_t status;
439 uint32_t rxstat;
440 int total_len, i, s, error = 0;
441 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
442 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
443
444 /* Allocate a single mbuf */
445
446 MGETHDR(m0, M_DONTWAIT, MT_DATA);
447 if (m0 == NULL)
448 return ENOBUFS;
449
450 /*
451 * Initialize the NIC in test mode. This sets the chip up
452 * so that it can send and receive frames, but performs the
453 * following special functions:
454 * - Puts receiver in promiscuous mode
455 * - Enables digital loopback mode
456 * - Leaves interrupts turned off
457 */
458
459 ifp->if_flags |= IFF_PROMISC;
460 sc->re_testmode = 1;
461 re_init(ifp);
462 re_stop(ifp, 0);
463 DELAY(100000);
464 re_init(ifp);
465
466 /* Put some data in the mbuf */
467
468 eh = mtod(m0, struct ether_header *);
469 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
470 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
471 eh->ether_type = htons(ETHERTYPE_IP);
472 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
473
474 /*
475 * Queue the packet, start transmission.
476 */
477
478 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
479 s = splnet();
480 IF_ENQUEUE(&ifp->if_snd, m0);
481 re_start(ifp);
482 splx(s);
483 m0 = NULL;
484
485 /* Wait for it to propagate through the chip */
486
487 DELAY(100000);
488 for (i = 0; i < RTK_TIMEOUT; i++) {
489 status = CSR_READ_2(sc, RTK_ISR);
490 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
491 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
492 break;
493 DELAY(10);
494 }
495 if (i == RTK_TIMEOUT) {
496 aprint_error("%s: diagnostic failed, failed to receive packet "
497 "in loopback mode\n", sc->sc_dev.dv_xname);
498 error = EIO;
499 goto done;
500 }
501
502 /*
503 * The packet should have been dumped into the first
504 * entry in the RX DMA ring. Grab it from there.
505 */
506
507 rxs = &sc->re_ldata.re_rxsoft[0];
508 dmamap = rxs->rxs_dmamap;
509 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
510 BUS_DMASYNC_POSTREAD);
511 bus_dmamap_unload(sc->sc_dmat, dmamap);
512
513 m0 = rxs->rxs_mbuf;
514 rxs->rxs_mbuf = NULL;
515 eh = mtod(m0, struct ether_header *);
516
517 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
518 cur_rx = &sc->re_ldata.re_rx_list[0];
519 rxstat = le32toh(cur_rx->re_cmdstat);
520 total_len = rxstat & sc->re_rxlenmask;
521
522 if (total_len != ETHER_MIN_LEN) {
523 aprint_error("%s: diagnostic failed, received short packet\n",
524 sc->sc_dev.dv_xname);
525 error = EIO;
526 goto done;
527 }
528
529 /* Test that the received packet data matches what we sent. */
530
531 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
532 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
533 ntohs(eh->ether_type) != ETHERTYPE_IP) {
534 aprint_error("%s: WARNING, DMA FAILURE!\n",
535 sc->sc_dev.dv_xname);
536 aprint_error("%s: expected TX data: %s",
537 sc->sc_dev.dv_xname, ether_sprintf(dst));
538 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
539 aprint_error("%s: received RX data: %s",
540 sc->sc_dev.dv_xname,
541 ether_sprintf(eh->ether_dhost));
542 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
543 ntohs(eh->ether_type));
544 aprint_error("%s: You may have a defective 32-bit NIC plugged "
545 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
546 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
547 "for proper operation.\n", sc->sc_dev.dv_xname);
548 aprint_error("%s: Read the re(4) man page for more details.\n",
549 sc->sc_dev.dv_xname);
550 error = EIO;
551 }
552
553 done:
554 /* Turn interface off, release resources */
555
556 sc->re_testmode = 0;
557 ifp->if_flags &= ~IFF_PROMISC;
558 re_stop(ifp, 0);
559 if (m0 != NULL)
560 m_freem(m0);
561
562 return error;
563 }
564
565
566 /*
567 * Attach the interface. Allocate softc structures, do ifmedia
568 * setup and ethernet/BPF attach.
569 */
570 void
571 re_attach(struct rtk_softc *sc)
572 {
573 u_char eaddr[ETHER_ADDR_LEN];
574 uint16_t val;
575 struct ifnet *ifp;
576 int error = 0, i, addr_len;
577
578 /* Reset the adapter. */
579 re_reset(sc);
580
581 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
582 addr_len = RTK_EEADDR_LEN1;
583 else
584 addr_len = RTK_EEADDR_LEN0;
585
586 /*
587 * Get station address from the EEPROM.
588 */
589 for (i = 0; i < 3; i++) {
590 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
591 eaddr[(i * 2) + 0] = val & 0xff;
592 eaddr[(i * 2) + 1] = val >> 8;
593 }
594
595 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
596 uint32_t hwrev;
597
598 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
599 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
600 /* These rev numbers are taken from Realtek's driver */
601 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
602 sc->sc_rev = 15;
603 } else if (hwrev == RTK_HWREV_8100E) {
604 sc->sc_rev = 14;
605 } else if (hwrev == RTK_HWREV_8101E) {
606 sc->sc_rev = 13;
607 } else if (hwrev == RTK_HWREV_8168_SPIN2 ||
608 hwrev == RTK_HWREV_8168_SPIN3) {
609 sc->sc_rev = 12;
610 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
611 sc->sc_rev = 11;
612 } else if (hwrev == RTK_HWREV_8169_8110SC) {
613 sc->sc_rev = 5;
614 } else if (hwrev == RTK_HWREV_8169_8110SB) {
615 sc->sc_rev = 4;
616 } else if (hwrev == RTK_HWREV_8169S) {
617 sc->sc_rev = 3;
618 } else if (hwrev == RTK_HWREV_8110S) {
619 sc->sc_rev = 2;
620 } else if (hwrev == RTK_HWREV_8169) {
621 sc->sc_rev = 1;
622 sc->sc_quirk |= RTKQ_8169NONS;
623 } else {
624 aprint_normal("%s: Unknown revision (0x%08x)\n",
625 sc->sc_dev.dv_xname, hwrev);
626 /* assume the latest one */
627 sc->sc_rev = 15;
628 }
629
630 /* Set RX length mask */
631 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
633 } else {
634 /* Set RX length mask */
635 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
636 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
637 }
638
639 aprint_normal("%s: Ethernet address %s\n",
640 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
641
642 if (sc->re_ldata.re_tx_desc_cnt >
643 PAGE_SIZE / sizeof(struct re_desc)) {
644 sc->re_ldata.re_tx_desc_cnt =
645 PAGE_SIZE / sizeof(struct re_desc);
646 }
647
648 aprint_verbose("%s: using %d tx descriptors\n",
649 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
650 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
651
652 /* Allocate DMA'able memory for the TX ring */
653 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
654 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
655 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
656 aprint_error("%s: can't allocate tx listseg, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_0;
659 }
660
661 /* Load the map for the TX ring. */
662 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
663 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
664 (caddr_t *)&sc->re_ldata.re_tx_list,
665 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
666 aprint_error("%s: can't map tx list, error = %d\n",
667 sc->sc_dev.dv_xname, error);
668 goto fail_1;
669 }
670 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
671
672 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
673 RE_TX_LIST_SZ(sc), 0, 0,
674 &sc->re_ldata.re_tx_list_map)) != 0) {
675 aprint_error("%s: can't create tx list map, error = %d\n",
676 sc->sc_dev.dv_xname, error);
677 goto fail_2;
678 }
679
680
681 if ((error = bus_dmamap_load(sc->sc_dmat,
682 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
683 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
684 aprint_error("%s: can't load tx list, error = %d\n",
685 sc->sc_dev.dv_xname, error);
686 goto fail_3;
687 }
688
689 /* Create DMA maps for TX buffers */
690 for (i = 0; i < RE_TX_QLEN; i++) {
691 error = bus_dmamap_create(sc->sc_dmat,
692 round_page(IP_MAXPACKET),
693 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
694 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
695 if (error) {
696 aprint_error("%s: can't create DMA map for TX\n",
697 sc->sc_dev.dv_xname);
698 goto fail_4;
699 }
700 }
701
702 /* Allocate DMA'able memory for the RX ring */
703 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
704 if ((error = bus_dmamem_alloc(sc->sc_dmat,
705 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
706 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
707 aprint_error("%s: can't allocate rx listseg, error = %d\n",
708 sc->sc_dev.dv_xname, error);
709 goto fail_4;
710 }
711
712 /* Load the map for the RX ring. */
713 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
714 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
715 (caddr_t *)&sc->re_ldata.re_rx_list,
716 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
717 aprint_error("%s: can't map rx list, error = %d\n",
718 sc->sc_dev.dv_xname, error);
719 goto fail_5;
720 }
721 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
722
723 if ((error = bus_dmamap_create(sc->sc_dmat,
724 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
725 &sc->re_ldata.re_rx_list_map)) != 0) {
726 aprint_error("%s: can't create rx list map, error = %d\n",
727 sc->sc_dev.dv_xname, error);
728 goto fail_6;
729 }
730
731 if ((error = bus_dmamap_load(sc->sc_dmat,
732 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
733 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
734 aprint_error("%s: can't load rx list, error = %d\n",
735 sc->sc_dev.dv_xname, error);
736 goto fail_7;
737 }
738
739 /* Create DMA maps for RX buffers */
740 for (i = 0; i < RE_RX_DESC_CNT; i++) {
741 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
742 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
743 if (error) {
744 aprint_error("%s: can't create DMA map for RX\n",
745 sc->sc_dev.dv_xname);
746 goto fail_8;
747 }
748 }
749
750 /*
751 * Record interface as attached. From here, we should not fail.
752 */
753 sc->sc_flags |= RTK_ATTACHED;
754
755 ifp = &sc->ethercom.ec_if;
756 ifp->if_softc = sc;
757 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
758 ifp->if_mtu = ETHERMTU;
759 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
760 ifp->if_ioctl = re_ioctl;
761 sc->ethercom.ec_capabilities |=
762 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
763 ifp->if_start = re_start;
764 ifp->if_stop = re_stop;
765
766 /*
767 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
768 * so we have a workaround to handle the bug by padding
769 * such packets manually.
770 */
771 ifp->if_capabilities |=
772 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
773 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
774 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
775 IFCAP_TSOv4;
776 ifp->if_watchdog = re_watchdog;
777 ifp->if_init = re_init;
778 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
779 ifp->if_capenable = ifp->if_capabilities;
780 IFQ_SET_READY(&ifp->if_snd);
781
782 callout_init(&sc->rtk_tick_ch);
783
784 /* Do MII setup */
785 sc->mii.mii_ifp = ifp;
786 sc->mii.mii_readreg = re_miibus_readreg;
787 sc->mii.mii_writereg = re_miibus_writereg;
788 sc->mii.mii_statchg = re_miibus_statchg;
789 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
790 re_ifmedia_sts);
791 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
792 MII_OFFSET_ANY, 0);
793 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
794
795 /*
796 * Call MI attach routine.
797 */
798 if_attach(ifp);
799 ether_ifattach(ifp, eaddr);
800
801
802 /*
803 * Make sure the interface is shutdown during reboot.
804 */
805 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
806 if (sc->sc_sdhook == NULL)
807 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
808 sc->sc_dev.dv_xname);
809 /*
810 * Add a suspend hook to make sure we come back up after a
811 * resume.
812 */
813 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
814 re_power, sc);
815 if (sc->sc_powerhook == NULL)
816 aprint_error("%s: WARNING: unable to establish power hook\n",
817 sc->sc_dev.dv_xname);
818
819
820 return;
821
822 fail_8:
823 /* Destroy DMA maps for RX buffers. */
824 for (i = 0; i < RE_RX_DESC_CNT; i++)
825 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
826 bus_dmamap_destroy(sc->sc_dmat,
827 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
828
829 /* Free DMA'able memory for the RX ring. */
830 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
831 fail_7:
832 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
833 fail_6:
834 bus_dmamem_unmap(sc->sc_dmat,
835 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
836 fail_5:
837 bus_dmamem_free(sc->sc_dmat,
838 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
839
840 fail_4:
841 /* Destroy DMA maps for TX buffers. */
842 for (i = 0; i < RE_TX_QLEN; i++)
843 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
844 bus_dmamap_destroy(sc->sc_dmat,
845 sc->re_ldata.re_txq[i].txq_dmamap);
846
847 /* Free DMA'able memory for the TX ring. */
848 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
849 fail_3:
850 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
851 fail_2:
852 bus_dmamem_unmap(sc->sc_dmat,
853 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
854 fail_1:
855 bus_dmamem_free(sc->sc_dmat,
856 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
857 fail_0:
858 return;
859 }
860
861
862 /*
863 * re_activate:
864 * Handle device activation/deactivation requests.
865 */
866 int
867 re_activate(struct device *self, enum devact act)
868 {
869 struct rtk_softc *sc = (void *)self;
870 int s, error = 0;
871
872 s = splnet();
873 switch (act) {
874 case DVACT_ACTIVATE:
875 error = EOPNOTSUPP;
876 break;
877 case DVACT_DEACTIVATE:
878 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
879 if_deactivate(&sc->ethercom.ec_if);
880 break;
881 }
882 splx(s);
883
884 return error;
885 }
886
887 /*
888 * re_detach:
889 * Detach a rtk interface.
890 */
891 int
892 re_detach(struct rtk_softc *sc)
893 {
894 struct ifnet *ifp = &sc->ethercom.ec_if;
895 int i;
896
897 /*
898 * Succeed now if there isn't any work to do.
899 */
900 if ((sc->sc_flags & RTK_ATTACHED) == 0)
901 return 0;
902
903 /* Unhook our tick handler. */
904 callout_stop(&sc->rtk_tick_ch);
905
906 /* Detach all PHYs. */
907 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
908
909 /* Delete all remaining media. */
910 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
911
912 ether_ifdetach(ifp);
913 if_detach(ifp);
914
915 /* Destroy DMA maps for RX buffers. */
916 for (i = 0; i < RE_RX_DESC_CNT; i++)
917 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
918 bus_dmamap_destroy(sc->sc_dmat,
919 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
920
921 /* Free DMA'able memory for the RX ring. */
922 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
923 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
924 bus_dmamem_unmap(sc->sc_dmat,
925 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
926 bus_dmamem_free(sc->sc_dmat,
927 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
928
929 /* Destroy DMA maps for TX buffers. */
930 for (i = 0; i < RE_TX_QLEN; i++)
931 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->re_ldata.re_txq[i].txq_dmamap);
934
935 /* Free DMA'able memory for the TX ring. */
936 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
937 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
938 bus_dmamem_unmap(sc->sc_dmat,
939 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
940 bus_dmamem_free(sc->sc_dmat,
941 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
942
943
944 shutdownhook_disestablish(sc->sc_sdhook);
945 powerhook_disestablish(sc->sc_powerhook);
946
947 return 0;
948 }
949
950 /*
951 * re_enable:
952 * Enable the RTL81X9 chip.
953 */
954 static int
955 re_enable(struct rtk_softc *sc)
956 {
957
958 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
959 if ((*sc->sc_enable)(sc) != 0) {
960 aprint_error("%s: device enable failed\n",
961 sc->sc_dev.dv_xname);
962 return EIO;
963 }
964 sc->sc_flags |= RTK_ENABLED;
965 }
966 return 0;
967 }
968
969 /*
970 * re_disable:
971 * Disable the RTL81X9 chip.
972 */
973 static void
974 re_disable(struct rtk_softc *sc)
975 {
976
977 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
978 (*sc->sc_disable)(sc);
979 sc->sc_flags &= ~RTK_ENABLED;
980 }
981 }
982
983 /*
984 * re_power:
985 * Power management (suspend/resume) hook.
986 */
987 void
988 re_power(int why, void *arg)
989 {
990 struct rtk_softc *sc = (void *)arg;
991 struct ifnet *ifp = &sc->ethercom.ec_if;
992 int s;
993
994 s = splnet();
995 switch (why) {
996 case PWR_SUSPEND:
997 case PWR_STANDBY:
998 re_stop(ifp, 0);
999 if (sc->sc_power != NULL)
1000 (*sc->sc_power)(sc, why);
1001 break;
1002 case PWR_RESUME:
1003 if (ifp->if_flags & IFF_UP) {
1004 if (sc->sc_power != NULL)
1005 (*sc->sc_power)(sc, why);
1006 re_init(ifp);
1007 }
1008 break;
1009 case PWR_SOFTSUSPEND:
1010 case PWR_SOFTSTANDBY:
1011 case PWR_SOFTRESUME:
1012 break;
1013 }
1014 splx(s);
1015 }
1016
1017
1018 static int
1019 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1020 {
1021 struct mbuf *n = NULL;
1022 bus_dmamap_t map;
1023 struct re_desc *d;
1024 struct re_rxsoft *rxs;
1025 uint32_t cmdstat;
1026 int error;
1027
1028 if (m == NULL) {
1029 MGETHDR(n, M_DONTWAIT, MT_DATA);
1030 if (n == NULL)
1031 return ENOBUFS;
1032
1033 MCLGET(n, M_DONTWAIT);
1034 if ((n->m_flags & M_EXT) == 0) {
1035 m_freem(n);
1036 return ENOBUFS;
1037 }
1038 m = n;
1039 } else
1040 m->m_data = m->m_ext.ext_buf;
1041
1042 /*
1043 * Initialize mbuf length fields and fixup
1044 * alignment so that the frame payload is
1045 * longword aligned.
1046 */
1047 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1048 m->m_data += RE_ETHER_ALIGN;
1049
1050 rxs = &sc->re_ldata.re_rxsoft[idx];
1051 map = rxs->rxs_dmamap;
1052 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1053 BUS_DMA_READ|BUS_DMA_NOWAIT);
1054
1055 if (error)
1056 goto out;
1057
1058 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1059 BUS_DMASYNC_PREREAD);
1060
1061 d = &sc->re_ldata.re_rx_list[idx];
1062 #ifdef DIAGNOSTIC
1063 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1064 cmdstat = le32toh(d->re_cmdstat);
1065 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1066 if (cmdstat & RE_RDESC_STAT_OWN) {
1067 panic("%s: tried to map busy RX descriptor",
1068 sc->sc_dev.dv_xname);
1069 }
1070 #endif
1071
1072 rxs->rxs_mbuf = m;
1073
1074 d->re_vlanctl = 0;
1075 cmdstat = map->dm_segs[0].ds_len;
1076 if (idx == (RE_RX_DESC_CNT - 1))
1077 cmdstat |= RE_RDESC_CMD_EOR;
1078 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1079 d->re_cmdstat = htole32(cmdstat);
1080 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1081 cmdstat |= RE_RDESC_CMD_OWN;
1082 d->re_cmdstat = htole32(cmdstat);
1083 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1084
1085 return 0;
1086 out:
1087 if (n != NULL)
1088 m_freem(n);
1089 return ENOMEM;
1090 }
1091
1092 static int
1093 re_tx_list_init(struct rtk_softc *sc)
1094 {
1095 int i;
1096
1097 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1098 for (i = 0; i < RE_TX_QLEN; i++) {
1099 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1100 }
1101
1102 bus_dmamap_sync(sc->sc_dmat,
1103 sc->re_ldata.re_tx_list_map, 0,
1104 sc->re_ldata.re_tx_list_map->dm_mapsize,
1105 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1106 sc->re_ldata.re_txq_prodidx = 0;
1107 sc->re_ldata.re_txq_considx = 0;
1108 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1109 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1110 sc->re_ldata.re_tx_nextfree = 0;
1111
1112 return 0;
1113 }
1114
1115 static int
1116 re_rx_list_init(struct rtk_softc *sc)
1117 {
1118 int i;
1119
1120 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1121
1122 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1123 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1124 return ENOBUFS;
1125 }
1126
1127 sc->re_ldata.re_rx_prodidx = 0;
1128 sc->re_head = sc->re_tail = NULL;
1129
1130 return 0;
1131 }
1132
1133 /*
1134 * RX handler for C+ and 8169. For the gigE chips, we support
1135 * the reception of jumbo frames that have been fragmented
1136 * across multiple 2K mbuf cluster buffers.
1137 */
1138 static void
1139 re_rxeof(struct rtk_softc *sc)
1140 {
1141 struct mbuf *m;
1142 struct ifnet *ifp;
1143 int i, total_len;
1144 struct re_desc *cur_rx;
1145 struct re_rxsoft *rxs;
1146 uint32_t rxstat, rxvlan;
1147
1148 ifp = &sc->ethercom.ec_if;
1149
1150 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1151 cur_rx = &sc->re_ldata.re_rx_list[i];
1152 RE_RXDESCSYNC(sc, i,
1153 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1154 rxstat = le32toh(cur_rx->re_cmdstat);
1155 rxvlan = le32toh(cur_rx->re_vlanctl);
1156 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1157 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1158 break;
1159 }
1160 total_len = rxstat & sc->re_rxlenmask;
1161 rxs = &sc->re_ldata.re_rxsoft[i];
1162 m = rxs->rxs_mbuf;
1163
1164 /* Invalidate the RX mbuf and unload its map */
1165
1166 bus_dmamap_sync(sc->sc_dmat,
1167 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1168 BUS_DMASYNC_POSTREAD);
1169 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1170
1171 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1172 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1173 if (sc->re_head == NULL)
1174 sc->re_head = sc->re_tail = m;
1175 else {
1176 m->m_flags &= ~M_PKTHDR;
1177 sc->re_tail->m_next = m;
1178 sc->re_tail = m;
1179 }
1180 re_newbuf(sc, i, NULL);
1181 continue;
1182 }
1183
1184 /*
1185 * NOTE: for the 8139C+, the frame length field
1186 * is always 12 bits in size, but for the gigE chips,
1187 * it is 13 bits (since the max RX frame length is 16K).
1188 * Unfortunately, all 32 bits in the status word
1189 * were already used, so to make room for the extra
1190 * length bit, RealTek took out the 'frame alignment
1191 * error' bit and shifted the other status bits
1192 * over one slot. The OWN, EOR, FS and LS bits are
1193 * still in the same places. We have already extracted
1194 * the frame length and checked the OWN bit, so rather
1195 * than using an alternate bit mapping, we shift the
1196 * status bits one space to the right so we can evaluate
1197 * them using the 8169 status as though it was in the
1198 * same format as that of the 8139C+.
1199 */
1200 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1201 rxstat >>= 1;
1202
1203 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1204 #ifdef RE_DEBUG
1205 aprint_error("%s: RX error (rxstat = 0x%08x)",
1206 sc->sc_dev.dv_xname, rxstat);
1207 if (rxstat & RE_RDESC_STAT_FRALIGN)
1208 aprint_error(", frame alignment error");
1209 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1210 aprint_error(", out of buffer space");
1211 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1212 aprint_error(", FIFO overrun");
1213 if (rxstat & RE_RDESC_STAT_GIANT)
1214 aprint_error(", giant packet");
1215 if (rxstat & RE_RDESC_STAT_RUNT)
1216 aprint_error(", runt packet");
1217 if (rxstat & RE_RDESC_STAT_CRCERR)
1218 aprint_error(", CRC error");
1219 aprint_error("\n");
1220 #endif
1221 ifp->if_ierrors++;
1222 /*
1223 * If this is part of a multi-fragment packet,
1224 * discard all the pieces.
1225 */
1226 if (sc->re_head != NULL) {
1227 m_freem(sc->re_head);
1228 sc->re_head = sc->re_tail = NULL;
1229 }
1230 re_newbuf(sc, i, m);
1231 continue;
1232 }
1233
1234 /*
1235 * If allocating a replacement mbuf fails,
1236 * reload the current one.
1237 */
1238
1239 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1240 ifp->if_ierrors++;
1241 if (sc->re_head != NULL) {
1242 m_freem(sc->re_head);
1243 sc->re_head = sc->re_tail = NULL;
1244 }
1245 re_newbuf(sc, i, m);
1246 continue;
1247 }
1248
1249 if (sc->re_head != NULL) {
1250 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1251 /*
1252 * Special case: if there's 4 bytes or less
1253 * in this buffer, the mbuf can be discarded:
1254 * the last 4 bytes is the CRC, which we don't
1255 * care about anyway.
1256 */
1257 if (m->m_len <= ETHER_CRC_LEN) {
1258 sc->re_tail->m_len -=
1259 (ETHER_CRC_LEN - m->m_len);
1260 m_freem(m);
1261 } else {
1262 m->m_len -= ETHER_CRC_LEN;
1263 m->m_flags &= ~M_PKTHDR;
1264 sc->re_tail->m_next = m;
1265 }
1266 m = sc->re_head;
1267 sc->re_head = sc->re_tail = NULL;
1268 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1269 } else
1270 m->m_pkthdr.len = m->m_len =
1271 (total_len - ETHER_CRC_LEN);
1272
1273 ifp->if_ipackets++;
1274 m->m_pkthdr.rcvif = ifp;
1275
1276 /* Do RX checksumming */
1277
1278 /* Check IP header checksum */
1279 if (rxstat & RE_RDESC_STAT_PROTOID) {
1280 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1281 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1282 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1283 }
1284
1285 /* Check TCP/UDP checksum */
1286 if (RE_TCPPKT(rxstat)) {
1287 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1288 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1289 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1290 } else if (RE_UDPPKT(rxstat)) {
1291 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1292 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 }
1295
1296 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1297 VLAN_INPUT_TAG(ifp, m,
1298 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1299 continue);
1300 }
1301 #if NBPFILTER > 0
1302 if (ifp->if_bpf)
1303 bpf_mtap(ifp->if_bpf, m);
1304 #endif
1305 (*ifp->if_input)(ifp, m);
1306 }
1307
1308 sc->re_ldata.re_rx_prodidx = i;
1309 }
1310
1311 static void
1312 re_txeof(struct rtk_softc *sc)
1313 {
1314 struct ifnet *ifp;
1315 struct re_txq *txq;
1316 uint32_t txstat;
1317 int idx, descidx;
1318
1319 ifp = &sc->ethercom.ec_if;
1320
1321 for (idx = sc->re_ldata.re_txq_considx;
1322 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1323 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1324 txq = &sc->re_ldata.re_txq[idx];
1325 KASSERT(txq->txq_mbuf != NULL);
1326
1327 descidx = txq->txq_descidx;
1328 RE_TXDESCSYNC(sc, descidx,
1329 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1330 txstat =
1331 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1332 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1333 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1334 if (txstat & RE_TDESC_CMD_OWN) {
1335 break;
1336 }
1337
1338 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1339 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1340 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1341 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1342 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1343 m_freem(txq->txq_mbuf);
1344 txq->txq_mbuf = NULL;
1345
1346 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1347 ifp->if_collisions++;
1348 if (txstat & RE_TDESC_STAT_TXERRSUM)
1349 ifp->if_oerrors++;
1350 else
1351 ifp->if_opackets++;
1352 }
1353
1354 sc->re_ldata.re_txq_considx = idx;
1355
1356 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1357 ifp->if_flags &= ~IFF_OACTIVE;
1358
1359 /*
1360 * If not all descriptors have been released reaped yet,
1361 * reload the timer so that we will eventually get another
1362 * interrupt that will cause us to re-enter this routine.
1363 * This is done in case the transmitter has gone idle.
1364 */
1365 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1366 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1368 /*
1369 * Some chips will ignore a second TX request
1370 * issued while an existing transmission is in
1371 * progress. If the transmitter goes idle but
1372 * there are still packets waiting to be sent,
1373 * we need to restart the channel here to flush
1374 * them out. This only seems to be required with
1375 * the PCIe devices.
1376 */
1377 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1378 }
1379 } else
1380 ifp->if_timer = 0;
1381 }
1382
1383 /*
1384 * Stop all chip I/O so that the kernel's probe routines don't
1385 * get confused by errant DMAs when rebooting.
1386 */
1387 static void
1388 re_shutdown(void *vsc)
1389
1390 {
1391 struct rtk_softc *sc = vsc;
1392
1393 re_stop(&sc->ethercom.ec_if, 0);
1394 }
1395
1396
1397 static void
1398 re_tick(void *xsc)
1399 {
1400 struct rtk_softc *sc = xsc;
1401 int s;
1402
1403 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1404 s = splnet();
1405
1406 mii_tick(&sc->mii);
1407 splx(s);
1408
1409 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1410 }
1411
1412 #ifdef DEVICE_POLLING
1413 static void
1414 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1415 {
1416 struct rtk_softc *sc = ifp->if_softc;
1417
1418 RTK_LOCK(sc);
1419 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1420 ether_poll_deregister(ifp);
1421 cmd = POLL_DEREGISTER;
1422 }
1423 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1424 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1425 goto done;
1426 }
1427
1428 sc->rxcycles = count;
1429 re_rxeof(sc);
1430 re_txeof(sc);
1431
1432 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1433 (*ifp->if_start)(ifp);
1434
1435 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1436 uint16_t status;
1437
1438 status = CSR_READ_2(sc, RTK_ISR);
1439 if (status == 0xffff)
1440 goto done;
1441 if (status)
1442 CSR_WRITE_2(sc, RTK_ISR, status);
1443
1444 /*
1445 * XXX check behaviour on receiver stalls.
1446 */
1447
1448 if (status & RTK_ISR_SYSTEM_ERR) {
1449 re_init(sc);
1450 }
1451 }
1452 done:
1453 RTK_UNLOCK(sc);
1454 }
1455 #endif /* DEVICE_POLLING */
1456
1457 int
1458 re_intr(void *arg)
1459 {
1460 struct rtk_softc *sc = arg;
1461 struct ifnet *ifp;
1462 uint16_t status;
1463 int handled = 0;
1464
1465 ifp = &sc->ethercom.ec_if;
1466
1467 if ((ifp->if_flags & IFF_UP) == 0)
1468 return 0;
1469
1470 #ifdef DEVICE_POLLING
1471 if (ifp->if_flags & IFF_POLLING)
1472 goto done;
1473 if ((ifp->if_capenable & IFCAP_POLLING) &&
1474 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1475 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1476 re_poll(ifp, 0, 1);
1477 goto done;
1478 }
1479 #endif /* DEVICE_POLLING */
1480
1481 for (;;) {
1482
1483 status = CSR_READ_2(sc, RTK_ISR);
1484 /* If the card has gone away the read returns 0xffff. */
1485 if (status == 0xffff)
1486 break;
1487 if (status) {
1488 handled = 1;
1489 CSR_WRITE_2(sc, RTK_ISR, status);
1490 }
1491
1492 if ((status & RTK_INTRS_CPLUS) == 0)
1493 break;
1494
1495 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1496 re_rxeof(sc);
1497
1498 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1499 RTK_ISR_TX_DESC_UNAVAIL))
1500 re_txeof(sc);
1501
1502 if (status & RTK_ISR_SYSTEM_ERR) {
1503 re_init(ifp);
1504 }
1505
1506 if (status & RTK_ISR_LINKCHG) {
1507 callout_stop(&sc->rtk_tick_ch);
1508 re_tick(sc);
1509 }
1510 }
1511
1512 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1513 re_start(ifp);
1514
1515 #ifdef DEVICE_POLLING
1516 done:
1517 #endif
1518
1519 return handled;
1520 }
1521
1522
1523
1524 /*
1525 * Main transmit routine for C+ and gigE NICs.
1526 */
1527
1528 static void
1529 re_start(struct ifnet *ifp)
1530 {
1531 struct rtk_softc *sc;
1532 struct mbuf *m;
1533 bus_dmamap_t map;
1534 struct re_txq *txq;
1535 struct re_desc *d;
1536 struct m_tag *mtag;
1537 uint32_t cmdstat, re_flags, vlanctl;
1538 int ofree, idx, error, nsegs, seg;
1539 int startdesc, curdesc, lastdesc;
1540 boolean_t pad;
1541
1542 sc = ifp->if_softc;
1543 ofree = sc->re_ldata.re_txq_free;
1544
1545 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1546
1547 IFQ_POLL(&ifp->if_snd, m);
1548 if (m == NULL)
1549 break;
1550
1551 if (sc->re_ldata.re_txq_free == 0 ||
1552 sc->re_ldata.re_tx_free == 0) {
1553 /* no more free slots left */
1554 ifp->if_flags |= IFF_OACTIVE;
1555 break;
1556 }
1557
1558 /*
1559 * Set up checksum offload. Note: checksum offload bits must
1560 * appear in all descriptors of a multi-descriptor transmit
1561 * attempt. (This is according to testing done with an 8169
1562 * chip. I'm not sure if this is a requirement or a bug.)
1563 */
1564
1565 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1566 uint32_t segsz = m->m_pkthdr.segsz;
1567
1568 re_flags = RE_TDESC_CMD_LGSEND |
1569 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1570 } else {
1571 /*
1572 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1573 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1574 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1575 */
1576 re_flags = 0;
1577 if ((m->m_pkthdr.csum_flags &
1578 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1579 != 0) {
1580 re_flags |= RE_TDESC_CMD_IPCSUM;
1581 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1582 re_flags |= RE_TDESC_CMD_TCPCSUM;
1583 } else if (m->m_pkthdr.csum_flags &
1584 M_CSUM_UDPv4) {
1585 re_flags |= RE_TDESC_CMD_UDPCSUM;
1586 }
1587 }
1588 }
1589
1590 txq = &sc->re_ldata.re_txq[idx];
1591 map = txq->txq_dmamap;
1592 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1593 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1594
1595 if (__predict_false(error)) {
1596 /* XXX try to defrag if EFBIG? */
1597 aprint_error("%s: can't map mbuf (error %d)\n",
1598 sc->sc_dev.dv_xname, error);
1599
1600 IFQ_DEQUEUE(&ifp->if_snd, m);
1601 m_freem(m);
1602 ifp->if_oerrors++;
1603 continue;
1604 }
1605
1606 nsegs = map->dm_nsegs;
1607 pad = FALSE;
1608 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1609 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1610 pad = TRUE;
1611 nsegs++;
1612 }
1613
1614 if (nsegs > sc->re_ldata.re_tx_free) {
1615 /*
1616 * Not enough free descriptors to transmit this packet.
1617 */
1618 ifp->if_flags |= IFF_OACTIVE;
1619 bus_dmamap_unload(sc->sc_dmat, map);
1620 break;
1621 }
1622
1623 IFQ_DEQUEUE(&ifp->if_snd, m);
1624
1625 /*
1626 * Make sure that the caches are synchronized before we
1627 * ask the chip to start DMA for the packet data.
1628 */
1629 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1630 BUS_DMASYNC_PREWRITE);
1631
1632 /*
1633 * Set up hardware VLAN tagging. Note: vlan tag info must
1634 * appear in all descriptors of a multi-descriptor
1635 * transmission attempt.
1636 */
1637 vlanctl = 0;
1638 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1639 vlanctl = bswap16(VLAN_TAG_VALUE(mtag)) |
1640 RE_TDESC_VLANCTL_TAG;
1641
1642 /*
1643 * Map the segment array into descriptors.
1644 * Note that we set the start-of-frame and
1645 * end-of-frame markers for either TX or RX,
1646 * but they really only have meaning in the TX case.
1647 * (In the RX case, it's the chip that tells us
1648 * where packets begin and end.)
1649 * We also keep track of the end of the ring
1650 * and set the end-of-ring bits as needed,
1651 * and we set the ownership bits in all except
1652 * the very first descriptor. (The caller will
1653 * set this descriptor later when it start
1654 * transmission or reception.)
1655 */
1656 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1657 lastdesc = -1;
1658 for (seg = 0; seg < map->dm_nsegs;
1659 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1660 d = &sc->re_ldata.re_tx_list[curdesc];
1661 #ifdef DIAGNOSTIC
1662 RE_TXDESCSYNC(sc, curdesc,
1663 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1664 cmdstat = le32toh(d->re_cmdstat);
1665 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1666 if (cmdstat & RE_TDESC_STAT_OWN) {
1667 panic("%s: tried to map busy TX descriptor",
1668 sc->sc_dev.dv_xname);
1669 }
1670 #endif
1671
1672 d->re_vlanctl = htole32(vlanctl);
1673 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1674 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1675 if (seg == 0)
1676 cmdstat |= RE_TDESC_CMD_SOF;
1677 else
1678 cmdstat |= RE_TDESC_CMD_OWN;
1679 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1680 cmdstat |= RE_TDESC_CMD_EOR;
1681 if (seg == nsegs - 1) {
1682 cmdstat |= RE_TDESC_CMD_EOF;
1683 lastdesc = curdesc;
1684 }
1685 d->re_cmdstat = htole32(cmdstat);
1686 RE_TXDESCSYNC(sc, curdesc,
1687 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1688 }
1689 if (__predict_false(pad)) {
1690 bus_addr_t paddaddr;
1691
1692 d = &sc->re_ldata.re_tx_list[curdesc];
1693 d->re_vlanctl = htole32(vlanctl);
1694 paddaddr = RE_TXPADDADDR(sc);
1695 re_set_bufaddr(d, paddaddr);
1696 cmdstat = re_flags |
1697 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1698 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1699 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1700 cmdstat |= RE_TDESC_CMD_EOR;
1701 d->re_cmdstat = htole32(cmdstat);
1702 RE_TXDESCSYNC(sc, curdesc,
1703 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1704 lastdesc = curdesc;
1705 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1706 }
1707 KASSERT(lastdesc != -1);
1708
1709 /* Transfer ownership of packet to the chip. */
1710
1711 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1712 htole32(RE_TDESC_CMD_OWN);
1713 RE_TXDESCSYNC(sc, startdesc,
1714 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1715
1716 /* update info of TX queue and descriptors */
1717 txq->txq_mbuf = m;
1718 txq->txq_descidx = lastdesc;
1719 txq->txq_nsegs = nsegs;
1720
1721 sc->re_ldata.re_txq_free--;
1722 sc->re_ldata.re_tx_free -= nsegs;
1723 sc->re_ldata.re_tx_nextfree = curdesc;
1724
1725 #if NBPFILTER > 0
1726 /*
1727 * If there's a BPF listener, bounce a copy of this frame
1728 * to him.
1729 */
1730 if (ifp->if_bpf)
1731 bpf_mtap(ifp->if_bpf, m);
1732 #endif
1733 }
1734
1735 if (sc->re_ldata.re_txq_free < ofree) {
1736 /*
1737 * TX packets are enqueued.
1738 */
1739 sc->re_ldata.re_txq_prodidx = idx;
1740
1741 /*
1742 * Start the transmitter to poll.
1743 *
1744 * RealTek put the TX poll request register in a different
1745 * location on the 8169 gigE chip. I don't know why.
1746 */
1747 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1748 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1749 else
1750 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1751
1752 /*
1753 * Use the countdown timer for interrupt moderation.
1754 * 'TX done' interrupts are disabled. Instead, we reset the
1755 * countdown timer, which will begin counting until it hits
1756 * the value in the TIMERINT register, and then trigger an
1757 * interrupt. Each time we write to the TIMERCNT register,
1758 * the timer count is reset to 0.
1759 */
1760 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1761
1762 /*
1763 * Set a timeout in case the chip goes out to lunch.
1764 */
1765 ifp->if_timer = 5;
1766 }
1767 }
1768
1769 static int
1770 re_init(struct ifnet *ifp)
1771 {
1772 struct rtk_softc *sc = ifp->if_softc;
1773 uint8_t *enaddr;
1774 uint32_t rxcfg = 0;
1775 uint32_t reg;
1776 int error;
1777
1778 if ((error = re_enable(sc)) != 0)
1779 goto out;
1780
1781 /*
1782 * Cancel pending I/O and free all RX/TX buffers.
1783 */
1784 re_stop(ifp, 0);
1785
1786 re_reset(sc);
1787
1788 /*
1789 * Enable C+ RX and TX mode, as well as VLAN stripping and
1790 * RX checksum offload. We must configure the C+ register
1791 * before all others.
1792 */
1793 reg = 0;
1794
1795 /*
1796 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1797 * FreeBSD drivers set these bits anyway (for 8139C+?).
1798 * So far, it works.
1799 */
1800
1801 /*
1802 * XXX: For old 8169 set bit 14.
1803 * For 8169S/8110S and above, do not set bit 14.
1804 */
1805 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1806 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1807
1808 if (1) {/* not for 8169S ? */
1809 reg |=
1810 RTK_CPLUSCMD_VLANSTRIP |
1811 (ifp->if_capenable &
1812 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1813 IFCAP_CSUM_UDPv4_Rx) ?
1814 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1815 }
1816
1817 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1818 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1819
1820 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1821 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1822 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1823
1824 DELAY(10000);
1825
1826 /*
1827 * Init our MAC address. Even though the chipset
1828 * documentation doesn't mention it, we need to enter "Config
1829 * register write enable" mode to modify the ID registers.
1830 */
1831 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1832 enaddr = LLADDR(ifp->if_sadl);
1833 reg = enaddr[0] | (enaddr[1] << 8) |
1834 (enaddr[2] << 16) | (enaddr[3] << 24);
1835 CSR_WRITE_4(sc, RTK_IDR0, reg);
1836 reg = enaddr[4] | (enaddr[5] << 8);
1837 CSR_WRITE_4(sc, RTK_IDR4, reg);
1838 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1839
1840 /*
1841 * For C+ mode, initialize the RX descriptors and mbufs.
1842 */
1843 re_rx_list_init(sc);
1844 re_tx_list_init(sc);
1845
1846 /*
1847 * Load the addresses of the RX and TX lists into the chip.
1848 */
1849 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1850 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1851 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1852 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1853
1854 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1855 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1856 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1857 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1858
1859 /*
1860 * Enable transmit and receive.
1861 */
1862 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1863
1864 /*
1865 * Set the initial TX and RX configuration.
1866 */
1867 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1868 /* test mode is needed only for old 8169 */
1869 CSR_WRITE_4(sc, RTK_TXCFG,
1870 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1871 } else
1872 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1873
1874 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1875
1876 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1877
1878 /* Set the individual bit to receive frames for this host only. */
1879 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1880 rxcfg |= RTK_RXCFG_RX_INDIV;
1881
1882 /* If we want promiscuous mode, set the allframes bit. */
1883 if (ifp->if_flags & IFF_PROMISC)
1884 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1885 else
1886 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1887 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1888
1889 /*
1890 * Set capture broadcast bit to capture broadcast frames.
1891 */
1892 if (ifp->if_flags & IFF_BROADCAST)
1893 rxcfg |= RTK_RXCFG_RX_BROAD;
1894 else
1895 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1896 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1897
1898 /*
1899 * Program the multicast filter, if necessary.
1900 */
1901 rtk_setmulti(sc);
1902
1903 #ifdef DEVICE_POLLING
1904 /*
1905 * Disable interrupts if we are polling.
1906 */
1907 if (ifp->if_flags & IFF_POLLING)
1908 CSR_WRITE_2(sc, RTK_IMR, 0);
1909 else /* otherwise ... */
1910 #endif /* DEVICE_POLLING */
1911 /*
1912 * Enable interrupts.
1913 */
1914 if (sc->re_testmode)
1915 CSR_WRITE_2(sc, RTK_IMR, 0);
1916 else
1917 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1918
1919 /* Start RX/TX process. */
1920 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1921 #ifdef notdef
1922 /* Enable receiver and transmitter. */
1923 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1924 #endif
1925
1926 /*
1927 * Initialize the timer interrupt register so that
1928 * a timer interrupt will be generated once the timer
1929 * reaches a certain number of ticks. The timer is
1930 * reloaded on each transmit. This gives us TX interrupt
1931 * moderation, which dramatically improves TX frame rate.
1932 */
1933
1934 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1935 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1936 else {
1937 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1938
1939 /*
1940 * For 8169 gigE NICs, set the max allowed RX packet
1941 * size so we can receive jumbo frames.
1942 */
1943 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1944 }
1945
1946 if (sc->re_testmode)
1947 return 0;
1948
1949 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1950
1951 ifp->if_flags |= IFF_RUNNING;
1952 ifp->if_flags &= ~IFF_OACTIVE;
1953
1954 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1955
1956 out:
1957 if (error) {
1958 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1959 ifp->if_timer = 0;
1960 aprint_error("%s: interface not running\n",
1961 sc->sc_dev.dv_xname);
1962 }
1963
1964 return error;
1965 }
1966
1967 /*
1968 * Set media options.
1969 */
1970 static int
1971 re_ifmedia_upd(struct ifnet *ifp)
1972 {
1973 struct rtk_softc *sc;
1974
1975 sc = ifp->if_softc;
1976
1977 return mii_mediachg(&sc->mii);
1978 }
1979
1980 /*
1981 * Report current media status.
1982 */
1983 static void
1984 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1985 {
1986 struct rtk_softc *sc;
1987
1988 sc = ifp->if_softc;
1989
1990 mii_pollstat(&sc->mii);
1991 ifmr->ifm_active = sc->mii.mii_media_active;
1992 ifmr->ifm_status = sc->mii.mii_media_status;
1993 }
1994
1995 static int
1996 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1997 {
1998 struct rtk_softc *sc = ifp->if_softc;
1999 struct ifreq *ifr = (struct ifreq *) data;
2000 int s, error = 0;
2001
2002 s = splnet();
2003
2004 switch (command) {
2005 case SIOCSIFMTU:
2006 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2007 error = EINVAL;
2008 ifp->if_mtu = ifr->ifr_mtu;
2009 break;
2010 case SIOCGIFMEDIA:
2011 case SIOCSIFMEDIA:
2012 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2013 break;
2014 default:
2015 error = ether_ioctl(ifp, command, data);
2016 if (error == ENETRESET) {
2017 if (ifp->if_flags & IFF_RUNNING)
2018 rtk_setmulti(sc);
2019 error = 0;
2020 }
2021 break;
2022 }
2023
2024 splx(s);
2025
2026 return error;
2027 }
2028
2029 static void
2030 re_watchdog(struct ifnet *ifp)
2031 {
2032 struct rtk_softc *sc;
2033 int s;
2034
2035 sc = ifp->if_softc;
2036 s = splnet();
2037 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2038 ifp->if_oerrors++;
2039
2040 re_txeof(sc);
2041 re_rxeof(sc);
2042
2043 re_init(ifp);
2044
2045 splx(s);
2046 }
2047
2048 /*
2049 * Stop the adapter and free any mbufs allocated to the
2050 * RX and TX lists.
2051 */
2052 static void
2053 re_stop(struct ifnet *ifp, int disable)
2054 {
2055 int i;
2056 struct rtk_softc *sc = ifp->if_softc;
2057
2058 callout_stop(&sc->rtk_tick_ch);
2059
2060 #ifdef DEVICE_POLLING
2061 ether_poll_deregister(ifp);
2062 #endif /* DEVICE_POLLING */
2063
2064 mii_down(&sc->mii);
2065
2066 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2067 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2068
2069 if (sc->re_head != NULL) {
2070 m_freem(sc->re_head);
2071 sc->re_head = sc->re_tail = NULL;
2072 }
2073
2074 /* Free the TX list buffers. */
2075 for (i = 0; i < RE_TX_QLEN; i++) {
2076 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2077 bus_dmamap_unload(sc->sc_dmat,
2078 sc->re_ldata.re_txq[i].txq_dmamap);
2079 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2080 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2081 }
2082 }
2083
2084 /* Free the RX list buffers. */
2085 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2086 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2087 bus_dmamap_unload(sc->sc_dmat,
2088 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2089 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2090 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2091 }
2092 }
2093
2094 if (disable)
2095 re_disable(sc);
2096
2097 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2098 ifp->if_timer = 0;
2099 }
2100