rtl8169.c revision 1.88 1 /* $NetBSD: rtl8169.c,v 1.88 2007/08/27 14:48:54 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, void *);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
578 addr_len = RTK_EEADDR_LEN1;
579 else
580 addr_len = RTK_EEADDR_LEN0;
581
582 /*
583 * Get station address from the EEPROM.
584 */
585 for (i = 0; i < 3; i++) {
586 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
587 eaddr[(i * 2) + 0] = val & 0xff;
588 eaddr[(i * 2) + 1] = val >> 8;
589 }
590
591 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
592 uint32_t hwrev;
593
594 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
595 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
596 /* These rev numbers are taken from Realtek's driver */
597 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
598 sc->sc_rev = 15;
599 } else if (hwrev == RTK_HWREV_8100E) {
600 sc->sc_rev = 14;
601 } else if (hwrev == RTK_HWREV_8101E) {
602 sc->sc_rev = 13;
603 } else if (hwrev == RTK_HWREV_8168_SPIN2 ||
604 hwrev == RTK_HWREV_8168_SPIN3) {
605 sc->sc_rev = 12;
606 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
607 sc->sc_rev = 11;
608 } else if (hwrev == RTK_HWREV_8169_8110SC) {
609 sc->sc_rev = 5;
610 } else if (hwrev == RTK_HWREV_8169_8110SB) {
611 sc->sc_rev = 4;
612 } else if (hwrev == RTK_HWREV_8169S) {
613 sc->sc_rev = 3;
614 } else if (hwrev == RTK_HWREV_8110S) {
615 sc->sc_rev = 2;
616 } else if (hwrev == RTK_HWREV_8169) {
617 sc->sc_rev = 1;
618 sc->sc_quirk |= RTKQ_8169NONS;
619 } else {
620 aprint_normal("%s: Unknown revision (0x%08x)\n",
621 sc->sc_dev.dv_xname, hwrev);
622 /* assume the latest one */
623 sc->sc_rev = 15;
624 }
625
626 /* Set RX length mask */
627 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
628 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
629 } else {
630 /* Set RX length mask */
631 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
633 }
634
635 aprint_normal("%s: Ethernet address %s\n",
636 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
637
638 if (sc->re_ldata.re_tx_desc_cnt >
639 PAGE_SIZE / sizeof(struct re_desc)) {
640 sc->re_ldata.re_tx_desc_cnt =
641 PAGE_SIZE / sizeof(struct re_desc);
642 }
643
644 aprint_verbose("%s: using %d tx descriptors\n",
645 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
646 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
647
648 /* Allocate DMA'able memory for the TX ring */
649 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
650 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
651 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
652 aprint_error("%s: can't allocate tx listseg, error = %d\n",
653 sc->sc_dev.dv_xname, error);
654 goto fail_0;
655 }
656
657 /* Load the map for the TX ring. */
658 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
659 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
660 (void **)&sc->re_ldata.re_tx_list,
661 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
662 aprint_error("%s: can't map tx list, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_1;
665 }
666 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
667
668 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
669 RE_TX_LIST_SZ(sc), 0, 0,
670 &sc->re_ldata.re_tx_list_map)) != 0) {
671 aprint_error("%s: can't create tx list map, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_2;
674 }
675
676
677 if ((error = bus_dmamap_load(sc->sc_dmat,
678 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
679 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
680 aprint_error("%s: can't load tx list, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_3;
683 }
684
685 /* Create DMA maps for TX buffers */
686 for (i = 0; i < RE_TX_QLEN; i++) {
687 error = bus_dmamap_create(sc->sc_dmat,
688 round_page(IP_MAXPACKET),
689 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
690 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
691 if (error) {
692 aprint_error("%s: can't create DMA map for TX\n",
693 sc->sc_dev.dv_xname);
694 goto fail_4;
695 }
696 }
697
698 /* Allocate DMA'able memory for the RX ring */
699 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
700 if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
702 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_4;
706 }
707
708 /* Load the map for the RX ring. */
709 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
710 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
711 (void **)&sc->re_ldata.re_rx_list,
712 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
713 aprint_error("%s: can't map rx list, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_5;
716 }
717 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
718
719 if ((error = bus_dmamap_create(sc->sc_dmat,
720 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
721 &sc->re_ldata.re_rx_list_map)) != 0) {
722 aprint_error("%s: can't create rx list map, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_6;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat,
728 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
729 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error("%s: can't load rx list, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_7;
733 }
734
735 /* Create DMA maps for RX buffers */
736 for (i = 0; i < RE_RX_DESC_CNT; i++) {
737 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
739 if (error) {
740 aprint_error("%s: can't create DMA map for RX\n",
741 sc->sc_dev.dv_xname);
742 goto fail_8;
743 }
744 }
745
746 /*
747 * Record interface as attached. From here, we should not fail.
748 */
749 sc->sc_flags |= RTK_ATTACHED;
750
751 ifp = &sc->ethercom.ec_if;
752 ifp->if_softc = sc;
753 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 ifp->if_mtu = ETHERMTU;
755 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 ifp->if_ioctl = re_ioctl;
757 sc->ethercom.ec_capabilities |=
758 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
759 ifp->if_start = re_start;
760 ifp->if_stop = re_stop;
761
762 /*
763 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
764 * so we have a workaround to handle the bug by padding
765 * such packets manually.
766 */
767 ifp->if_capabilities |=
768 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
769 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
770 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
771 IFCAP_TSOv4;
772 ifp->if_watchdog = re_watchdog;
773 ifp->if_init = re_init;
774 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
775 ifp->if_capenable = ifp->if_capabilities;
776 IFQ_SET_READY(&ifp->if_snd);
777
778 callout_init(&sc->rtk_tick_ch, 0);
779
780 /* Do MII setup */
781 sc->mii.mii_ifp = ifp;
782 sc->mii.mii_readreg = re_miibus_readreg;
783 sc->mii.mii_writereg = re_miibus_writereg;
784 sc->mii.mii_statchg = re_miibus_statchg;
785 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
786 re_ifmedia_sts);
787 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
788 MII_OFFSET_ANY, 0);
789 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
790
791 /*
792 * Call MI attach routine.
793 */
794 if_attach(ifp);
795 ether_ifattach(ifp, eaddr);
796
797
798 /*
799 * Make sure the interface is shutdown during reboot.
800 */
801 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
802 if (sc->sc_sdhook == NULL)
803 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
804 sc->sc_dev.dv_xname);
805 /*
806 * Add a suspend hook to make sure we come back up after a
807 * resume.
808 */
809 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
810 re_power, sc);
811 if (sc->sc_powerhook == NULL)
812 aprint_error("%s: WARNING: unable to establish power hook\n",
813 sc->sc_dev.dv_xname);
814
815
816 return;
817
818 fail_8:
819 /* Destroy DMA maps for RX buffers. */
820 for (i = 0; i < RE_RX_DESC_CNT; i++)
821 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
822 bus_dmamap_destroy(sc->sc_dmat,
823 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
824
825 /* Free DMA'able memory for the RX ring. */
826 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
827 fail_7:
828 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
829 fail_6:
830 bus_dmamem_unmap(sc->sc_dmat,
831 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
832 fail_5:
833 bus_dmamem_free(sc->sc_dmat,
834 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
835
836 fail_4:
837 /* Destroy DMA maps for TX buffers. */
838 for (i = 0; i < RE_TX_QLEN; i++)
839 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
840 bus_dmamap_destroy(sc->sc_dmat,
841 sc->re_ldata.re_txq[i].txq_dmamap);
842
843 /* Free DMA'able memory for the TX ring. */
844 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
845 fail_3:
846 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
847 fail_2:
848 bus_dmamem_unmap(sc->sc_dmat,
849 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
850 fail_1:
851 bus_dmamem_free(sc->sc_dmat,
852 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
853 fail_0:
854 return;
855 }
856
857
858 /*
859 * re_activate:
860 * Handle device activation/deactivation requests.
861 */
862 int
863 re_activate(struct device *self, enum devact act)
864 {
865 struct rtk_softc *sc = (void *)self;
866 int s, error = 0;
867
868 s = splnet();
869 switch (act) {
870 case DVACT_ACTIVATE:
871 error = EOPNOTSUPP;
872 break;
873 case DVACT_DEACTIVATE:
874 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
875 if_deactivate(&sc->ethercom.ec_if);
876 break;
877 }
878 splx(s);
879
880 return error;
881 }
882
883 /*
884 * re_detach:
885 * Detach a rtk interface.
886 */
887 int
888 re_detach(struct rtk_softc *sc)
889 {
890 struct ifnet *ifp = &sc->ethercom.ec_if;
891 int i;
892
893 /*
894 * Succeed now if there isn't any work to do.
895 */
896 if ((sc->sc_flags & RTK_ATTACHED) == 0)
897 return 0;
898
899 /* Unhook our tick handler. */
900 callout_stop(&sc->rtk_tick_ch);
901
902 /* Detach all PHYs. */
903 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
904
905 /* Delete all remaining media. */
906 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
907
908 ether_ifdetach(ifp);
909 if_detach(ifp);
910
911 /* Destroy DMA maps for RX buffers. */
912 for (i = 0; i < RE_RX_DESC_CNT; i++)
913 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
914 bus_dmamap_destroy(sc->sc_dmat,
915 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
916
917 /* Free DMA'able memory for the RX ring. */
918 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
919 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
920 bus_dmamem_unmap(sc->sc_dmat,
921 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
922 bus_dmamem_free(sc->sc_dmat,
923 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
924
925 /* Destroy DMA maps for TX buffers. */
926 for (i = 0; i < RE_TX_QLEN; i++)
927 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
928 bus_dmamap_destroy(sc->sc_dmat,
929 sc->re_ldata.re_txq[i].txq_dmamap);
930
931 /* Free DMA'able memory for the TX ring. */
932 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
933 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
934 bus_dmamem_unmap(sc->sc_dmat,
935 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
936 bus_dmamem_free(sc->sc_dmat,
937 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
938
939
940 shutdownhook_disestablish(sc->sc_sdhook);
941 powerhook_disestablish(sc->sc_powerhook);
942
943 return 0;
944 }
945
946 /*
947 * re_enable:
948 * Enable the RTL81X9 chip.
949 */
950 static int
951 re_enable(struct rtk_softc *sc)
952 {
953
954 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
955 if ((*sc->sc_enable)(sc) != 0) {
956 aprint_error("%s: device enable failed\n",
957 sc->sc_dev.dv_xname);
958 return EIO;
959 }
960 sc->sc_flags |= RTK_ENABLED;
961 }
962 return 0;
963 }
964
965 /*
966 * re_disable:
967 * Disable the RTL81X9 chip.
968 */
969 static void
970 re_disable(struct rtk_softc *sc)
971 {
972
973 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
974 (*sc->sc_disable)(sc);
975 sc->sc_flags &= ~RTK_ENABLED;
976 }
977 }
978
979 /*
980 * re_power:
981 * Power management (suspend/resume) hook.
982 */
983 void
984 re_power(int why, void *arg)
985 {
986 struct rtk_softc *sc = (void *)arg;
987 struct ifnet *ifp = &sc->ethercom.ec_if;
988 int s;
989
990 s = splnet();
991 switch (why) {
992 case PWR_SUSPEND:
993 case PWR_STANDBY:
994 re_stop(ifp, 0);
995 if (sc->sc_power != NULL)
996 (*sc->sc_power)(sc, why);
997 break;
998 case PWR_RESUME:
999 if (ifp->if_flags & IFF_UP) {
1000 if (sc->sc_power != NULL)
1001 (*sc->sc_power)(sc, why);
1002 re_init(ifp);
1003 }
1004 break;
1005 case PWR_SOFTSUSPEND:
1006 case PWR_SOFTSTANDBY:
1007 case PWR_SOFTRESUME:
1008 break;
1009 }
1010 splx(s);
1011 }
1012
1013
1014 static int
1015 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1016 {
1017 struct mbuf *n = NULL;
1018 bus_dmamap_t map;
1019 struct re_desc *d;
1020 struct re_rxsoft *rxs;
1021 uint32_t cmdstat;
1022 int error;
1023
1024 if (m == NULL) {
1025 MGETHDR(n, M_DONTWAIT, MT_DATA);
1026 if (n == NULL)
1027 return ENOBUFS;
1028
1029 MCLGET(n, M_DONTWAIT);
1030 if ((n->m_flags & M_EXT) == 0) {
1031 m_freem(n);
1032 return ENOBUFS;
1033 }
1034 m = n;
1035 } else
1036 m->m_data = m->m_ext.ext_buf;
1037
1038 /*
1039 * Initialize mbuf length fields and fixup
1040 * alignment so that the frame payload is
1041 * longword aligned.
1042 */
1043 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1044 m->m_data += RE_ETHER_ALIGN;
1045
1046 rxs = &sc->re_ldata.re_rxsoft[idx];
1047 map = rxs->rxs_dmamap;
1048 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1049 BUS_DMA_READ|BUS_DMA_NOWAIT);
1050
1051 if (error)
1052 goto out;
1053
1054 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1055 BUS_DMASYNC_PREREAD);
1056
1057 d = &sc->re_ldata.re_rx_list[idx];
1058 #ifdef DIAGNOSTIC
1059 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1060 cmdstat = le32toh(d->re_cmdstat);
1061 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1062 if (cmdstat & RE_RDESC_STAT_OWN) {
1063 panic("%s: tried to map busy RX descriptor",
1064 sc->sc_dev.dv_xname);
1065 }
1066 #endif
1067
1068 rxs->rxs_mbuf = m;
1069
1070 d->re_vlanctl = 0;
1071 cmdstat = map->dm_segs[0].ds_len;
1072 if (idx == (RE_RX_DESC_CNT - 1))
1073 cmdstat |= RE_RDESC_CMD_EOR;
1074 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1075 d->re_cmdstat = htole32(cmdstat);
1076 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1077 cmdstat |= RE_RDESC_CMD_OWN;
1078 d->re_cmdstat = htole32(cmdstat);
1079 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1080
1081 return 0;
1082 out:
1083 if (n != NULL)
1084 m_freem(n);
1085 return ENOMEM;
1086 }
1087
1088 static int
1089 re_tx_list_init(struct rtk_softc *sc)
1090 {
1091 int i;
1092
1093 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1094 for (i = 0; i < RE_TX_QLEN; i++) {
1095 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1096 }
1097
1098 bus_dmamap_sync(sc->sc_dmat,
1099 sc->re_ldata.re_tx_list_map, 0,
1100 sc->re_ldata.re_tx_list_map->dm_mapsize,
1101 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1102 sc->re_ldata.re_txq_prodidx = 0;
1103 sc->re_ldata.re_txq_considx = 0;
1104 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1105 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1106 sc->re_ldata.re_tx_nextfree = 0;
1107
1108 return 0;
1109 }
1110
1111 static int
1112 re_rx_list_init(struct rtk_softc *sc)
1113 {
1114 int i;
1115
1116 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1117
1118 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1119 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1120 return ENOBUFS;
1121 }
1122
1123 sc->re_ldata.re_rx_prodidx = 0;
1124 sc->re_head = sc->re_tail = NULL;
1125
1126 return 0;
1127 }
1128
1129 /*
1130 * RX handler for C+ and 8169. For the gigE chips, we support
1131 * the reception of jumbo frames that have been fragmented
1132 * across multiple 2K mbuf cluster buffers.
1133 */
1134 static void
1135 re_rxeof(struct rtk_softc *sc)
1136 {
1137 struct mbuf *m;
1138 struct ifnet *ifp;
1139 int i, total_len;
1140 struct re_desc *cur_rx;
1141 struct re_rxsoft *rxs;
1142 uint32_t rxstat, rxvlan;
1143
1144 ifp = &sc->ethercom.ec_if;
1145
1146 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1147 cur_rx = &sc->re_ldata.re_rx_list[i];
1148 RE_RXDESCSYNC(sc, i,
1149 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1150 rxstat = le32toh(cur_rx->re_cmdstat);
1151 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1152 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1153 break;
1154 }
1155 total_len = rxstat & sc->re_rxlenmask;
1156 rxvlan = le32toh(cur_rx->re_vlanctl);
1157 rxs = &sc->re_ldata.re_rxsoft[i];
1158 m = rxs->rxs_mbuf;
1159
1160 /* Invalidate the RX mbuf and unload its map */
1161
1162 bus_dmamap_sync(sc->sc_dmat,
1163 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1164 BUS_DMASYNC_POSTREAD);
1165 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1166
1167 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1168 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1169 if (sc->re_head == NULL)
1170 sc->re_head = sc->re_tail = m;
1171 else {
1172 m->m_flags &= ~M_PKTHDR;
1173 sc->re_tail->m_next = m;
1174 sc->re_tail = m;
1175 }
1176 re_newbuf(sc, i, NULL);
1177 continue;
1178 }
1179
1180 /*
1181 * NOTE: for the 8139C+, the frame length field
1182 * is always 12 bits in size, but for the gigE chips,
1183 * it is 13 bits (since the max RX frame length is 16K).
1184 * Unfortunately, all 32 bits in the status word
1185 * were already used, so to make room for the extra
1186 * length bit, RealTek took out the 'frame alignment
1187 * error' bit and shifted the other status bits
1188 * over one slot. The OWN, EOR, FS and LS bits are
1189 * still in the same places. We have already extracted
1190 * the frame length and checked the OWN bit, so rather
1191 * than using an alternate bit mapping, we shift the
1192 * status bits one space to the right so we can evaluate
1193 * them using the 8169 status as though it was in the
1194 * same format as that of the 8139C+.
1195 */
1196 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1197 rxstat >>= 1;
1198
1199 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1200 #ifdef RE_DEBUG
1201 aprint_error("%s: RX error (rxstat = 0x%08x)",
1202 sc->sc_dev.dv_xname, rxstat);
1203 if (rxstat & RE_RDESC_STAT_FRALIGN)
1204 aprint_error(", frame alignment error");
1205 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1206 aprint_error(", out of buffer space");
1207 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1208 aprint_error(", FIFO overrun");
1209 if (rxstat & RE_RDESC_STAT_GIANT)
1210 aprint_error(", giant packet");
1211 if (rxstat & RE_RDESC_STAT_RUNT)
1212 aprint_error(", runt packet");
1213 if (rxstat & RE_RDESC_STAT_CRCERR)
1214 aprint_error(", CRC error");
1215 aprint_error("\n");
1216 #endif
1217 ifp->if_ierrors++;
1218 /*
1219 * If this is part of a multi-fragment packet,
1220 * discard all the pieces.
1221 */
1222 if (sc->re_head != NULL) {
1223 m_freem(sc->re_head);
1224 sc->re_head = sc->re_tail = NULL;
1225 }
1226 re_newbuf(sc, i, m);
1227 continue;
1228 }
1229
1230 /*
1231 * If allocating a replacement mbuf fails,
1232 * reload the current one.
1233 */
1234
1235 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1236 ifp->if_ierrors++;
1237 if (sc->re_head != NULL) {
1238 m_freem(sc->re_head);
1239 sc->re_head = sc->re_tail = NULL;
1240 }
1241 re_newbuf(sc, i, m);
1242 continue;
1243 }
1244
1245 if (sc->re_head != NULL) {
1246 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1247 /*
1248 * Special case: if there's 4 bytes or less
1249 * in this buffer, the mbuf can be discarded:
1250 * the last 4 bytes is the CRC, which we don't
1251 * care about anyway.
1252 */
1253 if (m->m_len <= ETHER_CRC_LEN) {
1254 sc->re_tail->m_len -=
1255 (ETHER_CRC_LEN - m->m_len);
1256 m_freem(m);
1257 } else {
1258 m->m_len -= ETHER_CRC_LEN;
1259 m->m_flags &= ~M_PKTHDR;
1260 sc->re_tail->m_next = m;
1261 }
1262 m = sc->re_head;
1263 sc->re_head = sc->re_tail = NULL;
1264 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1265 } else
1266 m->m_pkthdr.len = m->m_len =
1267 (total_len - ETHER_CRC_LEN);
1268
1269 ifp->if_ipackets++;
1270 m->m_pkthdr.rcvif = ifp;
1271
1272 /* Do RX checksumming */
1273
1274 /* Check IP header checksum */
1275 if (rxstat & RE_RDESC_STAT_PROTOID) {
1276 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1277 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1278 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1279 }
1280
1281 /* Check TCP/UDP checksum */
1282 if (RE_TCPPKT(rxstat)) {
1283 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1284 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1285 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1286 } else if (RE_UDPPKT(rxstat)) {
1287 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1288 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1289 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1290 }
1291
1292 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1293 VLAN_INPUT_TAG(ifp, m,
1294 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1295 continue);
1296 }
1297 #if NBPFILTER > 0
1298 if (ifp->if_bpf)
1299 bpf_mtap(ifp->if_bpf, m);
1300 #endif
1301 (*ifp->if_input)(ifp, m);
1302 }
1303
1304 sc->re_ldata.re_rx_prodidx = i;
1305 }
1306
1307 static void
1308 re_txeof(struct rtk_softc *sc)
1309 {
1310 struct ifnet *ifp;
1311 struct re_txq *txq;
1312 uint32_t txstat;
1313 int idx, descidx;
1314
1315 ifp = &sc->ethercom.ec_if;
1316
1317 for (idx = sc->re_ldata.re_txq_considx;
1318 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1319 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1320 txq = &sc->re_ldata.re_txq[idx];
1321 KASSERT(txq->txq_mbuf != NULL);
1322
1323 descidx = txq->txq_descidx;
1324 RE_TXDESCSYNC(sc, descidx,
1325 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1326 txstat =
1327 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1328 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1329 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1330 if (txstat & RE_TDESC_CMD_OWN) {
1331 break;
1332 }
1333
1334 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1335 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1336 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1337 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1338 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1339 m_freem(txq->txq_mbuf);
1340 txq->txq_mbuf = NULL;
1341
1342 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1343 ifp->if_collisions++;
1344 if (txstat & RE_TDESC_STAT_TXERRSUM)
1345 ifp->if_oerrors++;
1346 else
1347 ifp->if_opackets++;
1348 }
1349
1350 sc->re_ldata.re_txq_considx = idx;
1351
1352 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1353 ifp->if_flags &= ~IFF_OACTIVE;
1354
1355 /*
1356 * If not all descriptors have been released reaped yet,
1357 * reload the timer so that we will eventually get another
1358 * interrupt that will cause us to re-enter this routine.
1359 * This is done in case the transmitter has gone idle.
1360 */
1361 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1362 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1363 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1364 /*
1365 * Some chips will ignore a second TX request
1366 * issued while an existing transmission is in
1367 * progress. If the transmitter goes idle but
1368 * there are still packets waiting to be sent,
1369 * we need to restart the channel here to flush
1370 * them out. This only seems to be required with
1371 * the PCIe devices.
1372 */
1373 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1374 }
1375 } else
1376 ifp->if_timer = 0;
1377 }
1378
1379 /*
1380 * Stop all chip I/O so that the kernel's probe routines don't
1381 * get confused by errant DMAs when rebooting.
1382 */
1383 static void
1384 re_shutdown(void *vsc)
1385
1386 {
1387 struct rtk_softc *sc = vsc;
1388
1389 re_stop(&sc->ethercom.ec_if, 0);
1390 }
1391
1392
1393 static void
1394 re_tick(void *xsc)
1395 {
1396 struct rtk_softc *sc = xsc;
1397 int s;
1398
1399 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1400 s = splnet();
1401
1402 mii_tick(&sc->mii);
1403 splx(s);
1404
1405 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1406 }
1407
1408 #ifdef DEVICE_POLLING
1409 static void
1410 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1411 {
1412 struct rtk_softc *sc = ifp->if_softc;
1413
1414 RTK_LOCK(sc);
1415 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1416 ether_poll_deregister(ifp);
1417 cmd = POLL_DEREGISTER;
1418 }
1419 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1420 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1421 goto done;
1422 }
1423
1424 sc->rxcycles = count;
1425 re_rxeof(sc);
1426 re_txeof(sc);
1427
1428 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1429 (*ifp->if_start)(ifp);
1430
1431 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1432 uint16_t status;
1433
1434 status = CSR_READ_2(sc, RTK_ISR);
1435 if (status == 0xffff)
1436 goto done;
1437 if (status)
1438 CSR_WRITE_2(sc, RTK_ISR, status);
1439
1440 /*
1441 * XXX check behaviour on receiver stalls.
1442 */
1443
1444 if (status & RTK_ISR_SYSTEM_ERR) {
1445 re_init(sc);
1446 }
1447 }
1448 done:
1449 RTK_UNLOCK(sc);
1450 }
1451 #endif /* DEVICE_POLLING */
1452
1453 int
1454 re_intr(void *arg)
1455 {
1456 struct rtk_softc *sc = arg;
1457 struct ifnet *ifp;
1458 uint16_t status;
1459 int handled = 0;
1460
1461 ifp = &sc->ethercom.ec_if;
1462
1463 if ((ifp->if_flags & IFF_UP) == 0)
1464 return 0;
1465
1466 #ifdef DEVICE_POLLING
1467 if (ifp->if_flags & IFF_POLLING)
1468 goto done;
1469 if ((ifp->if_capenable & IFCAP_POLLING) &&
1470 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1471 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1472 re_poll(ifp, 0, 1);
1473 goto done;
1474 }
1475 #endif /* DEVICE_POLLING */
1476
1477 for (;;) {
1478
1479 status = CSR_READ_2(sc, RTK_ISR);
1480 /* If the card has gone away the read returns 0xffff. */
1481 if (status == 0xffff)
1482 break;
1483 if (status) {
1484 handled = 1;
1485 CSR_WRITE_2(sc, RTK_ISR, status);
1486 }
1487
1488 if ((status & RTK_INTRS_CPLUS) == 0)
1489 break;
1490
1491 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1492 re_rxeof(sc);
1493
1494 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1495 RTK_ISR_TX_DESC_UNAVAIL))
1496 re_txeof(sc);
1497
1498 if (status & RTK_ISR_SYSTEM_ERR) {
1499 re_init(ifp);
1500 }
1501
1502 if (status & RTK_ISR_LINKCHG) {
1503 callout_stop(&sc->rtk_tick_ch);
1504 re_tick(sc);
1505 }
1506 }
1507
1508 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1509 re_start(ifp);
1510
1511 #ifdef DEVICE_POLLING
1512 done:
1513 #endif
1514
1515 return handled;
1516 }
1517
1518
1519
1520 /*
1521 * Main transmit routine for C+ and gigE NICs.
1522 */
1523
1524 static void
1525 re_start(struct ifnet *ifp)
1526 {
1527 struct rtk_softc *sc;
1528 struct mbuf *m;
1529 bus_dmamap_t map;
1530 struct re_txq *txq;
1531 struct re_desc *d;
1532 struct m_tag *mtag;
1533 uint32_t cmdstat, re_flags;
1534 int ofree, idx, error, nsegs, seg;
1535 int startdesc, curdesc, lastdesc;
1536 bool pad;
1537
1538 sc = ifp->if_softc;
1539 ofree = sc->re_ldata.re_txq_free;
1540
1541 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1542
1543 IFQ_POLL(&ifp->if_snd, m);
1544 if (m == NULL)
1545 break;
1546
1547 if (sc->re_ldata.re_txq_free == 0 ||
1548 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1549 /* no more free slots left */
1550 ifp->if_flags |= IFF_OACTIVE;
1551 break;
1552 }
1553
1554 /*
1555 * Set up checksum offload. Note: checksum offload bits must
1556 * appear in all descriptors of a multi-descriptor transmit
1557 * attempt. (This is according to testing done with an 8169
1558 * chip. I'm not sure if this is a requirement or a bug.)
1559 */
1560
1561 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1562 uint32_t segsz = m->m_pkthdr.segsz;
1563
1564 re_flags = RE_TDESC_CMD_LGSEND |
1565 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1566 } else {
1567 /*
1568 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1569 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1570 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1571 */
1572 re_flags = 0;
1573 if ((m->m_pkthdr.csum_flags &
1574 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1575 != 0) {
1576 re_flags |= RE_TDESC_CMD_IPCSUM;
1577 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1578 re_flags |= RE_TDESC_CMD_TCPCSUM;
1579 } else if (m->m_pkthdr.csum_flags &
1580 M_CSUM_UDPv4) {
1581 re_flags |= RE_TDESC_CMD_UDPCSUM;
1582 }
1583 }
1584 }
1585
1586 txq = &sc->re_ldata.re_txq[idx];
1587 map = txq->txq_dmamap;
1588 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1589 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1590
1591 if (__predict_false(error)) {
1592 /* XXX try to defrag if EFBIG? */
1593 aprint_error("%s: can't map mbuf (error %d)\n",
1594 sc->sc_dev.dv_xname, error);
1595
1596 IFQ_DEQUEUE(&ifp->if_snd, m);
1597 m_freem(m);
1598 ifp->if_oerrors++;
1599 continue;
1600 }
1601
1602 nsegs = map->dm_nsegs;
1603 pad = false;
1604 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1605 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1606 pad = true;
1607 nsegs++;
1608 }
1609
1610 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1611 /*
1612 * Not enough free descriptors to transmit this packet.
1613 */
1614 ifp->if_flags |= IFF_OACTIVE;
1615 bus_dmamap_unload(sc->sc_dmat, map);
1616 break;
1617 }
1618
1619 IFQ_DEQUEUE(&ifp->if_snd, m);
1620
1621 /*
1622 * Make sure that the caches are synchronized before we
1623 * ask the chip to start DMA for the packet data.
1624 */
1625 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1626 BUS_DMASYNC_PREWRITE);
1627
1628 /*
1629 * Map the segment array into descriptors.
1630 * Note that we set the start-of-frame and
1631 * end-of-frame markers for either TX or RX,
1632 * but they really only have meaning in the TX case.
1633 * (In the RX case, it's the chip that tells us
1634 * where packets begin and end.)
1635 * We also keep track of the end of the ring
1636 * and set the end-of-ring bits as needed,
1637 * and we set the ownership bits in all except
1638 * the very first descriptor. (The caller will
1639 * set this descriptor later when it start
1640 * transmission or reception.)
1641 */
1642 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1643 lastdesc = -1;
1644 for (seg = 0; seg < map->dm_nsegs;
1645 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1646 d = &sc->re_ldata.re_tx_list[curdesc];
1647 #ifdef DIAGNOSTIC
1648 RE_TXDESCSYNC(sc, curdesc,
1649 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1650 cmdstat = le32toh(d->re_cmdstat);
1651 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1652 if (cmdstat & RE_TDESC_STAT_OWN) {
1653 panic("%s: tried to map busy TX descriptor",
1654 sc->sc_dev.dv_xname);
1655 }
1656 #endif
1657
1658 d->re_vlanctl = 0;
1659 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1660 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1661 if (seg == 0)
1662 cmdstat |= RE_TDESC_CMD_SOF;
1663 else
1664 cmdstat |= RE_TDESC_CMD_OWN;
1665 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1666 cmdstat |= RE_TDESC_CMD_EOR;
1667 if (seg == nsegs - 1) {
1668 cmdstat |= RE_TDESC_CMD_EOF;
1669 lastdesc = curdesc;
1670 }
1671 d->re_cmdstat = htole32(cmdstat);
1672 RE_TXDESCSYNC(sc, curdesc,
1673 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1674 }
1675 if (__predict_false(pad)) {
1676 bus_addr_t paddaddr;
1677
1678 d = &sc->re_ldata.re_tx_list[curdesc];
1679 d->re_vlanctl = 0;
1680 paddaddr = RE_TXPADDADDR(sc);
1681 re_set_bufaddr(d, paddaddr);
1682 cmdstat = re_flags |
1683 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1684 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1685 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1686 cmdstat |= RE_TDESC_CMD_EOR;
1687 d->re_cmdstat = htole32(cmdstat);
1688 RE_TXDESCSYNC(sc, curdesc,
1689 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1690 lastdesc = curdesc;
1691 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1692 }
1693 KASSERT(lastdesc != -1);
1694
1695 /*
1696 * Set up hardware VLAN tagging. Note: vlan tag info must
1697 * appear in the first descriptor of a multi-descriptor
1698 * transmission attempt.
1699 */
1700 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1701 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1702 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1703 RE_TDESC_VLANCTL_TAG);
1704 }
1705
1706 /* Transfer ownership of packet to the chip. */
1707
1708 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1709 htole32(RE_TDESC_CMD_OWN);
1710 RE_TXDESCSYNC(sc, startdesc,
1711 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1712
1713 /* update info of TX queue and descriptors */
1714 txq->txq_mbuf = m;
1715 txq->txq_descidx = lastdesc;
1716 txq->txq_nsegs = nsegs;
1717
1718 sc->re_ldata.re_txq_free--;
1719 sc->re_ldata.re_tx_free -= nsegs;
1720 sc->re_ldata.re_tx_nextfree = curdesc;
1721
1722 #if NBPFILTER > 0
1723 /*
1724 * If there's a BPF listener, bounce a copy of this frame
1725 * to him.
1726 */
1727 if (ifp->if_bpf)
1728 bpf_mtap(ifp->if_bpf, m);
1729 #endif
1730 }
1731
1732 if (sc->re_ldata.re_txq_free < ofree) {
1733 /*
1734 * TX packets are enqueued.
1735 */
1736 sc->re_ldata.re_txq_prodidx = idx;
1737
1738 /*
1739 * Start the transmitter to poll.
1740 *
1741 * RealTek put the TX poll request register in a different
1742 * location on the 8169 gigE chip. I don't know why.
1743 */
1744 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1745 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1746 else
1747 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1748
1749 /*
1750 * Use the countdown timer for interrupt moderation.
1751 * 'TX done' interrupts are disabled. Instead, we reset the
1752 * countdown timer, which will begin counting until it hits
1753 * the value in the TIMERINT register, and then trigger an
1754 * interrupt. Each time we write to the TIMERCNT register,
1755 * the timer count is reset to 0.
1756 */
1757 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1758
1759 /*
1760 * Set a timeout in case the chip goes out to lunch.
1761 */
1762 ifp->if_timer = 5;
1763 }
1764 }
1765
1766 static int
1767 re_init(struct ifnet *ifp)
1768 {
1769 struct rtk_softc *sc = ifp->if_softc;
1770 const uint8_t *enaddr;
1771 uint32_t rxcfg = 0;
1772 uint32_t reg;
1773 int error;
1774
1775 if ((error = re_enable(sc)) != 0)
1776 goto out;
1777
1778 /*
1779 * Cancel pending I/O and free all RX/TX buffers.
1780 */
1781 re_stop(ifp, 0);
1782
1783 re_reset(sc);
1784
1785 /*
1786 * Enable C+ RX and TX mode, as well as VLAN stripping and
1787 * RX checksum offload. We must configure the C+ register
1788 * before all others.
1789 */
1790 reg = 0;
1791
1792 /*
1793 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1794 * FreeBSD drivers set these bits anyway (for 8139C+?).
1795 * So far, it works.
1796 */
1797
1798 /*
1799 * XXX: For old 8169 set bit 14.
1800 * For 8169S/8110S and above, do not set bit 14.
1801 */
1802 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1803 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1804
1805 if (1) {/* not for 8169S ? */
1806 reg |=
1807 RTK_CPLUSCMD_VLANSTRIP |
1808 (ifp->if_capenable &
1809 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1810 IFCAP_CSUM_UDPv4_Rx) ?
1811 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1812 }
1813
1814 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1815 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1816
1817 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1818 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1819 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1820
1821 DELAY(10000);
1822
1823 /*
1824 * Init our MAC address. Even though the chipset
1825 * documentation doesn't mention it, we need to enter "Config
1826 * register write enable" mode to modify the ID registers.
1827 */
1828 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1829 enaddr = CLLADDR(ifp->if_sadl);
1830 reg = enaddr[0] | (enaddr[1] << 8) |
1831 (enaddr[2] << 16) | (enaddr[3] << 24);
1832 CSR_WRITE_4(sc, RTK_IDR0, reg);
1833 reg = enaddr[4] | (enaddr[5] << 8);
1834 CSR_WRITE_4(sc, RTK_IDR4, reg);
1835 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1836
1837 /*
1838 * For C+ mode, initialize the RX descriptors and mbufs.
1839 */
1840 re_rx_list_init(sc);
1841 re_tx_list_init(sc);
1842
1843 /*
1844 * Load the addresses of the RX and TX lists into the chip.
1845 */
1846 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1847 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1848 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1849 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1850
1851 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1852 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1853 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1854 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1855
1856 /*
1857 * Enable transmit and receive.
1858 */
1859 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1860
1861 /*
1862 * Set the initial TX and RX configuration.
1863 */
1864 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1865 /* test mode is needed only for old 8169 */
1866 CSR_WRITE_4(sc, RTK_TXCFG,
1867 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1868 } else
1869 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1870
1871 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1872
1873 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1874
1875 /* Set the individual bit to receive frames for this host only. */
1876 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1877 rxcfg |= RTK_RXCFG_RX_INDIV;
1878
1879 /* If we want promiscuous mode, set the allframes bit. */
1880 if (ifp->if_flags & IFF_PROMISC)
1881 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1882 else
1883 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1884 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1885
1886 /*
1887 * Set capture broadcast bit to capture broadcast frames.
1888 */
1889 if (ifp->if_flags & IFF_BROADCAST)
1890 rxcfg |= RTK_RXCFG_RX_BROAD;
1891 else
1892 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1893 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1894
1895 /*
1896 * Program the multicast filter, if necessary.
1897 */
1898 rtk_setmulti(sc);
1899
1900 #ifdef DEVICE_POLLING
1901 /*
1902 * Disable interrupts if we are polling.
1903 */
1904 if (ifp->if_flags & IFF_POLLING)
1905 CSR_WRITE_2(sc, RTK_IMR, 0);
1906 else /* otherwise ... */
1907 #endif /* DEVICE_POLLING */
1908 /*
1909 * Enable interrupts.
1910 */
1911 if (sc->re_testmode)
1912 CSR_WRITE_2(sc, RTK_IMR, 0);
1913 else
1914 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1915
1916 /* Start RX/TX process. */
1917 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1918 #ifdef notdef
1919 /* Enable receiver and transmitter. */
1920 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1921 #endif
1922
1923 /*
1924 * Initialize the timer interrupt register so that
1925 * a timer interrupt will be generated once the timer
1926 * reaches a certain number of ticks. The timer is
1927 * reloaded on each transmit. This gives us TX interrupt
1928 * moderation, which dramatically improves TX frame rate.
1929 */
1930
1931 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1932 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1933 else {
1934 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1935
1936 /*
1937 * For 8169 gigE NICs, set the max allowed RX packet
1938 * size so we can receive jumbo frames.
1939 */
1940 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1941 }
1942
1943 if (sc->re_testmode)
1944 return 0;
1945
1946 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1947
1948 ifp->if_flags |= IFF_RUNNING;
1949 ifp->if_flags &= ~IFF_OACTIVE;
1950
1951 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1952
1953 out:
1954 if (error) {
1955 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1956 ifp->if_timer = 0;
1957 aprint_error("%s: interface not running\n",
1958 sc->sc_dev.dv_xname);
1959 }
1960
1961 return error;
1962 }
1963
1964 /*
1965 * Set media options.
1966 */
1967 static int
1968 re_ifmedia_upd(struct ifnet *ifp)
1969 {
1970 struct rtk_softc *sc;
1971
1972 sc = ifp->if_softc;
1973
1974 return mii_mediachg(&sc->mii);
1975 }
1976
1977 /*
1978 * Report current media status.
1979 */
1980 static void
1981 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1982 {
1983 struct rtk_softc *sc;
1984
1985 sc = ifp->if_softc;
1986
1987 mii_pollstat(&sc->mii);
1988 ifmr->ifm_active = sc->mii.mii_media_active;
1989 ifmr->ifm_status = sc->mii.mii_media_status;
1990 }
1991
1992 static int
1993 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1994 {
1995 struct rtk_softc *sc = ifp->if_softc;
1996 struct ifreq *ifr = (struct ifreq *) data;
1997 int s, error = 0;
1998
1999 s = splnet();
2000
2001 switch (command) {
2002 case SIOCSIFMTU:
2003 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2004 error = EINVAL;
2005 ifp->if_mtu = ifr->ifr_mtu;
2006 break;
2007 case SIOCGIFMEDIA:
2008 case SIOCSIFMEDIA:
2009 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2010 break;
2011 default:
2012 error = ether_ioctl(ifp, command, data);
2013 if (error == ENETRESET) {
2014 if (ifp->if_flags & IFF_RUNNING)
2015 rtk_setmulti(sc);
2016 error = 0;
2017 }
2018 break;
2019 }
2020
2021 splx(s);
2022
2023 return error;
2024 }
2025
2026 static void
2027 re_watchdog(struct ifnet *ifp)
2028 {
2029 struct rtk_softc *sc;
2030 int s;
2031
2032 sc = ifp->if_softc;
2033 s = splnet();
2034 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2035 ifp->if_oerrors++;
2036
2037 re_txeof(sc);
2038 re_rxeof(sc);
2039
2040 re_init(ifp);
2041
2042 splx(s);
2043 }
2044
2045 /*
2046 * Stop the adapter and free any mbufs allocated to the
2047 * RX and TX lists.
2048 */
2049 static void
2050 re_stop(struct ifnet *ifp, int disable)
2051 {
2052 int i;
2053 struct rtk_softc *sc = ifp->if_softc;
2054
2055 callout_stop(&sc->rtk_tick_ch);
2056
2057 #ifdef DEVICE_POLLING
2058 ether_poll_deregister(ifp);
2059 #endif /* DEVICE_POLLING */
2060
2061 mii_down(&sc->mii);
2062
2063 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2064 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2065
2066 if (sc->re_head != NULL) {
2067 m_freem(sc->re_head);
2068 sc->re_head = sc->re_tail = NULL;
2069 }
2070
2071 /* Free the TX list buffers. */
2072 for (i = 0; i < RE_TX_QLEN; i++) {
2073 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2074 bus_dmamap_unload(sc->sc_dmat,
2075 sc->re_ldata.re_txq[i].txq_dmamap);
2076 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2077 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2078 }
2079 }
2080
2081 /* Free the RX list buffers. */
2082 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2083 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2084 bus_dmamap_unload(sc->sc_dmat,
2085 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2086 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2087 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2088 }
2089 }
2090
2091 if (disable)
2092 re_disable(sc);
2093
2094 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2095 ifp->if_timer = 0;
2096 }
2097