rtl8169.c revision 1.86.6.2 1 /* $NetBSD: rtl8169.c,v 1.86.6.2 2007/10/05 01:08:57 joerg Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, void *);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static int re_enable(struct rtk_softc *);
166 static void re_disable(struct rtk_softc *);
167
168 static int re_ifmedia_upd(struct ifnet *);
169 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170
171 static int re_gmii_readreg(struct device *, int, int);
172 static void re_gmii_writereg(struct device *, int, int, int);
173
174 static int re_miibus_readreg(struct device *, int, int);
175 static void re_miibus_writereg(struct device *, int, int, int);
176 static void re_miibus_statchg(struct device *);
177
178 static void re_reset(struct rtk_softc *);
179
180 static inline void
181 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
182 {
183
184 d->re_bufaddr_lo = htole32((uint32_t)addr);
185 if (sizeof(bus_addr_t) == sizeof(uint64_t))
186 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
187 else
188 d->re_bufaddr_hi = 0;
189 }
190
191 static int
192 re_gmii_readreg(struct device *self, int phy, int reg)
193 {
194 struct rtk_softc *sc = (void *)self;
195 uint32_t rval;
196 int i;
197
198 if (phy != 7)
199 return 0;
200
201 /* Let the rgephy driver read the GMEDIASTAT register */
202
203 if (reg == RTK_GMEDIASTAT) {
204 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
205 return rval;
206 }
207
208 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
209 DELAY(1000);
210
211 for (i = 0; i < RTK_TIMEOUT; i++) {
212 rval = CSR_READ_4(sc, RTK_PHYAR);
213 if (rval & RTK_PHYAR_BUSY)
214 break;
215 DELAY(100);
216 }
217
218 if (i == RTK_TIMEOUT) {
219 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
220 return 0;
221 }
222
223 return rval & RTK_PHYAR_PHYDATA;
224 }
225
226 static void
227 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
228 {
229 struct rtk_softc *sc = (void *)dev;
230 uint32_t rval;
231 int i;
232
233 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
234 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
235 DELAY(1000);
236
237 for (i = 0; i < RTK_TIMEOUT; i++) {
238 rval = CSR_READ_4(sc, RTK_PHYAR);
239 if (!(rval & RTK_PHYAR_BUSY))
240 break;
241 DELAY(100);
242 }
243
244 if (i == RTK_TIMEOUT) {
245 aprint_error("%s: PHY write reg %x <- %x failed\n",
246 sc->sc_dev.dv_xname, reg, data);
247 }
248 }
249
250 static int
251 re_miibus_readreg(struct device *dev, int phy, int reg)
252 {
253 struct rtk_softc *sc = (void *)dev;
254 uint16_t rval = 0;
255 uint16_t re8139_reg = 0;
256 int s;
257
258 s = splnet();
259
260 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
261 rval = re_gmii_readreg(dev, phy, reg);
262 splx(s);
263 return rval;
264 }
265
266 /* Pretend the internal PHY is only at address 0 */
267 if (phy) {
268 splx(s);
269 return 0;
270 }
271 switch (reg) {
272 case MII_BMCR:
273 re8139_reg = RTK_BMCR;
274 break;
275 case MII_BMSR:
276 re8139_reg = RTK_BMSR;
277 break;
278 case MII_ANAR:
279 re8139_reg = RTK_ANAR;
280 break;
281 case MII_ANER:
282 re8139_reg = RTK_ANER;
283 break;
284 case MII_ANLPAR:
285 re8139_reg = RTK_LPAR;
286 break;
287 case MII_PHYIDR1:
288 case MII_PHYIDR2:
289 splx(s);
290 return 0;
291 /*
292 * Allow the rlphy driver to read the media status
293 * register. If we have a link partner which does not
294 * support NWAY, this is the register which will tell
295 * us the results of parallel detection.
296 */
297 case RTK_MEDIASTAT:
298 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
299 splx(s);
300 return rval;
301 default:
302 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
303 splx(s);
304 return 0;
305 }
306 rval = CSR_READ_2(sc, re8139_reg);
307 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
308 /* 8139C+ has different bit layout. */
309 rval &= ~(BMCR_LOOP | BMCR_ISO);
310 }
311 splx(s);
312 return rval;
313 }
314
315 static void
316 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
317 {
318 struct rtk_softc *sc = (void *)dev;
319 uint16_t re8139_reg = 0;
320 int s;
321
322 s = splnet();
323
324 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
325 re_gmii_writereg(dev, phy, reg, data);
326 splx(s);
327 return;
328 }
329
330 /* Pretend the internal PHY is only at address 0 */
331 if (phy) {
332 splx(s);
333 return;
334 }
335 switch (reg) {
336 case MII_BMCR:
337 re8139_reg = RTK_BMCR;
338 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
339 /* 8139C+ has different bit layout. */
340 data &= ~(BMCR_LOOP | BMCR_ISO);
341 }
342 break;
343 case MII_BMSR:
344 re8139_reg = RTK_BMSR;
345 break;
346 case MII_ANAR:
347 re8139_reg = RTK_ANAR;
348 break;
349 case MII_ANER:
350 re8139_reg = RTK_ANER;
351 break;
352 case MII_ANLPAR:
353 re8139_reg = RTK_LPAR;
354 break;
355 case MII_PHYIDR1:
356 case MII_PHYIDR2:
357 splx(s);
358 return;
359 break;
360 default:
361 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
362 splx(s);
363 return;
364 }
365 CSR_WRITE_2(sc, re8139_reg, data);
366 splx(s);
367 return;
368 }
369
370 static void
371 re_miibus_statchg(struct device *dev)
372 {
373
374 return;
375 }
376
377 static void
378 re_reset(struct rtk_softc *sc)
379 {
380 int i;
381
382 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
383
384 for (i = 0; i < RTK_TIMEOUT; i++) {
385 DELAY(10);
386 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
387 break;
388 }
389 if (i == RTK_TIMEOUT)
390 aprint_error("%s: reset never completed!\n",
391 sc->sc_dev.dv_xname);
392
393 /*
394 * NB: Realtek-supplied Linux driver does this only for
395 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
396 */
397 if (1) /* XXX check softc flag for 8169s version */
398 CSR_WRITE_1(sc, RTK_LDPS, 1);
399
400 return;
401 }
402
403 /*
404 * The following routine is designed to test for a defect on some
405 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
406 * lines connected to the bus, however for a 32-bit only card, they
407 * should be pulled high. The result of this defect is that the
408 * NIC will not work right if you plug it into a 64-bit slot: DMA
409 * operations will be done with 64-bit transfers, which will fail
410 * because the 64-bit data lines aren't connected.
411 *
412 * There's no way to work around this (short of talking a soldering
413 * iron to the board), however we can detect it. The method we use
414 * here is to put the NIC into digital loopback mode, set the receiver
415 * to promiscuous mode, and then try to send a frame. We then compare
416 * the frame data we sent to what was received. If the data matches,
417 * then the NIC is working correctly, otherwise we know the user has
418 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
419 * slot. In the latter case, there's no way the NIC can work correctly,
420 * so we print out a message on the console and abort the device attach.
421 */
422
423 int
424 re_diag(struct rtk_softc *sc)
425 {
426 struct ifnet *ifp = &sc->ethercom.ec_if;
427 struct mbuf *m0;
428 struct ether_header *eh;
429 struct re_rxsoft *rxs;
430 struct re_desc *cur_rx;
431 bus_dmamap_t dmamap;
432 uint16_t status;
433 uint32_t rxstat;
434 int total_len, i, s, error = 0;
435 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
436 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
437
438 /* Allocate a single mbuf */
439
440 MGETHDR(m0, M_DONTWAIT, MT_DATA);
441 if (m0 == NULL)
442 return ENOBUFS;
443
444 /*
445 * Initialize the NIC in test mode. This sets the chip up
446 * so that it can send and receive frames, but performs the
447 * following special functions:
448 * - Puts receiver in promiscuous mode
449 * - Enables digital loopback mode
450 * - Leaves interrupts turned off
451 */
452
453 ifp->if_flags |= IFF_PROMISC;
454 sc->re_testmode = 1;
455 re_init(ifp);
456 re_stop(ifp, 0);
457 DELAY(100000);
458 re_init(ifp);
459
460 /* Put some data in the mbuf */
461
462 eh = mtod(m0, struct ether_header *);
463 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
464 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
465 eh->ether_type = htons(ETHERTYPE_IP);
466 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
467
468 /*
469 * Queue the packet, start transmission.
470 */
471
472 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
473 s = splnet();
474 IF_ENQUEUE(&ifp->if_snd, m0);
475 re_start(ifp);
476 splx(s);
477 m0 = NULL;
478
479 /* Wait for it to propagate through the chip */
480
481 DELAY(100000);
482 for (i = 0; i < RTK_TIMEOUT; i++) {
483 status = CSR_READ_2(sc, RTK_ISR);
484 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
485 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
486 break;
487 DELAY(10);
488 }
489 if (i == RTK_TIMEOUT) {
490 aprint_error("%s: diagnostic failed, failed to receive packet "
491 "in loopback mode\n", sc->sc_dev.dv_xname);
492 error = EIO;
493 goto done;
494 }
495
496 /*
497 * The packet should have been dumped into the first
498 * entry in the RX DMA ring. Grab it from there.
499 */
500
501 rxs = &sc->re_ldata.re_rxsoft[0];
502 dmamap = rxs->rxs_dmamap;
503 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
504 BUS_DMASYNC_POSTREAD);
505 bus_dmamap_unload(sc->sc_dmat, dmamap);
506
507 m0 = rxs->rxs_mbuf;
508 rxs->rxs_mbuf = NULL;
509 eh = mtod(m0, struct ether_header *);
510
511 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
512 cur_rx = &sc->re_ldata.re_rx_list[0];
513 rxstat = le32toh(cur_rx->re_cmdstat);
514 total_len = rxstat & sc->re_rxlenmask;
515
516 if (total_len != ETHER_MIN_LEN) {
517 aprint_error("%s: diagnostic failed, received short packet\n",
518 sc->sc_dev.dv_xname);
519 error = EIO;
520 goto done;
521 }
522
523 /* Test that the received packet data matches what we sent. */
524
525 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
526 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
527 ntohs(eh->ether_type) != ETHERTYPE_IP) {
528 aprint_error("%s: WARNING, DMA FAILURE!\n",
529 sc->sc_dev.dv_xname);
530 aprint_error("%s: expected TX data: %s",
531 sc->sc_dev.dv_xname, ether_sprintf(dst));
532 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
533 aprint_error("%s: received RX data: %s",
534 sc->sc_dev.dv_xname,
535 ether_sprintf(eh->ether_dhost));
536 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
537 ntohs(eh->ether_type));
538 aprint_error("%s: You may have a defective 32-bit NIC plugged "
539 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
540 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
541 "for proper operation.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Read the re(4) man page for more details.\n",
543 sc->sc_dev.dv_xname);
544 error = EIO;
545 }
546
547 done:
548 /* Turn interface off, release resources */
549
550 sc->re_testmode = 0;
551 ifp->if_flags &= ~IFF_PROMISC;
552 re_stop(ifp, 0);
553 if (m0 != NULL)
554 m_freem(m0);
555
556 return error;
557 }
558
559
560 /*
561 * Attach the interface. Allocate softc structures, do ifmedia
562 * setup and ethernet/BPF attach.
563 */
564 void
565 re_attach(struct rtk_softc *sc)
566 {
567 u_char eaddr[ETHER_ADDR_LEN];
568 uint16_t val;
569 struct ifnet *ifp;
570 int error = 0, i, addr_len;
571
572 /* Reset the adapter. */
573 re_reset(sc);
574
575 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
576 addr_len = RTK_EEADDR_LEN1;
577 else
578 addr_len = RTK_EEADDR_LEN0;
579
580 /*
581 * Get station address from the EEPROM.
582 */
583 for (i = 0; i < 3; i++) {
584 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
585 eaddr[(i * 2) + 0] = val & 0xff;
586 eaddr[(i * 2) + 1] = val >> 8;
587 }
588
589 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
590 uint32_t hwrev;
591
592 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
593 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
594 /* These rev numbers are taken from Realtek's driver */
595 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
596 sc->sc_rev = 15;
597 } else if (hwrev == RTK_HWREV_8100E) {
598 sc->sc_rev = 14;
599 } else if (hwrev == RTK_HWREV_8101E) {
600 sc->sc_rev = 13;
601 } else if (hwrev == RTK_HWREV_8168_SPIN2 ||
602 hwrev == RTK_HWREV_8168_SPIN3) {
603 sc->sc_rev = 12;
604 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
605 sc->sc_rev = 11;
606 } else if (hwrev == RTK_HWREV_8169_8110SC) {
607 sc->sc_rev = 5;
608 } else if (hwrev == RTK_HWREV_8169_8110SB) {
609 sc->sc_rev = 4;
610 } else if (hwrev == RTK_HWREV_8169S) {
611 sc->sc_rev = 3;
612 } else if (hwrev == RTK_HWREV_8110S) {
613 sc->sc_rev = 2;
614 } else if (hwrev == RTK_HWREV_8169) {
615 sc->sc_rev = 1;
616 sc->sc_quirk |= RTKQ_8169NONS;
617 } else {
618 aprint_normal("%s: Unknown revision (0x%08x)\n",
619 sc->sc_dev.dv_xname, hwrev);
620 /* assume the latest one */
621 sc->sc_rev = 15;
622 }
623
624 /* Set RX length mask */
625 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
626 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
627 } else {
628 /* Set RX length mask */
629 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
630 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
631 }
632
633 aprint_normal("%s: Ethernet address %s\n",
634 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
635
636 if (sc->re_ldata.re_tx_desc_cnt >
637 PAGE_SIZE / sizeof(struct re_desc)) {
638 sc->re_ldata.re_tx_desc_cnt =
639 PAGE_SIZE / sizeof(struct re_desc);
640 }
641
642 aprint_verbose("%s: using %d tx descriptors\n",
643 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
644 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
645
646 /* Allocate DMA'able memory for the TX ring */
647 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
648 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
649 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
650 aprint_error("%s: can't allocate tx listseg, error = %d\n",
651 sc->sc_dev.dv_xname, error);
652 goto fail_0;
653 }
654
655 /* Load the map for the TX ring. */
656 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
657 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
658 (void **)&sc->re_ldata.re_tx_list,
659 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
660 aprint_error("%s: can't map tx list, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_1;
663 }
664 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
665
666 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
667 RE_TX_LIST_SZ(sc), 0, 0,
668 &sc->re_ldata.re_tx_list_map)) != 0) {
669 aprint_error("%s: can't create tx list map, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_2;
672 }
673
674
675 if ((error = bus_dmamap_load(sc->sc_dmat,
676 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
677 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
678 aprint_error("%s: can't load tx list, error = %d\n",
679 sc->sc_dev.dv_xname, error);
680 goto fail_3;
681 }
682
683 /* Create DMA maps for TX buffers */
684 for (i = 0; i < RE_TX_QLEN; i++) {
685 error = bus_dmamap_create(sc->sc_dmat,
686 round_page(IP_MAXPACKET),
687 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
688 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
689 if (error) {
690 aprint_error("%s: can't create DMA map for TX\n",
691 sc->sc_dev.dv_xname);
692 goto fail_4;
693 }
694 }
695
696 /* Allocate DMA'able memory for the RX ring */
697 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
698 if ((error = bus_dmamem_alloc(sc->sc_dmat,
699 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
700 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
701 aprint_error("%s: can't allocate rx listseg, error = %d\n",
702 sc->sc_dev.dv_xname, error);
703 goto fail_4;
704 }
705
706 /* Load the map for the RX ring. */
707 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
708 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
709 (void **)&sc->re_ldata.re_rx_list,
710 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
711 aprint_error("%s: can't map rx list, error = %d\n",
712 sc->sc_dev.dv_xname, error);
713 goto fail_5;
714 }
715 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
716
717 if ((error = bus_dmamap_create(sc->sc_dmat,
718 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
719 &sc->re_ldata.re_rx_list_map)) != 0) {
720 aprint_error("%s: can't create rx list map, error = %d\n",
721 sc->sc_dev.dv_xname, error);
722 goto fail_6;
723 }
724
725 if ((error = bus_dmamap_load(sc->sc_dmat,
726 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
727 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
728 aprint_error("%s: can't load rx list, error = %d\n",
729 sc->sc_dev.dv_xname, error);
730 goto fail_7;
731 }
732
733 /* Create DMA maps for RX buffers */
734 for (i = 0; i < RE_RX_DESC_CNT; i++) {
735 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
736 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
737 if (error) {
738 aprint_error("%s: can't create DMA map for RX\n",
739 sc->sc_dev.dv_xname);
740 goto fail_8;
741 }
742 }
743
744 /*
745 * Record interface as attached. From here, we should not fail.
746 */
747 sc->sc_flags |= RTK_ATTACHED;
748
749 ifp = &sc->ethercom.ec_if;
750 ifp->if_softc = sc;
751 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
752 ifp->if_mtu = ETHERMTU;
753 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
754 ifp->if_ioctl = re_ioctl;
755 sc->ethercom.ec_capabilities |=
756 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
757 ifp->if_start = re_start;
758 ifp->if_stop = re_stop;
759
760 /*
761 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
762 * so we have a workaround to handle the bug by padding
763 * such packets manually.
764 */
765 ifp->if_capabilities |=
766 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
767 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
768 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
769 IFCAP_TSOv4;
770 ifp->if_watchdog = re_watchdog;
771 ifp->if_init = re_init;
772 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
773 ifp->if_capenable = ifp->if_capabilities;
774 IFQ_SET_READY(&ifp->if_snd);
775
776 callout_init(&sc->rtk_tick_ch, 0);
777
778 /* Do MII setup */
779 sc->mii.mii_ifp = ifp;
780 sc->mii.mii_readreg = re_miibus_readreg;
781 sc->mii.mii_writereg = re_miibus_writereg;
782 sc->mii.mii_statchg = re_miibus_statchg;
783 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
784 re_ifmedia_sts);
785 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
786 MII_OFFSET_ANY, 0);
787 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
788
789 /*
790 * Call MI attach routine.
791 */
792 if_attach(ifp);
793 ether_ifattach(ifp, eaddr);
794
795 return;
796
797 fail_8:
798 /* Destroy DMA maps for RX buffers. */
799 for (i = 0; i < RE_RX_DESC_CNT; i++)
800 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
801 bus_dmamap_destroy(sc->sc_dmat,
802 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
803
804 /* Free DMA'able memory for the RX ring. */
805 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
806 fail_7:
807 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
808 fail_6:
809 bus_dmamem_unmap(sc->sc_dmat,
810 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
811 fail_5:
812 bus_dmamem_free(sc->sc_dmat,
813 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
814
815 fail_4:
816 /* Destroy DMA maps for TX buffers. */
817 for (i = 0; i < RE_TX_QLEN; i++)
818 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
819 bus_dmamap_destroy(sc->sc_dmat,
820 sc->re_ldata.re_txq[i].txq_dmamap);
821
822 /* Free DMA'able memory for the TX ring. */
823 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
824 fail_3:
825 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
826 fail_2:
827 bus_dmamem_unmap(sc->sc_dmat,
828 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
829 fail_1:
830 bus_dmamem_free(sc->sc_dmat,
831 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
832 fail_0:
833 return;
834 }
835
836
837 /*
838 * re_activate:
839 * Handle device activation/deactivation requests.
840 */
841 int
842 re_activate(struct device *self, enum devact act)
843 {
844 struct rtk_softc *sc = (void *)self;
845 int s, error = 0;
846
847 s = splnet();
848 switch (act) {
849 case DVACT_ACTIVATE:
850 error = EOPNOTSUPP;
851 break;
852 case DVACT_DEACTIVATE:
853 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
854 if_deactivate(&sc->ethercom.ec_if);
855 break;
856 }
857 splx(s);
858
859 return error;
860 }
861
862 /*
863 * re_detach:
864 * Detach a rtk interface.
865 */
866 int
867 re_detach(struct rtk_softc *sc)
868 {
869 struct ifnet *ifp = &sc->ethercom.ec_if;
870 int i;
871
872 /*
873 * Succeed now if there isn't any work to do.
874 */
875 if ((sc->sc_flags & RTK_ATTACHED) == 0)
876 return 0;
877
878 /* Unhook our tick handler. */
879 callout_stop(&sc->rtk_tick_ch);
880
881 /* Detach all PHYs. */
882 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
883
884 /* Delete all remaining media. */
885 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
886
887 ether_ifdetach(ifp);
888 if_detach(ifp);
889
890 /* Destroy DMA maps for RX buffers. */
891 for (i = 0; i < RE_RX_DESC_CNT; i++)
892 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
893 bus_dmamap_destroy(sc->sc_dmat,
894 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
895
896 /* Free DMA'able memory for the RX ring. */
897 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
898 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
899 bus_dmamem_unmap(sc->sc_dmat,
900 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
901 bus_dmamem_free(sc->sc_dmat,
902 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
903
904 /* Destroy DMA maps for TX buffers. */
905 for (i = 0; i < RE_TX_QLEN; i++)
906 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
907 bus_dmamap_destroy(sc->sc_dmat,
908 sc->re_ldata.re_txq[i].txq_dmamap);
909
910 /* Free DMA'able memory for the TX ring. */
911 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
912 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
913 bus_dmamem_unmap(sc->sc_dmat,
914 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
915 bus_dmamem_free(sc->sc_dmat,
916 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
917
918 return 0;
919 }
920
921 /*
922 * re_enable:
923 * Enable the RTL81X9 chip.
924 */
925 static int
926 re_enable(struct rtk_softc *sc)
927 {
928
929 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
930 if ((*sc->sc_enable)(sc) != 0) {
931 aprint_error("%s: device enable failed\n",
932 sc->sc_dev.dv_xname);
933 return EIO;
934 }
935 sc->sc_flags |= RTK_ENABLED;
936 }
937 return 0;
938 }
939
940 /*
941 * re_disable:
942 * Disable the RTL81X9 chip.
943 */
944 static void
945 re_disable(struct rtk_softc *sc)
946 {
947
948 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
949 (*sc->sc_disable)(sc);
950 sc->sc_flags &= ~RTK_ENABLED;
951 }
952 }
953
954 static int
955 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
956 {
957 struct mbuf *n = NULL;
958 bus_dmamap_t map;
959 struct re_desc *d;
960 struct re_rxsoft *rxs;
961 uint32_t cmdstat;
962 int error;
963
964 if (m == NULL) {
965 MGETHDR(n, M_DONTWAIT, MT_DATA);
966 if (n == NULL)
967 return ENOBUFS;
968
969 MCLGET(n, M_DONTWAIT);
970 if ((n->m_flags & M_EXT) == 0) {
971 m_freem(n);
972 return ENOBUFS;
973 }
974 m = n;
975 } else
976 m->m_data = m->m_ext.ext_buf;
977
978 /*
979 * Initialize mbuf length fields and fixup
980 * alignment so that the frame payload is
981 * longword aligned.
982 */
983 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
984 m->m_data += RE_ETHER_ALIGN;
985
986 rxs = &sc->re_ldata.re_rxsoft[idx];
987 map = rxs->rxs_dmamap;
988 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
989 BUS_DMA_READ|BUS_DMA_NOWAIT);
990
991 if (error)
992 goto out;
993
994 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
995 BUS_DMASYNC_PREREAD);
996
997 d = &sc->re_ldata.re_rx_list[idx];
998 #ifdef DIAGNOSTIC
999 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1000 cmdstat = le32toh(d->re_cmdstat);
1001 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1002 if (cmdstat & RE_RDESC_STAT_OWN) {
1003 panic("%s: tried to map busy RX descriptor",
1004 sc->sc_dev.dv_xname);
1005 }
1006 #endif
1007
1008 rxs->rxs_mbuf = m;
1009
1010 d->re_vlanctl = 0;
1011 cmdstat = map->dm_segs[0].ds_len;
1012 if (idx == (RE_RX_DESC_CNT - 1))
1013 cmdstat |= RE_RDESC_CMD_EOR;
1014 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1015 d->re_cmdstat = htole32(cmdstat);
1016 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1017 cmdstat |= RE_RDESC_CMD_OWN;
1018 d->re_cmdstat = htole32(cmdstat);
1019 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1020
1021 return 0;
1022 out:
1023 if (n != NULL)
1024 m_freem(n);
1025 return ENOMEM;
1026 }
1027
1028 static int
1029 re_tx_list_init(struct rtk_softc *sc)
1030 {
1031 int i;
1032
1033 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1034 for (i = 0; i < RE_TX_QLEN; i++) {
1035 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1036 }
1037
1038 bus_dmamap_sync(sc->sc_dmat,
1039 sc->re_ldata.re_tx_list_map, 0,
1040 sc->re_ldata.re_tx_list_map->dm_mapsize,
1041 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1042 sc->re_ldata.re_txq_prodidx = 0;
1043 sc->re_ldata.re_txq_considx = 0;
1044 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1045 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1046 sc->re_ldata.re_tx_nextfree = 0;
1047
1048 return 0;
1049 }
1050
1051 static int
1052 re_rx_list_init(struct rtk_softc *sc)
1053 {
1054 int i;
1055
1056 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1057
1058 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1059 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1060 return ENOBUFS;
1061 }
1062
1063 sc->re_ldata.re_rx_prodidx = 0;
1064 sc->re_head = sc->re_tail = NULL;
1065
1066 return 0;
1067 }
1068
1069 /*
1070 * RX handler for C+ and 8169. For the gigE chips, we support
1071 * the reception of jumbo frames that have been fragmented
1072 * across multiple 2K mbuf cluster buffers.
1073 */
1074 static void
1075 re_rxeof(struct rtk_softc *sc)
1076 {
1077 struct mbuf *m;
1078 struct ifnet *ifp;
1079 int i, total_len;
1080 struct re_desc *cur_rx;
1081 struct re_rxsoft *rxs;
1082 uint32_t rxstat, rxvlan;
1083
1084 ifp = &sc->ethercom.ec_if;
1085
1086 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1087 cur_rx = &sc->re_ldata.re_rx_list[i];
1088 RE_RXDESCSYNC(sc, i,
1089 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1090 rxstat = le32toh(cur_rx->re_cmdstat);
1091 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1092 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1093 break;
1094 }
1095 total_len = rxstat & sc->re_rxlenmask;
1096 rxvlan = le32toh(cur_rx->re_vlanctl);
1097 rxs = &sc->re_ldata.re_rxsoft[i];
1098 m = rxs->rxs_mbuf;
1099
1100 /* Invalidate the RX mbuf and unload its map */
1101
1102 bus_dmamap_sync(sc->sc_dmat,
1103 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1104 BUS_DMASYNC_POSTREAD);
1105 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1106
1107 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1108 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1109 if (sc->re_head == NULL)
1110 sc->re_head = sc->re_tail = m;
1111 else {
1112 m->m_flags &= ~M_PKTHDR;
1113 sc->re_tail->m_next = m;
1114 sc->re_tail = m;
1115 }
1116 re_newbuf(sc, i, NULL);
1117 continue;
1118 }
1119
1120 /*
1121 * NOTE: for the 8139C+, the frame length field
1122 * is always 12 bits in size, but for the gigE chips,
1123 * it is 13 bits (since the max RX frame length is 16K).
1124 * Unfortunately, all 32 bits in the status word
1125 * were already used, so to make room for the extra
1126 * length bit, RealTek took out the 'frame alignment
1127 * error' bit and shifted the other status bits
1128 * over one slot. The OWN, EOR, FS and LS bits are
1129 * still in the same places. We have already extracted
1130 * the frame length and checked the OWN bit, so rather
1131 * than using an alternate bit mapping, we shift the
1132 * status bits one space to the right so we can evaluate
1133 * them using the 8169 status as though it was in the
1134 * same format as that of the 8139C+.
1135 */
1136 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1137 rxstat >>= 1;
1138
1139 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1140 #ifdef RE_DEBUG
1141 aprint_error("%s: RX error (rxstat = 0x%08x)",
1142 sc->sc_dev.dv_xname, rxstat);
1143 if (rxstat & RE_RDESC_STAT_FRALIGN)
1144 aprint_error(", frame alignment error");
1145 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1146 aprint_error(", out of buffer space");
1147 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1148 aprint_error(", FIFO overrun");
1149 if (rxstat & RE_RDESC_STAT_GIANT)
1150 aprint_error(", giant packet");
1151 if (rxstat & RE_RDESC_STAT_RUNT)
1152 aprint_error(", runt packet");
1153 if (rxstat & RE_RDESC_STAT_CRCERR)
1154 aprint_error(", CRC error");
1155 aprint_error("\n");
1156 #endif
1157 ifp->if_ierrors++;
1158 /*
1159 * If this is part of a multi-fragment packet,
1160 * discard all the pieces.
1161 */
1162 if (sc->re_head != NULL) {
1163 m_freem(sc->re_head);
1164 sc->re_head = sc->re_tail = NULL;
1165 }
1166 re_newbuf(sc, i, m);
1167 continue;
1168 }
1169
1170 /*
1171 * If allocating a replacement mbuf fails,
1172 * reload the current one.
1173 */
1174
1175 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1176 ifp->if_ierrors++;
1177 if (sc->re_head != NULL) {
1178 m_freem(sc->re_head);
1179 sc->re_head = sc->re_tail = NULL;
1180 }
1181 re_newbuf(sc, i, m);
1182 continue;
1183 }
1184
1185 if (sc->re_head != NULL) {
1186 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1187 /*
1188 * Special case: if there's 4 bytes or less
1189 * in this buffer, the mbuf can be discarded:
1190 * the last 4 bytes is the CRC, which we don't
1191 * care about anyway.
1192 */
1193 if (m->m_len <= ETHER_CRC_LEN) {
1194 sc->re_tail->m_len -=
1195 (ETHER_CRC_LEN - m->m_len);
1196 m_freem(m);
1197 } else {
1198 m->m_len -= ETHER_CRC_LEN;
1199 m->m_flags &= ~M_PKTHDR;
1200 sc->re_tail->m_next = m;
1201 }
1202 m = sc->re_head;
1203 sc->re_head = sc->re_tail = NULL;
1204 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1205 } else
1206 m->m_pkthdr.len = m->m_len =
1207 (total_len - ETHER_CRC_LEN);
1208
1209 ifp->if_ipackets++;
1210 m->m_pkthdr.rcvif = ifp;
1211
1212 /* Do RX checksumming */
1213
1214 /* Check IP header checksum */
1215 if (rxstat & RE_RDESC_STAT_PROTOID) {
1216 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1217 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1218 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1219 }
1220
1221 /* Check TCP/UDP checksum */
1222 if (RE_TCPPKT(rxstat)) {
1223 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1224 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1225 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1226 } else if (RE_UDPPKT(rxstat)) {
1227 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1228 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1229 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1230 }
1231
1232 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1233 VLAN_INPUT_TAG(ifp, m,
1234 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1235 continue);
1236 }
1237 #if NBPFILTER > 0
1238 if (ifp->if_bpf)
1239 bpf_mtap(ifp->if_bpf, m);
1240 #endif
1241 (*ifp->if_input)(ifp, m);
1242 }
1243
1244 sc->re_ldata.re_rx_prodidx = i;
1245 }
1246
1247 static void
1248 re_txeof(struct rtk_softc *sc)
1249 {
1250 struct ifnet *ifp;
1251 struct re_txq *txq;
1252 uint32_t txstat;
1253 int idx, descidx;
1254
1255 ifp = &sc->ethercom.ec_if;
1256
1257 for (idx = sc->re_ldata.re_txq_considx;
1258 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1259 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1260 txq = &sc->re_ldata.re_txq[idx];
1261 KASSERT(txq->txq_mbuf != NULL);
1262
1263 descidx = txq->txq_descidx;
1264 RE_TXDESCSYNC(sc, descidx,
1265 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1266 txstat =
1267 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1268 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1269 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1270 if (txstat & RE_TDESC_CMD_OWN) {
1271 break;
1272 }
1273
1274 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1275 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1276 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1277 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1278 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1279 m_freem(txq->txq_mbuf);
1280 txq->txq_mbuf = NULL;
1281
1282 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1283 ifp->if_collisions++;
1284 if (txstat & RE_TDESC_STAT_TXERRSUM)
1285 ifp->if_oerrors++;
1286 else
1287 ifp->if_opackets++;
1288 }
1289
1290 sc->re_ldata.re_txq_considx = idx;
1291
1292 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1293 ifp->if_flags &= ~IFF_OACTIVE;
1294
1295 /*
1296 * If not all descriptors have been released reaped yet,
1297 * reload the timer so that we will eventually get another
1298 * interrupt that will cause us to re-enter this routine.
1299 * This is done in case the transmitter has gone idle.
1300 */
1301 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1302 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1303 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1304 /*
1305 * Some chips will ignore a second TX request
1306 * issued while an existing transmission is in
1307 * progress. If the transmitter goes idle but
1308 * there are still packets waiting to be sent,
1309 * we need to restart the channel here to flush
1310 * them out. This only seems to be required with
1311 * the PCIe devices.
1312 */
1313 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1314 }
1315 } else
1316 ifp->if_timer = 0;
1317 }
1318
1319 static void
1320 re_tick(void *xsc)
1321 {
1322 struct rtk_softc *sc = xsc;
1323 int s;
1324
1325 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1326 s = splnet();
1327
1328 mii_tick(&sc->mii);
1329 splx(s);
1330
1331 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1332 }
1333
1334 #ifdef DEVICE_POLLING
1335 static void
1336 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1337 {
1338 struct rtk_softc *sc = ifp->if_softc;
1339
1340 RTK_LOCK(sc);
1341 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1342 ether_poll_deregister(ifp);
1343 cmd = POLL_DEREGISTER;
1344 }
1345 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1346 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1347 goto done;
1348 }
1349
1350 sc->rxcycles = count;
1351 re_rxeof(sc);
1352 re_txeof(sc);
1353
1354 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1355 (*ifp->if_start)(ifp);
1356
1357 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1358 uint16_t status;
1359
1360 status = CSR_READ_2(sc, RTK_ISR);
1361 if (status == 0xffff)
1362 goto done;
1363 if (status)
1364 CSR_WRITE_2(sc, RTK_ISR, status);
1365
1366 /*
1367 * XXX check behaviour on receiver stalls.
1368 */
1369
1370 if (status & RTK_ISR_SYSTEM_ERR) {
1371 re_init(sc);
1372 }
1373 }
1374 done:
1375 RTK_UNLOCK(sc);
1376 }
1377 #endif /* DEVICE_POLLING */
1378
1379 int
1380 re_intr(void *arg)
1381 {
1382 struct rtk_softc *sc = arg;
1383 struct ifnet *ifp;
1384 uint16_t status;
1385 int handled = 0;
1386
1387 ifp = &sc->ethercom.ec_if;
1388
1389 if ((ifp->if_flags & IFF_UP) == 0)
1390 return 0;
1391
1392 #ifdef DEVICE_POLLING
1393 if (ifp->if_flags & IFF_POLLING)
1394 goto done;
1395 if ((ifp->if_capenable & IFCAP_POLLING) &&
1396 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1397 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1398 re_poll(ifp, 0, 1);
1399 goto done;
1400 }
1401 #endif /* DEVICE_POLLING */
1402
1403 for (;;) {
1404
1405 status = CSR_READ_2(sc, RTK_ISR);
1406 /* If the card has gone away the read returns 0xffff. */
1407 if (status == 0xffff)
1408 break;
1409 if (status) {
1410 handled = 1;
1411 CSR_WRITE_2(sc, RTK_ISR, status);
1412 }
1413
1414 if ((status & RTK_INTRS_CPLUS) == 0)
1415 break;
1416
1417 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1418 re_rxeof(sc);
1419
1420 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1421 RTK_ISR_TX_DESC_UNAVAIL))
1422 re_txeof(sc);
1423
1424 if (status & RTK_ISR_SYSTEM_ERR) {
1425 re_init(ifp);
1426 }
1427
1428 if (status & RTK_ISR_LINKCHG) {
1429 callout_stop(&sc->rtk_tick_ch);
1430 re_tick(sc);
1431 }
1432 }
1433
1434 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1435 re_start(ifp);
1436
1437 #ifdef DEVICE_POLLING
1438 done:
1439 #endif
1440
1441 return handled;
1442 }
1443
1444
1445
1446 /*
1447 * Main transmit routine for C+ and gigE NICs.
1448 */
1449
1450 static void
1451 re_start(struct ifnet *ifp)
1452 {
1453 struct rtk_softc *sc;
1454 struct mbuf *m;
1455 bus_dmamap_t map;
1456 struct re_txq *txq;
1457 struct re_desc *d;
1458 struct m_tag *mtag;
1459 uint32_t cmdstat, re_flags;
1460 int ofree, idx, error, nsegs, seg;
1461 int startdesc, curdesc, lastdesc;
1462 bool pad;
1463
1464 sc = ifp->if_softc;
1465 ofree = sc->re_ldata.re_txq_free;
1466
1467 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1468
1469 IFQ_POLL(&ifp->if_snd, m);
1470 if (m == NULL)
1471 break;
1472
1473 if (sc->re_ldata.re_txq_free == 0 ||
1474 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1475 /* no more free slots left */
1476 ifp->if_flags |= IFF_OACTIVE;
1477 break;
1478 }
1479
1480 /*
1481 * Set up checksum offload. Note: checksum offload bits must
1482 * appear in all descriptors of a multi-descriptor transmit
1483 * attempt. (This is according to testing done with an 8169
1484 * chip. I'm not sure if this is a requirement or a bug.)
1485 */
1486
1487 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1488 uint32_t segsz = m->m_pkthdr.segsz;
1489
1490 re_flags = RE_TDESC_CMD_LGSEND |
1491 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1492 } else {
1493 /*
1494 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1495 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1496 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1497 */
1498 re_flags = 0;
1499 if ((m->m_pkthdr.csum_flags &
1500 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1501 != 0) {
1502 re_flags |= RE_TDESC_CMD_IPCSUM;
1503 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1504 re_flags |= RE_TDESC_CMD_TCPCSUM;
1505 } else if (m->m_pkthdr.csum_flags &
1506 M_CSUM_UDPv4) {
1507 re_flags |= RE_TDESC_CMD_UDPCSUM;
1508 }
1509 }
1510 }
1511
1512 txq = &sc->re_ldata.re_txq[idx];
1513 map = txq->txq_dmamap;
1514 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1515 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1516
1517 if (__predict_false(error)) {
1518 /* XXX try to defrag if EFBIG? */
1519 aprint_error("%s: can't map mbuf (error %d)\n",
1520 sc->sc_dev.dv_xname, error);
1521
1522 IFQ_DEQUEUE(&ifp->if_snd, m);
1523 m_freem(m);
1524 ifp->if_oerrors++;
1525 continue;
1526 }
1527
1528 nsegs = map->dm_nsegs;
1529 pad = false;
1530 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1531 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1532 pad = true;
1533 nsegs++;
1534 }
1535
1536 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1537 /*
1538 * Not enough free descriptors to transmit this packet.
1539 */
1540 ifp->if_flags |= IFF_OACTIVE;
1541 bus_dmamap_unload(sc->sc_dmat, map);
1542 break;
1543 }
1544
1545 IFQ_DEQUEUE(&ifp->if_snd, m);
1546
1547 /*
1548 * Make sure that the caches are synchronized before we
1549 * ask the chip to start DMA for the packet data.
1550 */
1551 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1552 BUS_DMASYNC_PREWRITE);
1553
1554 /*
1555 * Map the segment array into descriptors.
1556 * Note that we set the start-of-frame and
1557 * end-of-frame markers for either TX or RX,
1558 * but they really only have meaning in the TX case.
1559 * (In the RX case, it's the chip that tells us
1560 * where packets begin and end.)
1561 * We also keep track of the end of the ring
1562 * and set the end-of-ring bits as needed,
1563 * and we set the ownership bits in all except
1564 * the very first descriptor. (The caller will
1565 * set this descriptor later when it start
1566 * transmission or reception.)
1567 */
1568 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1569 lastdesc = -1;
1570 for (seg = 0; seg < map->dm_nsegs;
1571 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1572 d = &sc->re_ldata.re_tx_list[curdesc];
1573 #ifdef DIAGNOSTIC
1574 RE_TXDESCSYNC(sc, curdesc,
1575 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1576 cmdstat = le32toh(d->re_cmdstat);
1577 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1578 if (cmdstat & RE_TDESC_STAT_OWN) {
1579 panic("%s: tried to map busy TX descriptor",
1580 sc->sc_dev.dv_xname);
1581 }
1582 #endif
1583
1584 d->re_vlanctl = 0;
1585 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1586 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1587 if (seg == 0)
1588 cmdstat |= RE_TDESC_CMD_SOF;
1589 else
1590 cmdstat |= RE_TDESC_CMD_OWN;
1591 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1592 cmdstat |= RE_TDESC_CMD_EOR;
1593 if (seg == nsegs - 1) {
1594 cmdstat |= RE_TDESC_CMD_EOF;
1595 lastdesc = curdesc;
1596 }
1597 d->re_cmdstat = htole32(cmdstat);
1598 RE_TXDESCSYNC(sc, curdesc,
1599 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1600 }
1601 if (__predict_false(pad)) {
1602 bus_addr_t paddaddr;
1603
1604 d = &sc->re_ldata.re_tx_list[curdesc];
1605 d->re_vlanctl = 0;
1606 paddaddr = RE_TXPADDADDR(sc);
1607 re_set_bufaddr(d, paddaddr);
1608 cmdstat = re_flags |
1609 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1610 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1611 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1612 cmdstat |= RE_TDESC_CMD_EOR;
1613 d->re_cmdstat = htole32(cmdstat);
1614 RE_TXDESCSYNC(sc, curdesc,
1615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1616 lastdesc = curdesc;
1617 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1618 }
1619 KASSERT(lastdesc != -1);
1620
1621 /*
1622 * Set up hardware VLAN tagging. Note: vlan tag info must
1623 * appear in the first descriptor of a multi-descriptor
1624 * transmission attempt.
1625 */
1626 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1627 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1628 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1629 RE_TDESC_VLANCTL_TAG);
1630 }
1631
1632 /* Transfer ownership of packet to the chip. */
1633
1634 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1635 htole32(RE_TDESC_CMD_OWN);
1636 RE_TXDESCSYNC(sc, startdesc,
1637 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1638
1639 /* update info of TX queue and descriptors */
1640 txq->txq_mbuf = m;
1641 txq->txq_descidx = lastdesc;
1642 txq->txq_nsegs = nsegs;
1643
1644 sc->re_ldata.re_txq_free--;
1645 sc->re_ldata.re_tx_free -= nsegs;
1646 sc->re_ldata.re_tx_nextfree = curdesc;
1647
1648 #if NBPFILTER > 0
1649 /*
1650 * If there's a BPF listener, bounce a copy of this frame
1651 * to him.
1652 */
1653 if (ifp->if_bpf)
1654 bpf_mtap(ifp->if_bpf, m);
1655 #endif
1656 }
1657
1658 if (sc->re_ldata.re_txq_free < ofree) {
1659 /*
1660 * TX packets are enqueued.
1661 */
1662 sc->re_ldata.re_txq_prodidx = idx;
1663
1664 /*
1665 * Start the transmitter to poll.
1666 *
1667 * RealTek put the TX poll request register in a different
1668 * location on the 8169 gigE chip. I don't know why.
1669 */
1670 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1671 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1672 else
1673 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1674
1675 /*
1676 * Use the countdown timer for interrupt moderation.
1677 * 'TX done' interrupts are disabled. Instead, we reset the
1678 * countdown timer, which will begin counting until it hits
1679 * the value in the TIMERINT register, and then trigger an
1680 * interrupt. Each time we write to the TIMERCNT register,
1681 * the timer count is reset to 0.
1682 */
1683 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1684
1685 /*
1686 * Set a timeout in case the chip goes out to lunch.
1687 */
1688 ifp->if_timer = 5;
1689 }
1690 }
1691
1692 static int
1693 re_init(struct ifnet *ifp)
1694 {
1695 struct rtk_softc *sc = ifp->if_softc;
1696 const uint8_t *enaddr;
1697 uint32_t rxcfg = 0;
1698 uint32_t reg;
1699 int error;
1700
1701 if ((error = re_enable(sc)) != 0)
1702 goto out;
1703
1704 /*
1705 * Cancel pending I/O and free all RX/TX buffers.
1706 */
1707 re_stop(ifp, 0);
1708
1709 re_reset(sc);
1710
1711 /*
1712 * Enable C+ RX and TX mode, as well as VLAN stripping and
1713 * RX checksum offload. We must configure the C+ register
1714 * before all others.
1715 */
1716 reg = 0;
1717
1718 /*
1719 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1720 * FreeBSD drivers set these bits anyway (for 8139C+?).
1721 * So far, it works.
1722 */
1723
1724 /*
1725 * XXX: For old 8169 set bit 14.
1726 * For 8169S/8110S and above, do not set bit 14.
1727 */
1728 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1729 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1730
1731 if (1) {/* not for 8169S ? */
1732 reg |=
1733 RTK_CPLUSCMD_VLANSTRIP |
1734 (ifp->if_capenable &
1735 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1736 IFCAP_CSUM_UDPv4_Rx) ?
1737 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1738 }
1739
1740 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1741 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1742
1743 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1744 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1745 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1746
1747 DELAY(10000);
1748
1749 /*
1750 * Init our MAC address. Even though the chipset
1751 * documentation doesn't mention it, we need to enter "Config
1752 * register write enable" mode to modify the ID registers.
1753 */
1754 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1755 enaddr = CLLADDR(ifp->if_sadl);
1756 reg = enaddr[0] | (enaddr[1] << 8) |
1757 (enaddr[2] << 16) | (enaddr[3] << 24);
1758 CSR_WRITE_4(sc, RTK_IDR0, reg);
1759 reg = enaddr[4] | (enaddr[5] << 8);
1760 CSR_WRITE_4(sc, RTK_IDR4, reg);
1761 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1762
1763 /*
1764 * For C+ mode, initialize the RX descriptors and mbufs.
1765 */
1766 re_rx_list_init(sc);
1767 re_tx_list_init(sc);
1768
1769 /*
1770 * Load the addresses of the RX and TX lists into the chip.
1771 */
1772 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1773 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1774 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1775 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1776
1777 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1778 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1779 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1780 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1781
1782 /*
1783 * Enable transmit and receive.
1784 */
1785 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1786
1787 /*
1788 * Set the initial TX and RX configuration.
1789 */
1790 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1791 /* test mode is needed only for old 8169 */
1792 CSR_WRITE_4(sc, RTK_TXCFG,
1793 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1794 } else
1795 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1796
1797 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1798
1799 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1800
1801 /* Set the individual bit to receive frames for this host only. */
1802 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1803 rxcfg |= RTK_RXCFG_RX_INDIV;
1804
1805 /* If we want promiscuous mode, set the allframes bit. */
1806 if (ifp->if_flags & IFF_PROMISC)
1807 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1808 else
1809 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1810 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1811
1812 /*
1813 * Set capture broadcast bit to capture broadcast frames.
1814 */
1815 if (ifp->if_flags & IFF_BROADCAST)
1816 rxcfg |= RTK_RXCFG_RX_BROAD;
1817 else
1818 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1819 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1820
1821 /*
1822 * Program the multicast filter, if necessary.
1823 */
1824 rtk_setmulti(sc);
1825
1826 #ifdef DEVICE_POLLING
1827 /*
1828 * Disable interrupts if we are polling.
1829 */
1830 if (ifp->if_flags & IFF_POLLING)
1831 CSR_WRITE_2(sc, RTK_IMR, 0);
1832 else /* otherwise ... */
1833 #endif /* DEVICE_POLLING */
1834 /*
1835 * Enable interrupts.
1836 */
1837 if (sc->re_testmode)
1838 CSR_WRITE_2(sc, RTK_IMR, 0);
1839 else
1840 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1841
1842 /* Start RX/TX process. */
1843 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1844 #ifdef notdef
1845 /* Enable receiver and transmitter. */
1846 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1847 #endif
1848
1849 /*
1850 * Initialize the timer interrupt register so that
1851 * a timer interrupt will be generated once the timer
1852 * reaches a certain number of ticks. The timer is
1853 * reloaded on each transmit. This gives us TX interrupt
1854 * moderation, which dramatically improves TX frame rate.
1855 */
1856
1857 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1858 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1859 else {
1860 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1861
1862 /*
1863 * For 8169 gigE NICs, set the max allowed RX packet
1864 * size so we can receive jumbo frames.
1865 */
1866 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1867 }
1868
1869 if (sc->re_testmode)
1870 return 0;
1871
1872 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1873
1874 ifp->if_flags |= IFF_RUNNING;
1875 ifp->if_flags &= ~IFF_OACTIVE;
1876
1877 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1878
1879 out:
1880 if (error) {
1881 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1882 ifp->if_timer = 0;
1883 aprint_error("%s: interface not running\n",
1884 sc->sc_dev.dv_xname);
1885 }
1886
1887 return error;
1888 }
1889
1890 /*
1891 * Set media options.
1892 */
1893 static int
1894 re_ifmedia_upd(struct ifnet *ifp)
1895 {
1896 struct rtk_softc *sc;
1897
1898 sc = ifp->if_softc;
1899
1900 return mii_mediachg(&sc->mii);
1901 }
1902
1903 /*
1904 * Report current media status.
1905 */
1906 static void
1907 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1908 {
1909 struct rtk_softc *sc;
1910
1911 sc = ifp->if_softc;
1912
1913 mii_pollstat(&sc->mii);
1914 ifmr->ifm_active = sc->mii.mii_media_active;
1915 ifmr->ifm_status = sc->mii.mii_media_status;
1916 }
1917
1918 static int
1919 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1920 {
1921 struct rtk_softc *sc = ifp->if_softc;
1922 struct ifreq *ifr = (struct ifreq *) data;
1923 int s, error = 0;
1924
1925 s = splnet();
1926
1927 switch (command) {
1928 case SIOCSIFMTU:
1929 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1930 error = EINVAL;
1931 ifp->if_mtu = ifr->ifr_mtu;
1932 break;
1933 case SIOCGIFMEDIA:
1934 case SIOCSIFMEDIA:
1935 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1936 break;
1937 default:
1938 error = ether_ioctl(ifp, command, data);
1939 if (error == ENETRESET) {
1940 if (ifp->if_flags & IFF_RUNNING)
1941 rtk_setmulti(sc);
1942 error = 0;
1943 }
1944 break;
1945 }
1946
1947 splx(s);
1948
1949 return error;
1950 }
1951
1952 static void
1953 re_watchdog(struct ifnet *ifp)
1954 {
1955 struct rtk_softc *sc;
1956 int s;
1957
1958 sc = ifp->if_softc;
1959 s = splnet();
1960 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1961 ifp->if_oerrors++;
1962
1963 re_txeof(sc);
1964 re_rxeof(sc);
1965
1966 re_init(ifp);
1967
1968 splx(s);
1969 }
1970
1971 /*
1972 * Stop the adapter and free any mbufs allocated to the
1973 * RX and TX lists.
1974 */
1975 static void
1976 re_stop(struct ifnet *ifp, int disable)
1977 {
1978 int i;
1979 struct rtk_softc *sc = ifp->if_softc;
1980
1981 callout_stop(&sc->rtk_tick_ch);
1982
1983 #ifdef DEVICE_POLLING
1984 ether_poll_deregister(ifp);
1985 #endif /* DEVICE_POLLING */
1986
1987 mii_down(&sc->mii);
1988
1989 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1990 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1991
1992 if (sc->re_head != NULL) {
1993 m_freem(sc->re_head);
1994 sc->re_head = sc->re_tail = NULL;
1995 }
1996
1997 /* Free the TX list buffers. */
1998 for (i = 0; i < RE_TX_QLEN; i++) {
1999 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2000 bus_dmamap_unload(sc->sc_dmat,
2001 sc->re_ldata.re_txq[i].txq_dmamap);
2002 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2003 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2004 }
2005 }
2006
2007 /* Free the RX list buffers. */
2008 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2009 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2010 bus_dmamap_unload(sc->sc_dmat,
2011 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2012 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2013 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2014 }
2015 }
2016
2017 if (disable)
2018 re_disable(sc);
2019
2020 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2021 ifp->if_timer = 0;
2022 }
2023