rtl8169.c revision 1.89.2.1 1 /* $NetBSD: rtl8169.c,v 1.89.2.1 2008/02/18 21:05:41 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.89.2.1 2008/02/18 21:05:41 mjf Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static void re_shutdown(void *);
167 static int re_enable(struct rtk_softc *);
168 static void re_disable(struct rtk_softc *);
169 static void re_power(int, void *);
170
171 static int re_gmii_readreg(struct device *, int, int);
172 static void re_gmii_writereg(struct device *, int, int, int);
173
174 static int re_miibus_readreg(struct device *, int, int);
175 static void re_miibus_writereg(struct device *, int, int, int);
176 static void re_miibus_statchg(struct device *);
177
178 static void re_reset(struct rtk_softc *);
179
180 static inline void
181 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
182 {
183
184 d->re_bufaddr_lo = htole32((uint32_t)addr);
185 if (sizeof(bus_addr_t) == sizeof(uint64_t))
186 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
187 else
188 d->re_bufaddr_hi = 0;
189 }
190
191 static int
192 re_gmii_readreg(struct device *self, int phy, int reg)
193 {
194 struct rtk_softc *sc = (void *)self;
195 uint32_t rval;
196 int i;
197
198 if (phy != 7)
199 return 0;
200
201 /* Let the rgephy driver read the GMEDIASTAT register */
202
203 if (reg == RTK_GMEDIASTAT) {
204 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
205 return rval;
206 }
207
208 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
209 DELAY(1000);
210
211 for (i = 0; i < RTK_TIMEOUT; i++) {
212 rval = CSR_READ_4(sc, RTK_PHYAR);
213 if (rval & RTK_PHYAR_BUSY)
214 break;
215 DELAY(100);
216 }
217
218 if (i == RTK_TIMEOUT) {
219 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
220 return 0;
221 }
222
223 return rval & RTK_PHYAR_PHYDATA;
224 }
225
226 static void
227 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
228 {
229 struct rtk_softc *sc = (void *)dev;
230 uint32_t rval;
231 int i;
232
233 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
234 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
235 DELAY(1000);
236
237 for (i = 0; i < RTK_TIMEOUT; i++) {
238 rval = CSR_READ_4(sc, RTK_PHYAR);
239 if (!(rval & RTK_PHYAR_BUSY))
240 break;
241 DELAY(100);
242 }
243
244 if (i == RTK_TIMEOUT) {
245 aprint_error("%s: PHY write reg %x <- %x failed\n",
246 sc->sc_dev.dv_xname, reg, data);
247 }
248 }
249
250 static int
251 re_miibus_readreg(struct device *dev, int phy, int reg)
252 {
253 struct rtk_softc *sc = (void *)dev;
254 uint16_t rval = 0;
255 uint16_t re8139_reg = 0;
256 int s;
257
258 s = splnet();
259
260 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
261 rval = re_gmii_readreg(dev, phy, reg);
262 splx(s);
263 return rval;
264 }
265
266 /* Pretend the internal PHY is only at address 0 */
267 if (phy) {
268 splx(s);
269 return 0;
270 }
271 switch (reg) {
272 case MII_BMCR:
273 re8139_reg = RTK_BMCR;
274 break;
275 case MII_BMSR:
276 re8139_reg = RTK_BMSR;
277 break;
278 case MII_ANAR:
279 re8139_reg = RTK_ANAR;
280 break;
281 case MII_ANER:
282 re8139_reg = RTK_ANER;
283 break;
284 case MII_ANLPAR:
285 re8139_reg = RTK_LPAR;
286 break;
287 case MII_PHYIDR1:
288 case MII_PHYIDR2:
289 splx(s);
290 return 0;
291 /*
292 * Allow the rlphy driver to read the media status
293 * register. If we have a link partner which does not
294 * support NWAY, this is the register which will tell
295 * us the results of parallel detection.
296 */
297 case RTK_MEDIASTAT:
298 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
299 splx(s);
300 return rval;
301 default:
302 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
303 splx(s);
304 return 0;
305 }
306 rval = CSR_READ_2(sc, re8139_reg);
307 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
308 /* 8139C+ has different bit layout. */
309 rval &= ~(BMCR_LOOP | BMCR_ISO);
310 }
311 splx(s);
312 return rval;
313 }
314
315 static void
316 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
317 {
318 struct rtk_softc *sc = (void *)dev;
319 uint16_t re8139_reg = 0;
320 int s;
321
322 s = splnet();
323
324 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
325 re_gmii_writereg(dev, phy, reg, data);
326 splx(s);
327 return;
328 }
329
330 /* Pretend the internal PHY is only at address 0 */
331 if (phy) {
332 splx(s);
333 return;
334 }
335 switch (reg) {
336 case MII_BMCR:
337 re8139_reg = RTK_BMCR;
338 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
339 /* 8139C+ has different bit layout. */
340 data &= ~(BMCR_LOOP | BMCR_ISO);
341 }
342 break;
343 case MII_BMSR:
344 re8139_reg = RTK_BMSR;
345 break;
346 case MII_ANAR:
347 re8139_reg = RTK_ANAR;
348 break;
349 case MII_ANER:
350 re8139_reg = RTK_ANER;
351 break;
352 case MII_ANLPAR:
353 re8139_reg = RTK_LPAR;
354 break;
355 case MII_PHYIDR1:
356 case MII_PHYIDR2:
357 splx(s);
358 return;
359 break;
360 default:
361 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
362 splx(s);
363 return;
364 }
365 CSR_WRITE_2(sc, re8139_reg, data);
366 splx(s);
367 return;
368 }
369
370 static void
371 re_miibus_statchg(struct device *dev)
372 {
373
374 return;
375 }
376
377 static void
378 re_reset(struct rtk_softc *sc)
379 {
380 int i;
381
382 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
383
384 for (i = 0; i < RTK_TIMEOUT; i++) {
385 DELAY(10);
386 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
387 break;
388 }
389 if (i == RTK_TIMEOUT)
390 aprint_error("%s: reset never completed!\n",
391 sc->sc_dev.dv_xname);
392
393 /*
394 * NB: Realtek-supplied Linux driver does this only for
395 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
396 */
397 if (1) /* XXX check softc flag for 8169s version */
398 CSR_WRITE_1(sc, RTK_LDPS, 1);
399
400 return;
401 }
402
403 /*
404 * The following routine is designed to test for a defect on some
405 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
406 * lines connected to the bus, however for a 32-bit only card, they
407 * should be pulled high. The result of this defect is that the
408 * NIC will not work right if you plug it into a 64-bit slot: DMA
409 * operations will be done with 64-bit transfers, which will fail
410 * because the 64-bit data lines aren't connected.
411 *
412 * There's no way to work around this (short of talking a soldering
413 * iron to the board), however we can detect it. The method we use
414 * here is to put the NIC into digital loopback mode, set the receiver
415 * to promiscuous mode, and then try to send a frame. We then compare
416 * the frame data we sent to what was received. If the data matches,
417 * then the NIC is working correctly, otherwise we know the user has
418 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
419 * slot. In the latter case, there's no way the NIC can work correctly,
420 * so we print out a message on the console and abort the device attach.
421 */
422
423 int
424 re_diag(struct rtk_softc *sc)
425 {
426 struct ifnet *ifp = &sc->ethercom.ec_if;
427 struct mbuf *m0;
428 struct ether_header *eh;
429 struct re_rxsoft *rxs;
430 struct re_desc *cur_rx;
431 bus_dmamap_t dmamap;
432 uint16_t status;
433 uint32_t rxstat;
434 int total_len, i, s, error = 0;
435 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
436 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
437
438 /* Allocate a single mbuf */
439
440 MGETHDR(m0, M_DONTWAIT, MT_DATA);
441 if (m0 == NULL)
442 return ENOBUFS;
443
444 /*
445 * Initialize the NIC in test mode. This sets the chip up
446 * so that it can send and receive frames, but performs the
447 * following special functions:
448 * - Puts receiver in promiscuous mode
449 * - Enables digital loopback mode
450 * - Leaves interrupts turned off
451 */
452
453 ifp->if_flags |= IFF_PROMISC;
454 sc->re_testmode = 1;
455 re_init(ifp);
456 re_stop(ifp, 0);
457 DELAY(100000);
458 re_init(ifp);
459
460 /* Put some data in the mbuf */
461
462 eh = mtod(m0, struct ether_header *);
463 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
464 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
465 eh->ether_type = htons(ETHERTYPE_IP);
466 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
467
468 /*
469 * Queue the packet, start transmission.
470 */
471
472 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
473 s = splnet();
474 IF_ENQUEUE(&ifp->if_snd, m0);
475 re_start(ifp);
476 splx(s);
477 m0 = NULL;
478
479 /* Wait for it to propagate through the chip */
480
481 DELAY(100000);
482 for (i = 0; i < RTK_TIMEOUT; i++) {
483 status = CSR_READ_2(sc, RTK_ISR);
484 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
485 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
486 break;
487 DELAY(10);
488 }
489 if (i == RTK_TIMEOUT) {
490 aprint_error("%s: diagnostic failed, failed to receive packet "
491 "in loopback mode\n", sc->sc_dev.dv_xname);
492 error = EIO;
493 goto done;
494 }
495
496 /*
497 * The packet should have been dumped into the first
498 * entry in the RX DMA ring. Grab it from there.
499 */
500
501 rxs = &sc->re_ldata.re_rxsoft[0];
502 dmamap = rxs->rxs_dmamap;
503 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
504 BUS_DMASYNC_POSTREAD);
505 bus_dmamap_unload(sc->sc_dmat, dmamap);
506
507 m0 = rxs->rxs_mbuf;
508 rxs->rxs_mbuf = NULL;
509 eh = mtod(m0, struct ether_header *);
510
511 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
512 cur_rx = &sc->re_ldata.re_rx_list[0];
513 rxstat = le32toh(cur_rx->re_cmdstat);
514 total_len = rxstat & sc->re_rxlenmask;
515
516 if (total_len != ETHER_MIN_LEN) {
517 aprint_error("%s: diagnostic failed, received short packet\n",
518 sc->sc_dev.dv_xname);
519 error = EIO;
520 goto done;
521 }
522
523 /* Test that the received packet data matches what we sent. */
524
525 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
526 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
527 ntohs(eh->ether_type) != ETHERTYPE_IP) {
528 aprint_error("%s: WARNING, DMA FAILURE!\n",
529 sc->sc_dev.dv_xname);
530 aprint_error("%s: expected TX data: %s",
531 sc->sc_dev.dv_xname, ether_sprintf(dst));
532 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
533 aprint_error("%s: received RX data: %s",
534 sc->sc_dev.dv_xname,
535 ether_sprintf(eh->ether_dhost));
536 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
537 ntohs(eh->ether_type));
538 aprint_error("%s: You may have a defective 32-bit NIC plugged "
539 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
540 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
541 "for proper operation.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Read the re(4) man page for more details.\n",
543 sc->sc_dev.dv_xname);
544 error = EIO;
545 }
546
547 done:
548 /* Turn interface off, release resources */
549
550 sc->re_testmode = 0;
551 ifp->if_flags &= ~IFF_PROMISC;
552 re_stop(ifp, 0);
553 if (m0 != NULL)
554 m_freem(m0);
555
556 return error;
557 }
558
559
560 /*
561 * Attach the interface. Allocate softc structures, do ifmedia
562 * setup and ethernet/BPF attach.
563 */
564 void
565 re_attach(struct rtk_softc *sc)
566 {
567 u_char eaddr[ETHER_ADDR_LEN];
568 uint16_t val;
569 struct ifnet *ifp;
570 int error = 0, i, addr_len;
571
572 /* Reset the adapter. */
573 re_reset(sc);
574
575 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
576 addr_len = RTK_EEADDR_LEN1;
577 else
578 addr_len = RTK_EEADDR_LEN0;
579
580 /*
581 * Get station address from the EEPROM.
582 */
583 for (i = 0; i < 3; i++) {
584 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
585 eaddr[(i * 2) + 0] = val & 0xff;
586 eaddr[(i * 2) + 1] = val >> 8;
587 }
588
589 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
590 uint32_t hwrev;
591
592 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
593 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
594 /* These rev numbers are taken from Realtek's driver */
595 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
596 sc->sc_rev = 15;
597 } else if (hwrev == RTK_HWREV_8100E) {
598 sc->sc_rev = 14;
599 } else if (hwrev == RTK_HWREV_8101E) {
600 sc->sc_rev = 13;
601 } else if (hwrev == RTK_HWREV_8168_SPIN2 ||
602 hwrev == RTK_HWREV_8168_SPIN3) {
603 sc->sc_rev = 12;
604 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
605 sc->sc_rev = 11;
606 } else if (hwrev == RTK_HWREV_8169_8110SC) {
607 sc->sc_rev = 5;
608 } else if (hwrev == RTK_HWREV_8169_8110SB) {
609 sc->sc_rev = 4;
610 } else if (hwrev == RTK_HWREV_8169S) {
611 sc->sc_rev = 3;
612 } else if (hwrev == RTK_HWREV_8110S) {
613 sc->sc_rev = 2;
614 } else if (hwrev == RTK_HWREV_8169) {
615 sc->sc_rev = 1;
616 sc->sc_quirk |= RTKQ_8169NONS;
617 } else {
618 aprint_normal("%s: Unknown revision (0x%08x)\n",
619 sc->sc_dev.dv_xname, hwrev);
620 /* assume the latest one */
621 sc->sc_rev = 15;
622 }
623
624 /* Set RX length mask */
625 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
626 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
627 } else {
628 /* Set RX length mask */
629 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
630 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
631 }
632
633 aprint_normal("%s: Ethernet address %s\n",
634 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
635
636 if (sc->re_ldata.re_tx_desc_cnt >
637 PAGE_SIZE / sizeof(struct re_desc)) {
638 sc->re_ldata.re_tx_desc_cnt =
639 PAGE_SIZE / sizeof(struct re_desc);
640 }
641
642 aprint_verbose("%s: using %d tx descriptors\n",
643 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
644 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
645
646 /* Allocate DMA'able memory for the TX ring */
647 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
648 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
649 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
650 aprint_error("%s: can't allocate tx listseg, error = %d\n",
651 sc->sc_dev.dv_xname, error);
652 goto fail_0;
653 }
654
655 /* Load the map for the TX ring. */
656 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
657 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
658 (void **)&sc->re_ldata.re_tx_list,
659 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
660 aprint_error("%s: can't map tx list, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_1;
663 }
664 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
665
666 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
667 RE_TX_LIST_SZ(sc), 0, 0,
668 &sc->re_ldata.re_tx_list_map)) != 0) {
669 aprint_error("%s: can't create tx list map, error = %d\n",
670 sc->sc_dev.dv_xname, error);
671 goto fail_2;
672 }
673
674
675 if ((error = bus_dmamap_load(sc->sc_dmat,
676 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
677 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
678 aprint_error("%s: can't load tx list, error = %d\n",
679 sc->sc_dev.dv_xname, error);
680 goto fail_3;
681 }
682
683 /* Create DMA maps for TX buffers */
684 for (i = 0; i < RE_TX_QLEN; i++) {
685 error = bus_dmamap_create(sc->sc_dmat,
686 round_page(IP_MAXPACKET),
687 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
688 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
689 if (error) {
690 aprint_error("%s: can't create DMA map for TX\n",
691 sc->sc_dev.dv_xname);
692 goto fail_4;
693 }
694 }
695
696 /* Allocate DMA'able memory for the RX ring */
697 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
698 if ((error = bus_dmamem_alloc(sc->sc_dmat,
699 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
700 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
701 aprint_error("%s: can't allocate rx listseg, error = %d\n",
702 sc->sc_dev.dv_xname, error);
703 goto fail_4;
704 }
705
706 /* Load the map for the RX ring. */
707 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
708 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
709 (void **)&sc->re_ldata.re_rx_list,
710 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
711 aprint_error("%s: can't map rx list, error = %d\n",
712 sc->sc_dev.dv_xname, error);
713 goto fail_5;
714 }
715 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
716
717 if ((error = bus_dmamap_create(sc->sc_dmat,
718 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
719 &sc->re_ldata.re_rx_list_map)) != 0) {
720 aprint_error("%s: can't create rx list map, error = %d\n",
721 sc->sc_dev.dv_xname, error);
722 goto fail_6;
723 }
724
725 if ((error = bus_dmamap_load(sc->sc_dmat,
726 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
727 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
728 aprint_error("%s: can't load rx list, error = %d\n",
729 sc->sc_dev.dv_xname, error);
730 goto fail_7;
731 }
732
733 /* Create DMA maps for RX buffers */
734 for (i = 0; i < RE_RX_DESC_CNT; i++) {
735 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
736 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
737 if (error) {
738 aprint_error("%s: can't create DMA map for RX\n",
739 sc->sc_dev.dv_xname);
740 goto fail_8;
741 }
742 }
743
744 /*
745 * Record interface as attached. From here, we should not fail.
746 */
747 sc->sc_flags |= RTK_ATTACHED;
748
749 ifp = &sc->ethercom.ec_if;
750 ifp->if_softc = sc;
751 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
752 ifp->if_mtu = ETHERMTU;
753 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
754 ifp->if_ioctl = re_ioctl;
755 sc->ethercom.ec_capabilities |=
756 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
757 ifp->if_start = re_start;
758 ifp->if_stop = re_stop;
759
760 /*
761 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
762 * so we have a workaround to handle the bug by padding
763 * such packets manually.
764 */
765 ifp->if_capabilities |=
766 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
767 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
768 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
769 IFCAP_TSOv4;
770 ifp->if_watchdog = re_watchdog;
771 ifp->if_init = re_init;
772 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
773 ifp->if_capenable = ifp->if_capabilities;
774 IFQ_SET_READY(&ifp->if_snd);
775
776 callout_init(&sc->rtk_tick_ch, 0);
777
778 /* Do MII setup */
779 sc->mii.mii_ifp = ifp;
780 sc->mii.mii_readreg = re_miibus_readreg;
781 sc->mii.mii_writereg = re_miibus_writereg;
782 sc->mii.mii_statchg = re_miibus_statchg;
783 sc->ethercom.ec_mii = &sc->mii;
784 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
785 ether_mediastatus);
786 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
787 MII_OFFSET_ANY, 0);
788 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
789
790 /*
791 * Call MI attach routine.
792 */
793 if_attach(ifp);
794 ether_ifattach(ifp, eaddr);
795
796
797 /*
798 * Make sure the interface is shutdown during reboot.
799 */
800 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
801 if (sc->sc_sdhook == NULL)
802 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
803 sc->sc_dev.dv_xname);
804 /*
805 * Add a suspend hook to make sure we come back up after a
806 * resume.
807 */
808 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
809 re_power, sc);
810 if (sc->sc_powerhook == NULL)
811 aprint_error("%s: WARNING: unable to establish power hook\n",
812 sc->sc_dev.dv_xname);
813
814
815 return;
816
817 fail_8:
818 /* Destroy DMA maps for RX buffers. */
819 for (i = 0; i < RE_RX_DESC_CNT; i++)
820 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
821 bus_dmamap_destroy(sc->sc_dmat,
822 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
823
824 /* Free DMA'able memory for the RX ring. */
825 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
826 fail_7:
827 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
828 fail_6:
829 bus_dmamem_unmap(sc->sc_dmat,
830 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
831 fail_5:
832 bus_dmamem_free(sc->sc_dmat,
833 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
834
835 fail_4:
836 /* Destroy DMA maps for TX buffers. */
837 for (i = 0; i < RE_TX_QLEN; i++)
838 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
839 bus_dmamap_destroy(sc->sc_dmat,
840 sc->re_ldata.re_txq[i].txq_dmamap);
841
842 /* Free DMA'able memory for the TX ring. */
843 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
844 fail_3:
845 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
846 fail_2:
847 bus_dmamem_unmap(sc->sc_dmat,
848 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
849 fail_1:
850 bus_dmamem_free(sc->sc_dmat,
851 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
852 fail_0:
853 return;
854 }
855
856
857 /*
858 * re_activate:
859 * Handle device activation/deactivation requests.
860 */
861 int
862 re_activate(struct device *self, enum devact act)
863 {
864 struct rtk_softc *sc = (void *)self;
865 int s, error = 0;
866
867 s = splnet();
868 switch (act) {
869 case DVACT_ACTIVATE:
870 error = EOPNOTSUPP;
871 break;
872 case DVACT_DEACTIVATE:
873 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
874 if_deactivate(&sc->ethercom.ec_if);
875 break;
876 }
877 splx(s);
878
879 return error;
880 }
881
882 /*
883 * re_detach:
884 * Detach a rtk interface.
885 */
886 int
887 re_detach(struct rtk_softc *sc)
888 {
889 struct ifnet *ifp = &sc->ethercom.ec_if;
890 int i;
891
892 /*
893 * Succeed now if there isn't any work to do.
894 */
895 if ((sc->sc_flags & RTK_ATTACHED) == 0)
896 return 0;
897
898 /* Unhook our tick handler. */
899 callout_stop(&sc->rtk_tick_ch);
900
901 /* Detach all PHYs. */
902 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
903
904 /* Delete all remaining media. */
905 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
906
907 ether_ifdetach(ifp);
908 if_detach(ifp);
909
910 /* Destroy DMA maps for RX buffers. */
911 for (i = 0; i < RE_RX_DESC_CNT; i++)
912 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
913 bus_dmamap_destroy(sc->sc_dmat,
914 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
915
916 /* Free DMA'able memory for the RX ring. */
917 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
918 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
919 bus_dmamem_unmap(sc->sc_dmat,
920 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
921 bus_dmamem_free(sc->sc_dmat,
922 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
923
924 /* Destroy DMA maps for TX buffers. */
925 for (i = 0; i < RE_TX_QLEN; i++)
926 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
927 bus_dmamap_destroy(sc->sc_dmat,
928 sc->re_ldata.re_txq[i].txq_dmamap);
929
930 /* Free DMA'able memory for the TX ring. */
931 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
932 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
933 bus_dmamem_unmap(sc->sc_dmat,
934 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
935 bus_dmamem_free(sc->sc_dmat,
936 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
937
938
939 shutdownhook_disestablish(sc->sc_sdhook);
940 powerhook_disestablish(sc->sc_powerhook);
941
942 return 0;
943 }
944
945 /*
946 * re_enable:
947 * Enable the RTL81X9 chip.
948 */
949 static int
950 re_enable(struct rtk_softc *sc)
951 {
952
953 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
954 if ((*sc->sc_enable)(sc) != 0) {
955 aprint_error("%s: device enable failed\n",
956 sc->sc_dev.dv_xname);
957 return EIO;
958 }
959 sc->sc_flags |= RTK_ENABLED;
960 }
961 return 0;
962 }
963
964 /*
965 * re_disable:
966 * Disable the RTL81X9 chip.
967 */
968 static void
969 re_disable(struct rtk_softc *sc)
970 {
971
972 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
973 (*sc->sc_disable)(sc);
974 sc->sc_flags &= ~RTK_ENABLED;
975 }
976 }
977
978 /*
979 * re_power:
980 * Power management (suspend/resume) hook.
981 */
982 void
983 re_power(int why, void *arg)
984 {
985 struct rtk_softc *sc = (void *)arg;
986 struct ifnet *ifp = &sc->ethercom.ec_if;
987 int s;
988
989 s = splnet();
990 switch (why) {
991 case PWR_SUSPEND:
992 case PWR_STANDBY:
993 re_stop(ifp, 0);
994 if (sc->sc_power != NULL)
995 (*sc->sc_power)(sc, why);
996 break;
997 case PWR_RESUME:
998 if (ifp->if_flags & IFF_UP) {
999 if (sc->sc_power != NULL)
1000 (*sc->sc_power)(sc, why);
1001 re_init(ifp);
1002 }
1003 break;
1004 case PWR_SOFTSUSPEND:
1005 case PWR_SOFTSTANDBY:
1006 case PWR_SOFTRESUME:
1007 break;
1008 }
1009 splx(s);
1010 }
1011
1012
1013 static int
1014 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1015 {
1016 struct mbuf *n = NULL;
1017 bus_dmamap_t map;
1018 struct re_desc *d;
1019 struct re_rxsoft *rxs;
1020 uint32_t cmdstat;
1021 int error;
1022
1023 if (m == NULL) {
1024 MGETHDR(n, M_DONTWAIT, MT_DATA);
1025 if (n == NULL)
1026 return ENOBUFS;
1027
1028 MCLGET(n, M_DONTWAIT);
1029 if ((n->m_flags & M_EXT) == 0) {
1030 m_freem(n);
1031 return ENOBUFS;
1032 }
1033 m = n;
1034 } else
1035 m->m_data = m->m_ext.ext_buf;
1036
1037 /*
1038 * Initialize mbuf length fields and fixup
1039 * alignment so that the frame payload is
1040 * longword aligned.
1041 */
1042 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1043 m->m_data += RE_ETHER_ALIGN;
1044
1045 rxs = &sc->re_ldata.re_rxsoft[idx];
1046 map = rxs->rxs_dmamap;
1047 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1048 BUS_DMA_READ|BUS_DMA_NOWAIT);
1049
1050 if (error)
1051 goto out;
1052
1053 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1054 BUS_DMASYNC_PREREAD);
1055
1056 d = &sc->re_ldata.re_rx_list[idx];
1057 #ifdef DIAGNOSTIC
1058 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1059 cmdstat = le32toh(d->re_cmdstat);
1060 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1061 if (cmdstat & RE_RDESC_STAT_OWN) {
1062 panic("%s: tried to map busy RX descriptor",
1063 sc->sc_dev.dv_xname);
1064 }
1065 #endif
1066
1067 rxs->rxs_mbuf = m;
1068
1069 d->re_vlanctl = 0;
1070 cmdstat = map->dm_segs[0].ds_len;
1071 if (idx == (RE_RX_DESC_CNT - 1))
1072 cmdstat |= RE_RDESC_CMD_EOR;
1073 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1074 d->re_cmdstat = htole32(cmdstat);
1075 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076 cmdstat |= RE_RDESC_CMD_OWN;
1077 d->re_cmdstat = htole32(cmdstat);
1078 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079
1080 return 0;
1081 out:
1082 if (n != NULL)
1083 m_freem(n);
1084 return ENOMEM;
1085 }
1086
1087 static int
1088 re_tx_list_init(struct rtk_softc *sc)
1089 {
1090 int i;
1091
1092 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1093 for (i = 0; i < RE_TX_QLEN; i++) {
1094 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1095 }
1096
1097 bus_dmamap_sync(sc->sc_dmat,
1098 sc->re_ldata.re_tx_list_map, 0,
1099 sc->re_ldata.re_tx_list_map->dm_mapsize,
1100 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1101 sc->re_ldata.re_txq_prodidx = 0;
1102 sc->re_ldata.re_txq_considx = 0;
1103 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1104 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1105 sc->re_ldata.re_tx_nextfree = 0;
1106
1107 return 0;
1108 }
1109
1110 static int
1111 re_rx_list_init(struct rtk_softc *sc)
1112 {
1113 int i;
1114
1115 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1116
1117 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1118 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1119 return ENOBUFS;
1120 }
1121
1122 sc->re_ldata.re_rx_prodidx = 0;
1123 sc->re_head = sc->re_tail = NULL;
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * RX handler for C+ and 8169. For the gigE chips, we support
1130 * the reception of jumbo frames that have been fragmented
1131 * across multiple 2K mbuf cluster buffers.
1132 */
1133 static void
1134 re_rxeof(struct rtk_softc *sc)
1135 {
1136 struct mbuf *m;
1137 struct ifnet *ifp;
1138 int i, total_len;
1139 struct re_desc *cur_rx;
1140 struct re_rxsoft *rxs;
1141 uint32_t rxstat, rxvlan;
1142
1143 ifp = &sc->ethercom.ec_if;
1144
1145 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1146 cur_rx = &sc->re_ldata.re_rx_list[i];
1147 RE_RXDESCSYNC(sc, i,
1148 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1149 rxstat = le32toh(cur_rx->re_cmdstat);
1150 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1151 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1152 break;
1153 }
1154 total_len = rxstat & sc->re_rxlenmask;
1155 rxvlan = le32toh(cur_rx->re_vlanctl);
1156 rxs = &sc->re_ldata.re_rxsoft[i];
1157 m = rxs->rxs_mbuf;
1158
1159 /* Invalidate the RX mbuf and unload its map */
1160
1161 bus_dmamap_sync(sc->sc_dmat,
1162 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1163 BUS_DMASYNC_POSTREAD);
1164 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1165
1166 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1167 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1168 if (sc->re_head == NULL)
1169 sc->re_head = sc->re_tail = m;
1170 else {
1171 m->m_flags &= ~M_PKTHDR;
1172 sc->re_tail->m_next = m;
1173 sc->re_tail = m;
1174 }
1175 re_newbuf(sc, i, NULL);
1176 continue;
1177 }
1178
1179 /*
1180 * NOTE: for the 8139C+, the frame length field
1181 * is always 12 bits in size, but for the gigE chips,
1182 * it is 13 bits (since the max RX frame length is 16K).
1183 * Unfortunately, all 32 bits in the status word
1184 * were already used, so to make room for the extra
1185 * length bit, RealTek took out the 'frame alignment
1186 * error' bit and shifted the other status bits
1187 * over one slot. The OWN, EOR, FS and LS bits are
1188 * still in the same places. We have already extracted
1189 * the frame length and checked the OWN bit, so rather
1190 * than using an alternate bit mapping, we shift the
1191 * status bits one space to the right so we can evaluate
1192 * them using the 8169 status as though it was in the
1193 * same format as that of the 8139C+.
1194 */
1195 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1196 rxstat >>= 1;
1197
1198 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1199 #ifdef RE_DEBUG
1200 aprint_error("%s: RX error (rxstat = 0x%08x)",
1201 sc->sc_dev.dv_xname, rxstat);
1202 if (rxstat & RE_RDESC_STAT_FRALIGN)
1203 aprint_error(", frame alignment error");
1204 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1205 aprint_error(", out of buffer space");
1206 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1207 aprint_error(", FIFO overrun");
1208 if (rxstat & RE_RDESC_STAT_GIANT)
1209 aprint_error(", giant packet");
1210 if (rxstat & RE_RDESC_STAT_RUNT)
1211 aprint_error(", runt packet");
1212 if (rxstat & RE_RDESC_STAT_CRCERR)
1213 aprint_error(", CRC error");
1214 aprint_error("\n");
1215 #endif
1216 ifp->if_ierrors++;
1217 /*
1218 * If this is part of a multi-fragment packet,
1219 * discard all the pieces.
1220 */
1221 if (sc->re_head != NULL) {
1222 m_freem(sc->re_head);
1223 sc->re_head = sc->re_tail = NULL;
1224 }
1225 re_newbuf(sc, i, m);
1226 continue;
1227 }
1228
1229 /*
1230 * If allocating a replacement mbuf fails,
1231 * reload the current one.
1232 */
1233
1234 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1235 ifp->if_ierrors++;
1236 if (sc->re_head != NULL) {
1237 m_freem(sc->re_head);
1238 sc->re_head = sc->re_tail = NULL;
1239 }
1240 re_newbuf(sc, i, m);
1241 continue;
1242 }
1243
1244 if (sc->re_head != NULL) {
1245 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1246 /*
1247 * Special case: if there's 4 bytes or less
1248 * in this buffer, the mbuf can be discarded:
1249 * the last 4 bytes is the CRC, which we don't
1250 * care about anyway.
1251 */
1252 if (m->m_len <= ETHER_CRC_LEN) {
1253 sc->re_tail->m_len -=
1254 (ETHER_CRC_LEN - m->m_len);
1255 m_freem(m);
1256 } else {
1257 m->m_len -= ETHER_CRC_LEN;
1258 m->m_flags &= ~M_PKTHDR;
1259 sc->re_tail->m_next = m;
1260 }
1261 m = sc->re_head;
1262 sc->re_head = sc->re_tail = NULL;
1263 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1264 } else
1265 m->m_pkthdr.len = m->m_len =
1266 (total_len - ETHER_CRC_LEN);
1267
1268 ifp->if_ipackets++;
1269 m->m_pkthdr.rcvif = ifp;
1270
1271 /* Do RX checksumming */
1272
1273 /* Check IP header checksum */
1274 if (rxstat & RE_RDESC_STAT_PROTOID) {
1275 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1276 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1277 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1278 }
1279
1280 /* Check TCP/UDP checksum */
1281 if (RE_TCPPKT(rxstat)) {
1282 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1283 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1285 } else if (RE_UDPPKT(rxstat)) {
1286 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1287 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1288 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1289 }
1290
1291 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1292 VLAN_INPUT_TAG(ifp, m,
1293 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1294 continue);
1295 }
1296 #if NBPFILTER > 0
1297 if (ifp->if_bpf)
1298 bpf_mtap(ifp->if_bpf, m);
1299 #endif
1300 (*ifp->if_input)(ifp, m);
1301 }
1302
1303 sc->re_ldata.re_rx_prodidx = i;
1304 }
1305
1306 static void
1307 re_txeof(struct rtk_softc *sc)
1308 {
1309 struct ifnet *ifp;
1310 struct re_txq *txq;
1311 uint32_t txstat;
1312 int idx, descidx;
1313
1314 ifp = &sc->ethercom.ec_if;
1315
1316 for (idx = sc->re_ldata.re_txq_considx;
1317 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1318 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1319 txq = &sc->re_ldata.re_txq[idx];
1320 KASSERT(txq->txq_mbuf != NULL);
1321
1322 descidx = txq->txq_descidx;
1323 RE_TXDESCSYNC(sc, descidx,
1324 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1325 txstat =
1326 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1327 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1328 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1329 if (txstat & RE_TDESC_CMD_OWN) {
1330 break;
1331 }
1332
1333 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1334 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1335 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1336 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1337 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1338 m_freem(txq->txq_mbuf);
1339 txq->txq_mbuf = NULL;
1340
1341 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1342 ifp->if_collisions++;
1343 if (txstat & RE_TDESC_STAT_TXERRSUM)
1344 ifp->if_oerrors++;
1345 else
1346 ifp->if_opackets++;
1347 }
1348
1349 sc->re_ldata.re_txq_considx = idx;
1350
1351 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1352 ifp->if_flags &= ~IFF_OACTIVE;
1353
1354 /*
1355 * If not all descriptors have been released reaped yet,
1356 * reload the timer so that we will eventually get another
1357 * interrupt that will cause us to re-enter this routine.
1358 * This is done in case the transmitter has gone idle.
1359 */
1360 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1361 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1362 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1363 /*
1364 * Some chips will ignore a second TX request
1365 * issued while an existing transmission is in
1366 * progress. If the transmitter goes idle but
1367 * there are still packets waiting to be sent,
1368 * we need to restart the channel here to flush
1369 * them out. This only seems to be required with
1370 * the PCIe devices.
1371 */
1372 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1373 }
1374 } else
1375 ifp->if_timer = 0;
1376 }
1377
1378 /*
1379 * Stop all chip I/O so that the kernel's probe routines don't
1380 * get confused by errant DMAs when rebooting.
1381 */
1382 static void
1383 re_shutdown(void *vsc)
1384
1385 {
1386 struct rtk_softc *sc = vsc;
1387
1388 re_stop(&sc->ethercom.ec_if, 0);
1389 }
1390
1391
1392 static void
1393 re_tick(void *xsc)
1394 {
1395 struct rtk_softc *sc = xsc;
1396 int s;
1397
1398 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1399 s = splnet();
1400
1401 mii_tick(&sc->mii);
1402 splx(s);
1403
1404 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1405 }
1406
1407 #ifdef DEVICE_POLLING
1408 static void
1409 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1410 {
1411 struct rtk_softc *sc = ifp->if_softc;
1412
1413 RTK_LOCK(sc);
1414 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1415 ether_poll_deregister(ifp);
1416 cmd = POLL_DEREGISTER;
1417 }
1418 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1419 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1420 goto done;
1421 }
1422
1423 sc->rxcycles = count;
1424 re_rxeof(sc);
1425 re_txeof(sc);
1426
1427 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1428 (*ifp->if_start)(ifp);
1429
1430 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1431 uint16_t status;
1432
1433 status = CSR_READ_2(sc, RTK_ISR);
1434 if (status == 0xffff)
1435 goto done;
1436 if (status)
1437 CSR_WRITE_2(sc, RTK_ISR, status);
1438
1439 /*
1440 * XXX check behaviour on receiver stalls.
1441 */
1442
1443 if (status & RTK_ISR_SYSTEM_ERR) {
1444 re_init(sc);
1445 }
1446 }
1447 done:
1448 RTK_UNLOCK(sc);
1449 }
1450 #endif /* DEVICE_POLLING */
1451
1452 int
1453 re_intr(void *arg)
1454 {
1455 struct rtk_softc *sc = arg;
1456 struct ifnet *ifp;
1457 uint16_t status;
1458 int handled = 0;
1459
1460 if (!device_has_power(&sc->sc_dev))
1461 return 0;
1462
1463 ifp = &sc->ethercom.ec_if;
1464
1465 if ((ifp->if_flags & IFF_UP) == 0)
1466 return 0;
1467
1468 #ifdef DEVICE_POLLING
1469 if (ifp->if_flags & IFF_POLLING)
1470 goto done;
1471 if ((ifp->if_capenable & IFCAP_POLLING) &&
1472 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1473 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1474 re_poll(ifp, 0, 1);
1475 goto done;
1476 }
1477 #endif /* DEVICE_POLLING */
1478
1479 for (;;) {
1480
1481 status = CSR_READ_2(sc, RTK_ISR);
1482 /* If the card has gone away the read returns 0xffff. */
1483 if (status == 0xffff)
1484 break;
1485 if (status) {
1486 handled = 1;
1487 CSR_WRITE_2(sc, RTK_ISR, status);
1488 }
1489
1490 if ((status & RTK_INTRS_CPLUS) == 0)
1491 break;
1492
1493 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1494 re_rxeof(sc);
1495
1496 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1497 RTK_ISR_TX_DESC_UNAVAIL))
1498 re_txeof(sc);
1499
1500 if (status & RTK_ISR_SYSTEM_ERR) {
1501 re_init(ifp);
1502 }
1503
1504 if (status & RTK_ISR_LINKCHG) {
1505 callout_stop(&sc->rtk_tick_ch);
1506 re_tick(sc);
1507 }
1508 }
1509
1510 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1511 re_start(ifp);
1512
1513 #ifdef DEVICE_POLLING
1514 done:
1515 #endif
1516
1517 return handled;
1518 }
1519
1520
1521
1522 /*
1523 * Main transmit routine for C+ and gigE NICs.
1524 */
1525
1526 static void
1527 re_start(struct ifnet *ifp)
1528 {
1529 struct rtk_softc *sc;
1530 struct mbuf *m;
1531 bus_dmamap_t map;
1532 struct re_txq *txq;
1533 struct re_desc *d;
1534 struct m_tag *mtag;
1535 uint32_t cmdstat, re_flags;
1536 int ofree, idx, error, nsegs, seg;
1537 int startdesc, curdesc, lastdesc;
1538 bool pad;
1539
1540 sc = ifp->if_softc;
1541 ofree = sc->re_ldata.re_txq_free;
1542
1543 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1544
1545 IFQ_POLL(&ifp->if_snd, m);
1546 if (m == NULL)
1547 break;
1548
1549 if (sc->re_ldata.re_txq_free == 0 ||
1550 sc->re_ldata.re_tx_free == 0) {
1551 /* no more free slots left */
1552 ifp->if_flags |= IFF_OACTIVE;
1553 break;
1554 }
1555
1556 /*
1557 * Set up checksum offload. Note: checksum offload bits must
1558 * appear in all descriptors of a multi-descriptor transmit
1559 * attempt. (This is according to testing done with an 8169
1560 * chip. I'm not sure if this is a requirement or a bug.)
1561 */
1562
1563 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1564 uint32_t segsz = m->m_pkthdr.segsz;
1565
1566 re_flags = RE_TDESC_CMD_LGSEND |
1567 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1568 } else {
1569 /*
1570 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1571 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1572 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1573 */
1574 re_flags = 0;
1575 if ((m->m_pkthdr.csum_flags &
1576 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1577 != 0) {
1578 re_flags |= RE_TDESC_CMD_IPCSUM;
1579 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1580 re_flags |= RE_TDESC_CMD_TCPCSUM;
1581 } else if (m->m_pkthdr.csum_flags &
1582 M_CSUM_UDPv4) {
1583 re_flags |= RE_TDESC_CMD_UDPCSUM;
1584 }
1585 }
1586 }
1587
1588 txq = &sc->re_ldata.re_txq[idx];
1589 map = txq->txq_dmamap;
1590 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1591 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1592
1593 if (__predict_false(error)) {
1594 /* XXX try to defrag if EFBIG? */
1595 aprint_error("%s: can't map mbuf (error %d)\n",
1596 sc->sc_dev.dv_xname, error);
1597
1598 IFQ_DEQUEUE(&ifp->if_snd, m);
1599 m_freem(m);
1600 ifp->if_oerrors++;
1601 continue;
1602 }
1603
1604 nsegs = map->dm_nsegs;
1605 pad = false;
1606 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1607 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1608 pad = true;
1609 nsegs++;
1610 }
1611
1612 if (nsegs > sc->re_ldata.re_tx_free) {
1613 /*
1614 * Not enough free descriptors to transmit this packet.
1615 */
1616 ifp->if_flags |= IFF_OACTIVE;
1617 bus_dmamap_unload(sc->sc_dmat, map);
1618 break;
1619 }
1620
1621 IFQ_DEQUEUE(&ifp->if_snd, m);
1622
1623 /*
1624 * Make sure that the caches are synchronized before we
1625 * ask the chip to start DMA for the packet data.
1626 */
1627 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1628 BUS_DMASYNC_PREWRITE);
1629
1630 /*
1631 * Map the segment array into descriptors.
1632 * Note that we set the start-of-frame and
1633 * end-of-frame markers for either TX or RX,
1634 * but they really only have meaning in the TX case.
1635 * (In the RX case, it's the chip that tells us
1636 * where packets begin and end.)
1637 * We also keep track of the end of the ring
1638 * and set the end-of-ring bits as needed,
1639 * and we set the ownership bits in all except
1640 * the very first descriptor. (The caller will
1641 * set this descriptor later when it start
1642 * transmission or reception.)
1643 */
1644 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1645 lastdesc = -1;
1646 for (seg = 0; seg < map->dm_nsegs;
1647 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1648 d = &sc->re_ldata.re_tx_list[curdesc];
1649 #ifdef DIAGNOSTIC
1650 RE_TXDESCSYNC(sc, curdesc,
1651 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1652 cmdstat = le32toh(d->re_cmdstat);
1653 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1654 if (cmdstat & RE_TDESC_STAT_OWN) {
1655 panic("%s: tried to map busy TX descriptor",
1656 sc->sc_dev.dv_xname);
1657 }
1658 #endif
1659
1660 d->re_vlanctl = 0;
1661 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1662 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1663 if (seg == 0)
1664 cmdstat |= RE_TDESC_CMD_SOF;
1665 else
1666 cmdstat |= RE_TDESC_CMD_OWN;
1667 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1668 cmdstat |= RE_TDESC_CMD_EOR;
1669 if (seg == nsegs - 1) {
1670 cmdstat |= RE_TDESC_CMD_EOF;
1671 lastdesc = curdesc;
1672 }
1673 d->re_cmdstat = htole32(cmdstat);
1674 RE_TXDESCSYNC(sc, curdesc,
1675 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1676 }
1677 if (__predict_false(pad)) {
1678 bus_addr_t paddaddr;
1679
1680 d = &sc->re_ldata.re_tx_list[curdesc];
1681 d->re_vlanctl = 0;
1682 paddaddr = RE_TXPADDADDR(sc);
1683 re_set_bufaddr(d, paddaddr);
1684 cmdstat = re_flags |
1685 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1686 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1687 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1688 cmdstat |= RE_TDESC_CMD_EOR;
1689 d->re_cmdstat = htole32(cmdstat);
1690 RE_TXDESCSYNC(sc, curdesc,
1691 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1692 lastdesc = curdesc;
1693 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1694 }
1695 KASSERT(lastdesc != -1);
1696
1697 /*
1698 * Set up hardware VLAN tagging. Note: vlan tag info must
1699 * appear in the first descriptor of a multi-descriptor
1700 * transmission attempt.
1701 */
1702 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1703 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1704 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1705 RE_TDESC_VLANCTL_TAG);
1706 }
1707
1708 /* Transfer ownership of packet to the chip. */
1709
1710 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1711 htole32(RE_TDESC_CMD_OWN);
1712 RE_TXDESCSYNC(sc, startdesc,
1713 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1714
1715 /* update info of TX queue and descriptors */
1716 txq->txq_mbuf = m;
1717 txq->txq_descidx = lastdesc;
1718 txq->txq_nsegs = nsegs;
1719
1720 sc->re_ldata.re_txq_free--;
1721 sc->re_ldata.re_tx_free -= nsegs;
1722 sc->re_ldata.re_tx_nextfree = curdesc;
1723
1724 #if NBPFILTER > 0
1725 /*
1726 * If there's a BPF listener, bounce a copy of this frame
1727 * to him.
1728 */
1729 if (ifp->if_bpf)
1730 bpf_mtap(ifp->if_bpf, m);
1731 #endif
1732 }
1733
1734 if (sc->re_ldata.re_txq_free < ofree) {
1735 /*
1736 * TX packets are enqueued.
1737 */
1738 sc->re_ldata.re_txq_prodidx = idx;
1739
1740 /*
1741 * Start the transmitter to poll.
1742 *
1743 * RealTek put the TX poll request register in a different
1744 * location on the 8169 gigE chip. I don't know why.
1745 */
1746 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1747 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1748 else
1749 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1750
1751 /*
1752 * Use the countdown timer for interrupt moderation.
1753 * 'TX done' interrupts are disabled. Instead, we reset the
1754 * countdown timer, which will begin counting until it hits
1755 * the value in the TIMERINT register, and then trigger an
1756 * interrupt. Each time we write to the TIMERCNT register,
1757 * the timer count is reset to 0.
1758 */
1759 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1760
1761 /*
1762 * Set a timeout in case the chip goes out to lunch.
1763 */
1764 ifp->if_timer = 5;
1765 }
1766 }
1767
1768 static int
1769 re_init(struct ifnet *ifp)
1770 {
1771 struct rtk_softc *sc = ifp->if_softc;
1772 const uint8_t *enaddr;
1773 uint32_t rxcfg = 0;
1774 uint32_t reg;
1775 int error;
1776
1777 if ((error = re_enable(sc)) != 0)
1778 goto out;
1779
1780 /*
1781 * Cancel pending I/O and free all RX/TX buffers.
1782 */
1783 re_stop(ifp, 0);
1784
1785 re_reset(sc);
1786
1787 /*
1788 * Enable C+ RX and TX mode, as well as VLAN stripping and
1789 * RX checksum offload. We must configure the C+ register
1790 * before all others.
1791 */
1792 reg = 0;
1793
1794 /*
1795 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1796 * FreeBSD drivers set these bits anyway (for 8139C+?).
1797 * So far, it works.
1798 */
1799
1800 /*
1801 * XXX: For old 8169 set bit 14.
1802 * For 8169S/8110S and above, do not set bit 14.
1803 */
1804 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1805 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1806
1807 if (1) {/* not for 8169S ? */
1808 reg |=
1809 RTK_CPLUSCMD_VLANSTRIP |
1810 (ifp->if_capenable &
1811 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1812 IFCAP_CSUM_UDPv4_Rx) ?
1813 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1814 }
1815
1816 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1817 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1818
1819 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1820 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1821 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1822
1823 DELAY(10000);
1824
1825 /*
1826 * Init our MAC address. Even though the chipset
1827 * documentation doesn't mention it, we need to enter "Config
1828 * register write enable" mode to modify the ID registers.
1829 */
1830 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1831 enaddr = CLLADDR(ifp->if_sadl);
1832 reg = enaddr[0] | (enaddr[1] << 8) |
1833 (enaddr[2] << 16) | (enaddr[3] << 24);
1834 CSR_WRITE_4(sc, RTK_IDR0, reg);
1835 reg = enaddr[4] | (enaddr[5] << 8);
1836 CSR_WRITE_4(sc, RTK_IDR4, reg);
1837 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1838
1839 /*
1840 * For C+ mode, initialize the RX descriptors and mbufs.
1841 */
1842 re_rx_list_init(sc);
1843 re_tx_list_init(sc);
1844
1845 /*
1846 * Load the addresses of the RX and TX lists into the chip.
1847 */
1848 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1849 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1850 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1851 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1852
1853 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1854 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1855 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1856 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1857
1858 /*
1859 * Enable transmit and receive.
1860 */
1861 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1862
1863 /*
1864 * Set the initial TX and RX configuration.
1865 */
1866 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1867 /* test mode is needed only for old 8169 */
1868 CSR_WRITE_4(sc, RTK_TXCFG,
1869 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1870 } else
1871 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1872
1873 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1874
1875 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1876
1877 /* Set the individual bit to receive frames for this host only. */
1878 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1879 rxcfg |= RTK_RXCFG_RX_INDIV;
1880
1881 /* If we want promiscuous mode, set the allframes bit. */
1882 if (ifp->if_flags & IFF_PROMISC)
1883 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1884 else
1885 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1886 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1887
1888 /*
1889 * Set capture broadcast bit to capture broadcast frames.
1890 */
1891 if (ifp->if_flags & IFF_BROADCAST)
1892 rxcfg |= RTK_RXCFG_RX_BROAD;
1893 else
1894 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1895 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1896
1897 /*
1898 * Program the multicast filter, if necessary.
1899 */
1900 rtk_setmulti(sc);
1901
1902 #ifdef DEVICE_POLLING
1903 /*
1904 * Disable interrupts if we are polling.
1905 */
1906 if (ifp->if_flags & IFF_POLLING)
1907 CSR_WRITE_2(sc, RTK_IMR, 0);
1908 else /* otherwise ... */
1909 #endif /* DEVICE_POLLING */
1910 /*
1911 * Enable interrupts.
1912 */
1913 if (sc->re_testmode)
1914 CSR_WRITE_2(sc, RTK_IMR, 0);
1915 else
1916 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1917
1918 /* Start RX/TX process. */
1919 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1920 #ifdef notdef
1921 /* Enable receiver and transmitter. */
1922 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1923 #endif
1924
1925 /*
1926 * Initialize the timer interrupt register so that
1927 * a timer interrupt will be generated once the timer
1928 * reaches a certain number of ticks. The timer is
1929 * reloaded on each transmit. This gives us TX interrupt
1930 * moderation, which dramatically improves TX frame rate.
1931 */
1932
1933 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1934 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1935 else {
1936 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1937
1938 /*
1939 * For 8169 gigE NICs, set the max allowed RX packet
1940 * size so we can receive jumbo frames.
1941 */
1942 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1943 }
1944
1945 if (sc->re_testmode)
1946 return 0;
1947
1948 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1949
1950 ifp->if_flags |= IFF_RUNNING;
1951 ifp->if_flags &= ~IFF_OACTIVE;
1952
1953 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1954
1955 out:
1956 if (error) {
1957 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1958 ifp->if_timer = 0;
1959 aprint_error("%s: interface not running\n",
1960 sc->sc_dev.dv_xname);
1961 }
1962
1963 return error;
1964 }
1965
1966 static int
1967 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1968 {
1969 struct rtk_softc *sc = ifp->if_softc;
1970 struct ifreq *ifr = (struct ifreq *) data;
1971 int s, error = 0;
1972
1973 s = splnet();
1974
1975 switch (command) {
1976 case SIOCSIFMTU:
1977 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1978 error = EINVAL;
1979 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
1980 error = 0;
1981 break;
1982 default:
1983 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1984 break;
1985
1986 error = 0;
1987
1988 if (command == SIOCSIFCAP)
1989 error = (*ifp->if_init)(ifp);
1990 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1991 ;
1992 else if (ifp->if_flags & IFF_RUNNING)
1993 rtk_setmulti(sc);
1994 break;
1995 }
1996
1997 splx(s);
1998
1999 return error;
2000 }
2001
2002 static void
2003 re_watchdog(struct ifnet *ifp)
2004 {
2005 struct rtk_softc *sc;
2006 int s;
2007
2008 sc = ifp->if_softc;
2009 s = splnet();
2010 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2011 ifp->if_oerrors++;
2012
2013 re_txeof(sc);
2014 re_rxeof(sc);
2015
2016 re_init(ifp);
2017
2018 splx(s);
2019 }
2020
2021 /*
2022 * Stop the adapter and free any mbufs allocated to the
2023 * RX and TX lists.
2024 */
2025 static void
2026 re_stop(struct ifnet *ifp, int disable)
2027 {
2028 int i;
2029 struct rtk_softc *sc = ifp->if_softc;
2030
2031 callout_stop(&sc->rtk_tick_ch);
2032
2033 #ifdef DEVICE_POLLING
2034 ether_poll_deregister(ifp);
2035 #endif /* DEVICE_POLLING */
2036
2037 mii_down(&sc->mii);
2038
2039 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2040 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2041
2042 if (sc->re_head != NULL) {
2043 m_freem(sc->re_head);
2044 sc->re_head = sc->re_tail = NULL;
2045 }
2046
2047 /* Free the TX list buffers. */
2048 for (i = 0; i < RE_TX_QLEN; i++) {
2049 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2050 bus_dmamap_unload(sc->sc_dmat,
2051 sc->re_ldata.re_txq[i].txq_dmamap);
2052 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2053 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2054 }
2055 }
2056
2057 /* Free the RX list buffers. */
2058 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2059 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2060 bus_dmamap_unload(sc->sc_dmat,
2061 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2062 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2063 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2064 }
2065 }
2066
2067 if (disable)
2068 re_disable(sc);
2069
2070 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2071 ifp->if_timer = 0;
2072 }
2073