rtl8169.c revision 1.76 1 /* $NetBSD: rtl8169.c,v 1.76 2006/12/26 13:45:43 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if (sc->rtk_type == RTK_8169) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if (sc->rtk_type == RTK_8169) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if (sc->rtk_type == RTK_8139CPLUS) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (sc->rtk_type == RTK_8169) {
578 uint32_t hwrev;
579
580 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
581 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
582 if (hwrev == (0x1 << 28)) {
583 sc->sc_rev = 4;
584 } else if (hwrev == (0x1 << 26)) {
585 sc->sc_rev = 3;
586 } else if (hwrev == (0x1 << 23)) {
587 sc->sc_rev = 2;
588 } else
589 sc->sc_rev = 1;
590
591 /* Set RX length mask */
592
593 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
594
595 /* Force station address autoload from the EEPROM */
596
597 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
598 for (i = 0; i < RTK_TIMEOUT; i++) {
599 if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
600 == 0)
601 break;
602 DELAY(100);
603 }
604 if (i == RTK_TIMEOUT)
605 aprint_error("%s: eeprom autoload timed out\n",
606 sc->sc_dev.dv_xname);
607
608 for (i = 0; i < ETHER_ADDR_LEN; i++)
609 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
610
611 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
612 } else {
613
614 /* Set RX length mask */
615
616 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
617
618 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
619 addr_len = RTK_EEADDR_LEN1;
620 else
621 addr_len = RTK_EEADDR_LEN0;
622
623 /*
624 * Get station address from the EEPROM.
625 */
626 for (i = 0; i < 3; i++) {
627 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
628 eaddr[(i * 2) + 0] = val & 0xff;
629 eaddr[(i * 2) + 1] = val >> 8;
630 }
631
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
633 }
634
635 aprint_normal("%s: Ethernet address %s\n",
636 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
637
638 if (sc->re_ldata.re_tx_desc_cnt >
639 PAGE_SIZE / sizeof(struct re_desc)) {
640 sc->re_ldata.re_tx_desc_cnt =
641 PAGE_SIZE / sizeof(struct re_desc);
642 }
643
644 aprint_verbose("%s: using %d tx descriptors\n",
645 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
646 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
647
648 /* Allocate DMA'able memory for the TX ring */
649 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
650 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
651 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
652 aprint_error("%s: can't allocate tx listseg, error = %d\n",
653 sc->sc_dev.dv_xname, error);
654 goto fail_0;
655 }
656
657 /* Load the map for the TX ring. */
658 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
659 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
660 (caddr_t *)&sc->re_ldata.re_tx_list,
661 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
662 aprint_error("%s: can't map tx list, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_1;
665 }
666 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
667
668 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
669 RE_TX_LIST_SZ(sc), 0, 0,
670 &sc->re_ldata.re_tx_list_map)) != 0) {
671 aprint_error("%s: can't create tx list map, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_2;
674 }
675
676
677 if ((error = bus_dmamap_load(sc->sc_dmat,
678 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
679 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
680 aprint_error("%s: can't load tx list, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_3;
683 }
684
685 /* Create DMA maps for TX buffers */
686 for (i = 0; i < RE_TX_QLEN; i++) {
687 error = bus_dmamap_create(sc->sc_dmat,
688 round_page(IP_MAXPACKET),
689 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
690 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
691 if (error) {
692 aprint_error("%s: can't create DMA map for TX\n",
693 sc->sc_dev.dv_xname);
694 goto fail_4;
695 }
696 }
697
698 /* Allocate DMA'able memory for the RX ring */
699 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
700 if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
702 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_4;
706 }
707
708 /* Load the map for the RX ring. */
709 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
710 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
711 (caddr_t *)&sc->re_ldata.re_rx_list,
712 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
713 aprint_error("%s: can't map rx list, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_5;
716 }
717 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
718
719 if ((error = bus_dmamap_create(sc->sc_dmat,
720 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
721 &sc->re_ldata.re_rx_list_map)) != 0) {
722 aprint_error("%s: can't create rx list map, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_6;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat,
728 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
729 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error("%s: can't load rx list, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_7;
733 }
734
735 /* Create DMA maps for RX buffers */
736 for (i = 0; i < RE_RX_DESC_CNT; i++) {
737 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
739 if (error) {
740 aprint_error("%s: can't create DMA map for RX\n",
741 sc->sc_dev.dv_xname);
742 goto fail_8;
743 }
744 }
745
746 /*
747 * Record interface as attached. From here, we should not fail.
748 */
749 sc->sc_flags |= RTK_ATTACHED;
750
751 ifp = &sc->ethercom.ec_if;
752 ifp->if_softc = sc;
753 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 ifp->if_mtu = ETHERMTU;
755 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 ifp->if_ioctl = re_ioctl;
757 sc->ethercom.ec_capabilities |=
758 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
759 ifp->if_start = re_start;
760 ifp->if_stop = re_stop;
761
762 /*
763 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
764 * so we have a workaround to handle the bug by padding
765 * such packets manually.
766 */
767 ifp->if_capabilities |=
768 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
769 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
770 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
771 IFCAP_TSOv4;
772 ifp->if_watchdog = re_watchdog;
773 ifp->if_init = re_init;
774 if (sc->rtk_type == RTK_8169)
775 ifp->if_baudrate = 1000000000;
776 else
777 ifp->if_baudrate = 100000000;
778 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
779 ifp->if_capenable = ifp->if_capabilities;
780 IFQ_SET_READY(&ifp->if_snd);
781
782 callout_init(&sc->rtk_tick_ch);
783
784 /* Do MII setup */
785 sc->mii.mii_ifp = ifp;
786 sc->mii.mii_readreg = re_miibus_readreg;
787 sc->mii.mii_writereg = re_miibus_writereg;
788 sc->mii.mii_statchg = re_miibus_statchg;
789 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
790 re_ifmedia_sts);
791 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
792 MII_OFFSET_ANY, 0);
793 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
794
795 /*
796 * Call MI attach routine.
797 */
798 if_attach(ifp);
799 ether_ifattach(ifp, eaddr);
800
801
802 /*
803 * Make sure the interface is shutdown during reboot.
804 */
805 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
806 if (sc->sc_sdhook == NULL)
807 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
808 sc->sc_dev.dv_xname);
809 /*
810 * Add a suspend hook to make sure we come back up after a
811 * resume.
812 */
813 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
814 re_power, sc);
815 if (sc->sc_powerhook == NULL)
816 aprint_error("%s: WARNING: unable to establish power hook\n",
817 sc->sc_dev.dv_xname);
818
819
820 return;
821
822 fail_8:
823 /* Destroy DMA maps for RX buffers. */
824 for (i = 0; i < RE_RX_DESC_CNT; i++)
825 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
826 bus_dmamap_destroy(sc->sc_dmat,
827 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
828
829 /* Free DMA'able memory for the RX ring. */
830 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
831 fail_7:
832 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
833 fail_6:
834 bus_dmamem_unmap(sc->sc_dmat,
835 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
836 fail_5:
837 bus_dmamem_free(sc->sc_dmat,
838 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
839
840 fail_4:
841 /* Destroy DMA maps for TX buffers. */
842 for (i = 0; i < RE_TX_QLEN; i++)
843 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
844 bus_dmamap_destroy(sc->sc_dmat,
845 sc->re_ldata.re_txq[i].txq_dmamap);
846
847 /* Free DMA'able memory for the TX ring. */
848 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
849 fail_3:
850 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
851 fail_2:
852 bus_dmamem_unmap(sc->sc_dmat,
853 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
854 fail_1:
855 bus_dmamem_free(sc->sc_dmat,
856 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
857 fail_0:
858 return;
859 }
860
861
862 /*
863 * re_activate:
864 * Handle device activation/deactivation requests.
865 */
866 int
867 re_activate(struct device *self, enum devact act)
868 {
869 struct rtk_softc *sc = (void *)self;
870 int s, error = 0;
871
872 s = splnet();
873 switch (act) {
874 case DVACT_ACTIVATE:
875 error = EOPNOTSUPP;
876 break;
877 case DVACT_DEACTIVATE:
878 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
879 if_deactivate(&sc->ethercom.ec_if);
880 break;
881 }
882 splx(s);
883
884 return error;
885 }
886
887 /*
888 * re_detach:
889 * Detach a rtk interface.
890 */
891 int
892 re_detach(struct rtk_softc *sc)
893 {
894 struct ifnet *ifp = &sc->ethercom.ec_if;
895 int i;
896
897 /*
898 * Succeed now if there isn't any work to do.
899 */
900 if ((sc->sc_flags & RTK_ATTACHED) == 0)
901 return 0;
902
903 /* Unhook our tick handler. */
904 callout_stop(&sc->rtk_tick_ch);
905
906 /* Detach all PHYs. */
907 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
908
909 /* Delete all remaining media. */
910 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
911
912 ether_ifdetach(ifp);
913 if_detach(ifp);
914
915 /* Destroy DMA maps for RX buffers. */
916 for (i = 0; i < RE_RX_DESC_CNT; i++)
917 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
918 bus_dmamap_destroy(sc->sc_dmat,
919 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
920
921 /* Free DMA'able memory for the RX ring. */
922 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
923 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
924 bus_dmamem_unmap(sc->sc_dmat,
925 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
926 bus_dmamem_free(sc->sc_dmat,
927 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
928
929 /* Destroy DMA maps for TX buffers. */
930 for (i = 0; i < RE_TX_QLEN; i++)
931 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->re_ldata.re_txq[i].txq_dmamap);
934
935 /* Free DMA'able memory for the TX ring. */
936 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
937 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
938 bus_dmamem_unmap(sc->sc_dmat,
939 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
940 bus_dmamem_free(sc->sc_dmat,
941 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
942
943
944 shutdownhook_disestablish(sc->sc_sdhook);
945 powerhook_disestablish(sc->sc_powerhook);
946
947 return 0;
948 }
949
950 /*
951 * re_enable:
952 * Enable the RTL81X9 chip.
953 */
954 static int
955 re_enable(struct rtk_softc *sc)
956 {
957
958 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
959 if ((*sc->sc_enable)(sc) != 0) {
960 aprint_error("%s: device enable failed\n",
961 sc->sc_dev.dv_xname);
962 return EIO;
963 }
964 sc->sc_flags |= RTK_ENABLED;
965 }
966 return 0;
967 }
968
969 /*
970 * re_disable:
971 * Disable the RTL81X9 chip.
972 */
973 static void
974 re_disable(struct rtk_softc *sc)
975 {
976
977 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
978 (*sc->sc_disable)(sc);
979 sc->sc_flags &= ~RTK_ENABLED;
980 }
981 }
982
983 /*
984 * re_power:
985 * Power management (suspend/resume) hook.
986 */
987 void
988 re_power(int why, void *arg)
989 {
990 struct rtk_softc *sc = (void *)arg;
991 struct ifnet *ifp = &sc->ethercom.ec_if;
992 int s;
993
994 s = splnet();
995 switch (why) {
996 case PWR_SUSPEND:
997 case PWR_STANDBY:
998 re_stop(ifp, 0);
999 if (sc->sc_power != NULL)
1000 (*sc->sc_power)(sc, why);
1001 break;
1002 case PWR_RESUME:
1003 if (ifp->if_flags & IFF_UP) {
1004 if (sc->sc_power != NULL)
1005 (*sc->sc_power)(sc, why);
1006 re_init(ifp);
1007 }
1008 break;
1009 case PWR_SOFTSUSPEND:
1010 case PWR_SOFTSTANDBY:
1011 case PWR_SOFTRESUME:
1012 break;
1013 }
1014 splx(s);
1015 }
1016
1017
1018 static int
1019 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1020 {
1021 struct mbuf *n = NULL;
1022 bus_dmamap_t map;
1023 struct re_desc *d;
1024 struct re_rxsoft *rxs;
1025 uint32_t cmdstat;
1026 int error;
1027
1028 if (m == NULL) {
1029 MGETHDR(n, M_DONTWAIT, MT_DATA);
1030 if (n == NULL)
1031 return ENOBUFS;
1032
1033 MCLGET(n, M_DONTWAIT);
1034 if ((n->m_flags & M_EXT) == 0) {
1035 m_freem(n);
1036 return ENOBUFS;
1037 }
1038 m = n;
1039 } else
1040 m->m_data = m->m_ext.ext_buf;
1041
1042 /*
1043 * Initialize mbuf length fields and fixup
1044 * alignment so that the frame payload is
1045 * longword aligned.
1046 */
1047 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1048 m->m_data += RE_ETHER_ALIGN;
1049
1050 rxs = &sc->re_ldata.re_rxsoft[idx];
1051 map = rxs->rxs_dmamap;
1052 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1053 BUS_DMA_READ|BUS_DMA_NOWAIT);
1054
1055 if (error)
1056 goto out;
1057
1058 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1059 BUS_DMASYNC_PREREAD);
1060
1061 d = &sc->re_ldata.re_rx_list[idx];
1062 #ifdef DIAGNOSTIC
1063 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1064 cmdstat = le32toh(d->re_cmdstat);
1065 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1066 if (cmdstat & RE_RDESC_STAT_OWN) {
1067 panic("%s: tried to map busy RX descriptor",
1068 sc->sc_dev.dv_xname);
1069 }
1070 #endif
1071
1072 rxs->rxs_mbuf = m;
1073
1074 d->re_vlanctl = 0;
1075 cmdstat = map->dm_segs[0].ds_len;
1076 if (idx == (RE_RX_DESC_CNT - 1))
1077 cmdstat |= RE_RDESC_CMD_EOR;
1078 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1079 d->re_cmdstat = htole32(cmdstat);
1080 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1081 cmdstat |= RE_RDESC_CMD_OWN;
1082 d->re_cmdstat = htole32(cmdstat);
1083 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1084
1085 return 0;
1086 out:
1087 if (n != NULL)
1088 m_freem(n);
1089 return ENOMEM;
1090 }
1091
1092 static int
1093 re_tx_list_init(struct rtk_softc *sc)
1094 {
1095 int i;
1096
1097 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1098 for (i = 0; i < RE_TX_QLEN; i++) {
1099 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1100 }
1101
1102 bus_dmamap_sync(sc->sc_dmat,
1103 sc->re_ldata.re_tx_list_map, 0,
1104 sc->re_ldata.re_tx_list_map->dm_mapsize,
1105 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1106 sc->re_ldata.re_txq_prodidx = 0;
1107 sc->re_ldata.re_txq_considx = 0;
1108 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1109 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1110 sc->re_ldata.re_tx_nextfree = 0;
1111
1112 return 0;
1113 }
1114
1115 static int
1116 re_rx_list_init(struct rtk_softc *sc)
1117 {
1118 int i;
1119
1120 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1121
1122 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1123 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1124 return ENOBUFS;
1125 }
1126
1127 sc->re_ldata.re_rx_prodidx = 0;
1128 sc->re_head = sc->re_tail = NULL;
1129
1130 return 0;
1131 }
1132
1133 /*
1134 * RX handler for C+ and 8169. For the gigE chips, we support
1135 * the reception of jumbo frames that have been fragmented
1136 * across multiple 2K mbuf cluster buffers.
1137 */
1138 static void
1139 re_rxeof(struct rtk_softc *sc)
1140 {
1141 struct mbuf *m;
1142 struct ifnet *ifp;
1143 int i, total_len;
1144 struct re_desc *cur_rx;
1145 struct re_rxsoft *rxs;
1146 uint32_t rxstat, rxvlan;
1147
1148 ifp = &sc->ethercom.ec_if;
1149
1150 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1151 cur_rx = &sc->re_ldata.re_rx_list[i];
1152 RE_RXDESCSYNC(sc, i,
1153 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1154 rxstat = le32toh(cur_rx->re_cmdstat);
1155 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1156 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1157 break;
1158 }
1159 total_len = rxstat & sc->re_rxlenmask;
1160 rxvlan = le32toh(cur_rx->re_vlanctl);
1161 rxs = &sc->re_ldata.re_rxsoft[i];
1162 m = rxs->rxs_mbuf;
1163
1164 /* Invalidate the RX mbuf and unload its map */
1165
1166 bus_dmamap_sync(sc->sc_dmat,
1167 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1168 BUS_DMASYNC_POSTREAD);
1169 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1170
1171 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1172 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1173 if (sc->re_head == NULL)
1174 sc->re_head = sc->re_tail = m;
1175 else {
1176 m->m_flags &= ~M_PKTHDR;
1177 sc->re_tail->m_next = m;
1178 sc->re_tail = m;
1179 }
1180 re_newbuf(sc, i, NULL);
1181 continue;
1182 }
1183
1184 /*
1185 * NOTE: for the 8139C+, the frame length field
1186 * is always 12 bits in size, but for the gigE chips,
1187 * it is 13 bits (since the max RX frame length is 16K).
1188 * Unfortunately, all 32 bits in the status word
1189 * were already used, so to make room for the extra
1190 * length bit, RealTek took out the 'frame alignment
1191 * error' bit and shifted the other status bits
1192 * over one slot. The OWN, EOR, FS and LS bits are
1193 * still in the same places. We have already extracted
1194 * the frame length and checked the OWN bit, so rather
1195 * than using an alternate bit mapping, we shift the
1196 * status bits one space to the right so we can evaluate
1197 * them using the 8169 status as though it was in the
1198 * same format as that of the 8139C+.
1199 */
1200 if (sc->rtk_type == RTK_8169)
1201 rxstat >>= 1;
1202
1203 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1204 #ifdef RE_DEBUG
1205 aprint_error("%s: RX error (rxstat = 0x%08x)",
1206 sc->sc_dev.dv_xname, rxstat);
1207 if (rxstat & RE_RDESC_STAT_FRALIGN)
1208 aprint_error(", frame alignment error");
1209 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1210 aprint_error(", out of buffer space");
1211 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1212 aprint_error(", FIFO overrun");
1213 if (rxstat & RE_RDESC_STAT_GIANT)
1214 aprint_error(", giant packet");
1215 if (rxstat & RE_RDESC_STAT_RUNT)
1216 aprint_error(", runt packet");
1217 if (rxstat & RE_RDESC_STAT_CRCERR)
1218 aprint_error(", CRC error");
1219 aprint_error("\n");
1220 #endif
1221 ifp->if_ierrors++;
1222 /*
1223 * If this is part of a multi-fragment packet,
1224 * discard all the pieces.
1225 */
1226 if (sc->re_head != NULL) {
1227 m_freem(sc->re_head);
1228 sc->re_head = sc->re_tail = NULL;
1229 }
1230 re_newbuf(sc, i, m);
1231 continue;
1232 }
1233
1234 /*
1235 * If allocating a replacement mbuf fails,
1236 * reload the current one.
1237 */
1238
1239 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1240 ifp->if_ierrors++;
1241 if (sc->re_head != NULL) {
1242 m_freem(sc->re_head);
1243 sc->re_head = sc->re_tail = NULL;
1244 }
1245 re_newbuf(sc, i, m);
1246 continue;
1247 }
1248
1249 if (sc->re_head != NULL) {
1250 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1251 /*
1252 * Special case: if there's 4 bytes or less
1253 * in this buffer, the mbuf can be discarded:
1254 * the last 4 bytes is the CRC, which we don't
1255 * care about anyway.
1256 */
1257 if (m->m_len <= ETHER_CRC_LEN) {
1258 sc->re_tail->m_len -=
1259 (ETHER_CRC_LEN - m->m_len);
1260 m_freem(m);
1261 } else {
1262 m->m_len -= ETHER_CRC_LEN;
1263 m->m_flags &= ~M_PKTHDR;
1264 sc->re_tail->m_next = m;
1265 }
1266 m = sc->re_head;
1267 sc->re_head = sc->re_tail = NULL;
1268 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1269 } else
1270 m->m_pkthdr.len = m->m_len =
1271 (total_len - ETHER_CRC_LEN);
1272
1273 ifp->if_ipackets++;
1274 m->m_pkthdr.rcvif = ifp;
1275
1276 /* Do RX checksumming */
1277
1278 /* Check IP header checksum */
1279 if (rxstat & RE_RDESC_STAT_PROTOID) {
1280 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1281 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1282 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1283 }
1284
1285 /* Check TCP/UDP checksum */
1286 if (RE_TCPPKT(rxstat)) {
1287 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1288 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1289 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1290 } else if (RE_UDPPKT(rxstat)) {
1291 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1292 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 }
1295
1296 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1297 VLAN_INPUT_TAG(ifp, m,
1298 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1299 continue);
1300 }
1301 #if NBPFILTER > 0
1302 if (ifp->if_bpf)
1303 bpf_mtap(ifp->if_bpf, m);
1304 #endif
1305 (*ifp->if_input)(ifp, m);
1306 }
1307
1308 sc->re_ldata.re_rx_prodidx = i;
1309 }
1310
1311 static void
1312 re_txeof(struct rtk_softc *sc)
1313 {
1314 struct ifnet *ifp;
1315 struct re_txq *txq;
1316 uint32_t txstat;
1317 int idx, descidx;
1318
1319 ifp = &sc->ethercom.ec_if;
1320
1321 for (idx = sc->re_ldata.re_txq_considx;
1322 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1323 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1324 txq = &sc->re_ldata.re_txq[idx];
1325 KASSERT(txq->txq_mbuf != NULL);
1326
1327 descidx = txq->txq_descidx;
1328 RE_TXDESCSYNC(sc, descidx,
1329 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1330 txstat =
1331 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1332 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1333 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1334 if (txstat & RE_TDESC_CMD_OWN) {
1335 break;
1336 }
1337
1338 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1339 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1340 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1341 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1342 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1343 m_freem(txq->txq_mbuf);
1344 txq->txq_mbuf = NULL;
1345
1346 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1347 ifp->if_collisions++;
1348 if (txstat & RE_TDESC_STAT_TXERRSUM)
1349 ifp->if_oerrors++;
1350 else
1351 ifp->if_opackets++;
1352 }
1353
1354 sc->re_ldata.re_txq_considx = idx;
1355
1356 if (sc->re_ldata.re_txq_free > 0)
1357 ifp->if_flags &= ~IFF_OACTIVE;
1358
1359 /*
1360 * If not all descriptors have been released reaped yet,
1361 * reload the timer so that we will eventually get another
1362 * interrupt that will cause us to re-enter this routine.
1363 * This is done in case the transmitter has gone idle.
1364 */
1365 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1366 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367 else
1368 ifp->if_timer = 0;
1369 }
1370
1371 /*
1372 * Stop all chip I/O so that the kernel's probe routines don't
1373 * get confused by errant DMAs when rebooting.
1374 */
1375 static void
1376 re_shutdown(void *vsc)
1377
1378 {
1379 struct rtk_softc *sc = vsc;
1380
1381 re_stop(&sc->ethercom.ec_if, 0);
1382 }
1383
1384
1385 static void
1386 re_tick(void *xsc)
1387 {
1388 struct rtk_softc *sc = xsc;
1389 int s;
1390
1391 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1392 s = splnet();
1393
1394 mii_tick(&sc->mii);
1395 splx(s);
1396
1397 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1398 }
1399
1400 #ifdef DEVICE_POLLING
1401 static void
1402 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1403 {
1404 struct rtk_softc *sc = ifp->if_softc;
1405
1406 RTK_LOCK(sc);
1407 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1408 ether_poll_deregister(ifp);
1409 cmd = POLL_DEREGISTER;
1410 }
1411 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1412 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1413 goto done;
1414 }
1415
1416 sc->rxcycles = count;
1417 re_rxeof(sc);
1418 re_txeof(sc);
1419
1420 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1421 (*ifp->if_start)(ifp);
1422
1423 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1424 uint16_t status;
1425
1426 status = CSR_READ_2(sc, RTK_ISR);
1427 if (status == 0xffff)
1428 goto done;
1429 if (status)
1430 CSR_WRITE_2(sc, RTK_ISR, status);
1431
1432 /*
1433 * XXX check behaviour on receiver stalls.
1434 */
1435
1436 if (status & RTK_ISR_SYSTEM_ERR) {
1437 re_init(sc);
1438 }
1439 }
1440 done:
1441 RTK_UNLOCK(sc);
1442 }
1443 #endif /* DEVICE_POLLING */
1444
1445 int
1446 re_intr(void *arg)
1447 {
1448 struct rtk_softc *sc = arg;
1449 struct ifnet *ifp;
1450 uint16_t status;
1451 int handled = 0;
1452
1453 ifp = &sc->ethercom.ec_if;
1454
1455 if ((ifp->if_flags & IFF_UP) == 0)
1456 return 0;
1457
1458 #ifdef DEVICE_POLLING
1459 if (ifp->if_flags & IFF_POLLING)
1460 goto done;
1461 if ((ifp->if_capenable & IFCAP_POLLING) &&
1462 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1463 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1464 re_poll(ifp, 0, 1);
1465 goto done;
1466 }
1467 #endif /* DEVICE_POLLING */
1468
1469 for (;;) {
1470
1471 status = CSR_READ_2(sc, RTK_ISR);
1472 /* If the card has gone away the read returns 0xffff. */
1473 if (status == 0xffff)
1474 break;
1475 if (status) {
1476 handled = 1;
1477 CSR_WRITE_2(sc, RTK_ISR, status);
1478 }
1479
1480 if ((status & RTK_INTRS_CPLUS) == 0)
1481 break;
1482
1483 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1484 re_rxeof(sc);
1485
1486 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1487 RTK_ISR_TX_DESC_UNAVAIL))
1488 re_txeof(sc);
1489
1490 if (status & RTK_ISR_SYSTEM_ERR) {
1491 re_init(ifp);
1492 }
1493
1494 if (status & RTK_ISR_LINKCHG) {
1495 callout_stop(&sc->rtk_tick_ch);
1496 re_tick(sc);
1497 }
1498 }
1499
1500 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1501 re_start(ifp);
1502
1503 #ifdef DEVICE_POLLING
1504 done:
1505 #endif
1506
1507 return handled;
1508 }
1509
1510
1511
1512 /*
1513 * Main transmit routine for C+ and gigE NICs.
1514 */
1515
1516 static void
1517 re_start(struct ifnet *ifp)
1518 {
1519 struct rtk_softc *sc;
1520 struct mbuf *m;
1521 bus_dmamap_t map;
1522 struct re_txq *txq;
1523 struct re_desc *d;
1524 struct m_tag *mtag;
1525 uint32_t cmdstat, re_flags;
1526 int ofree, idx, error, nsegs, seg;
1527 int startdesc, curdesc, lastdesc;
1528 boolean_t pad;
1529
1530 sc = ifp->if_softc;
1531 ofree = sc->re_ldata.re_txq_free;
1532
1533 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1534
1535 IFQ_POLL(&ifp->if_snd, m);
1536 if (m == NULL)
1537 break;
1538
1539 if (sc->re_ldata.re_txq_free == 0 ||
1540 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1541 /* no more free slots left */
1542 ifp->if_flags |= IFF_OACTIVE;
1543 break;
1544 }
1545
1546 /*
1547 * Set up checksum offload. Note: checksum offload bits must
1548 * appear in all descriptors of a multi-descriptor transmit
1549 * attempt. (This is according to testing done with an 8169
1550 * chip. I'm not sure if this is a requirement or a bug.)
1551 */
1552
1553 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1554 uint32_t segsz = m->m_pkthdr.segsz;
1555
1556 re_flags = RE_TDESC_CMD_LGSEND |
1557 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1558 } else {
1559 /*
1560 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1561 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1562 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1563 */
1564 re_flags = 0;
1565 if ((m->m_pkthdr.csum_flags &
1566 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1567 != 0) {
1568 re_flags |= RE_TDESC_CMD_IPCSUM;
1569 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1570 re_flags |= RE_TDESC_CMD_TCPCSUM;
1571 } else if (m->m_pkthdr.csum_flags &
1572 M_CSUM_UDPv4) {
1573 re_flags |= RE_TDESC_CMD_UDPCSUM;
1574 }
1575 }
1576 }
1577
1578 txq = &sc->re_ldata.re_txq[idx];
1579 map = txq->txq_dmamap;
1580 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1581 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1582
1583 if (__predict_false(error)) {
1584 /* XXX try to defrag if EFBIG? */
1585 aprint_error("%s: can't map mbuf (error %d)\n",
1586 sc->sc_dev.dv_xname, error);
1587
1588 IFQ_DEQUEUE(&ifp->if_snd, m);
1589 m_freem(m);
1590 ifp->if_oerrors++;
1591 continue;
1592 }
1593
1594 nsegs = map->dm_nsegs;
1595 pad = FALSE;
1596 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1597 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1598 pad = TRUE;
1599 nsegs++;
1600 }
1601
1602 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1603 /*
1604 * Not enough free descriptors to transmit this packet.
1605 */
1606 ifp->if_flags |= IFF_OACTIVE;
1607 bus_dmamap_unload(sc->sc_dmat, map);
1608 break;
1609 }
1610
1611 IFQ_DEQUEUE(&ifp->if_snd, m);
1612
1613 /*
1614 * Make sure that the caches are synchronized before we
1615 * ask the chip to start DMA for the packet data.
1616 */
1617 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1618 BUS_DMASYNC_PREWRITE);
1619
1620 /*
1621 * Map the segment array into descriptors.
1622 * Note that we set the start-of-frame and
1623 * end-of-frame markers for either TX or RX,
1624 * but they really only have meaning in the TX case.
1625 * (In the RX case, it's the chip that tells us
1626 * where packets begin and end.)
1627 * We also keep track of the end of the ring
1628 * and set the end-of-ring bits as needed,
1629 * and we set the ownership bits in all except
1630 * the very first descriptor. (The caller will
1631 * set this descriptor later when it start
1632 * transmission or reception.)
1633 */
1634 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1635 lastdesc = -1;
1636 for (seg = 0; seg < map->dm_nsegs;
1637 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1638 d = &sc->re_ldata.re_tx_list[curdesc];
1639 #ifdef DIAGNOSTIC
1640 RE_TXDESCSYNC(sc, curdesc,
1641 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1642 cmdstat = le32toh(d->re_cmdstat);
1643 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1644 if (cmdstat & RE_TDESC_STAT_OWN) {
1645 panic("%s: tried to map busy TX descriptor",
1646 sc->sc_dev.dv_xname);
1647 }
1648 #endif
1649
1650 d->re_vlanctl = 0;
1651 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1652 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1653 if (seg == 0)
1654 cmdstat |= RE_TDESC_CMD_SOF;
1655 else
1656 cmdstat |= RE_TDESC_CMD_OWN;
1657 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1658 cmdstat |= RE_TDESC_CMD_EOR;
1659 if (seg == nsegs - 1) {
1660 cmdstat |= RE_TDESC_CMD_EOF;
1661 lastdesc = curdesc;
1662 }
1663 d->re_cmdstat = htole32(cmdstat);
1664 RE_TXDESCSYNC(sc, curdesc,
1665 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1666 }
1667 if (__predict_false(pad)) {
1668 bus_addr_t paddaddr;
1669
1670 d = &sc->re_ldata.re_tx_list[curdesc];
1671 d->re_vlanctl = 0;
1672 paddaddr = RE_TXPADDADDR(sc);
1673 re_set_bufaddr(d, paddaddr);
1674 cmdstat = re_flags |
1675 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1676 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1677 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1678 cmdstat |= RE_TDESC_CMD_EOR;
1679 d->re_cmdstat = htole32(cmdstat);
1680 RE_TXDESCSYNC(sc, curdesc,
1681 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1682 lastdesc = curdesc;
1683 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1684 }
1685 KASSERT(lastdesc != -1);
1686
1687 /*
1688 * Set up hardware VLAN tagging. Note: vlan tag info must
1689 * appear in the first descriptor of a multi-descriptor
1690 * transmission attempt.
1691 */
1692 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1693 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1694 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1695 RE_TDESC_VLANCTL_TAG);
1696 }
1697
1698 /* Transfer ownership of packet to the chip. */
1699
1700 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1701 htole32(RE_TDESC_CMD_OWN);
1702 RE_TXDESCSYNC(sc, startdesc,
1703 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1704
1705 /* update info of TX queue and descriptors */
1706 txq->txq_mbuf = m;
1707 txq->txq_descidx = lastdesc;
1708 txq->txq_nsegs = nsegs;
1709
1710 sc->re_ldata.re_txq_free--;
1711 sc->re_ldata.re_tx_free -= nsegs;
1712 sc->re_ldata.re_tx_nextfree = curdesc;
1713
1714 #if NBPFILTER > 0
1715 /*
1716 * If there's a BPF listener, bounce a copy of this frame
1717 * to him.
1718 */
1719 if (ifp->if_bpf)
1720 bpf_mtap(ifp->if_bpf, m);
1721 #endif
1722 }
1723
1724 if (sc->re_ldata.re_txq_free < ofree) {
1725 /*
1726 * TX packets are enqueued.
1727 */
1728 sc->re_ldata.re_txq_prodidx = idx;
1729
1730 /*
1731 * Start the transmitter to poll.
1732 *
1733 * RealTek put the TX poll request register in a different
1734 * location on the 8169 gigE chip. I don't know why.
1735 */
1736 if (sc->rtk_type == RTK_8169)
1737 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1738 else
1739 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1740
1741 /*
1742 * Use the countdown timer for interrupt moderation.
1743 * 'TX done' interrupts are disabled. Instead, we reset the
1744 * countdown timer, which will begin counting until it hits
1745 * the value in the TIMERINT register, and then trigger an
1746 * interrupt. Each time we write to the TIMERCNT register,
1747 * the timer count is reset to 0.
1748 */
1749 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1750
1751 /*
1752 * Set a timeout in case the chip goes out to lunch.
1753 */
1754 ifp->if_timer = 5;
1755 }
1756 }
1757
1758 static int
1759 re_init(struct ifnet *ifp)
1760 {
1761 struct rtk_softc *sc = ifp->if_softc;
1762 uint8_t *enaddr;
1763 uint32_t rxcfg = 0;
1764 uint32_t reg;
1765 int error;
1766
1767 if ((error = re_enable(sc)) != 0)
1768 goto out;
1769
1770 /*
1771 * Cancel pending I/O and free all RX/TX buffers.
1772 */
1773 re_stop(ifp, 0);
1774
1775 re_reset(sc);
1776
1777 /*
1778 * Enable C+ RX and TX mode, as well as VLAN stripping and
1779 * RX checksum offload. We must configure the C+ register
1780 * before all others.
1781 */
1782 reg = 0;
1783
1784 /*
1785 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1786 * FreeBSD drivers set these bits anyway (for 8139C+?).
1787 * So far, it works.
1788 */
1789
1790 /*
1791 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1792 * For 8169S/8110S rev 2 and above, do not set bit 14.
1793 */
1794 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1795 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1796
1797 if (1) {/* not for 8169S ? */
1798 reg |=
1799 RTK_CPLUSCMD_VLANSTRIP |
1800 (ifp->if_capenable &
1801 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1802 IFCAP_CSUM_UDPv4_Rx) ?
1803 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1804 }
1805
1806 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1807 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1808
1809 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1810 if (sc->rtk_type == RTK_8169)
1811 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1812
1813 DELAY(10000);
1814
1815 /*
1816 * Init our MAC address. Even though the chipset
1817 * documentation doesn't mention it, we need to enter "Config
1818 * register write enable" mode to modify the ID registers.
1819 */
1820 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1821 enaddr = LLADDR(ifp->if_sadl);
1822 reg = enaddr[0] | (enaddr[1] << 8) |
1823 (enaddr[2] << 16) | (enaddr[3] << 24);
1824 CSR_WRITE_4(sc, RTK_IDR0, reg);
1825 reg = enaddr[4] | (enaddr[5] << 8);
1826 CSR_WRITE_4(sc, RTK_IDR4, reg);
1827 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1828
1829 /*
1830 * For C+ mode, initialize the RX descriptors and mbufs.
1831 */
1832 re_rx_list_init(sc);
1833 re_tx_list_init(sc);
1834
1835 /*
1836 * Load the addresses of the RX and TX lists into the chip.
1837 */
1838 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1839 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1840 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1841 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1842
1843 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1844 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1845 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1846 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1847
1848 /*
1849 * Enable transmit and receive.
1850 */
1851 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1852
1853 /*
1854 * Set the initial TX and RX configuration.
1855 */
1856 if (sc->re_testmode) {
1857 if (sc->rtk_type == RTK_8169)
1858 CSR_WRITE_4(sc, RTK_TXCFG,
1859 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1860 else
1861 CSR_WRITE_4(sc, RTK_TXCFG,
1862 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1863 } else
1864 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1865
1866 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1867
1868 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1869
1870 /* Set the individual bit to receive frames for this host only. */
1871 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1872 rxcfg |= RTK_RXCFG_RX_INDIV;
1873
1874 /* If we want promiscuous mode, set the allframes bit. */
1875 if (ifp->if_flags & IFF_PROMISC)
1876 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1877 else
1878 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1879 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1880
1881 /*
1882 * Set capture broadcast bit to capture broadcast frames.
1883 */
1884 if (ifp->if_flags & IFF_BROADCAST)
1885 rxcfg |= RTK_RXCFG_RX_BROAD;
1886 else
1887 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1888 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1889
1890 /*
1891 * Program the multicast filter, if necessary.
1892 */
1893 rtk_setmulti(sc);
1894
1895 #ifdef DEVICE_POLLING
1896 /*
1897 * Disable interrupts if we are polling.
1898 */
1899 if (ifp->if_flags & IFF_POLLING)
1900 CSR_WRITE_2(sc, RTK_IMR, 0);
1901 else /* otherwise ... */
1902 #endif /* DEVICE_POLLING */
1903 /*
1904 * Enable interrupts.
1905 */
1906 if (sc->re_testmode)
1907 CSR_WRITE_2(sc, RTK_IMR, 0);
1908 else
1909 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1910
1911 /* Start RX/TX process. */
1912 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1913 #ifdef notdef
1914 /* Enable receiver and transmitter. */
1915 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1916 #endif
1917
1918 /*
1919 * Initialize the timer interrupt register so that
1920 * a timer interrupt will be generated once the timer
1921 * reaches a certain number of ticks. The timer is
1922 * reloaded on each transmit. This gives us TX interrupt
1923 * moderation, which dramatically improves TX frame rate.
1924 */
1925
1926 if (sc->rtk_type == RTK_8169)
1927 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1928 else
1929 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1930
1931 /*
1932 * For 8169 gigE NICs, set the max allowed RX packet
1933 * size so we can receive jumbo frames.
1934 */
1935 if (sc->rtk_type == RTK_8169)
1936 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1937
1938 if (sc->re_testmode)
1939 return 0;
1940
1941 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1942
1943 ifp->if_flags |= IFF_RUNNING;
1944 ifp->if_flags &= ~IFF_OACTIVE;
1945
1946 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1947
1948 out:
1949 if (error) {
1950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1951 ifp->if_timer = 0;
1952 aprint_error("%s: interface not running\n",
1953 sc->sc_dev.dv_xname);
1954 }
1955
1956 return error;
1957 }
1958
1959 /*
1960 * Set media options.
1961 */
1962 static int
1963 re_ifmedia_upd(struct ifnet *ifp)
1964 {
1965 struct rtk_softc *sc;
1966
1967 sc = ifp->if_softc;
1968
1969 return mii_mediachg(&sc->mii);
1970 }
1971
1972 /*
1973 * Report current media status.
1974 */
1975 static void
1976 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1977 {
1978 struct rtk_softc *sc;
1979
1980 sc = ifp->if_softc;
1981
1982 mii_pollstat(&sc->mii);
1983 ifmr->ifm_active = sc->mii.mii_media_active;
1984 ifmr->ifm_status = sc->mii.mii_media_status;
1985 }
1986
1987 static int
1988 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1989 {
1990 struct rtk_softc *sc = ifp->if_softc;
1991 struct ifreq *ifr = (struct ifreq *) data;
1992 int s, error = 0;
1993
1994 s = splnet();
1995
1996 switch (command) {
1997 case SIOCSIFMTU:
1998 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1999 error = EINVAL;
2000 ifp->if_mtu = ifr->ifr_mtu;
2001 break;
2002 case SIOCGIFMEDIA:
2003 case SIOCSIFMEDIA:
2004 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2005 break;
2006 default:
2007 error = ether_ioctl(ifp, command, data);
2008 if (error == ENETRESET) {
2009 if (ifp->if_flags & IFF_RUNNING)
2010 rtk_setmulti(sc);
2011 error = 0;
2012 }
2013 break;
2014 }
2015
2016 splx(s);
2017
2018 return error;
2019 }
2020
2021 static void
2022 re_watchdog(struct ifnet *ifp)
2023 {
2024 struct rtk_softc *sc;
2025 int s;
2026
2027 sc = ifp->if_softc;
2028 s = splnet();
2029 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2030 ifp->if_oerrors++;
2031
2032 re_txeof(sc);
2033 re_rxeof(sc);
2034
2035 re_init(ifp);
2036
2037 splx(s);
2038 }
2039
2040 /*
2041 * Stop the adapter and free any mbufs allocated to the
2042 * RX and TX lists.
2043 */
2044 static void
2045 re_stop(struct ifnet *ifp, int disable)
2046 {
2047 int i;
2048 struct rtk_softc *sc = ifp->if_softc;
2049
2050 callout_stop(&sc->rtk_tick_ch);
2051
2052 #ifdef DEVICE_POLLING
2053 ether_poll_deregister(ifp);
2054 #endif /* DEVICE_POLLING */
2055
2056 mii_down(&sc->mii);
2057
2058 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2059 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2060
2061 if (sc->re_head != NULL) {
2062 m_freem(sc->re_head);
2063 sc->re_head = sc->re_tail = NULL;
2064 }
2065
2066 /* Free the TX list buffers. */
2067 for (i = 0; i < RE_TX_QLEN; i++) {
2068 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2069 bus_dmamap_unload(sc->sc_dmat,
2070 sc->re_ldata.re_txq[i].txq_dmamap);
2071 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2072 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2073 }
2074 }
2075
2076 /* Free the RX list buffers. */
2077 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2078 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2079 bus_dmamap_unload(sc->sc_dmat,
2080 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2081 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2082 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2083 }
2084 }
2085
2086 if (disable)
2087 re_disable(sc);
2088
2089 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2090 ifp->if_timer = 0;
2091 }
2092