Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.86.6.3
      1 /*	$NetBSD: rtl8169.c,v 1.86.6.3 2007/10/26 15:44:59 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <sys/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/ic/rtl81x9reg.h>
    147 #include <dev/ic/rtl81x9var.h>
    148 
    149 #include <dev/ic/rtl8169var.h>
    150 
    151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
    152 
    153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    154 static int re_rx_list_init(struct rtk_softc *);
    155 static int re_tx_list_init(struct rtk_softc *);
    156 static void re_rxeof(struct rtk_softc *);
    157 static void re_txeof(struct rtk_softc *);
    158 static void re_tick(void *);
    159 static void re_start(struct ifnet *);
    160 static int re_ioctl(struct ifnet *, u_long, void *);
    161 static int re_init(struct ifnet *);
    162 static void re_stop(struct ifnet *, int);
    163 static void re_watchdog(struct ifnet *);
    164 
    165 static int re_enable(struct rtk_softc *);
    166 static void re_disable(struct rtk_softc *);
    167 
    168 static int re_ifmedia_upd(struct ifnet *);
    169 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    170 
    171 static int re_gmii_readreg(struct device *, int, int);
    172 static void re_gmii_writereg(struct device *, int, int, int);
    173 
    174 static int re_miibus_readreg(struct device *, int, int);
    175 static void re_miibus_writereg(struct device *, int, int, int);
    176 static void re_miibus_statchg(struct device *);
    177 
    178 static void re_reset(struct rtk_softc *);
    179 
    180 static inline void
    181 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
    182 {
    183 
    184 	d->re_bufaddr_lo = htole32((uint32_t)addr);
    185 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    186 		d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
    187 	else
    188 		d->re_bufaddr_hi = 0;
    189 }
    190 
    191 static int
    192 re_gmii_readreg(struct device *self, int phy, int reg)
    193 {
    194 	struct rtk_softc	*sc = (void *)self;
    195 	uint32_t		rval;
    196 	int			i;
    197 
    198 	if (phy != 7)
    199 		return 0;
    200 
    201 	/* Let the rgephy driver read the GMEDIASTAT register */
    202 
    203 	if (reg == RTK_GMEDIASTAT) {
    204 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    205 		return rval;
    206 	}
    207 
    208 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    209 	DELAY(1000);
    210 
    211 	for (i = 0; i < RTK_TIMEOUT; i++) {
    212 		rval = CSR_READ_4(sc, RTK_PHYAR);
    213 		if (rval & RTK_PHYAR_BUSY)
    214 			break;
    215 		DELAY(100);
    216 	}
    217 
    218 	if (i == RTK_TIMEOUT) {
    219 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    220 		return 0;
    221 	}
    222 
    223 	return rval & RTK_PHYAR_PHYDATA;
    224 }
    225 
    226 static void
    227 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    228 {
    229 	struct rtk_softc	*sc = (void *)dev;
    230 	uint32_t		rval;
    231 	int			i;
    232 
    233 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    234 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    235 	DELAY(1000);
    236 
    237 	for (i = 0; i < RTK_TIMEOUT; i++) {
    238 		rval = CSR_READ_4(sc, RTK_PHYAR);
    239 		if (!(rval & RTK_PHYAR_BUSY))
    240 			break;
    241 		DELAY(100);
    242 	}
    243 
    244 	if (i == RTK_TIMEOUT) {
    245 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    246 		    sc->sc_dev.dv_xname, reg, data);
    247 	}
    248 }
    249 
    250 static int
    251 re_miibus_readreg(struct device *dev, int phy, int reg)
    252 {
    253 	struct rtk_softc	*sc = (void *)dev;
    254 	uint16_t		rval = 0;
    255 	uint16_t		re8139_reg = 0;
    256 	int			s;
    257 
    258 	s = splnet();
    259 
    260 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    261 		rval = re_gmii_readreg(dev, phy, reg);
    262 		splx(s);
    263 		return rval;
    264 	}
    265 
    266 	/* Pretend the internal PHY is only at address 0 */
    267 	if (phy) {
    268 		splx(s);
    269 		return 0;
    270 	}
    271 	switch (reg) {
    272 	case MII_BMCR:
    273 		re8139_reg = RTK_BMCR;
    274 		break;
    275 	case MII_BMSR:
    276 		re8139_reg = RTK_BMSR;
    277 		break;
    278 	case MII_ANAR:
    279 		re8139_reg = RTK_ANAR;
    280 		break;
    281 	case MII_ANER:
    282 		re8139_reg = RTK_ANER;
    283 		break;
    284 	case MII_ANLPAR:
    285 		re8139_reg = RTK_LPAR;
    286 		break;
    287 	case MII_PHYIDR1:
    288 	case MII_PHYIDR2:
    289 		splx(s);
    290 		return 0;
    291 	/*
    292 	 * Allow the rlphy driver to read the media status
    293 	 * register. If we have a link partner which does not
    294 	 * support NWAY, this is the register which will tell
    295 	 * us the results of parallel detection.
    296 	 */
    297 	case RTK_MEDIASTAT:
    298 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    299 		splx(s);
    300 		return rval;
    301 	default:
    302 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    303 		splx(s);
    304 		return 0;
    305 	}
    306 	rval = CSR_READ_2(sc, re8139_reg);
    307 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
    308 		/* 8139C+ has different bit layout. */
    309 		rval &= ~(BMCR_LOOP | BMCR_ISO);
    310 	}
    311 	splx(s);
    312 	return rval;
    313 }
    314 
    315 static void
    316 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    317 {
    318 	struct rtk_softc	*sc = (void *)dev;
    319 	uint16_t		re8139_reg = 0;
    320 	int			s;
    321 
    322 	s = splnet();
    323 
    324 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    325 		re_gmii_writereg(dev, phy, reg, data);
    326 		splx(s);
    327 		return;
    328 	}
    329 
    330 	/* Pretend the internal PHY is only at address 0 */
    331 	if (phy) {
    332 		splx(s);
    333 		return;
    334 	}
    335 	switch (reg) {
    336 	case MII_BMCR:
    337 		re8139_reg = RTK_BMCR;
    338 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
    339 			/* 8139C+ has different bit layout. */
    340 			data &= ~(BMCR_LOOP | BMCR_ISO);
    341 		}
    342 		break;
    343 	case MII_BMSR:
    344 		re8139_reg = RTK_BMSR;
    345 		break;
    346 	case MII_ANAR:
    347 		re8139_reg = RTK_ANAR;
    348 		break;
    349 	case MII_ANER:
    350 		re8139_reg = RTK_ANER;
    351 		break;
    352 	case MII_ANLPAR:
    353 		re8139_reg = RTK_LPAR;
    354 		break;
    355 	case MII_PHYIDR1:
    356 	case MII_PHYIDR2:
    357 		splx(s);
    358 		return;
    359 		break;
    360 	default:
    361 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    362 		splx(s);
    363 		return;
    364 	}
    365 	CSR_WRITE_2(sc, re8139_reg, data);
    366 	splx(s);
    367 	return;
    368 }
    369 
    370 static void
    371 re_miibus_statchg(struct device *dev)
    372 {
    373 
    374 	return;
    375 }
    376 
    377 static void
    378 re_reset(struct rtk_softc *sc)
    379 {
    380 	int		i;
    381 
    382 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    383 
    384 	for (i = 0; i < RTK_TIMEOUT; i++) {
    385 		DELAY(10);
    386 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    387 			break;
    388 	}
    389 	if (i == RTK_TIMEOUT)
    390 		aprint_error("%s: reset never completed!\n",
    391 		    sc->sc_dev.dv_xname);
    392 
    393 	/*
    394 	 * NB: Realtek-supplied Linux driver does this only for
    395 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    396 	 */
    397 	if (1) /* XXX check softc flag for 8169s version */
    398 		CSR_WRITE_1(sc, RTK_LDPS, 1);
    399 
    400 	return;
    401 }
    402 
    403 /*
    404  * The following routine is designed to test for a defect on some
    405  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    406  * lines connected to the bus, however for a 32-bit only card, they
    407  * should be pulled high. The result of this defect is that the
    408  * NIC will not work right if you plug it into a 64-bit slot: DMA
    409  * operations will be done with 64-bit transfers, which will fail
    410  * because the 64-bit data lines aren't connected.
    411  *
    412  * There's no way to work around this (short of talking a soldering
    413  * iron to the board), however we can detect it. The method we use
    414  * here is to put the NIC into digital loopback mode, set the receiver
    415  * to promiscuous mode, and then try to send a frame. We then compare
    416  * the frame data we sent to what was received. If the data matches,
    417  * then the NIC is working correctly, otherwise we know the user has
    418  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    419  * slot. In the latter case, there's no way the NIC can work correctly,
    420  * so we print out a message on the console and abort the device attach.
    421  */
    422 
    423 int
    424 re_diag(struct rtk_softc *sc)
    425 {
    426 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    427 	struct mbuf		*m0;
    428 	struct ether_header	*eh;
    429 	struct re_rxsoft	*rxs;
    430 	struct re_desc		*cur_rx;
    431 	bus_dmamap_t		dmamap;
    432 	uint16_t		status;
    433 	uint32_t		rxstat;
    434 	int			total_len, i, s, error = 0;
    435 	static const uint8_t	dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    436 	static const uint8_t	src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    437 
    438 	/* Allocate a single mbuf */
    439 
    440 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    441 	if (m0 == NULL)
    442 		return ENOBUFS;
    443 
    444 	/*
    445 	 * Initialize the NIC in test mode. This sets the chip up
    446 	 * so that it can send and receive frames, but performs the
    447 	 * following special functions:
    448 	 * - Puts receiver in promiscuous mode
    449 	 * - Enables digital loopback mode
    450 	 * - Leaves interrupts turned off
    451 	 */
    452 
    453 	ifp->if_flags |= IFF_PROMISC;
    454 	sc->re_testmode = 1;
    455 	re_init(ifp);
    456 	re_stop(ifp, 0);
    457 	DELAY(100000);
    458 	re_init(ifp);
    459 
    460 	/* Put some data in the mbuf */
    461 
    462 	eh = mtod(m0, struct ether_header *);
    463 	memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
    464 	memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
    465 	eh->ether_type = htons(ETHERTYPE_IP);
    466 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    467 
    468 	/*
    469 	 * Queue the packet, start transmission.
    470 	 */
    471 
    472 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    473 	s = splnet();
    474 	IF_ENQUEUE(&ifp->if_snd, m0);
    475 	re_start(ifp);
    476 	splx(s);
    477 	m0 = NULL;
    478 
    479 	/* Wait for it to propagate through the chip */
    480 
    481 	DELAY(100000);
    482 	for (i = 0; i < RTK_TIMEOUT; i++) {
    483 		status = CSR_READ_2(sc, RTK_ISR);
    484 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    485 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    486 			break;
    487 		DELAY(10);
    488 	}
    489 	if (i == RTK_TIMEOUT) {
    490 		aprint_error("%s: diagnostic failed, failed to receive packet "
    491 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    492 		error = EIO;
    493 		goto done;
    494 	}
    495 
    496 	/*
    497 	 * The packet should have been dumped into the first
    498 	 * entry in the RX DMA ring. Grab it from there.
    499 	 */
    500 
    501 	rxs = &sc->re_ldata.re_rxsoft[0];
    502 	dmamap = rxs->rxs_dmamap;
    503 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    504 	    BUS_DMASYNC_POSTREAD);
    505 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    506 
    507 	m0 = rxs->rxs_mbuf;
    508 	rxs->rxs_mbuf = NULL;
    509 	eh = mtod(m0, struct ether_header *);
    510 
    511 	RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    512 	cur_rx = &sc->re_ldata.re_rx_list[0];
    513 	rxstat = le32toh(cur_rx->re_cmdstat);
    514 	total_len = rxstat & sc->re_rxlenmask;
    515 
    516 	if (total_len != ETHER_MIN_LEN) {
    517 		aprint_error("%s: diagnostic failed, received short packet\n",
    518 		    sc->sc_dev.dv_xname);
    519 		error = EIO;
    520 		goto done;
    521 	}
    522 
    523 	/* Test that the received packet data matches what we sent. */
    524 
    525 	if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    526 	    memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    527 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    528 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    529 		    sc->sc_dev.dv_xname);
    530 		aprint_error("%s: expected TX data: %s",
    531 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    532 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    533 		aprint_error("%s: received RX data: %s",
    534 		    sc->sc_dev.dv_xname,
    535 		    ether_sprintf(eh->ether_dhost));
    536 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    537 		    ntohs(eh->ether_type));
    538 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    539 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    540 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    541 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    542 		aprint_error("%s: Read the re(4) man page for more details.\n",
    543 		    sc->sc_dev.dv_xname);
    544 		error = EIO;
    545 	}
    546 
    547  done:
    548 	/* Turn interface off, release resources */
    549 
    550 	sc->re_testmode = 0;
    551 	ifp->if_flags &= ~IFF_PROMISC;
    552 	re_stop(ifp, 0);
    553 	if (m0 != NULL)
    554 		m_freem(m0);
    555 
    556 	return error;
    557 }
    558 
    559 
    560 /*
    561  * Attach the interface. Allocate softc structures, do ifmedia
    562  * setup and ethernet/BPF attach.
    563  */
    564 void
    565 re_attach(struct rtk_softc *sc)
    566 {
    567 	u_char			eaddr[ETHER_ADDR_LEN];
    568 	uint16_t		val;
    569 	struct ifnet		*ifp;
    570 	int			error = 0, i, addr_len;
    571 
    572 	/* Reset the adapter. */
    573 	re_reset(sc);
    574 
    575 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    576 		addr_len = RTK_EEADDR_LEN1;
    577 	else
    578 		addr_len = RTK_EEADDR_LEN0;
    579 
    580 	/*
    581 	 * Get station address from the EEPROM.
    582 	 */
    583 	for (i = 0; i < 3; i++) {
    584 		val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    585 		eaddr[(i * 2) + 0] = val & 0xff;
    586 		eaddr[(i * 2) + 1] = val >> 8;
    587 	}
    588 
    589 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    590 		uint32_t hwrev;
    591 
    592 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    593 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
    594 		/* These rev numbers are taken from Realtek's driver */
    595 		if (       hwrev == RTK_HWREV_8100E_SPIN2) {
    596 			sc->sc_rev = 15;
    597 		} else if (hwrev == RTK_HWREV_8100E) {
    598 			sc->sc_rev = 14;
    599 		} else if (hwrev == RTK_HWREV_8101E) {
    600 			sc->sc_rev = 13;
    601 		} else if (hwrev == RTK_HWREV_8168_SPIN2 ||
    602 		           hwrev == RTK_HWREV_8168_SPIN3) {
    603 			sc->sc_rev = 12;
    604 		} else if (hwrev == RTK_HWREV_8168_SPIN1) {
    605 			sc->sc_rev = 11;
    606 		} else if (hwrev == RTK_HWREV_8169_8110SC) {
    607 			sc->sc_rev = 5;
    608 		} else if (hwrev == RTK_HWREV_8169_8110SB) {
    609 			sc->sc_rev = 4;
    610 		} else if (hwrev == RTK_HWREV_8169S) {
    611 			sc->sc_rev = 3;
    612 		} else if (hwrev == RTK_HWREV_8110S) {
    613 			sc->sc_rev = 2;
    614 		} else if (hwrev == RTK_HWREV_8169) {
    615 			sc->sc_rev = 1;
    616 			sc->sc_quirk |= RTKQ_8169NONS;
    617 		} else {
    618 			aprint_normal("%s: Unknown revision (0x%08x)\n",
    619 			    sc->sc_dev.dv_xname, hwrev);
    620 			/* assume the latest one */
    621 			sc->sc_rev = 15;
    622 		}
    623 
    624 		/* Set RX length mask */
    625 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
    626 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
    627 	} else {
    628 		/* Set RX length mask */
    629 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
    630 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
    631 	}
    632 
    633 	aprint_normal("%s: Ethernet address %s\n",
    634 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    635 
    636 	if (sc->re_ldata.re_tx_desc_cnt >
    637 	    PAGE_SIZE / sizeof(struct re_desc)) {
    638 		sc->re_ldata.re_tx_desc_cnt =
    639 		    PAGE_SIZE / sizeof(struct re_desc);
    640 	}
    641 
    642 	aprint_verbose("%s: using %d tx descriptors\n",
    643 	    sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
    644 	KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
    645 
    646 	/* Allocate DMA'able memory for the TX ring */
    647 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
    648 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
    649 	    &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    650 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    651 		    sc->sc_dev.dv_xname, error);
    652 		goto fail_0;
    653 	}
    654 
    655 	/* Load the map for the TX ring. */
    656 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
    657 	    sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
    658 	    (void **)&sc->re_ldata.re_tx_list,
    659 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    660 		aprint_error("%s: can't map tx list, error = %d\n",
    661 		    sc->sc_dev.dv_xname, error);
    662 	  	goto fail_1;
    663 	}
    664 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
    665 
    666 	if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
    667 	    RE_TX_LIST_SZ(sc), 0, 0,
    668 	    &sc->re_ldata.re_tx_list_map)) != 0) {
    669 		aprint_error("%s: can't create tx list map, error = %d\n",
    670 		    sc->sc_dev.dv_xname, error);
    671 		goto fail_2;
    672 	}
    673 
    674 
    675 	if ((error = bus_dmamap_load(sc->sc_dmat,
    676 	    sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
    677 	    RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    678 		aprint_error("%s: can't load tx list, error = %d\n",
    679 		    sc->sc_dev.dv_xname, error);
    680 		goto fail_3;
    681 	}
    682 
    683 	/* Create DMA maps for TX buffers */
    684 	for (i = 0; i < RE_TX_QLEN; i++) {
    685 		error = bus_dmamap_create(sc->sc_dmat,
    686 		    round_page(IP_MAXPACKET),
    687 		    RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
    688 		    0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
    689 		if (error) {
    690 			aprint_error("%s: can't create DMA map for TX\n",
    691 			    sc->sc_dev.dv_xname);
    692 			goto fail_4;
    693 		}
    694 	}
    695 
    696 	/* Allocate DMA'able memory for the RX ring */
    697 	/* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
    698 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    699 	    RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
    700 	    &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    701 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    702 		    sc->sc_dev.dv_xname, error);
    703 		goto fail_4;
    704 	}
    705 
    706 	/* Load the map for the RX ring. */
    707 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
    708 	    sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
    709 	    (void **)&sc->re_ldata.re_rx_list,
    710 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    711 		aprint_error("%s: can't map rx list, error = %d\n",
    712 		    sc->sc_dev.dv_xname, error);
    713 		goto fail_5;
    714 	}
    715 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
    716 
    717 	if ((error = bus_dmamap_create(sc->sc_dmat,
    718 	    RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
    719 	    &sc->re_ldata.re_rx_list_map)) != 0) {
    720 		aprint_error("%s: can't create rx list map, error = %d\n",
    721 		    sc->sc_dev.dv_xname, error);
    722 		goto fail_6;
    723 	}
    724 
    725 	if ((error = bus_dmamap_load(sc->sc_dmat,
    726 	    sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
    727 	    RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    728 		aprint_error("%s: can't load rx list, error = %d\n",
    729 		    sc->sc_dev.dv_xname, error);
    730 		goto fail_7;
    731 	}
    732 
    733 	/* Create DMA maps for RX buffers */
    734 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
    735 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    736 		    0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    737 		if (error) {
    738 			aprint_error("%s: can't create DMA map for RX\n",
    739 			    sc->sc_dev.dv_xname);
    740 			goto fail_8;
    741 		}
    742 	}
    743 
    744 	/*
    745 	 * Record interface as attached. From here, we should not fail.
    746 	 */
    747 	sc->sc_flags |= RTK_ATTACHED;
    748 
    749 	ifp = &sc->ethercom.ec_if;
    750 	ifp->if_softc = sc;
    751 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    752 	ifp->if_mtu = ETHERMTU;
    753 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    754 	ifp->if_ioctl = re_ioctl;
    755 	sc->ethercom.ec_capabilities |=
    756 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    757 	ifp->if_start = re_start;
    758 	ifp->if_stop = re_stop;
    759 
    760 	/*
    761 	 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
    762 	 * so we have a workaround to handle the bug by padding
    763 	 * such packets manually.
    764 	 */
    765 	ifp->if_capabilities |=
    766 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    767 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    768 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    769 	    IFCAP_TSOv4;
    770 	ifp->if_watchdog = re_watchdog;
    771 	ifp->if_init = re_init;
    772 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
    773 	ifp->if_capenable = ifp->if_capabilities;
    774 	IFQ_SET_READY(&ifp->if_snd);
    775 
    776 	callout_init(&sc->rtk_tick_ch, 0);
    777 
    778 	/* Do MII setup */
    779 	sc->mii.mii_ifp = ifp;
    780 	sc->mii.mii_readreg = re_miibus_readreg;
    781 	sc->mii.mii_writereg = re_miibus_writereg;
    782 	sc->mii.mii_statchg = re_miibus_statchg;
    783 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    784 	    re_ifmedia_sts);
    785 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    786 	    MII_OFFSET_ANY, 0);
    787 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    788 
    789 	/*
    790 	 * Call MI attach routine.
    791 	 */
    792 	if_attach(ifp);
    793 	ether_ifattach(ifp, eaddr);
    794 
    795 	return;
    796 
    797  fail_8:
    798 	/* Destroy DMA maps for RX buffers. */
    799 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    800 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    801 			bus_dmamap_destroy(sc->sc_dmat,
    802 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    803 
    804 	/* Free DMA'able memory for the RX ring. */
    805 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    806  fail_7:
    807 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    808  fail_6:
    809 	bus_dmamem_unmap(sc->sc_dmat,
    810 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    811  fail_5:
    812 	bus_dmamem_free(sc->sc_dmat,
    813 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    814 
    815  fail_4:
    816 	/* Destroy DMA maps for TX buffers. */
    817 	for (i = 0; i < RE_TX_QLEN; i++)
    818 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    819 			bus_dmamap_destroy(sc->sc_dmat,
    820 			    sc->re_ldata.re_txq[i].txq_dmamap);
    821 
    822 	/* Free DMA'able memory for the TX ring. */
    823 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    824  fail_3:
    825 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    826  fail_2:
    827 	bus_dmamem_unmap(sc->sc_dmat,
    828 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    829  fail_1:
    830 	bus_dmamem_free(sc->sc_dmat,
    831 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    832  fail_0:
    833 	return;
    834 }
    835 
    836 
    837 /*
    838  * re_activate:
    839  *     Handle device activation/deactivation requests.
    840  */
    841 int
    842 re_activate(struct device *self, enum devact act)
    843 {
    844 	struct rtk_softc *sc = (void *)self;
    845 	int s, error = 0;
    846 
    847 	s = splnet();
    848 	switch (act) {
    849 	case DVACT_ACTIVATE:
    850 		error = EOPNOTSUPP;
    851 		break;
    852 	case DVACT_DEACTIVATE:
    853 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    854 		if_deactivate(&sc->ethercom.ec_if);
    855 		break;
    856 	}
    857 	splx(s);
    858 
    859 	return error;
    860 }
    861 
    862 /*
    863  * re_detach:
    864  *     Detach a rtk interface.
    865  */
    866 int
    867 re_detach(struct rtk_softc *sc)
    868 {
    869 	struct ifnet *ifp = &sc->ethercom.ec_if;
    870 	int i;
    871 
    872 	/*
    873 	 * Succeed now if there isn't any work to do.
    874 	 */
    875 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    876 		return 0;
    877 
    878 	/* Unhook our tick handler. */
    879 	callout_stop(&sc->rtk_tick_ch);
    880 
    881 	/* Detach all PHYs. */
    882 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    883 
    884 	/* Delete all remaining media. */
    885 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    886 
    887 	ether_ifdetach(ifp);
    888 	if_detach(ifp);
    889 
    890 	/* Destroy DMA maps for RX buffers. */
    891 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    892 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    893 			bus_dmamap_destroy(sc->sc_dmat,
    894 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    895 
    896 	/* Free DMA'able memory for the RX ring. */
    897 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    898 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    899 	bus_dmamem_unmap(sc->sc_dmat,
    900 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    901 	bus_dmamem_free(sc->sc_dmat,
    902 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    903 
    904 	/* Destroy DMA maps for TX buffers. */
    905 	for (i = 0; i < RE_TX_QLEN; i++)
    906 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    907 			bus_dmamap_destroy(sc->sc_dmat,
    908 			    sc->re_ldata.re_txq[i].txq_dmamap);
    909 
    910 	/* Free DMA'able memory for the TX ring. */
    911 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    912 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    913 	bus_dmamem_unmap(sc->sc_dmat,
    914 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    915 	bus_dmamem_free(sc->sc_dmat,
    916 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    917 
    918 	return 0;
    919 }
    920 
    921 /*
    922  * re_enable:
    923  *     Enable the RTL81X9 chip.
    924  */
    925 static int
    926 re_enable(struct rtk_softc *sc)
    927 {
    928 
    929 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    930 		if ((*sc->sc_enable)(sc) != 0) {
    931 			aprint_error("%s: device enable failed\n",
    932 			    sc->sc_dev.dv_xname);
    933 			return EIO;
    934 		}
    935 		sc->sc_flags |= RTK_ENABLED;
    936 	}
    937 	return 0;
    938 }
    939 
    940 /*
    941  * re_disable:
    942  *     Disable the RTL81X9 chip.
    943  */
    944 static void
    945 re_disable(struct rtk_softc *sc)
    946 {
    947 
    948 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    949 		(*sc->sc_disable)(sc);
    950 		sc->sc_flags &= ~RTK_ENABLED;
    951 	}
    952 }
    953 
    954 static int
    955 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
    956 {
    957 	struct mbuf		*n = NULL;
    958 	bus_dmamap_t		map;
    959 	struct re_desc		*d;
    960 	struct re_rxsoft	*rxs;
    961 	uint32_t		cmdstat;
    962 	int			error;
    963 
    964 	if (m == NULL) {
    965 		MGETHDR(n, M_DONTWAIT, MT_DATA);
    966 		if (n == NULL)
    967 			return ENOBUFS;
    968 
    969 		MCLGET(n, M_DONTWAIT);
    970 		if ((n->m_flags & M_EXT) == 0) {
    971 			m_freem(n);
    972 			return ENOBUFS;
    973 		}
    974 		m = n;
    975 	} else
    976 		m->m_data = m->m_ext.ext_buf;
    977 
    978 	/*
    979 	 * Initialize mbuf length fields and fixup
    980 	 * alignment so that the frame payload is
    981 	 * longword aligned.
    982 	 */
    983 	m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
    984 	m->m_data += RE_ETHER_ALIGN;
    985 
    986 	rxs = &sc->re_ldata.re_rxsoft[idx];
    987 	map = rxs->rxs_dmamap;
    988 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
    989 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    990 
    991 	if (error)
    992 		goto out;
    993 
    994 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
    995 	    BUS_DMASYNC_PREREAD);
    996 
    997 	d = &sc->re_ldata.re_rx_list[idx];
    998 #ifdef DIAGNOSTIC
    999 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1000 	cmdstat = le32toh(d->re_cmdstat);
   1001 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1002 	if (cmdstat & RE_RDESC_STAT_OWN) {
   1003 		panic("%s: tried to map busy RX descriptor",
   1004 		    sc->sc_dev.dv_xname);
   1005 	}
   1006 #endif
   1007 
   1008 	rxs->rxs_mbuf = m;
   1009 
   1010 	d->re_vlanctl = 0;
   1011 	cmdstat = map->dm_segs[0].ds_len;
   1012 	if (idx == (RE_RX_DESC_CNT - 1))
   1013 		cmdstat |= RE_RDESC_CMD_EOR;
   1014 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
   1015 	d->re_cmdstat = htole32(cmdstat);
   1016 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1017 	cmdstat |= RE_RDESC_CMD_OWN;
   1018 	d->re_cmdstat = htole32(cmdstat);
   1019 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1020 
   1021 	return 0;
   1022  out:
   1023 	if (n != NULL)
   1024 		m_freem(n);
   1025 	return ENOMEM;
   1026 }
   1027 
   1028 static int
   1029 re_tx_list_init(struct rtk_softc *sc)
   1030 {
   1031 	int i;
   1032 
   1033 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
   1034 	for (i = 0; i < RE_TX_QLEN; i++) {
   1035 		sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   1036 	}
   1037 
   1038 	bus_dmamap_sync(sc->sc_dmat,
   1039 	    sc->re_ldata.re_tx_list_map, 0,
   1040 	    sc->re_ldata.re_tx_list_map->dm_mapsize,
   1041 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1042 	sc->re_ldata.re_txq_prodidx = 0;
   1043 	sc->re_ldata.re_txq_considx = 0;
   1044 	sc->re_ldata.re_txq_free = RE_TX_QLEN;
   1045 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
   1046 	sc->re_ldata.re_tx_nextfree = 0;
   1047 
   1048 	return 0;
   1049 }
   1050 
   1051 static int
   1052 re_rx_list_init(struct rtk_softc *sc)
   1053 {
   1054 	int			i;
   1055 
   1056 	memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
   1057 
   1058 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   1059 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1060 			return ENOBUFS;
   1061 	}
   1062 
   1063 	sc->re_ldata.re_rx_prodidx = 0;
   1064 	sc->re_head = sc->re_tail = NULL;
   1065 
   1066 	return 0;
   1067 }
   1068 
   1069 /*
   1070  * RX handler for C+ and 8169. For the gigE chips, we support
   1071  * the reception of jumbo frames that have been fragmented
   1072  * across multiple 2K mbuf cluster buffers.
   1073  */
   1074 static void
   1075 re_rxeof(struct rtk_softc *sc)
   1076 {
   1077 	struct mbuf		*m;
   1078 	struct ifnet		*ifp;
   1079 	int			i, total_len;
   1080 	struct re_desc		*cur_rx;
   1081 	struct re_rxsoft	*rxs;
   1082 	uint32_t		rxstat, rxvlan;
   1083 
   1084 	ifp = &sc->ethercom.ec_if;
   1085 
   1086 	for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
   1087 		cur_rx = &sc->re_ldata.re_rx_list[i];
   1088 		RE_RXDESCSYNC(sc, i,
   1089 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1090 		rxstat = le32toh(cur_rx->re_cmdstat);
   1091 		RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1092 		if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
   1093 			break;
   1094 		}
   1095 		total_len = rxstat & sc->re_rxlenmask;
   1096 		rxvlan = le32toh(cur_rx->re_vlanctl);
   1097 		rxs = &sc->re_ldata.re_rxsoft[i];
   1098 		m = rxs->rxs_mbuf;
   1099 
   1100 		/* Invalidate the RX mbuf and unload its map */
   1101 
   1102 		bus_dmamap_sync(sc->sc_dmat,
   1103 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1104 		    BUS_DMASYNC_POSTREAD);
   1105 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1106 
   1107 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
   1108 			m->m_len = MCLBYTES - RE_ETHER_ALIGN;
   1109 			if (sc->re_head == NULL)
   1110 				sc->re_head = sc->re_tail = m;
   1111 			else {
   1112 				m->m_flags &= ~M_PKTHDR;
   1113 				sc->re_tail->m_next = m;
   1114 				sc->re_tail = m;
   1115 			}
   1116 			re_newbuf(sc, i, NULL);
   1117 			continue;
   1118 		}
   1119 
   1120 		/*
   1121 		 * NOTE: for the 8139C+, the frame length field
   1122 		 * is always 12 bits in size, but for the gigE chips,
   1123 		 * it is 13 bits (since the max RX frame length is 16K).
   1124 		 * Unfortunately, all 32 bits in the status word
   1125 		 * were already used, so to make room for the extra
   1126 		 * length bit, RealTek took out the 'frame alignment
   1127 		 * error' bit and shifted the other status bits
   1128 		 * over one slot. The OWN, EOR, FS and LS bits are
   1129 		 * still in the same places. We have already extracted
   1130 		 * the frame length and checked the OWN bit, so rather
   1131 		 * than using an alternate bit mapping, we shift the
   1132 		 * status bits one space to the right so we can evaluate
   1133 		 * them using the 8169 status as though it was in the
   1134 		 * same format as that of the 8139C+.
   1135 		 */
   1136 		if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
   1137 			rxstat >>= 1;
   1138 
   1139 		if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
   1140 #ifdef RE_DEBUG
   1141 			aprint_error("%s: RX error (rxstat = 0x%08x)",
   1142 			    sc->sc_dev.dv_xname, rxstat);
   1143 			if (rxstat & RE_RDESC_STAT_FRALIGN)
   1144 				aprint_error(", frame alignment error");
   1145 			if (rxstat & RE_RDESC_STAT_BUFOFLOW)
   1146 				aprint_error(", out of buffer space");
   1147 			if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
   1148 				aprint_error(", FIFO overrun");
   1149 			if (rxstat & RE_RDESC_STAT_GIANT)
   1150 				aprint_error(", giant packet");
   1151 			if (rxstat & RE_RDESC_STAT_RUNT)
   1152 				aprint_error(", runt packet");
   1153 			if (rxstat & RE_RDESC_STAT_CRCERR)
   1154 				aprint_error(", CRC error");
   1155 			aprint_error("\n");
   1156 #endif
   1157 			ifp->if_ierrors++;
   1158 			/*
   1159 			 * If this is part of a multi-fragment packet,
   1160 			 * discard all the pieces.
   1161 			 */
   1162 			if (sc->re_head != NULL) {
   1163 				m_freem(sc->re_head);
   1164 				sc->re_head = sc->re_tail = NULL;
   1165 			}
   1166 			re_newbuf(sc, i, m);
   1167 			continue;
   1168 		}
   1169 
   1170 		/*
   1171 		 * If allocating a replacement mbuf fails,
   1172 		 * reload the current one.
   1173 		 */
   1174 
   1175 		if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
   1176 			ifp->if_ierrors++;
   1177 			if (sc->re_head != NULL) {
   1178 				m_freem(sc->re_head);
   1179 				sc->re_head = sc->re_tail = NULL;
   1180 			}
   1181 			re_newbuf(sc, i, m);
   1182 			continue;
   1183 		}
   1184 
   1185 		if (sc->re_head != NULL) {
   1186 			m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
   1187 			/*
   1188 			 * Special case: if there's 4 bytes or less
   1189 			 * in this buffer, the mbuf can be discarded:
   1190 			 * the last 4 bytes is the CRC, which we don't
   1191 			 * care about anyway.
   1192 			 */
   1193 			if (m->m_len <= ETHER_CRC_LEN) {
   1194 				sc->re_tail->m_len -=
   1195 				    (ETHER_CRC_LEN - m->m_len);
   1196 				m_freem(m);
   1197 			} else {
   1198 				m->m_len -= ETHER_CRC_LEN;
   1199 				m->m_flags &= ~M_PKTHDR;
   1200 				sc->re_tail->m_next = m;
   1201 			}
   1202 			m = sc->re_head;
   1203 			sc->re_head = sc->re_tail = NULL;
   1204 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1205 		} else
   1206 			m->m_pkthdr.len = m->m_len =
   1207 			    (total_len - ETHER_CRC_LEN);
   1208 
   1209 		ifp->if_ipackets++;
   1210 		m->m_pkthdr.rcvif = ifp;
   1211 
   1212 		/* Do RX checksumming */
   1213 
   1214 		/* Check IP header checksum */
   1215 		if (rxstat & RE_RDESC_STAT_PROTOID) {
   1216 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1217 			if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1218 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1219 		}
   1220 
   1221 		/* Check TCP/UDP checksum */
   1222 		if (RE_TCPPKT(rxstat)) {
   1223 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1224 			if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1225 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1226 		} else if (RE_UDPPKT(rxstat)) {
   1227 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1228 			if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
   1229 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1230 		}
   1231 
   1232 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
   1233 			VLAN_INPUT_TAG(ifp, m,
   1234 			     bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
   1235 			     continue);
   1236 		}
   1237 #if NBPFILTER > 0
   1238 		if (ifp->if_bpf)
   1239 			bpf_mtap(ifp->if_bpf, m);
   1240 #endif
   1241 		(*ifp->if_input)(ifp, m);
   1242 	}
   1243 
   1244 	sc->re_ldata.re_rx_prodidx = i;
   1245 }
   1246 
   1247 static void
   1248 re_txeof(struct rtk_softc *sc)
   1249 {
   1250 	struct ifnet		*ifp;
   1251 	struct re_txq		*txq;
   1252 	uint32_t		txstat;
   1253 	int			idx, descidx;
   1254 
   1255 	ifp = &sc->ethercom.ec_if;
   1256 
   1257 	for (idx = sc->re_ldata.re_txq_considx;
   1258 	    sc->re_ldata.re_txq_free < RE_TX_QLEN;
   1259 	    idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
   1260 		txq = &sc->re_ldata.re_txq[idx];
   1261 		KASSERT(txq->txq_mbuf != NULL);
   1262 
   1263 		descidx = txq->txq_descidx;
   1264 		RE_TXDESCSYNC(sc, descidx,
   1265 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1266 		txstat =
   1267 		    le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
   1268 		RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1269 		KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
   1270 		if (txstat & RE_TDESC_CMD_OWN) {
   1271 			break;
   1272 		}
   1273 
   1274 		sc->re_ldata.re_tx_free += txq->txq_nsegs;
   1275 		KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
   1276 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1277 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1278 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1279 		m_freem(txq->txq_mbuf);
   1280 		txq->txq_mbuf = NULL;
   1281 
   1282 		if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
   1283 			ifp->if_collisions++;
   1284 		if (txstat & RE_TDESC_STAT_TXERRSUM)
   1285 			ifp->if_oerrors++;
   1286 		else
   1287 			ifp->if_opackets++;
   1288 	}
   1289 
   1290 	sc->re_ldata.re_txq_considx = idx;
   1291 
   1292 	if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
   1293 		ifp->if_flags &= ~IFF_OACTIVE;
   1294 
   1295 	/*
   1296 	 * If not all descriptors have been released reaped yet,
   1297 	 * reload the timer so that we will eventually get another
   1298 	 * interrupt that will cause us to re-enter this routine.
   1299 	 * This is done in case the transmitter has gone idle.
   1300 	 */
   1301 	if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
   1302 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1303 		if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1304 			/*
   1305 			 * Some chips will ignore a second TX request
   1306 			 * issued while an existing transmission is in
   1307 			 * progress. If the transmitter goes idle but
   1308 			 * there are still packets waiting to be sent,
   1309 			 * we need to restart the channel here to flush
   1310 			 * them out. This only seems to be required with
   1311 			 * the PCIe devices.
   1312 			 */
   1313 			CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1314 		}
   1315 	} else
   1316 		ifp->if_timer = 0;
   1317 }
   1318 
   1319 static void
   1320 re_tick(void *xsc)
   1321 {
   1322 	struct rtk_softc	*sc = xsc;
   1323 	int s;
   1324 
   1325 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1326 	s = splnet();
   1327 
   1328 	mii_tick(&sc->mii);
   1329 	splx(s);
   1330 
   1331 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1332 }
   1333 
   1334 #ifdef DEVICE_POLLING
   1335 static void
   1336 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1337 {
   1338 	struct rtk_softc *sc = ifp->if_softc;
   1339 
   1340 	RTK_LOCK(sc);
   1341 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
   1342 		ether_poll_deregister(ifp);
   1343 		cmd = POLL_DEREGISTER;
   1344 	}
   1345 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1346 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1347 		goto done;
   1348 	}
   1349 
   1350 	sc->rxcycles = count;
   1351 	re_rxeof(sc);
   1352 	re_txeof(sc);
   1353 
   1354 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1355 		(*ifp->if_start)(ifp);
   1356 
   1357 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1358 		uint16_t       status;
   1359 
   1360 		status = CSR_READ_2(sc, RTK_ISR);
   1361 		if (status == 0xffff)
   1362 			goto done;
   1363 		if (status)
   1364 			CSR_WRITE_2(sc, RTK_ISR, status);
   1365 
   1366 		/*
   1367 		 * XXX check behaviour on receiver stalls.
   1368 		 */
   1369 
   1370 		if (status & RTK_ISR_SYSTEM_ERR) {
   1371 			re_init(sc);
   1372 		}
   1373 	}
   1374  done:
   1375 	RTK_UNLOCK(sc);
   1376 }
   1377 #endif /* DEVICE_POLLING */
   1378 
   1379 int
   1380 re_intr(void *arg)
   1381 {
   1382 	struct rtk_softc	*sc = arg;
   1383 	struct ifnet		*ifp;
   1384 	uint16_t		status;
   1385 	int			handled = 0;
   1386 
   1387 	ifp = &sc->ethercom.ec_if;
   1388 
   1389 	if ((ifp->if_flags & IFF_UP) == 0)
   1390 		return 0;
   1391 
   1392 #ifdef DEVICE_POLLING
   1393 	if (ifp->if_flags & IFF_POLLING)
   1394 		goto done;
   1395 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1396 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1397 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1398 		re_poll(ifp, 0, 1);
   1399 		goto done;
   1400 	}
   1401 #endif /* DEVICE_POLLING */
   1402 
   1403 	for (;;) {
   1404 
   1405 		status = CSR_READ_2(sc, RTK_ISR);
   1406 		/* If the card has gone away the read returns 0xffff. */
   1407 		if (status == 0xffff)
   1408 			break;
   1409 		if (status) {
   1410 			handled = 1;
   1411 			CSR_WRITE_2(sc, RTK_ISR, status);
   1412 		}
   1413 
   1414 		if ((status & RTK_INTRS_CPLUS) == 0)
   1415 			break;
   1416 
   1417 		if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
   1418 			re_rxeof(sc);
   1419 
   1420 		if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
   1421 		    RTK_ISR_TX_DESC_UNAVAIL))
   1422 			re_txeof(sc);
   1423 
   1424 		if (status & RTK_ISR_SYSTEM_ERR) {
   1425 			re_init(ifp);
   1426 		}
   1427 
   1428 		if (status & RTK_ISR_LINKCHG) {
   1429 			callout_stop(&sc->rtk_tick_ch);
   1430 			re_tick(sc);
   1431 		}
   1432 	}
   1433 
   1434 	if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
   1435 		re_start(ifp);
   1436 
   1437 #ifdef DEVICE_POLLING
   1438  done:
   1439 #endif
   1440 
   1441 	return handled;
   1442 }
   1443 
   1444 
   1445 
   1446 /*
   1447  * Main transmit routine for C+ and gigE NICs.
   1448  */
   1449 
   1450 static void
   1451 re_start(struct ifnet *ifp)
   1452 {
   1453 	struct rtk_softc	*sc;
   1454 	struct mbuf		*m;
   1455 	bus_dmamap_t		map;
   1456 	struct re_txq		*txq;
   1457 	struct re_desc		*d;
   1458 	struct m_tag		*mtag;
   1459 	uint32_t		cmdstat, re_flags;
   1460 	int			ofree, idx, error, nsegs, seg;
   1461 	int			startdesc, curdesc, lastdesc;
   1462 	bool			pad;
   1463 
   1464 	sc = ifp->if_softc;
   1465 	ofree = sc->re_ldata.re_txq_free;
   1466 
   1467 	for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
   1468 
   1469 		IFQ_POLL(&ifp->if_snd, m);
   1470 		if (m == NULL)
   1471 			break;
   1472 
   1473 		if (sc->re_ldata.re_txq_free == 0 ||
   1474 		    sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
   1475 			/* no more free slots left */
   1476 			ifp->if_flags |= IFF_OACTIVE;
   1477 			break;
   1478 		}
   1479 
   1480 		/*
   1481 		 * Set up checksum offload. Note: checksum offload bits must
   1482 		 * appear in all descriptors of a multi-descriptor transmit
   1483 		 * attempt. (This is according to testing done with an 8169
   1484 		 * chip. I'm not sure if this is a requirement or a bug.)
   1485 		 */
   1486 
   1487 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1488 			uint32_t segsz = m->m_pkthdr.segsz;
   1489 
   1490 			re_flags = RE_TDESC_CMD_LGSEND |
   1491 			    (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
   1492 		} else {
   1493 			/*
   1494 			 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
   1495 			 * is requested.  otherwise, RE_TDESC_CMD_TCPCSUM/
   1496 			 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
   1497 			 */
   1498 			re_flags = 0;
   1499 			if ((m->m_pkthdr.csum_flags &
   1500 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1501 			    != 0) {
   1502 				re_flags |= RE_TDESC_CMD_IPCSUM;
   1503 				if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1504 					re_flags |= RE_TDESC_CMD_TCPCSUM;
   1505 				} else if (m->m_pkthdr.csum_flags &
   1506 				    M_CSUM_UDPv4) {
   1507 					re_flags |= RE_TDESC_CMD_UDPCSUM;
   1508 				}
   1509 			}
   1510 		}
   1511 
   1512 		txq = &sc->re_ldata.re_txq[idx];
   1513 		map = txq->txq_dmamap;
   1514 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1515 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1516 
   1517 		if (__predict_false(error)) {
   1518 			/* XXX try to defrag if EFBIG? */
   1519 			aprint_error("%s: can't map mbuf (error %d)\n",
   1520 			    sc->sc_dev.dv_xname, error);
   1521 
   1522 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1523 			m_freem(m);
   1524 			ifp->if_oerrors++;
   1525 			continue;
   1526 		}
   1527 
   1528 		nsegs = map->dm_nsegs;
   1529 		pad = false;
   1530 		if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
   1531 		    (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
   1532 			pad = true;
   1533 			nsegs++;
   1534 		}
   1535 
   1536 		if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
   1537 			/*
   1538 			 * Not enough free descriptors to transmit this packet.
   1539 			 */
   1540 			ifp->if_flags |= IFF_OACTIVE;
   1541 			bus_dmamap_unload(sc->sc_dmat, map);
   1542 			break;
   1543 		}
   1544 
   1545 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1546 
   1547 		/*
   1548 		 * Make sure that the caches are synchronized before we
   1549 		 * ask the chip to start DMA for the packet data.
   1550 		 */
   1551 		bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1552 		    BUS_DMASYNC_PREWRITE);
   1553 
   1554 		/*
   1555 		 * Map the segment array into descriptors.
   1556 		 * Note that we set the start-of-frame and
   1557 		 * end-of-frame markers for either TX or RX,
   1558 		 * but they really only have meaning in the TX case.
   1559 		 * (In the RX case, it's the chip that tells us
   1560 		 *  where packets begin and end.)
   1561 		 * We also keep track of the end of the ring
   1562 		 * and set the end-of-ring bits as needed,
   1563 		 * and we set the ownership bits in all except
   1564 		 * the very first descriptor. (The caller will
   1565 		 * set this descriptor later when it start
   1566 		 * transmission or reception.)
   1567 		 */
   1568 		curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
   1569 		lastdesc = -1;
   1570 		for (seg = 0; seg < map->dm_nsegs;
   1571 		    seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
   1572 			d = &sc->re_ldata.re_tx_list[curdesc];
   1573 #ifdef DIAGNOSTIC
   1574 			RE_TXDESCSYNC(sc, curdesc,
   1575 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1576 			cmdstat = le32toh(d->re_cmdstat);
   1577 			RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
   1578 			if (cmdstat & RE_TDESC_STAT_OWN) {
   1579 				panic("%s: tried to map busy TX descriptor",
   1580 				    sc->sc_dev.dv_xname);
   1581 			}
   1582 #endif
   1583 
   1584 			d->re_vlanctl = 0;
   1585 			re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
   1586 			cmdstat = re_flags | map->dm_segs[seg].ds_len;
   1587 			if (seg == 0)
   1588 				cmdstat |= RE_TDESC_CMD_SOF;
   1589 			else
   1590 				cmdstat |= RE_TDESC_CMD_OWN;
   1591 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1592 				cmdstat |= RE_TDESC_CMD_EOR;
   1593 			if (seg == nsegs - 1) {
   1594 				cmdstat |= RE_TDESC_CMD_EOF;
   1595 				lastdesc = curdesc;
   1596 			}
   1597 			d->re_cmdstat = htole32(cmdstat);
   1598 			RE_TXDESCSYNC(sc, curdesc,
   1599 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1600 		}
   1601 		if (__predict_false(pad)) {
   1602 			bus_addr_t paddaddr;
   1603 
   1604 			d = &sc->re_ldata.re_tx_list[curdesc];
   1605 			d->re_vlanctl = 0;
   1606 			paddaddr = RE_TXPADDADDR(sc);
   1607 			re_set_bufaddr(d, paddaddr);
   1608 			cmdstat = re_flags |
   1609 			    RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
   1610 			    (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
   1611 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1612 				cmdstat |= RE_TDESC_CMD_EOR;
   1613 			d->re_cmdstat = htole32(cmdstat);
   1614 			RE_TXDESCSYNC(sc, curdesc,
   1615 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1616 			lastdesc = curdesc;
   1617 			curdesc = RE_NEXT_TX_DESC(sc, curdesc);
   1618 		}
   1619 		KASSERT(lastdesc != -1);
   1620 
   1621 		/*
   1622 		 * Set up hardware VLAN tagging. Note: vlan tag info must
   1623 		 * appear in the first descriptor of a multi-descriptor
   1624 		 * transmission attempt.
   1625 		 */
   1626 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1627 			sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
   1628 			    htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
   1629 			    RE_TDESC_VLANCTL_TAG);
   1630 		}
   1631 
   1632 		/* Transfer ownership of packet to the chip. */
   1633 
   1634 		sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
   1635 		    htole32(RE_TDESC_CMD_OWN);
   1636 		RE_TXDESCSYNC(sc, startdesc,
   1637 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1638 
   1639 		/* update info of TX queue and descriptors */
   1640 		txq->txq_mbuf = m;
   1641 		txq->txq_descidx = lastdesc;
   1642 		txq->txq_nsegs = nsegs;
   1643 
   1644 		sc->re_ldata.re_txq_free--;
   1645 		sc->re_ldata.re_tx_free -= nsegs;
   1646 		sc->re_ldata.re_tx_nextfree = curdesc;
   1647 
   1648 #if NBPFILTER > 0
   1649 		/*
   1650 		 * If there's a BPF listener, bounce a copy of this frame
   1651 		 * to him.
   1652 		 */
   1653 		if (ifp->if_bpf)
   1654 			bpf_mtap(ifp->if_bpf, m);
   1655 #endif
   1656 	}
   1657 
   1658 	if (sc->re_ldata.re_txq_free < ofree) {
   1659 		/*
   1660 		 * TX packets are enqueued.
   1661 		 */
   1662 		sc->re_ldata.re_txq_prodidx = idx;
   1663 
   1664 		/*
   1665 		 * Start the transmitter to poll.
   1666 		 *
   1667 		 * RealTek put the TX poll request register in a different
   1668 		 * location on the 8169 gigE chip. I don't know why.
   1669 		 */
   1670 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1671 			CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1672 		else
   1673 			CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1674 
   1675 		/*
   1676 		 * Use the countdown timer for interrupt moderation.
   1677 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1678 		 * countdown timer, which will begin counting until it hits
   1679 		 * the value in the TIMERINT register, and then trigger an
   1680 		 * interrupt. Each time we write to the TIMERCNT register,
   1681 		 * the timer count is reset to 0.
   1682 		 */
   1683 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1684 
   1685 		/*
   1686 		 * Set a timeout in case the chip goes out to lunch.
   1687 		 */
   1688 		ifp->if_timer = 5;
   1689 	}
   1690 }
   1691 
   1692 static int
   1693 re_init(struct ifnet *ifp)
   1694 {
   1695 	struct rtk_softc	*sc = ifp->if_softc;
   1696 	const uint8_t		*enaddr;
   1697 	uint32_t		rxcfg = 0;
   1698 	uint32_t		reg;
   1699 	int error;
   1700 
   1701 	if ((error = re_enable(sc)) != 0)
   1702 		goto out;
   1703 
   1704 	/*
   1705 	 * Cancel pending I/O and free all RX/TX buffers.
   1706 	 */
   1707 	re_stop(ifp, 0);
   1708 
   1709 	re_reset(sc);
   1710 
   1711 	/*
   1712 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1713 	 * RX checksum offload. We must configure the C+ register
   1714 	 * before all others.
   1715 	 */
   1716 	reg = 0;
   1717 
   1718 	/*
   1719 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1720 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1721 	 * So far, it works.
   1722 	 */
   1723 
   1724 	/*
   1725 	 * XXX: For old 8169 set bit 14.
   1726 	 *      For 8169S/8110S and above, do not set bit 14.
   1727 	 */
   1728 	if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
   1729 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1730 
   1731 	if (1)  {/* not for 8169S ? */
   1732 		reg |=
   1733 		    RTK_CPLUSCMD_VLANSTRIP |
   1734 		    (ifp->if_capenable &
   1735 		    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
   1736 		     IFCAP_CSUM_UDPv4_Rx) ?
   1737 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1738 	}
   1739 
   1740 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1741 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1742 
   1743 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1744 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
   1745 		CSR_WRITE_2(sc, RTK_IM, 0x0000);
   1746 
   1747 	DELAY(10000);
   1748 
   1749 	/*
   1750 	 * Init our MAC address.  Even though the chipset
   1751 	 * documentation doesn't mention it, we need to enter "Config
   1752 	 * register write enable" mode to modify the ID registers.
   1753 	 */
   1754 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1755 	enaddr = CLLADDR(ifp->if_sadl);
   1756 	reg = enaddr[0] | (enaddr[1] << 8) |
   1757 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1758 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1759 	reg = enaddr[4] | (enaddr[5] << 8);
   1760 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1761 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1762 
   1763 	/*
   1764 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1765 	 */
   1766 	re_rx_list_init(sc);
   1767 	re_tx_list_init(sc);
   1768 
   1769 	/*
   1770 	 * Load the addresses of the RX and TX lists into the chip.
   1771 	 */
   1772 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1773 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1774 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1775 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1776 
   1777 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1778 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1779 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1780 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1781 
   1782 	/*
   1783 	 * Enable transmit and receive.
   1784 	 */
   1785 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1786 
   1787 	/*
   1788 	 * Set the initial TX and RX configuration.
   1789 	 */
   1790 	if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
   1791 		/* test mode is needed only for old 8169 */
   1792 		CSR_WRITE_4(sc, RTK_TXCFG,
   1793 		    RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1794 	} else
   1795 		CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
   1796 
   1797 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1798 
   1799 	CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
   1800 
   1801 	/* Set the individual bit to receive frames for this host only. */
   1802 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1803 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1804 
   1805 	/* If we want promiscuous mode, set the allframes bit. */
   1806 	if (ifp->if_flags & IFF_PROMISC)
   1807 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1808 	else
   1809 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1810 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1811 
   1812 	/*
   1813 	 * Set capture broadcast bit to capture broadcast frames.
   1814 	 */
   1815 	if (ifp->if_flags & IFF_BROADCAST)
   1816 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1817 	else
   1818 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1819 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1820 
   1821 	/*
   1822 	 * Program the multicast filter, if necessary.
   1823 	 */
   1824 	rtk_setmulti(sc);
   1825 
   1826 #ifdef DEVICE_POLLING
   1827 	/*
   1828 	 * Disable interrupts if we are polling.
   1829 	 */
   1830 	if (ifp->if_flags & IFF_POLLING)
   1831 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1832 	else	/* otherwise ... */
   1833 #endif /* DEVICE_POLLING */
   1834 	/*
   1835 	 * Enable interrupts.
   1836 	 */
   1837 	if (sc->re_testmode)
   1838 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1839 	else
   1840 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1841 
   1842 	/* Start RX/TX process. */
   1843 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1844 #ifdef notdef
   1845 	/* Enable receiver and transmitter. */
   1846 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1847 #endif
   1848 
   1849 	/*
   1850 	 * Initialize the timer interrupt register so that
   1851 	 * a timer interrupt will be generated once the timer
   1852 	 * reaches a certain number of ticks. The timer is
   1853 	 * reloaded on each transmit. This gives us TX interrupt
   1854 	 * moderation, which dramatically improves TX frame rate.
   1855 	 */
   1856 
   1857 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1858 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1859 	else {
   1860 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1861 
   1862 		/*
   1863 		 * For 8169 gigE NICs, set the max allowed RX packet
   1864 		 * size so we can receive jumbo frames.
   1865 		 */
   1866 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1867 	}
   1868 
   1869 	if (sc->re_testmode)
   1870 		return 0;
   1871 
   1872 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
   1873 
   1874 	ifp->if_flags |= IFF_RUNNING;
   1875 	ifp->if_flags &= ~IFF_OACTIVE;
   1876 
   1877 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1878 
   1879  out:
   1880 	if (error) {
   1881 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1882 		ifp->if_timer = 0;
   1883 		aprint_error("%s: interface not running\n",
   1884 		    sc->sc_dev.dv_xname);
   1885 	}
   1886 
   1887 	return error;
   1888 }
   1889 
   1890 /*
   1891  * Set media options.
   1892  */
   1893 static int
   1894 re_ifmedia_upd(struct ifnet *ifp)
   1895 {
   1896 	struct rtk_softc	*sc;
   1897 
   1898 	sc = ifp->if_softc;
   1899 
   1900 	return mii_mediachg(&sc->mii);
   1901 }
   1902 
   1903 /*
   1904  * Report current media status.
   1905  */
   1906 static void
   1907 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1908 {
   1909 	struct rtk_softc	*sc;
   1910 
   1911 	sc = ifp->if_softc;
   1912 
   1913 	mii_pollstat(&sc->mii);
   1914 	ifmr->ifm_active = sc->mii.mii_media_active;
   1915 	ifmr->ifm_status = sc->mii.mii_media_status;
   1916 }
   1917 
   1918 static int
   1919 re_ioctl(struct ifnet *ifp, u_long command, void *data)
   1920 {
   1921 	struct rtk_softc	*sc = ifp->if_softc;
   1922 	struct ifreq		*ifr = (struct ifreq *) data;
   1923 	int			s, error = 0;
   1924 
   1925 	s = splnet();
   1926 
   1927 	switch (command) {
   1928 	case SIOCSIFMTU:
   1929 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
   1930 			error = EINVAL;
   1931 		ifp->if_mtu = ifr->ifr_mtu;
   1932 		break;
   1933 	case SIOCGIFMEDIA:
   1934 	case SIOCSIFMEDIA:
   1935 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1936 		break;
   1937 	default:
   1938 		error = ether_ioctl(ifp, command, data);
   1939 		if (error == ENETRESET) {
   1940 			if (ifp->if_flags & IFF_RUNNING)
   1941 				rtk_setmulti(sc);
   1942 			error = 0;
   1943 		}
   1944 		break;
   1945 	}
   1946 
   1947 	splx(s);
   1948 
   1949 	return error;
   1950 }
   1951 
   1952 static void
   1953 re_watchdog(struct ifnet *ifp)
   1954 {
   1955 	struct rtk_softc	*sc;
   1956 	int			s;
   1957 
   1958 	sc = ifp->if_softc;
   1959 	s = splnet();
   1960 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1961 	ifp->if_oerrors++;
   1962 
   1963 	re_txeof(sc);
   1964 	re_rxeof(sc);
   1965 
   1966 	re_init(ifp);
   1967 
   1968 	splx(s);
   1969 }
   1970 
   1971 /*
   1972  * Stop the adapter and free any mbufs allocated to the
   1973  * RX and TX lists.
   1974  */
   1975 static void
   1976 re_stop(struct ifnet *ifp, int disable)
   1977 {
   1978 	int		i;
   1979 	struct rtk_softc *sc = ifp->if_softc;
   1980 
   1981 	callout_stop(&sc->rtk_tick_ch);
   1982 
   1983 #ifdef DEVICE_POLLING
   1984 	ether_poll_deregister(ifp);
   1985 #endif /* DEVICE_POLLING */
   1986 
   1987 	mii_down(&sc->mii);
   1988 
   1989 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   1990 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1991 
   1992 	if (sc->re_head != NULL) {
   1993 		m_freem(sc->re_head);
   1994 		sc->re_head = sc->re_tail = NULL;
   1995 	}
   1996 
   1997 	/* Free the TX list buffers. */
   1998 	for (i = 0; i < RE_TX_QLEN; i++) {
   1999 		if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
   2000 			bus_dmamap_unload(sc->sc_dmat,
   2001 			    sc->re_ldata.re_txq[i].txq_dmamap);
   2002 			m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
   2003 			sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   2004 		}
   2005 	}
   2006 
   2007 	/* Free the RX list buffers. */
   2008 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   2009 		if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
   2010 			bus_dmamap_unload(sc->sc_dmat,
   2011 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   2012 			m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
   2013 			sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
   2014 		}
   2015 	}
   2016 
   2017 	if (disable)
   2018 		re_disable(sc);
   2019 
   2020 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2021 	ifp->if_timer = 0;
   2022 }
   2023