rtl8169.c revision 1.79 1 /* $NetBSD: rtl8169.c,v 1.79 2007/02/10 12:46:29 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if (sc->rtk_type == RTK_8169) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if (sc->rtk_type == RTK_8169) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if (sc->rtk_type == RTK_8139CPLUS) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
578 addr_len = RTK_EEADDR_LEN1;
579 else
580 addr_len = RTK_EEADDR_LEN0;
581
582 /*
583 * Get station address from the EEPROM.
584 */
585 for (i = 0; i < 3; i++) {
586 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
587 eaddr[(i * 2) + 0] = val & 0xff;
588 eaddr[(i * 2) + 1] = val >> 8;
589 }
590
591 if (sc->rtk_type == RTK_8169) {
592 uint32_t hwrev;
593
594 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
595 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
596 /* These rev numbers are taken from Realtek's driver */
597 if (hwrev == 0x38800000 /* XXX */) {
598 sc->sc_rev = 15;
599 } else if (hwrev == RTK_HWREV_8100E) {
600 sc->sc_rev = 14;
601 } else if (hwrev == RTK_HWREV_8101E) {
602 sc->sc_rev = 13;
603 } else if (hwrev == RTK_HWREV_8168_SPIN2) {
604 sc->sc_rev = 12;
605 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
606 sc->sc_rev = 11;
607 } else if (hwrev == RTK_HWREV_8169_8110SC) {
608 sc->sc_rev = 5;
609 } else if (hwrev == RTK_HWREV_8169_8110SB) {
610 sc->sc_rev = 4;
611 } else if (hwrev == RTK_HWREV_8169S) {
612 sc->sc_rev = 3;
613 } else if (hwrev == RTK_HWREV_8110S) {
614 sc->sc_rev = 2;
615 } else /* RTK_HWREV_8169 */
616 sc->sc_rev = 1;
617
618 /* Set RX length mask */
619 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
620 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
621 } else {
622 /* Set RX length mask */
623 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
624 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->re_ldata.re_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct re_desc)) {
632 sc->re_ldata.re_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct re_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
638 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
639
640 /* Allocate DMA'able memory for the TX ring */
641 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
642 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
643 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
644 aprint_error("%s: can't allocate tx listseg, error = %d\n",
645 sc->sc_dev.dv_xname, error);
646 goto fail_0;
647 }
648
649 /* Load the map for the TX ring. */
650 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
651 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
652 (caddr_t *)&sc->re_ldata.re_tx_list,
653 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
654 aprint_error("%s: can't map tx list, error = %d\n",
655 sc->sc_dev.dv_xname, error);
656 goto fail_1;
657 }
658 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
659
660 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
661 RE_TX_LIST_SZ(sc), 0, 0,
662 &sc->re_ldata.re_tx_list_map)) != 0) {
663 aprint_error("%s: can't create tx list map, error = %d\n",
664 sc->sc_dev.dv_xname, error);
665 goto fail_2;
666 }
667
668
669 if ((error = bus_dmamap_load(sc->sc_dmat,
670 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
671 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
672 aprint_error("%s: can't load tx list, error = %d\n",
673 sc->sc_dev.dv_xname, error);
674 goto fail_3;
675 }
676
677 /* Create DMA maps for TX buffers */
678 for (i = 0; i < RE_TX_QLEN; i++) {
679 error = bus_dmamap_create(sc->sc_dmat,
680 round_page(IP_MAXPACKET),
681 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
682 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
692 if ((error = bus_dmamem_alloc(sc->sc_dmat,
693 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
694 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
695 aprint_error("%s: can't allocate rx listseg, error = %d\n",
696 sc->sc_dev.dv_xname, error);
697 goto fail_4;
698 }
699
700 /* Load the map for the RX ring. */
701 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
702 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
703 (caddr_t *)&sc->re_ldata.re_rx_list,
704 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
705 aprint_error("%s: can't map rx list, error = %d\n",
706 sc->sc_dev.dv_xname, error);
707 goto fail_5;
708 }
709 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
710
711 if ((error = bus_dmamap_create(sc->sc_dmat,
712 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
713 &sc->re_ldata.re_rx_list_map)) != 0) {
714 aprint_error("%s: can't create rx list map, error = %d\n",
715 sc->sc_dev.dv_xname, error);
716 goto fail_6;
717 }
718
719 if ((error = bus_dmamap_load(sc->sc_dmat,
720 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
721 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
722 aprint_error("%s: can't load rx list, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_7;
725 }
726
727 /* Create DMA maps for RX buffers */
728 for (i = 0; i < RE_RX_DESC_CNT; i++) {
729 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
730 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
731 if (error) {
732 aprint_error("%s: can't create DMA map for RX\n",
733 sc->sc_dev.dv_xname);
734 goto fail_8;
735 }
736 }
737
738 /*
739 * Record interface as attached. From here, we should not fail.
740 */
741 sc->sc_flags |= RTK_ATTACHED;
742
743 ifp = &sc->ethercom.ec_if;
744 ifp->if_softc = sc;
745 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
746 ifp->if_mtu = ETHERMTU;
747 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
748 ifp->if_ioctl = re_ioctl;
749 sc->ethercom.ec_capabilities |=
750 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
751 ifp->if_start = re_start;
752 ifp->if_stop = re_stop;
753
754 /*
755 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
756 * so we have a workaround to handle the bug by padding
757 * such packets manually.
758 */
759 ifp->if_capabilities |=
760 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
761 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
762 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
763 IFCAP_TSOv4;
764 ifp->if_watchdog = re_watchdog;
765 ifp->if_init = re_init;
766 if (sc->rtk_type == RTK_8169)
767 ifp->if_baudrate = 1000000000;
768 else
769 ifp->if_baudrate = 100000000;
770 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
771 ifp->if_capenable = ifp->if_capabilities;
772 IFQ_SET_READY(&ifp->if_snd);
773
774 callout_init(&sc->rtk_tick_ch);
775
776 /* Do MII setup */
777 sc->mii.mii_ifp = ifp;
778 sc->mii.mii_readreg = re_miibus_readreg;
779 sc->mii.mii_writereg = re_miibus_writereg;
780 sc->mii.mii_statchg = re_miibus_statchg;
781 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
782 re_ifmedia_sts);
783 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
784 MII_OFFSET_ANY, 0);
785 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
786
787 /*
788 * Call MI attach routine.
789 */
790 if_attach(ifp);
791 ether_ifattach(ifp, eaddr);
792
793
794 /*
795 * Make sure the interface is shutdown during reboot.
796 */
797 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
798 if (sc->sc_sdhook == NULL)
799 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
800 sc->sc_dev.dv_xname);
801 /*
802 * Add a suspend hook to make sure we come back up after a
803 * resume.
804 */
805 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
806 re_power, sc);
807 if (sc->sc_powerhook == NULL)
808 aprint_error("%s: WARNING: unable to establish power hook\n",
809 sc->sc_dev.dv_xname);
810
811
812 return;
813
814 fail_8:
815 /* Destroy DMA maps for RX buffers. */
816 for (i = 0; i < RE_RX_DESC_CNT; i++)
817 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
818 bus_dmamap_destroy(sc->sc_dmat,
819 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
820
821 /* Free DMA'able memory for the RX ring. */
822 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
823 fail_7:
824 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
825 fail_6:
826 bus_dmamem_unmap(sc->sc_dmat,
827 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
828 fail_5:
829 bus_dmamem_free(sc->sc_dmat,
830 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
831
832 fail_4:
833 /* Destroy DMA maps for TX buffers. */
834 for (i = 0; i < RE_TX_QLEN; i++)
835 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
836 bus_dmamap_destroy(sc->sc_dmat,
837 sc->re_ldata.re_txq[i].txq_dmamap);
838
839 /* Free DMA'able memory for the TX ring. */
840 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
841 fail_3:
842 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
843 fail_2:
844 bus_dmamem_unmap(sc->sc_dmat,
845 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
846 fail_1:
847 bus_dmamem_free(sc->sc_dmat,
848 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
849 fail_0:
850 return;
851 }
852
853
854 /*
855 * re_activate:
856 * Handle device activation/deactivation requests.
857 */
858 int
859 re_activate(struct device *self, enum devact act)
860 {
861 struct rtk_softc *sc = (void *)self;
862 int s, error = 0;
863
864 s = splnet();
865 switch (act) {
866 case DVACT_ACTIVATE:
867 error = EOPNOTSUPP;
868 break;
869 case DVACT_DEACTIVATE:
870 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
871 if_deactivate(&sc->ethercom.ec_if);
872 break;
873 }
874 splx(s);
875
876 return error;
877 }
878
879 /*
880 * re_detach:
881 * Detach a rtk interface.
882 */
883 int
884 re_detach(struct rtk_softc *sc)
885 {
886 struct ifnet *ifp = &sc->ethercom.ec_if;
887 int i;
888
889 /*
890 * Succeed now if there isn't any work to do.
891 */
892 if ((sc->sc_flags & RTK_ATTACHED) == 0)
893 return 0;
894
895 /* Unhook our tick handler. */
896 callout_stop(&sc->rtk_tick_ch);
897
898 /* Detach all PHYs. */
899 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
900
901 /* Delete all remaining media. */
902 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
903
904 ether_ifdetach(ifp);
905 if_detach(ifp);
906
907 /* Destroy DMA maps for RX buffers. */
908 for (i = 0; i < RE_RX_DESC_CNT; i++)
909 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
910 bus_dmamap_destroy(sc->sc_dmat,
911 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
912
913 /* Free DMA'able memory for the RX ring. */
914 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
915 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
916 bus_dmamem_unmap(sc->sc_dmat,
917 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
918 bus_dmamem_free(sc->sc_dmat,
919 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
920
921 /* Destroy DMA maps for TX buffers. */
922 for (i = 0; i < RE_TX_QLEN; i++)
923 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
924 bus_dmamap_destroy(sc->sc_dmat,
925 sc->re_ldata.re_txq[i].txq_dmamap);
926
927 /* Free DMA'able memory for the TX ring. */
928 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
929 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
930 bus_dmamem_unmap(sc->sc_dmat,
931 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
932 bus_dmamem_free(sc->sc_dmat,
933 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
934
935
936 shutdownhook_disestablish(sc->sc_sdhook);
937 powerhook_disestablish(sc->sc_powerhook);
938
939 return 0;
940 }
941
942 /*
943 * re_enable:
944 * Enable the RTL81X9 chip.
945 */
946 static int
947 re_enable(struct rtk_softc *sc)
948 {
949
950 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
951 if ((*sc->sc_enable)(sc) != 0) {
952 aprint_error("%s: device enable failed\n",
953 sc->sc_dev.dv_xname);
954 return EIO;
955 }
956 sc->sc_flags |= RTK_ENABLED;
957 }
958 return 0;
959 }
960
961 /*
962 * re_disable:
963 * Disable the RTL81X9 chip.
964 */
965 static void
966 re_disable(struct rtk_softc *sc)
967 {
968
969 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
970 (*sc->sc_disable)(sc);
971 sc->sc_flags &= ~RTK_ENABLED;
972 }
973 }
974
975 /*
976 * re_power:
977 * Power management (suspend/resume) hook.
978 */
979 void
980 re_power(int why, void *arg)
981 {
982 struct rtk_softc *sc = (void *)arg;
983 struct ifnet *ifp = &sc->ethercom.ec_if;
984 int s;
985
986 s = splnet();
987 switch (why) {
988 case PWR_SUSPEND:
989 case PWR_STANDBY:
990 re_stop(ifp, 0);
991 if (sc->sc_power != NULL)
992 (*sc->sc_power)(sc, why);
993 break;
994 case PWR_RESUME:
995 if (ifp->if_flags & IFF_UP) {
996 if (sc->sc_power != NULL)
997 (*sc->sc_power)(sc, why);
998 re_init(ifp);
999 }
1000 break;
1001 case PWR_SOFTSUSPEND:
1002 case PWR_SOFTSTANDBY:
1003 case PWR_SOFTRESUME:
1004 break;
1005 }
1006 splx(s);
1007 }
1008
1009
1010 static int
1011 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1012 {
1013 struct mbuf *n = NULL;
1014 bus_dmamap_t map;
1015 struct re_desc *d;
1016 struct re_rxsoft *rxs;
1017 uint32_t cmdstat;
1018 int error;
1019
1020 if (m == NULL) {
1021 MGETHDR(n, M_DONTWAIT, MT_DATA);
1022 if (n == NULL)
1023 return ENOBUFS;
1024
1025 MCLGET(n, M_DONTWAIT);
1026 if ((n->m_flags & M_EXT) == 0) {
1027 m_freem(n);
1028 return ENOBUFS;
1029 }
1030 m = n;
1031 } else
1032 m->m_data = m->m_ext.ext_buf;
1033
1034 /*
1035 * Initialize mbuf length fields and fixup
1036 * alignment so that the frame payload is
1037 * longword aligned.
1038 */
1039 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1040 m->m_data += RE_ETHER_ALIGN;
1041
1042 rxs = &sc->re_ldata.re_rxsoft[idx];
1043 map = rxs->rxs_dmamap;
1044 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1045 BUS_DMA_READ|BUS_DMA_NOWAIT);
1046
1047 if (error)
1048 goto out;
1049
1050 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1051 BUS_DMASYNC_PREREAD);
1052
1053 d = &sc->re_ldata.re_rx_list[idx];
1054 #ifdef DIAGNOSTIC
1055 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1056 cmdstat = le32toh(d->re_cmdstat);
1057 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1058 if (cmdstat & RE_RDESC_STAT_OWN) {
1059 panic("%s: tried to map busy RX descriptor",
1060 sc->sc_dev.dv_xname);
1061 }
1062 #endif
1063
1064 rxs->rxs_mbuf = m;
1065
1066 d->re_vlanctl = 0;
1067 cmdstat = map->dm_segs[0].ds_len;
1068 if (idx == (RE_RX_DESC_CNT - 1))
1069 cmdstat |= RE_RDESC_CMD_EOR;
1070 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1071 d->re_cmdstat = htole32(cmdstat);
1072 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1073 cmdstat |= RE_RDESC_CMD_OWN;
1074 d->re_cmdstat = htole32(cmdstat);
1075 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076
1077 return 0;
1078 out:
1079 if (n != NULL)
1080 m_freem(n);
1081 return ENOMEM;
1082 }
1083
1084 static int
1085 re_tx_list_init(struct rtk_softc *sc)
1086 {
1087 int i;
1088
1089 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1090 for (i = 0; i < RE_TX_QLEN; i++) {
1091 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1092 }
1093
1094 bus_dmamap_sync(sc->sc_dmat,
1095 sc->re_ldata.re_tx_list_map, 0,
1096 sc->re_ldata.re_tx_list_map->dm_mapsize,
1097 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1098 sc->re_ldata.re_txq_prodidx = 0;
1099 sc->re_ldata.re_txq_considx = 0;
1100 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1101 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1102 sc->re_ldata.re_tx_nextfree = 0;
1103
1104 return 0;
1105 }
1106
1107 static int
1108 re_rx_list_init(struct rtk_softc *sc)
1109 {
1110 int i;
1111
1112 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1113
1114 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1115 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1116 return ENOBUFS;
1117 }
1118
1119 sc->re_ldata.re_rx_prodidx = 0;
1120 sc->re_head = sc->re_tail = NULL;
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * RX handler for C+ and 8169. For the gigE chips, we support
1127 * the reception of jumbo frames that have been fragmented
1128 * across multiple 2K mbuf cluster buffers.
1129 */
1130 static void
1131 re_rxeof(struct rtk_softc *sc)
1132 {
1133 struct mbuf *m;
1134 struct ifnet *ifp;
1135 int i, total_len;
1136 struct re_desc *cur_rx;
1137 struct re_rxsoft *rxs;
1138 uint32_t rxstat, rxvlan;
1139
1140 ifp = &sc->ethercom.ec_if;
1141
1142 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1143 cur_rx = &sc->re_ldata.re_rx_list[i];
1144 RE_RXDESCSYNC(sc, i,
1145 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1146 rxstat = le32toh(cur_rx->re_cmdstat);
1147 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1148 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1149 break;
1150 }
1151 total_len = rxstat & sc->re_rxlenmask;
1152 rxvlan = le32toh(cur_rx->re_vlanctl);
1153 rxs = &sc->re_ldata.re_rxsoft[i];
1154 m = rxs->rxs_mbuf;
1155
1156 /* Invalidate the RX mbuf and unload its map */
1157
1158 bus_dmamap_sync(sc->sc_dmat,
1159 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1160 BUS_DMASYNC_POSTREAD);
1161 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1162
1163 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1164 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1165 if (sc->re_head == NULL)
1166 sc->re_head = sc->re_tail = m;
1167 else {
1168 m->m_flags &= ~M_PKTHDR;
1169 sc->re_tail->m_next = m;
1170 sc->re_tail = m;
1171 }
1172 re_newbuf(sc, i, NULL);
1173 continue;
1174 }
1175
1176 /*
1177 * NOTE: for the 8139C+, the frame length field
1178 * is always 12 bits in size, but for the gigE chips,
1179 * it is 13 bits (since the max RX frame length is 16K).
1180 * Unfortunately, all 32 bits in the status word
1181 * were already used, so to make room for the extra
1182 * length bit, RealTek took out the 'frame alignment
1183 * error' bit and shifted the other status bits
1184 * over one slot. The OWN, EOR, FS and LS bits are
1185 * still in the same places. We have already extracted
1186 * the frame length and checked the OWN bit, so rather
1187 * than using an alternate bit mapping, we shift the
1188 * status bits one space to the right so we can evaluate
1189 * them using the 8169 status as though it was in the
1190 * same format as that of the 8139C+.
1191 */
1192 if (sc->rtk_type == RTK_8169)
1193 rxstat >>= 1;
1194
1195 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1196 #ifdef RE_DEBUG
1197 aprint_error("%s: RX error (rxstat = 0x%08x)",
1198 sc->sc_dev.dv_xname, rxstat);
1199 if (rxstat & RE_RDESC_STAT_FRALIGN)
1200 aprint_error(", frame alignment error");
1201 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1202 aprint_error(", out of buffer space");
1203 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1204 aprint_error(", FIFO overrun");
1205 if (rxstat & RE_RDESC_STAT_GIANT)
1206 aprint_error(", giant packet");
1207 if (rxstat & RE_RDESC_STAT_RUNT)
1208 aprint_error(", runt packet");
1209 if (rxstat & RE_RDESC_STAT_CRCERR)
1210 aprint_error(", CRC error");
1211 aprint_error("\n");
1212 #endif
1213 ifp->if_ierrors++;
1214 /*
1215 * If this is part of a multi-fragment packet,
1216 * discard all the pieces.
1217 */
1218 if (sc->re_head != NULL) {
1219 m_freem(sc->re_head);
1220 sc->re_head = sc->re_tail = NULL;
1221 }
1222 re_newbuf(sc, i, m);
1223 continue;
1224 }
1225
1226 /*
1227 * If allocating a replacement mbuf fails,
1228 * reload the current one.
1229 */
1230
1231 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1232 ifp->if_ierrors++;
1233 if (sc->re_head != NULL) {
1234 m_freem(sc->re_head);
1235 sc->re_head = sc->re_tail = NULL;
1236 }
1237 re_newbuf(sc, i, m);
1238 continue;
1239 }
1240
1241 if (sc->re_head != NULL) {
1242 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1243 /*
1244 * Special case: if there's 4 bytes or less
1245 * in this buffer, the mbuf can be discarded:
1246 * the last 4 bytes is the CRC, which we don't
1247 * care about anyway.
1248 */
1249 if (m->m_len <= ETHER_CRC_LEN) {
1250 sc->re_tail->m_len -=
1251 (ETHER_CRC_LEN - m->m_len);
1252 m_freem(m);
1253 } else {
1254 m->m_len -= ETHER_CRC_LEN;
1255 m->m_flags &= ~M_PKTHDR;
1256 sc->re_tail->m_next = m;
1257 }
1258 m = sc->re_head;
1259 sc->re_head = sc->re_tail = NULL;
1260 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1261 } else
1262 m->m_pkthdr.len = m->m_len =
1263 (total_len - ETHER_CRC_LEN);
1264
1265 ifp->if_ipackets++;
1266 m->m_pkthdr.rcvif = ifp;
1267
1268 /* Do RX checksumming */
1269
1270 /* Check IP header checksum */
1271 if (rxstat & RE_RDESC_STAT_PROTOID) {
1272 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1273 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1274 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1275 }
1276
1277 /* Check TCP/UDP checksum */
1278 if (RE_TCPPKT(rxstat)) {
1279 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1280 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1281 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1282 } else if (RE_UDPPKT(rxstat)) {
1283 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1284 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1285 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1286 }
1287
1288 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1289 VLAN_INPUT_TAG(ifp, m,
1290 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1291 continue);
1292 }
1293 #if NBPFILTER > 0
1294 if (ifp->if_bpf)
1295 bpf_mtap(ifp->if_bpf, m);
1296 #endif
1297 (*ifp->if_input)(ifp, m);
1298 }
1299
1300 sc->re_ldata.re_rx_prodidx = i;
1301 }
1302
1303 static void
1304 re_txeof(struct rtk_softc *sc)
1305 {
1306 struct ifnet *ifp;
1307 struct re_txq *txq;
1308 uint32_t txstat;
1309 int idx, descidx;
1310
1311 ifp = &sc->ethercom.ec_if;
1312
1313 for (idx = sc->re_ldata.re_txq_considx;
1314 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1315 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1316 txq = &sc->re_ldata.re_txq[idx];
1317 KASSERT(txq->txq_mbuf != NULL);
1318
1319 descidx = txq->txq_descidx;
1320 RE_TXDESCSYNC(sc, descidx,
1321 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1322 txstat =
1323 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1324 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1325 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1326 if (txstat & RE_TDESC_CMD_OWN) {
1327 break;
1328 }
1329
1330 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1331 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1332 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1333 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1334 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1335 m_freem(txq->txq_mbuf);
1336 txq->txq_mbuf = NULL;
1337
1338 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1339 ifp->if_collisions++;
1340 if (txstat & RE_TDESC_STAT_TXERRSUM)
1341 ifp->if_oerrors++;
1342 else
1343 ifp->if_opackets++;
1344 }
1345
1346 sc->re_ldata.re_txq_considx = idx;
1347
1348 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1349 ifp->if_flags &= ~IFF_OACTIVE;
1350
1351 /*
1352 * If not all descriptors have been released reaped yet,
1353 * reload the timer so that we will eventually get another
1354 * interrupt that will cause us to re-enter this routine.
1355 * This is done in case the transmitter has gone idle.
1356 */
1357 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1358 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1359 else
1360 ifp->if_timer = 0;
1361 }
1362
1363 /*
1364 * Stop all chip I/O so that the kernel's probe routines don't
1365 * get confused by errant DMAs when rebooting.
1366 */
1367 static void
1368 re_shutdown(void *vsc)
1369
1370 {
1371 struct rtk_softc *sc = vsc;
1372
1373 re_stop(&sc->ethercom.ec_if, 0);
1374 }
1375
1376
1377 static void
1378 re_tick(void *xsc)
1379 {
1380 struct rtk_softc *sc = xsc;
1381 int s;
1382
1383 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1384 s = splnet();
1385
1386 mii_tick(&sc->mii);
1387 splx(s);
1388
1389 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1390 }
1391
1392 #ifdef DEVICE_POLLING
1393 static void
1394 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1395 {
1396 struct rtk_softc *sc = ifp->if_softc;
1397
1398 RTK_LOCK(sc);
1399 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1400 ether_poll_deregister(ifp);
1401 cmd = POLL_DEREGISTER;
1402 }
1403 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1404 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1405 goto done;
1406 }
1407
1408 sc->rxcycles = count;
1409 re_rxeof(sc);
1410 re_txeof(sc);
1411
1412 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1413 (*ifp->if_start)(ifp);
1414
1415 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1416 uint16_t status;
1417
1418 status = CSR_READ_2(sc, RTK_ISR);
1419 if (status == 0xffff)
1420 goto done;
1421 if (status)
1422 CSR_WRITE_2(sc, RTK_ISR, status);
1423
1424 /*
1425 * XXX check behaviour on receiver stalls.
1426 */
1427
1428 if (status & RTK_ISR_SYSTEM_ERR) {
1429 re_init(sc);
1430 }
1431 }
1432 done:
1433 RTK_UNLOCK(sc);
1434 }
1435 #endif /* DEVICE_POLLING */
1436
1437 int
1438 re_intr(void *arg)
1439 {
1440 struct rtk_softc *sc = arg;
1441 struct ifnet *ifp;
1442 uint16_t status;
1443 int handled = 0;
1444
1445 ifp = &sc->ethercom.ec_if;
1446
1447 if ((ifp->if_flags & IFF_UP) == 0)
1448 return 0;
1449
1450 #ifdef DEVICE_POLLING
1451 if (ifp->if_flags & IFF_POLLING)
1452 goto done;
1453 if ((ifp->if_capenable & IFCAP_POLLING) &&
1454 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1455 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1456 re_poll(ifp, 0, 1);
1457 goto done;
1458 }
1459 #endif /* DEVICE_POLLING */
1460
1461 for (;;) {
1462
1463 status = CSR_READ_2(sc, RTK_ISR);
1464 /* If the card has gone away the read returns 0xffff. */
1465 if (status == 0xffff)
1466 break;
1467 if (status) {
1468 handled = 1;
1469 CSR_WRITE_2(sc, RTK_ISR, status);
1470 }
1471
1472 if ((status & RTK_INTRS_CPLUS) == 0)
1473 break;
1474
1475 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1476 re_rxeof(sc);
1477
1478 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1479 RTK_ISR_TX_DESC_UNAVAIL))
1480 re_txeof(sc);
1481
1482 if (status & RTK_ISR_SYSTEM_ERR) {
1483 re_init(ifp);
1484 }
1485
1486 if (status & RTK_ISR_LINKCHG) {
1487 callout_stop(&sc->rtk_tick_ch);
1488 re_tick(sc);
1489 }
1490 }
1491
1492 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1493 re_start(ifp);
1494
1495 #ifdef DEVICE_POLLING
1496 done:
1497 #endif
1498
1499 return handled;
1500 }
1501
1502
1503
1504 /*
1505 * Main transmit routine for C+ and gigE NICs.
1506 */
1507
1508 static void
1509 re_start(struct ifnet *ifp)
1510 {
1511 struct rtk_softc *sc;
1512 struct mbuf *m;
1513 bus_dmamap_t map;
1514 struct re_txq *txq;
1515 struct re_desc *d;
1516 struct m_tag *mtag;
1517 uint32_t cmdstat, re_flags;
1518 int ofree, idx, error, nsegs, seg;
1519 int startdesc, curdesc, lastdesc;
1520 boolean_t pad;
1521
1522 sc = ifp->if_softc;
1523 ofree = sc->re_ldata.re_txq_free;
1524
1525 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1526
1527 IFQ_POLL(&ifp->if_snd, m);
1528 if (m == NULL)
1529 break;
1530
1531 if (sc->re_ldata.re_txq_free == 0 ||
1532 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1533 /* no more free slots left */
1534 ifp->if_flags |= IFF_OACTIVE;
1535 break;
1536 }
1537
1538 /*
1539 * Set up checksum offload. Note: checksum offload bits must
1540 * appear in all descriptors of a multi-descriptor transmit
1541 * attempt. (This is according to testing done with an 8169
1542 * chip. I'm not sure if this is a requirement or a bug.)
1543 */
1544
1545 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1546 uint32_t segsz = m->m_pkthdr.segsz;
1547
1548 re_flags = RE_TDESC_CMD_LGSEND |
1549 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1550 } else {
1551 /*
1552 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1553 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1554 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1555 */
1556 re_flags = 0;
1557 if ((m->m_pkthdr.csum_flags &
1558 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1559 != 0) {
1560 re_flags |= RE_TDESC_CMD_IPCSUM;
1561 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1562 re_flags |= RE_TDESC_CMD_TCPCSUM;
1563 } else if (m->m_pkthdr.csum_flags &
1564 M_CSUM_UDPv4) {
1565 re_flags |= RE_TDESC_CMD_UDPCSUM;
1566 }
1567 }
1568 }
1569
1570 txq = &sc->re_ldata.re_txq[idx];
1571 map = txq->txq_dmamap;
1572 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1573 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1574
1575 if (__predict_false(error)) {
1576 /* XXX try to defrag if EFBIG? */
1577 aprint_error("%s: can't map mbuf (error %d)\n",
1578 sc->sc_dev.dv_xname, error);
1579
1580 IFQ_DEQUEUE(&ifp->if_snd, m);
1581 m_freem(m);
1582 ifp->if_oerrors++;
1583 continue;
1584 }
1585
1586 nsegs = map->dm_nsegs;
1587 pad = FALSE;
1588 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1589 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1590 pad = TRUE;
1591 nsegs++;
1592 }
1593
1594 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1595 /*
1596 * Not enough free descriptors to transmit this packet.
1597 */
1598 ifp->if_flags |= IFF_OACTIVE;
1599 bus_dmamap_unload(sc->sc_dmat, map);
1600 break;
1601 }
1602
1603 IFQ_DEQUEUE(&ifp->if_snd, m);
1604
1605 /*
1606 * Make sure that the caches are synchronized before we
1607 * ask the chip to start DMA for the packet data.
1608 */
1609 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1610 BUS_DMASYNC_PREWRITE);
1611
1612 /*
1613 * Map the segment array into descriptors.
1614 * Note that we set the start-of-frame and
1615 * end-of-frame markers for either TX or RX,
1616 * but they really only have meaning in the TX case.
1617 * (In the RX case, it's the chip that tells us
1618 * where packets begin and end.)
1619 * We also keep track of the end of the ring
1620 * and set the end-of-ring bits as needed,
1621 * and we set the ownership bits in all except
1622 * the very first descriptor. (The caller will
1623 * set this descriptor later when it start
1624 * transmission or reception.)
1625 */
1626 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1627 lastdesc = -1;
1628 for (seg = 0; seg < map->dm_nsegs;
1629 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1630 d = &sc->re_ldata.re_tx_list[curdesc];
1631 #ifdef DIAGNOSTIC
1632 RE_TXDESCSYNC(sc, curdesc,
1633 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1634 cmdstat = le32toh(d->re_cmdstat);
1635 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1636 if (cmdstat & RE_TDESC_STAT_OWN) {
1637 panic("%s: tried to map busy TX descriptor",
1638 sc->sc_dev.dv_xname);
1639 }
1640 #endif
1641
1642 d->re_vlanctl = 0;
1643 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1644 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1645 if (seg == 0)
1646 cmdstat |= RE_TDESC_CMD_SOF;
1647 else
1648 cmdstat |= RE_TDESC_CMD_OWN;
1649 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1650 cmdstat |= RE_TDESC_CMD_EOR;
1651 if (seg == nsegs - 1) {
1652 cmdstat |= RE_TDESC_CMD_EOF;
1653 lastdesc = curdesc;
1654 }
1655 d->re_cmdstat = htole32(cmdstat);
1656 RE_TXDESCSYNC(sc, curdesc,
1657 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1658 }
1659 if (__predict_false(pad)) {
1660 bus_addr_t paddaddr;
1661
1662 d = &sc->re_ldata.re_tx_list[curdesc];
1663 d->re_vlanctl = 0;
1664 paddaddr = RE_TXPADDADDR(sc);
1665 re_set_bufaddr(d, paddaddr);
1666 cmdstat = re_flags |
1667 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1668 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1669 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1670 cmdstat |= RE_TDESC_CMD_EOR;
1671 d->re_cmdstat = htole32(cmdstat);
1672 RE_TXDESCSYNC(sc, curdesc,
1673 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1674 lastdesc = curdesc;
1675 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1676 }
1677 KASSERT(lastdesc != -1);
1678
1679 /*
1680 * Set up hardware VLAN tagging. Note: vlan tag info must
1681 * appear in the first descriptor of a multi-descriptor
1682 * transmission attempt.
1683 */
1684 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1685 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1686 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1687 RE_TDESC_VLANCTL_TAG);
1688 }
1689
1690 /* Transfer ownership of packet to the chip. */
1691
1692 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1693 htole32(RE_TDESC_CMD_OWN);
1694 RE_TXDESCSYNC(sc, startdesc,
1695 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1696
1697 /* update info of TX queue and descriptors */
1698 txq->txq_mbuf = m;
1699 txq->txq_descidx = lastdesc;
1700 txq->txq_nsegs = nsegs;
1701
1702 sc->re_ldata.re_txq_free--;
1703 sc->re_ldata.re_tx_free -= nsegs;
1704 sc->re_ldata.re_tx_nextfree = curdesc;
1705
1706 #if NBPFILTER > 0
1707 /*
1708 * If there's a BPF listener, bounce a copy of this frame
1709 * to him.
1710 */
1711 if (ifp->if_bpf)
1712 bpf_mtap(ifp->if_bpf, m);
1713 #endif
1714 }
1715
1716 if (sc->re_ldata.re_txq_free < ofree) {
1717 /*
1718 * TX packets are enqueued.
1719 */
1720 sc->re_ldata.re_txq_prodidx = idx;
1721
1722 /*
1723 * Start the transmitter to poll.
1724 *
1725 * RealTek put the TX poll request register in a different
1726 * location on the 8169 gigE chip. I don't know why.
1727 */
1728 if (sc->rtk_type == RTK_8169)
1729 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1730 else
1731 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1732
1733 /*
1734 * Use the countdown timer for interrupt moderation.
1735 * 'TX done' interrupts are disabled. Instead, we reset the
1736 * countdown timer, which will begin counting until it hits
1737 * the value in the TIMERINT register, and then trigger an
1738 * interrupt. Each time we write to the TIMERCNT register,
1739 * the timer count is reset to 0.
1740 */
1741 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1742
1743 /*
1744 * Set a timeout in case the chip goes out to lunch.
1745 */
1746 ifp->if_timer = 5;
1747 }
1748 }
1749
1750 static int
1751 re_init(struct ifnet *ifp)
1752 {
1753 struct rtk_softc *sc = ifp->if_softc;
1754 uint8_t *enaddr;
1755 uint32_t rxcfg = 0;
1756 uint32_t reg;
1757 int error;
1758
1759 if ((error = re_enable(sc)) != 0)
1760 goto out;
1761
1762 /*
1763 * Cancel pending I/O and free all RX/TX buffers.
1764 */
1765 re_stop(ifp, 0);
1766
1767 re_reset(sc);
1768
1769 /*
1770 * Enable C+ RX and TX mode, as well as VLAN stripping and
1771 * RX checksum offload. We must configure the C+ register
1772 * before all others.
1773 */
1774 reg = 0;
1775
1776 /*
1777 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1778 * FreeBSD drivers set these bits anyway (for 8139C+?).
1779 * So far, it works.
1780 */
1781
1782 /*
1783 * XXX: For 8169 and 8169S revs below 2, set bit 14.
1784 * For 8169S/8110S rev 2 and above, do not set bit 14.
1785 */
1786 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1787 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1788
1789 if (1) {/* not for 8169S ? */
1790 reg |=
1791 RTK_CPLUSCMD_VLANSTRIP |
1792 (ifp->if_capenable &
1793 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1794 IFCAP_CSUM_UDPv4_Rx) ?
1795 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1796 }
1797
1798 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1799 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1800
1801 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1802 if (sc->rtk_type == RTK_8169)
1803 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1804
1805 DELAY(10000);
1806
1807 /*
1808 * Init our MAC address. Even though the chipset
1809 * documentation doesn't mention it, we need to enter "Config
1810 * register write enable" mode to modify the ID registers.
1811 */
1812 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1813 enaddr = LLADDR(ifp->if_sadl);
1814 reg = enaddr[0] | (enaddr[1] << 8) |
1815 (enaddr[2] << 16) | (enaddr[3] << 24);
1816 CSR_WRITE_4(sc, RTK_IDR0, reg);
1817 reg = enaddr[4] | (enaddr[5] << 8);
1818 CSR_WRITE_4(sc, RTK_IDR4, reg);
1819 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1820
1821 /*
1822 * For C+ mode, initialize the RX descriptors and mbufs.
1823 */
1824 re_rx_list_init(sc);
1825 re_tx_list_init(sc);
1826
1827 /*
1828 * Load the addresses of the RX and TX lists into the chip.
1829 */
1830 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1831 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1832 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1833 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1834
1835 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1836 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1837 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1838 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1839
1840 /*
1841 * Enable transmit and receive.
1842 */
1843 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1844
1845 /*
1846 * Set the initial TX and RX configuration.
1847 */
1848 if (sc->re_testmode) {
1849 if (sc->rtk_type == RTK_8169)
1850 CSR_WRITE_4(sc, RTK_TXCFG,
1851 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1852 else
1853 CSR_WRITE_4(sc, RTK_TXCFG,
1854 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1855 } else
1856 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1857
1858 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1859
1860 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1861
1862 /* Set the individual bit to receive frames for this host only. */
1863 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1864 rxcfg |= RTK_RXCFG_RX_INDIV;
1865
1866 /* If we want promiscuous mode, set the allframes bit. */
1867 if (ifp->if_flags & IFF_PROMISC)
1868 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1869 else
1870 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1871 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1872
1873 /*
1874 * Set capture broadcast bit to capture broadcast frames.
1875 */
1876 if (ifp->if_flags & IFF_BROADCAST)
1877 rxcfg |= RTK_RXCFG_RX_BROAD;
1878 else
1879 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1880 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1881
1882 /*
1883 * Program the multicast filter, if necessary.
1884 */
1885 rtk_setmulti(sc);
1886
1887 #ifdef DEVICE_POLLING
1888 /*
1889 * Disable interrupts if we are polling.
1890 */
1891 if (ifp->if_flags & IFF_POLLING)
1892 CSR_WRITE_2(sc, RTK_IMR, 0);
1893 else /* otherwise ... */
1894 #endif /* DEVICE_POLLING */
1895 /*
1896 * Enable interrupts.
1897 */
1898 if (sc->re_testmode)
1899 CSR_WRITE_2(sc, RTK_IMR, 0);
1900 else
1901 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1902
1903 /* Start RX/TX process. */
1904 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1905 #ifdef notdef
1906 /* Enable receiver and transmitter. */
1907 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1908 #endif
1909
1910 /*
1911 * Initialize the timer interrupt register so that
1912 * a timer interrupt will be generated once the timer
1913 * reaches a certain number of ticks. The timer is
1914 * reloaded on each transmit. This gives us TX interrupt
1915 * moderation, which dramatically improves TX frame rate.
1916 */
1917
1918 if (sc->rtk_type == RTK_8169)
1919 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1920 else
1921 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1922
1923 /*
1924 * For 8169 gigE NICs, set the max allowed RX packet
1925 * size so we can receive jumbo frames.
1926 */
1927 if (sc->rtk_type == RTK_8169)
1928 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1929
1930 if (sc->re_testmode)
1931 return 0;
1932
1933 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1934
1935 ifp->if_flags |= IFF_RUNNING;
1936 ifp->if_flags &= ~IFF_OACTIVE;
1937
1938 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1939
1940 out:
1941 if (error) {
1942 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1943 ifp->if_timer = 0;
1944 aprint_error("%s: interface not running\n",
1945 sc->sc_dev.dv_xname);
1946 }
1947
1948 return error;
1949 }
1950
1951 /*
1952 * Set media options.
1953 */
1954 static int
1955 re_ifmedia_upd(struct ifnet *ifp)
1956 {
1957 struct rtk_softc *sc;
1958
1959 sc = ifp->if_softc;
1960
1961 return mii_mediachg(&sc->mii);
1962 }
1963
1964 /*
1965 * Report current media status.
1966 */
1967 static void
1968 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1969 {
1970 struct rtk_softc *sc;
1971
1972 sc = ifp->if_softc;
1973
1974 mii_pollstat(&sc->mii);
1975 ifmr->ifm_active = sc->mii.mii_media_active;
1976 ifmr->ifm_status = sc->mii.mii_media_status;
1977 }
1978
1979 static int
1980 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1981 {
1982 struct rtk_softc *sc = ifp->if_softc;
1983 struct ifreq *ifr = (struct ifreq *) data;
1984 int s, error = 0;
1985
1986 s = splnet();
1987
1988 switch (command) {
1989 case SIOCSIFMTU:
1990 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1991 error = EINVAL;
1992 ifp->if_mtu = ifr->ifr_mtu;
1993 break;
1994 case SIOCGIFMEDIA:
1995 case SIOCSIFMEDIA:
1996 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1997 break;
1998 default:
1999 error = ether_ioctl(ifp, command, data);
2000 if (error == ENETRESET) {
2001 if (ifp->if_flags & IFF_RUNNING)
2002 rtk_setmulti(sc);
2003 error = 0;
2004 }
2005 break;
2006 }
2007
2008 splx(s);
2009
2010 return error;
2011 }
2012
2013 static void
2014 re_watchdog(struct ifnet *ifp)
2015 {
2016 struct rtk_softc *sc;
2017 int s;
2018
2019 sc = ifp->if_softc;
2020 s = splnet();
2021 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2022 ifp->if_oerrors++;
2023
2024 re_txeof(sc);
2025 re_rxeof(sc);
2026
2027 re_init(ifp);
2028
2029 splx(s);
2030 }
2031
2032 /*
2033 * Stop the adapter and free any mbufs allocated to the
2034 * RX and TX lists.
2035 */
2036 static void
2037 re_stop(struct ifnet *ifp, int disable)
2038 {
2039 int i;
2040 struct rtk_softc *sc = ifp->if_softc;
2041
2042 callout_stop(&sc->rtk_tick_ch);
2043
2044 #ifdef DEVICE_POLLING
2045 ether_poll_deregister(ifp);
2046 #endif /* DEVICE_POLLING */
2047
2048 mii_down(&sc->mii);
2049
2050 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2051 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2052
2053 if (sc->re_head != NULL) {
2054 m_freem(sc->re_head);
2055 sc->re_head = sc->re_tail = NULL;
2056 }
2057
2058 /* Free the TX list buffers. */
2059 for (i = 0; i < RE_TX_QLEN; i++) {
2060 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2061 bus_dmamap_unload(sc->sc_dmat,
2062 sc->re_ldata.re_txq[i].txq_dmamap);
2063 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2064 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2065 }
2066 }
2067
2068 /* Free the RX list buffers. */
2069 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2070 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2071 bus_dmamap_unload(sc->sc_dmat,
2072 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2073 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2074 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2075 }
2076 }
2077
2078 if (disable)
2079 re_disable(sc);
2080
2081 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2082 ifp->if_timer = 0;
2083 }
2084