rtl8169.c revision 1.77 1 /* $NetBSD: rtl8169.c,v 1.77 2007/01/29 12:11:42 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if (sc->rtk_type == RTK_8169) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if (sc->rtk_type == RTK_8169) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if (sc->rtk_type == RTK_8139CPLUS) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
578 addr_len = RTK_EEADDR_LEN1;
579 else
580 addr_len = RTK_EEADDR_LEN0;
581
582 /*
583 * Get station address from the EEPROM.
584 */
585 for (i = 0; i < 3; i++) {
586 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
587 eaddr[(i * 2) + 0] = val & 0xff;
588 eaddr[(i * 2) + 1] = val >> 8;
589 }
590
591 if (sc->rtk_type == RTK_8169) {
592 uint32_t hwrev;
593
594 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
595 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
596 if (hwrev == (0x1 << 28)) {
597 sc->sc_rev = 4;
598 } else if (hwrev == (0x1 << 26)) {
599 sc->sc_rev = 3;
600 } else if (hwrev == (0x1 << 23)) {
601 sc->sc_rev = 2;
602 } else
603 sc->sc_rev = 1;
604
605 /* Set RX length mask */
606 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
607 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
608 } else {
609 /* Set RX length mask */
610 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
611 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
612 }
613
614 aprint_normal("%s: Ethernet address %s\n",
615 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
616
617 if (sc->re_ldata.re_tx_desc_cnt >
618 PAGE_SIZE / sizeof(struct re_desc)) {
619 sc->re_ldata.re_tx_desc_cnt =
620 PAGE_SIZE / sizeof(struct re_desc);
621 }
622
623 aprint_verbose("%s: using %d tx descriptors\n",
624 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
625 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
626
627 /* Allocate DMA'able memory for the TX ring */
628 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
629 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
630 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
631 aprint_error("%s: can't allocate tx listseg, error = %d\n",
632 sc->sc_dev.dv_xname, error);
633 goto fail_0;
634 }
635
636 /* Load the map for the TX ring. */
637 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
638 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
639 (caddr_t *)&sc->re_ldata.re_tx_list,
640 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
641 aprint_error("%s: can't map tx list, error = %d\n",
642 sc->sc_dev.dv_xname, error);
643 goto fail_1;
644 }
645 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
646
647 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
648 RE_TX_LIST_SZ(sc), 0, 0,
649 &sc->re_ldata.re_tx_list_map)) != 0) {
650 aprint_error("%s: can't create tx list map, error = %d\n",
651 sc->sc_dev.dv_xname, error);
652 goto fail_2;
653 }
654
655
656 if ((error = bus_dmamap_load(sc->sc_dmat,
657 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
658 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
659 aprint_error("%s: can't load tx list, error = %d\n",
660 sc->sc_dev.dv_xname, error);
661 goto fail_3;
662 }
663
664 /* Create DMA maps for TX buffers */
665 for (i = 0; i < RE_TX_QLEN; i++) {
666 error = bus_dmamap_create(sc->sc_dmat,
667 round_page(IP_MAXPACKET),
668 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
669 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
670 if (error) {
671 aprint_error("%s: can't create DMA map for TX\n",
672 sc->sc_dev.dv_xname);
673 goto fail_4;
674 }
675 }
676
677 /* Allocate DMA'able memory for the RX ring */
678 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
679 if ((error = bus_dmamem_alloc(sc->sc_dmat,
680 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
681 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
682 aprint_error("%s: can't allocate rx listseg, error = %d\n",
683 sc->sc_dev.dv_xname, error);
684 goto fail_4;
685 }
686
687 /* Load the map for the RX ring. */
688 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
689 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
690 (caddr_t *)&sc->re_ldata.re_rx_list,
691 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
692 aprint_error("%s: can't map rx list, error = %d\n",
693 sc->sc_dev.dv_xname, error);
694 goto fail_5;
695 }
696 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
697
698 if ((error = bus_dmamap_create(sc->sc_dmat,
699 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
700 &sc->re_ldata.re_rx_list_map)) != 0) {
701 aprint_error("%s: can't create rx list map, error = %d\n",
702 sc->sc_dev.dv_xname, error);
703 goto fail_6;
704 }
705
706 if ((error = bus_dmamap_load(sc->sc_dmat,
707 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
708 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
709 aprint_error("%s: can't load rx list, error = %d\n",
710 sc->sc_dev.dv_xname, error);
711 goto fail_7;
712 }
713
714 /* Create DMA maps for RX buffers */
715 for (i = 0; i < RE_RX_DESC_CNT; i++) {
716 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
717 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
718 if (error) {
719 aprint_error("%s: can't create DMA map for RX\n",
720 sc->sc_dev.dv_xname);
721 goto fail_8;
722 }
723 }
724
725 /*
726 * Record interface as attached. From here, we should not fail.
727 */
728 sc->sc_flags |= RTK_ATTACHED;
729
730 ifp = &sc->ethercom.ec_if;
731 ifp->if_softc = sc;
732 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
733 ifp->if_mtu = ETHERMTU;
734 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
735 ifp->if_ioctl = re_ioctl;
736 sc->ethercom.ec_capabilities |=
737 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
738 ifp->if_start = re_start;
739 ifp->if_stop = re_stop;
740
741 /*
742 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
743 * so we have a workaround to handle the bug by padding
744 * such packets manually.
745 */
746 ifp->if_capabilities |=
747 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
748 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
749 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
750 IFCAP_TSOv4;
751 ifp->if_watchdog = re_watchdog;
752 ifp->if_init = re_init;
753 if (sc->rtk_type == RTK_8169)
754 ifp->if_baudrate = 1000000000;
755 else
756 ifp->if_baudrate = 100000000;
757 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
758 ifp->if_capenable = ifp->if_capabilities;
759 IFQ_SET_READY(&ifp->if_snd);
760
761 callout_init(&sc->rtk_tick_ch);
762
763 /* Do MII setup */
764 sc->mii.mii_ifp = ifp;
765 sc->mii.mii_readreg = re_miibus_readreg;
766 sc->mii.mii_writereg = re_miibus_writereg;
767 sc->mii.mii_statchg = re_miibus_statchg;
768 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
769 re_ifmedia_sts);
770 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
771 MII_OFFSET_ANY, 0);
772 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
773
774 /*
775 * Call MI attach routine.
776 */
777 if_attach(ifp);
778 ether_ifattach(ifp, eaddr);
779
780
781 /*
782 * Make sure the interface is shutdown during reboot.
783 */
784 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
785 if (sc->sc_sdhook == NULL)
786 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
787 sc->sc_dev.dv_xname);
788 /*
789 * Add a suspend hook to make sure we come back up after a
790 * resume.
791 */
792 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
793 re_power, sc);
794 if (sc->sc_powerhook == NULL)
795 aprint_error("%s: WARNING: unable to establish power hook\n",
796 sc->sc_dev.dv_xname);
797
798
799 return;
800
801 fail_8:
802 /* Destroy DMA maps for RX buffers. */
803 for (i = 0; i < RE_RX_DESC_CNT; i++)
804 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
805 bus_dmamap_destroy(sc->sc_dmat,
806 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
807
808 /* Free DMA'able memory for the RX ring. */
809 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
810 fail_7:
811 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
812 fail_6:
813 bus_dmamem_unmap(sc->sc_dmat,
814 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
815 fail_5:
816 bus_dmamem_free(sc->sc_dmat,
817 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
818
819 fail_4:
820 /* Destroy DMA maps for TX buffers. */
821 for (i = 0; i < RE_TX_QLEN; i++)
822 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
823 bus_dmamap_destroy(sc->sc_dmat,
824 sc->re_ldata.re_txq[i].txq_dmamap);
825
826 /* Free DMA'able memory for the TX ring. */
827 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
828 fail_3:
829 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
830 fail_2:
831 bus_dmamem_unmap(sc->sc_dmat,
832 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
833 fail_1:
834 bus_dmamem_free(sc->sc_dmat,
835 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
836 fail_0:
837 return;
838 }
839
840
841 /*
842 * re_activate:
843 * Handle device activation/deactivation requests.
844 */
845 int
846 re_activate(struct device *self, enum devact act)
847 {
848 struct rtk_softc *sc = (void *)self;
849 int s, error = 0;
850
851 s = splnet();
852 switch (act) {
853 case DVACT_ACTIVATE:
854 error = EOPNOTSUPP;
855 break;
856 case DVACT_DEACTIVATE:
857 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
858 if_deactivate(&sc->ethercom.ec_if);
859 break;
860 }
861 splx(s);
862
863 return error;
864 }
865
866 /*
867 * re_detach:
868 * Detach a rtk interface.
869 */
870 int
871 re_detach(struct rtk_softc *sc)
872 {
873 struct ifnet *ifp = &sc->ethercom.ec_if;
874 int i;
875
876 /*
877 * Succeed now if there isn't any work to do.
878 */
879 if ((sc->sc_flags & RTK_ATTACHED) == 0)
880 return 0;
881
882 /* Unhook our tick handler. */
883 callout_stop(&sc->rtk_tick_ch);
884
885 /* Detach all PHYs. */
886 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
887
888 /* Delete all remaining media. */
889 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
890
891 ether_ifdetach(ifp);
892 if_detach(ifp);
893
894 /* Destroy DMA maps for RX buffers. */
895 for (i = 0; i < RE_RX_DESC_CNT; i++)
896 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
897 bus_dmamap_destroy(sc->sc_dmat,
898 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
899
900 /* Free DMA'able memory for the RX ring. */
901 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
902 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
903 bus_dmamem_unmap(sc->sc_dmat,
904 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
905 bus_dmamem_free(sc->sc_dmat,
906 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
907
908 /* Destroy DMA maps for TX buffers. */
909 for (i = 0; i < RE_TX_QLEN; i++)
910 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
911 bus_dmamap_destroy(sc->sc_dmat,
912 sc->re_ldata.re_txq[i].txq_dmamap);
913
914 /* Free DMA'able memory for the TX ring. */
915 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
916 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
917 bus_dmamem_unmap(sc->sc_dmat,
918 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
919 bus_dmamem_free(sc->sc_dmat,
920 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
921
922
923 shutdownhook_disestablish(sc->sc_sdhook);
924 powerhook_disestablish(sc->sc_powerhook);
925
926 return 0;
927 }
928
929 /*
930 * re_enable:
931 * Enable the RTL81X9 chip.
932 */
933 static int
934 re_enable(struct rtk_softc *sc)
935 {
936
937 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
938 if ((*sc->sc_enable)(sc) != 0) {
939 aprint_error("%s: device enable failed\n",
940 sc->sc_dev.dv_xname);
941 return EIO;
942 }
943 sc->sc_flags |= RTK_ENABLED;
944 }
945 return 0;
946 }
947
948 /*
949 * re_disable:
950 * Disable the RTL81X9 chip.
951 */
952 static void
953 re_disable(struct rtk_softc *sc)
954 {
955
956 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
957 (*sc->sc_disable)(sc);
958 sc->sc_flags &= ~RTK_ENABLED;
959 }
960 }
961
962 /*
963 * re_power:
964 * Power management (suspend/resume) hook.
965 */
966 void
967 re_power(int why, void *arg)
968 {
969 struct rtk_softc *sc = (void *)arg;
970 struct ifnet *ifp = &sc->ethercom.ec_if;
971 int s;
972
973 s = splnet();
974 switch (why) {
975 case PWR_SUSPEND:
976 case PWR_STANDBY:
977 re_stop(ifp, 0);
978 if (sc->sc_power != NULL)
979 (*sc->sc_power)(sc, why);
980 break;
981 case PWR_RESUME:
982 if (ifp->if_flags & IFF_UP) {
983 if (sc->sc_power != NULL)
984 (*sc->sc_power)(sc, why);
985 re_init(ifp);
986 }
987 break;
988 case PWR_SOFTSUSPEND:
989 case PWR_SOFTSTANDBY:
990 case PWR_SOFTRESUME:
991 break;
992 }
993 splx(s);
994 }
995
996
997 static int
998 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
999 {
1000 struct mbuf *n = NULL;
1001 bus_dmamap_t map;
1002 struct re_desc *d;
1003 struct re_rxsoft *rxs;
1004 uint32_t cmdstat;
1005 int error;
1006
1007 if (m == NULL) {
1008 MGETHDR(n, M_DONTWAIT, MT_DATA);
1009 if (n == NULL)
1010 return ENOBUFS;
1011
1012 MCLGET(n, M_DONTWAIT);
1013 if ((n->m_flags & M_EXT) == 0) {
1014 m_freem(n);
1015 return ENOBUFS;
1016 }
1017 m = n;
1018 } else
1019 m->m_data = m->m_ext.ext_buf;
1020
1021 /*
1022 * Initialize mbuf length fields and fixup
1023 * alignment so that the frame payload is
1024 * longword aligned.
1025 */
1026 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1027 m->m_data += RE_ETHER_ALIGN;
1028
1029 rxs = &sc->re_ldata.re_rxsoft[idx];
1030 map = rxs->rxs_dmamap;
1031 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1032 BUS_DMA_READ|BUS_DMA_NOWAIT);
1033
1034 if (error)
1035 goto out;
1036
1037 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1038 BUS_DMASYNC_PREREAD);
1039
1040 d = &sc->re_ldata.re_rx_list[idx];
1041 #ifdef DIAGNOSTIC
1042 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1043 cmdstat = le32toh(d->re_cmdstat);
1044 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1045 if (cmdstat & RE_RDESC_STAT_OWN) {
1046 panic("%s: tried to map busy RX descriptor",
1047 sc->sc_dev.dv_xname);
1048 }
1049 #endif
1050
1051 rxs->rxs_mbuf = m;
1052
1053 d->re_vlanctl = 0;
1054 cmdstat = map->dm_segs[0].ds_len;
1055 if (idx == (RE_RX_DESC_CNT - 1))
1056 cmdstat |= RE_RDESC_CMD_EOR;
1057 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1058 d->re_cmdstat = htole32(cmdstat);
1059 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1060 cmdstat |= RE_RDESC_CMD_OWN;
1061 d->re_cmdstat = htole32(cmdstat);
1062 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1063
1064 return 0;
1065 out:
1066 if (n != NULL)
1067 m_freem(n);
1068 return ENOMEM;
1069 }
1070
1071 static int
1072 re_tx_list_init(struct rtk_softc *sc)
1073 {
1074 int i;
1075
1076 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1077 for (i = 0; i < RE_TX_QLEN; i++) {
1078 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1079 }
1080
1081 bus_dmamap_sync(sc->sc_dmat,
1082 sc->re_ldata.re_tx_list_map, 0,
1083 sc->re_ldata.re_tx_list_map->dm_mapsize,
1084 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 sc->re_ldata.re_txq_prodidx = 0;
1086 sc->re_ldata.re_txq_considx = 0;
1087 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1088 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1089 sc->re_ldata.re_tx_nextfree = 0;
1090
1091 return 0;
1092 }
1093
1094 static int
1095 re_rx_list_init(struct rtk_softc *sc)
1096 {
1097 int i;
1098
1099 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1100
1101 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1102 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1103 return ENOBUFS;
1104 }
1105
1106 sc->re_ldata.re_rx_prodidx = 0;
1107 sc->re_head = sc->re_tail = NULL;
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * RX handler for C+ and 8169. For the gigE chips, we support
1114 * the reception of jumbo frames that have been fragmented
1115 * across multiple 2K mbuf cluster buffers.
1116 */
1117 static void
1118 re_rxeof(struct rtk_softc *sc)
1119 {
1120 struct mbuf *m;
1121 struct ifnet *ifp;
1122 int i, total_len;
1123 struct re_desc *cur_rx;
1124 struct re_rxsoft *rxs;
1125 uint32_t rxstat, rxvlan;
1126
1127 ifp = &sc->ethercom.ec_if;
1128
1129 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1130 cur_rx = &sc->re_ldata.re_rx_list[i];
1131 RE_RXDESCSYNC(sc, i,
1132 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1133 rxstat = le32toh(cur_rx->re_cmdstat);
1134 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1135 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1136 break;
1137 }
1138 total_len = rxstat & sc->re_rxlenmask;
1139 rxvlan = le32toh(cur_rx->re_vlanctl);
1140 rxs = &sc->re_ldata.re_rxsoft[i];
1141 m = rxs->rxs_mbuf;
1142
1143 /* Invalidate the RX mbuf and unload its map */
1144
1145 bus_dmamap_sync(sc->sc_dmat,
1146 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1147 BUS_DMASYNC_POSTREAD);
1148 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1149
1150 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1151 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1152 if (sc->re_head == NULL)
1153 sc->re_head = sc->re_tail = m;
1154 else {
1155 m->m_flags &= ~M_PKTHDR;
1156 sc->re_tail->m_next = m;
1157 sc->re_tail = m;
1158 }
1159 re_newbuf(sc, i, NULL);
1160 continue;
1161 }
1162
1163 /*
1164 * NOTE: for the 8139C+, the frame length field
1165 * is always 12 bits in size, but for the gigE chips,
1166 * it is 13 bits (since the max RX frame length is 16K).
1167 * Unfortunately, all 32 bits in the status word
1168 * were already used, so to make room for the extra
1169 * length bit, RealTek took out the 'frame alignment
1170 * error' bit and shifted the other status bits
1171 * over one slot. The OWN, EOR, FS and LS bits are
1172 * still in the same places. We have already extracted
1173 * the frame length and checked the OWN bit, so rather
1174 * than using an alternate bit mapping, we shift the
1175 * status bits one space to the right so we can evaluate
1176 * them using the 8169 status as though it was in the
1177 * same format as that of the 8139C+.
1178 */
1179 if (sc->rtk_type == RTK_8169)
1180 rxstat >>= 1;
1181
1182 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1183 #ifdef RE_DEBUG
1184 aprint_error("%s: RX error (rxstat = 0x%08x)",
1185 sc->sc_dev.dv_xname, rxstat);
1186 if (rxstat & RE_RDESC_STAT_FRALIGN)
1187 aprint_error(", frame alignment error");
1188 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1189 aprint_error(", out of buffer space");
1190 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1191 aprint_error(", FIFO overrun");
1192 if (rxstat & RE_RDESC_STAT_GIANT)
1193 aprint_error(", giant packet");
1194 if (rxstat & RE_RDESC_STAT_RUNT)
1195 aprint_error(", runt packet");
1196 if (rxstat & RE_RDESC_STAT_CRCERR)
1197 aprint_error(", CRC error");
1198 aprint_error("\n");
1199 #endif
1200 ifp->if_ierrors++;
1201 /*
1202 * If this is part of a multi-fragment packet,
1203 * discard all the pieces.
1204 */
1205 if (sc->re_head != NULL) {
1206 m_freem(sc->re_head);
1207 sc->re_head = sc->re_tail = NULL;
1208 }
1209 re_newbuf(sc, i, m);
1210 continue;
1211 }
1212
1213 /*
1214 * If allocating a replacement mbuf fails,
1215 * reload the current one.
1216 */
1217
1218 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1219 ifp->if_ierrors++;
1220 if (sc->re_head != NULL) {
1221 m_freem(sc->re_head);
1222 sc->re_head = sc->re_tail = NULL;
1223 }
1224 re_newbuf(sc, i, m);
1225 continue;
1226 }
1227
1228 if (sc->re_head != NULL) {
1229 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1230 /*
1231 * Special case: if there's 4 bytes or less
1232 * in this buffer, the mbuf can be discarded:
1233 * the last 4 bytes is the CRC, which we don't
1234 * care about anyway.
1235 */
1236 if (m->m_len <= ETHER_CRC_LEN) {
1237 sc->re_tail->m_len -=
1238 (ETHER_CRC_LEN - m->m_len);
1239 m_freem(m);
1240 } else {
1241 m->m_len -= ETHER_CRC_LEN;
1242 m->m_flags &= ~M_PKTHDR;
1243 sc->re_tail->m_next = m;
1244 }
1245 m = sc->re_head;
1246 sc->re_head = sc->re_tail = NULL;
1247 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1248 } else
1249 m->m_pkthdr.len = m->m_len =
1250 (total_len - ETHER_CRC_LEN);
1251
1252 ifp->if_ipackets++;
1253 m->m_pkthdr.rcvif = ifp;
1254
1255 /* Do RX checksumming */
1256
1257 /* Check IP header checksum */
1258 if (rxstat & RE_RDESC_STAT_PROTOID) {
1259 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1260 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1261 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1262 }
1263
1264 /* Check TCP/UDP checksum */
1265 if (RE_TCPPKT(rxstat)) {
1266 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1267 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1268 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1269 } else if (RE_UDPPKT(rxstat)) {
1270 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1271 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1273 }
1274
1275 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1276 VLAN_INPUT_TAG(ifp, m,
1277 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1278 continue);
1279 }
1280 #if NBPFILTER > 0
1281 if (ifp->if_bpf)
1282 bpf_mtap(ifp->if_bpf, m);
1283 #endif
1284 (*ifp->if_input)(ifp, m);
1285 }
1286
1287 sc->re_ldata.re_rx_prodidx = i;
1288 }
1289
1290 static void
1291 re_txeof(struct rtk_softc *sc)
1292 {
1293 struct ifnet *ifp;
1294 struct re_txq *txq;
1295 uint32_t txstat;
1296 int idx, descidx;
1297
1298 ifp = &sc->ethercom.ec_if;
1299
1300 for (idx = sc->re_ldata.re_txq_considx;
1301 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1302 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1303 txq = &sc->re_ldata.re_txq[idx];
1304 KASSERT(txq->txq_mbuf != NULL);
1305
1306 descidx = txq->txq_descidx;
1307 RE_TXDESCSYNC(sc, descidx,
1308 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1309 txstat =
1310 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1311 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1312 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1313 if (txstat & RE_TDESC_CMD_OWN) {
1314 break;
1315 }
1316
1317 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1318 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1319 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1320 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1321 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1322 m_freem(txq->txq_mbuf);
1323 txq->txq_mbuf = NULL;
1324
1325 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1326 ifp->if_collisions++;
1327 if (txstat & RE_TDESC_STAT_TXERRSUM)
1328 ifp->if_oerrors++;
1329 else
1330 ifp->if_opackets++;
1331 }
1332
1333 sc->re_ldata.re_txq_considx = idx;
1334
1335 if (sc->re_ldata.re_txq_free > 0)
1336 ifp->if_flags &= ~IFF_OACTIVE;
1337
1338 /*
1339 * If not all descriptors have been released reaped yet,
1340 * reload the timer so that we will eventually get another
1341 * interrupt that will cause us to re-enter this routine.
1342 * This is done in case the transmitter has gone idle.
1343 */
1344 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1345 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1346 else
1347 ifp->if_timer = 0;
1348 }
1349
1350 /*
1351 * Stop all chip I/O so that the kernel's probe routines don't
1352 * get confused by errant DMAs when rebooting.
1353 */
1354 static void
1355 re_shutdown(void *vsc)
1356
1357 {
1358 struct rtk_softc *sc = vsc;
1359
1360 re_stop(&sc->ethercom.ec_if, 0);
1361 }
1362
1363
1364 static void
1365 re_tick(void *xsc)
1366 {
1367 struct rtk_softc *sc = xsc;
1368 int s;
1369
1370 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1371 s = splnet();
1372
1373 mii_tick(&sc->mii);
1374 splx(s);
1375
1376 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1377 }
1378
1379 #ifdef DEVICE_POLLING
1380 static void
1381 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1382 {
1383 struct rtk_softc *sc = ifp->if_softc;
1384
1385 RTK_LOCK(sc);
1386 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1387 ether_poll_deregister(ifp);
1388 cmd = POLL_DEREGISTER;
1389 }
1390 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1391 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1392 goto done;
1393 }
1394
1395 sc->rxcycles = count;
1396 re_rxeof(sc);
1397 re_txeof(sc);
1398
1399 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1400 (*ifp->if_start)(ifp);
1401
1402 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1403 uint16_t status;
1404
1405 status = CSR_READ_2(sc, RTK_ISR);
1406 if (status == 0xffff)
1407 goto done;
1408 if (status)
1409 CSR_WRITE_2(sc, RTK_ISR, status);
1410
1411 /*
1412 * XXX check behaviour on receiver stalls.
1413 */
1414
1415 if (status & RTK_ISR_SYSTEM_ERR) {
1416 re_init(sc);
1417 }
1418 }
1419 done:
1420 RTK_UNLOCK(sc);
1421 }
1422 #endif /* DEVICE_POLLING */
1423
1424 int
1425 re_intr(void *arg)
1426 {
1427 struct rtk_softc *sc = arg;
1428 struct ifnet *ifp;
1429 uint16_t status;
1430 int handled = 0;
1431
1432 ifp = &sc->ethercom.ec_if;
1433
1434 if ((ifp->if_flags & IFF_UP) == 0)
1435 return 0;
1436
1437 #ifdef DEVICE_POLLING
1438 if (ifp->if_flags & IFF_POLLING)
1439 goto done;
1440 if ((ifp->if_capenable & IFCAP_POLLING) &&
1441 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1442 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1443 re_poll(ifp, 0, 1);
1444 goto done;
1445 }
1446 #endif /* DEVICE_POLLING */
1447
1448 for (;;) {
1449
1450 status = CSR_READ_2(sc, RTK_ISR);
1451 /* If the card has gone away the read returns 0xffff. */
1452 if (status == 0xffff)
1453 break;
1454 if (status) {
1455 handled = 1;
1456 CSR_WRITE_2(sc, RTK_ISR, status);
1457 }
1458
1459 if ((status & RTK_INTRS_CPLUS) == 0)
1460 break;
1461
1462 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1463 re_rxeof(sc);
1464
1465 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1466 RTK_ISR_TX_DESC_UNAVAIL))
1467 re_txeof(sc);
1468
1469 if (status & RTK_ISR_SYSTEM_ERR) {
1470 re_init(ifp);
1471 }
1472
1473 if (status & RTK_ISR_LINKCHG) {
1474 callout_stop(&sc->rtk_tick_ch);
1475 re_tick(sc);
1476 }
1477 }
1478
1479 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1480 re_start(ifp);
1481
1482 #ifdef DEVICE_POLLING
1483 done:
1484 #endif
1485
1486 return handled;
1487 }
1488
1489
1490
1491 /*
1492 * Main transmit routine for C+ and gigE NICs.
1493 */
1494
1495 static void
1496 re_start(struct ifnet *ifp)
1497 {
1498 struct rtk_softc *sc;
1499 struct mbuf *m;
1500 bus_dmamap_t map;
1501 struct re_txq *txq;
1502 struct re_desc *d;
1503 struct m_tag *mtag;
1504 uint32_t cmdstat, re_flags;
1505 int ofree, idx, error, nsegs, seg;
1506 int startdesc, curdesc, lastdesc;
1507 boolean_t pad;
1508
1509 sc = ifp->if_softc;
1510 ofree = sc->re_ldata.re_txq_free;
1511
1512 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1513
1514 IFQ_POLL(&ifp->if_snd, m);
1515 if (m == NULL)
1516 break;
1517
1518 if (sc->re_ldata.re_txq_free == 0 ||
1519 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1520 /* no more free slots left */
1521 ifp->if_flags |= IFF_OACTIVE;
1522 break;
1523 }
1524
1525 /*
1526 * Set up checksum offload. Note: checksum offload bits must
1527 * appear in all descriptors of a multi-descriptor transmit
1528 * attempt. (This is according to testing done with an 8169
1529 * chip. I'm not sure if this is a requirement or a bug.)
1530 */
1531
1532 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1533 uint32_t segsz = m->m_pkthdr.segsz;
1534
1535 re_flags = RE_TDESC_CMD_LGSEND |
1536 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1537 } else {
1538 /*
1539 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1540 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1541 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1542 */
1543 re_flags = 0;
1544 if ((m->m_pkthdr.csum_flags &
1545 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1546 != 0) {
1547 re_flags |= RE_TDESC_CMD_IPCSUM;
1548 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1549 re_flags |= RE_TDESC_CMD_TCPCSUM;
1550 } else if (m->m_pkthdr.csum_flags &
1551 M_CSUM_UDPv4) {
1552 re_flags |= RE_TDESC_CMD_UDPCSUM;
1553 }
1554 }
1555 }
1556
1557 txq = &sc->re_ldata.re_txq[idx];
1558 map = txq->txq_dmamap;
1559 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1560 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1561
1562 if (__predict_false(error)) {
1563 /* XXX try to defrag if EFBIG? */
1564 aprint_error("%s: can't map mbuf (error %d)\n",
1565 sc->sc_dev.dv_xname, error);
1566
1567 IFQ_DEQUEUE(&ifp->if_snd, m);
1568 m_freem(m);
1569 ifp->if_oerrors++;
1570 continue;
1571 }
1572
1573 nsegs = map->dm_nsegs;
1574 pad = FALSE;
1575 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1576 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1577 pad = TRUE;
1578 nsegs++;
1579 }
1580
1581 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1582 /*
1583 * Not enough free descriptors to transmit this packet.
1584 */
1585 ifp->if_flags |= IFF_OACTIVE;
1586 bus_dmamap_unload(sc->sc_dmat, map);
1587 break;
1588 }
1589
1590 IFQ_DEQUEUE(&ifp->if_snd, m);
1591
1592 /*
1593 * Make sure that the caches are synchronized before we
1594 * ask the chip to start DMA for the packet data.
1595 */
1596 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1597 BUS_DMASYNC_PREWRITE);
1598
1599 /*
1600 * Map the segment array into descriptors.
1601 * Note that we set the start-of-frame and
1602 * end-of-frame markers for either TX or RX,
1603 * but they really only have meaning in the TX case.
1604 * (In the RX case, it's the chip that tells us
1605 * where packets begin and end.)
1606 * We also keep track of the end of the ring
1607 * and set the end-of-ring bits as needed,
1608 * and we set the ownership bits in all except
1609 * the very first descriptor. (The caller will
1610 * set this descriptor later when it start
1611 * transmission or reception.)
1612 */
1613 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1614 lastdesc = -1;
1615 for (seg = 0; seg < map->dm_nsegs;
1616 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1617 d = &sc->re_ldata.re_tx_list[curdesc];
1618 #ifdef DIAGNOSTIC
1619 RE_TXDESCSYNC(sc, curdesc,
1620 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1621 cmdstat = le32toh(d->re_cmdstat);
1622 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1623 if (cmdstat & RE_TDESC_STAT_OWN) {
1624 panic("%s: tried to map busy TX descriptor",
1625 sc->sc_dev.dv_xname);
1626 }
1627 #endif
1628
1629 d->re_vlanctl = 0;
1630 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1631 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1632 if (seg == 0)
1633 cmdstat |= RE_TDESC_CMD_SOF;
1634 else
1635 cmdstat |= RE_TDESC_CMD_OWN;
1636 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1637 cmdstat |= RE_TDESC_CMD_EOR;
1638 if (seg == nsegs - 1) {
1639 cmdstat |= RE_TDESC_CMD_EOF;
1640 lastdesc = curdesc;
1641 }
1642 d->re_cmdstat = htole32(cmdstat);
1643 RE_TXDESCSYNC(sc, curdesc,
1644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1645 }
1646 if (__predict_false(pad)) {
1647 bus_addr_t paddaddr;
1648
1649 d = &sc->re_ldata.re_tx_list[curdesc];
1650 d->re_vlanctl = 0;
1651 paddaddr = RE_TXPADDADDR(sc);
1652 re_set_bufaddr(d, paddaddr);
1653 cmdstat = re_flags |
1654 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1655 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1656 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1657 cmdstat |= RE_TDESC_CMD_EOR;
1658 d->re_cmdstat = htole32(cmdstat);
1659 RE_TXDESCSYNC(sc, curdesc,
1660 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661 lastdesc = curdesc;
1662 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1663 }
1664 KASSERT(lastdesc != -1);
1665
1666 /*
1667 * Set up hardware VLAN tagging. Note: vlan tag info must
1668 * appear in the first descriptor of a multi-descriptor
1669 * transmission attempt.
1670 */
1671 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1672 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1673 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1674 RE_TDESC_VLANCTL_TAG);
1675 }
1676
1677 /* Transfer ownership of packet to the chip. */
1678
1679 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1680 htole32(RE_TDESC_CMD_OWN);
1681 RE_TXDESCSYNC(sc, startdesc,
1682 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1683
1684 /* update info of TX queue and descriptors */
1685 txq->txq_mbuf = m;
1686 txq->txq_descidx = lastdesc;
1687 txq->txq_nsegs = nsegs;
1688
1689 sc->re_ldata.re_txq_free--;
1690 sc->re_ldata.re_tx_free -= nsegs;
1691 sc->re_ldata.re_tx_nextfree = curdesc;
1692
1693 #if NBPFILTER > 0
1694 /*
1695 * If there's a BPF listener, bounce a copy of this frame
1696 * to him.
1697 */
1698 if (ifp->if_bpf)
1699 bpf_mtap(ifp->if_bpf, m);
1700 #endif
1701 }
1702
1703 if (sc->re_ldata.re_txq_free < ofree) {
1704 /*
1705 * TX packets are enqueued.
1706 */
1707 sc->re_ldata.re_txq_prodidx = idx;
1708
1709 /*
1710 * Start the transmitter to poll.
1711 *
1712 * RealTek put the TX poll request register in a different
1713 * location on the 8169 gigE chip. I don't know why.
1714 */
1715 if (sc->rtk_type == RTK_8169)
1716 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1717 else
1718 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1719
1720 /*
1721 * Use the countdown timer for interrupt moderation.
1722 * 'TX done' interrupts are disabled. Instead, we reset the
1723 * countdown timer, which will begin counting until it hits
1724 * the value in the TIMERINT register, and then trigger an
1725 * interrupt. Each time we write to the TIMERCNT register,
1726 * the timer count is reset to 0.
1727 */
1728 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1729
1730 /*
1731 * Set a timeout in case the chip goes out to lunch.
1732 */
1733 ifp->if_timer = 5;
1734 }
1735 }
1736
1737 static int
1738 re_init(struct ifnet *ifp)
1739 {
1740 struct rtk_softc *sc = ifp->if_softc;
1741 uint8_t *enaddr;
1742 uint32_t rxcfg = 0;
1743 uint32_t reg;
1744 int error;
1745
1746 if ((error = re_enable(sc)) != 0)
1747 goto out;
1748
1749 /*
1750 * Cancel pending I/O and free all RX/TX buffers.
1751 */
1752 re_stop(ifp, 0);
1753
1754 re_reset(sc);
1755
1756 /*
1757 * Enable C+ RX and TX mode, as well as VLAN stripping and
1758 * RX checksum offload. We must configure the C+ register
1759 * before all others.
1760 */
1761 reg = 0;
1762
1763 /*
1764 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1765 * FreeBSD drivers set these bits anyway (for 8139C+?).
1766 * So far, it works.
1767 */
1768
1769 /*
1770 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1771 * For 8169S/8110S rev 2 and above, do not set bit 14.
1772 */
1773 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1774 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1775
1776 if (1) {/* not for 8169S ? */
1777 reg |=
1778 RTK_CPLUSCMD_VLANSTRIP |
1779 (ifp->if_capenable &
1780 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1781 IFCAP_CSUM_UDPv4_Rx) ?
1782 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1783 }
1784
1785 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1786 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1787
1788 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1789 if (sc->rtk_type == RTK_8169)
1790 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1791
1792 DELAY(10000);
1793
1794 /*
1795 * Init our MAC address. Even though the chipset
1796 * documentation doesn't mention it, we need to enter "Config
1797 * register write enable" mode to modify the ID registers.
1798 */
1799 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1800 enaddr = LLADDR(ifp->if_sadl);
1801 reg = enaddr[0] | (enaddr[1] << 8) |
1802 (enaddr[2] << 16) | (enaddr[3] << 24);
1803 CSR_WRITE_4(sc, RTK_IDR0, reg);
1804 reg = enaddr[4] | (enaddr[5] << 8);
1805 CSR_WRITE_4(sc, RTK_IDR4, reg);
1806 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1807
1808 /*
1809 * For C+ mode, initialize the RX descriptors and mbufs.
1810 */
1811 re_rx_list_init(sc);
1812 re_tx_list_init(sc);
1813
1814 /*
1815 * Load the addresses of the RX and TX lists into the chip.
1816 */
1817 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1818 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1819 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1820 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1821
1822 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1823 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1824 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1825 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1826
1827 /*
1828 * Enable transmit and receive.
1829 */
1830 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1831
1832 /*
1833 * Set the initial TX and RX configuration.
1834 */
1835 if (sc->re_testmode) {
1836 if (sc->rtk_type == RTK_8169)
1837 CSR_WRITE_4(sc, RTK_TXCFG,
1838 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1839 else
1840 CSR_WRITE_4(sc, RTK_TXCFG,
1841 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1842 } else
1843 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1844
1845 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1846
1847 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1848
1849 /* Set the individual bit to receive frames for this host only. */
1850 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1851 rxcfg |= RTK_RXCFG_RX_INDIV;
1852
1853 /* If we want promiscuous mode, set the allframes bit. */
1854 if (ifp->if_flags & IFF_PROMISC)
1855 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1856 else
1857 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1858 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1859
1860 /*
1861 * Set capture broadcast bit to capture broadcast frames.
1862 */
1863 if (ifp->if_flags & IFF_BROADCAST)
1864 rxcfg |= RTK_RXCFG_RX_BROAD;
1865 else
1866 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1867 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1868
1869 /*
1870 * Program the multicast filter, if necessary.
1871 */
1872 rtk_setmulti(sc);
1873
1874 #ifdef DEVICE_POLLING
1875 /*
1876 * Disable interrupts if we are polling.
1877 */
1878 if (ifp->if_flags & IFF_POLLING)
1879 CSR_WRITE_2(sc, RTK_IMR, 0);
1880 else /* otherwise ... */
1881 #endif /* DEVICE_POLLING */
1882 /*
1883 * Enable interrupts.
1884 */
1885 if (sc->re_testmode)
1886 CSR_WRITE_2(sc, RTK_IMR, 0);
1887 else
1888 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1889
1890 /* Start RX/TX process. */
1891 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1892 #ifdef notdef
1893 /* Enable receiver and transmitter. */
1894 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1895 #endif
1896
1897 /*
1898 * Initialize the timer interrupt register so that
1899 * a timer interrupt will be generated once the timer
1900 * reaches a certain number of ticks. The timer is
1901 * reloaded on each transmit. This gives us TX interrupt
1902 * moderation, which dramatically improves TX frame rate.
1903 */
1904
1905 if (sc->rtk_type == RTK_8169)
1906 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1907 else
1908 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1909
1910 /*
1911 * For 8169 gigE NICs, set the max allowed RX packet
1912 * size so we can receive jumbo frames.
1913 */
1914 if (sc->rtk_type == RTK_8169)
1915 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1916
1917 if (sc->re_testmode)
1918 return 0;
1919
1920 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1921
1922 ifp->if_flags |= IFF_RUNNING;
1923 ifp->if_flags &= ~IFF_OACTIVE;
1924
1925 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1926
1927 out:
1928 if (error) {
1929 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1930 ifp->if_timer = 0;
1931 aprint_error("%s: interface not running\n",
1932 sc->sc_dev.dv_xname);
1933 }
1934
1935 return error;
1936 }
1937
1938 /*
1939 * Set media options.
1940 */
1941 static int
1942 re_ifmedia_upd(struct ifnet *ifp)
1943 {
1944 struct rtk_softc *sc;
1945
1946 sc = ifp->if_softc;
1947
1948 return mii_mediachg(&sc->mii);
1949 }
1950
1951 /*
1952 * Report current media status.
1953 */
1954 static void
1955 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1956 {
1957 struct rtk_softc *sc;
1958
1959 sc = ifp->if_softc;
1960
1961 mii_pollstat(&sc->mii);
1962 ifmr->ifm_active = sc->mii.mii_media_active;
1963 ifmr->ifm_status = sc->mii.mii_media_status;
1964 }
1965
1966 static int
1967 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1968 {
1969 struct rtk_softc *sc = ifp->if_softc;
1970 struct ifreq *ifr = (struct ifreq *) data;
1971 int s, error = 0;
1972
1973 s = splnet();
1974
1975 switch (command) {
1976 case SIOCSIFMTU:
1977 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1978 error = EINVAL;
1979 ifp->if_mtu = ifr->ifr_mtu;
1980 break;
1981 case SIOCGIFMEDIA:
1982 case SIOCSIFMEDIA:
1983 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1984 break;
1985 default:
1986 error = ether_ioctl(ifp, command, data);
1987 if (error == ENETRESET) {
1988 if (ifp->if_flags & IFF_RUNNING)
1989 rtk_setmulti(sc);
1990 error = 0;
1991 }
1992 break;
1993 }
1994
1995 splx(s);
1996
1997 return error;
1998 }
1999
2000 static void
2001 re_watchdog(struct ifnet *ifp)
2002 {
2003 struct rtk_softc *sc;
2004 int s;
2005
2006 sc = ifp->if_softc;
2007 s = splnet();
2008 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2009 ifp->if_oerrors++;
2010
2011 re_txeof(sc);
2012 re_rxeof(sc);
2013
2014 re_init(ifp);
2015
2016 splx(s);
2017 }
2018
2019 /*
2020 * Stop the adapter and free any mbufs allocated to the
2021 * RX and TX lists.
2022 */
2023 static void
2024 re_stop(struct ifnet *ifp, int disable)
2025 {
2026 int i;
2027 struct rtk_softc *sc = ifp->if_softc;
2028
2029 callout_stop(&sc->rtk_tick_ch);
2030
2031 #ifdef DEVICE_POLLING
2032 ether_poll_deregister(ifp);
2033 #endif /* DEVICE_POLLING */
2034
2035 mii_down(&sc->mii);
2036
2037 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2038 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2039
2040 if (sc->re_head != NULL) {
2041 m_freem(sc->re_head);
2042 sc->re_head = sc->re_tail = NULL;
2043 }
2044
2045 /* Free the TX list buffers. */
2046 for (i = 0; i < RE_TX_QLEN; i++) {
2047 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2048 bus_dmamap_unload(sc->sc_dmat,
2049 sc->re_ldata.re_txq[i].txq_dmamap);
2050 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2051 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2052 }
2053 }
2054
2055 /* Free the RX list buffers. */
2056 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2057 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2058 bus_dmamap_unload(sc->sc_dmat,
2059 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2060 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2061 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2062 }
2063 }
2064
2065 if (disable)
2066 re_disable(sc);
2067
2068 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2069 ifp->if_timer = 0;
2070 }
2071