Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.9
      1 /*	$NetBSD: rtl8169.c,v 1.9 2005/02/20 15:56:03 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #if NBPFILTER > 0
    134 #include <net/bpf.h>
    135 #endif
    136 
    137 #include <machine/bus.h>
    138 
    139 #include <dev/mii/mii.h>
    140 #include <dev/mii/miivar.h>
    141 
    142 #include <dev/pci/pcireg.h>
    143 #include <dev/pci/pcivar.h>
    144 #include <dev/pci/pcidevs.h>
    145 
    146 /*
    147  * Default to using PIO access for this driver.
    148  */
    149 #define RE_USEIOSPACE
    150 
    151 #include <dev/ic/rtl81x9reg.h>
    152 #include <dev/ic/rtl81x9var.h>
    153 
    154 #include <dev/ic/rtl8169var.h>
    155 
    156 
    157 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    158 
    159 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    160 static int re_rx_list_init(struct rtk_softc *);
    161 static int re_tx_list_init(struct rtk_softc *);
    162 static void re_rxeof(struct rtk_softc *);
    163 static void re_txeof(struct rtk_softc *);
    164 static void re_tick(void *);
    165 static void re_start(struct ifnet *);
    166 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    167 static int re_init(struct ifnet *);
    168 static void re_stop(struct ifnet *, int);
    169 static void re_watchdog(struct ifnet *);
    170 
    171 static void re_shutdown(void *);
    172 static int re_enable(struct rtk_softc *);
    173 static void re_disable(struct rtk_softc *);
    174 static void re_power(int, void *);
    175 
    176 static int re_ifmedia_upd(struct ifnet *);
    177 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    178 
    179 static int re_gmii_readreg(struct device *, int, int);
    180 static void re_gmii_writereg(struct device *, int, int, int);
    181 
    182 static int re_miibus_readreg(struct device *, int, int);
    183 static void re_miibus_writereg(struct device *, int, int, int);
    184 static void re_miibus_statchg(struct device *);
    185 
    186 static void re_reset(struct rtk_softc *);
    187 
    188 
    189 #ifdef RE_USEIOSPACE
    190 #define RTK_RES			SYS_RES_IOPORT
    191 #define RTK_RID			RTK_PCI_LOIO
    192 #else
    193 #define RTK_RES			SYS_RES_MEMORY
    194 #define RTK_RID			RTK_PCI_LOMEM
    195 #endif
    196 
    197 #define EE_SET(x)					\
    198 	CSR_WRITE_1(sc, RTK_EECMD,			\
    199 		CSR_READ_1(sc, RTK_EECMD) | x)
    200 
    201 #define EE_CLR(x)					\
    202 	CSR_WRITE_1(sc, RTK_EECMD,			\
    203 		CSR_READ_1(sc, RTK_EECMD) & ~x)
    204 
    205 static int
    206 re_gmii_readreg(struct device *self, int phy, int reg)
    207 {
    208 	struct rtk_softc	*sc = (void *)self;
    209 	u_int32_t		rval;
    210 	int			i;
    211 
    212 	if (phy != 7)
    213 		return 0;
    214 
    215 	/* Let the rgephy driver read the GMEDIASTAT register */
    216 
    217 	if (reg == RTK_GMEDIASTAT) {
    218 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    219 		return rval;
    220 	}
    221 
    222 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    223 	DELAY(1000);
    224 
    225 	for (i = 0; i < RTK_TIMEOUT; i++) {
    226 		rval = CSR_READ_4(sc, RTK_PHYAR);
    227 		if (rval & RTK_PHYAR_BUSY)
    228 			break;
    229 		DELAY(100);
    230 	}
    231 
    232 	if (i == RTK_TIMEOUT) {
    233 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    234 		return 0;
    235 	}
    236 
    237 	return rval & RTK_PHYAR_PHYDATA;
    238 }
    239 
    240 static void
    241 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    242 {
    243 	struct rtk_softc	*sc = (void *)dev;
    244 	u_int32_t		rval;
    245 	int			i;
    246 
    247 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    248 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    249 	DELAY(1000);
    250 
    251 	for (i = 0; i < RTK_TIMEOUT; i++) {
    252 		rval = CSR_READ_4(sc, RTK_PHYAR);
    253 		if (!(rval & RTK_PHYAR_BUSY))
    254 			break;
    255 		DELAY(100);
    256 	}
    257 
    258 	if (i == RTK_TIMEOUT) {
    259 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    260 		    sc->sc_dev.dv_xname, reg, data);
    261 		return;
    262 	}
    263 
    264 	return;
    265 }
    266 
    267 static int
    268 re_miibus_readreg(struct device *dev, int phy, int reg)
    269 {
    270 	struct rtk_softc	*sc = (void *)dev;
    271 	u_int16_t		rval = 0;
    272 	u_int16_t		re8139_reg = 0;
    273 	int			s;
    274 
    275 	s = splnet();
    276 
    277 	if (sc->rtk_type == RTK_8169) {
    278 		rval = re_gmii_readreg(dev, phy, reg);
    279 		splx(s);
    280 		return rval;
    281 	}
    282 
    283 	/* Pretend the internal PHY is only at address 0 */
    284 	if (phy) {
    285 		splx(s);
    286 		return 0;
    287 	}
    288 	switch (reg) {
    289 	case MII_BMCR:
    290 		re8139_reg = RTK_BMCR;
    291 		break;
    292 	case MII_BMSR:
    293 		re8139_reg = RTK_BMSR;
    294 		break;
    295 	case MII_ANAR:
    296 		re8139_reg = RTK_ANAR;
    297 		break;
    298 	case MII_ANER:
    299 		re8139_reg = RTK_ANER;
    300 		break;
    301 	case MII_ANLPAR:
    302 		re8139_reg = RTK_LPAR;
    303 		break;
    304 	case MII_PHYIDR1:
    305 	case MII_PHYIDR2:
    306 		splx(s);
    307 		return 0;
    308 	/*
    309 	 * Allow the rlphy driver to read the media status
    310 	 * register. If we have a link partner which does not
    311 	 * support NWAY, this is the register which will tell
    312 	 * us the results of parallel detection.
    313 	 */
    314 	case RTK_MEDIASTAT:
    315 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    316 		splx(s);
    317 		return rval;
    318 	default:
    319 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    320 		splx(s);
    321 		return 0;
    322 	}
    323 	rval = CSR_READ_2(sc, re8139_reg);
    324 	splx(s);
    325 	return rval;
    326 }
    327 
    328 static void
    329 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    330 {
    331 	struct rtk_softc	*sc = (void *)dev;
    332 	u_int16_t		re8139_reg = 0;
    333 	int			s;
    334 
    335 	s = splnet();
    336 
    337 	if (sc->rtk_type == RTK_8169) {
    338 		re_gmii_writereg(dev, phy, reg, data);
    339 		splx(s);
    340 		return;
    341 	}
    342 
    343 	/* Pretend the internal PHY is only at address 0 */
    344 	if (phy) {
    345 		splx(s);
    346 		return;
    347 	}
    348 	switch (reg) {
    349 	case MII_BMCR:
    350 		re8139_reg = RTK_BMCR;
    351 		break;
    352 	case MII_BMSR:
    353 		re8139_reg = RTK_BMSR;
    354 		break;
    355 	case MII_ANAR:
    356 		re8139_reg = RTK_ANAR;
    357 		break;
    358 	case MII_ANER:
    359 		re8139_reg = RTK_ANER;
    360 		break;
    361 	case MII_ANLPAR:
    362 		re8139_reg = RTK_LPAR;
    363 		break;
    364 	case MII_PHYIDR1:
    365 	case MII_PHYIDR2:
    366 		splx(s);
    367 		return;
    368 		break;
    369 	default:
    370 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    371 		splx(s);
    372 		return;
    373 	}
    374 	CSR_WRITE_2(sc, re8139_reg, data);
    375 	splx(s);
    376 	return;
    377 }
    378 
    379 static void
    380 re_miibus_statchg(struct device *dev)
    381 {
    382 
    383 	return;
    384 }
    385 
    386 static void
    387 re_reset(struct rtk_softc *sc)
    388 {
    389 	register int		i;
    390 
    391 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    392 
    393 	for (i = 0; i < RTK_TIMEOUT; i++) {
    394 		DELAY(10);
    395 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
    396 			break;
    397 	}
    398 	if (i == RTK_TIMEOUT)
    399 		aprint_error("%s: reset never completed!\n",
    400 		    sc->sc_dev.dv_xname);
    401 
    402 	/*
    403 	 * NB: Realtek-supplied Linux driver does this only for
    404 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    405 	 */
    406 	if (1) /* XXX check softc flag for 8169s version */
    407 		CSR_WRITE_1(sc, 0x82, 1);
    408 
    409 	return;
    410 }
    411 
    412 /*
    413  * The following routine is designed to test for a defect on some
    414  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    415  * lines connected to the bus, however for a 32-bit only card, they
    416  * should be pulled high. The result of this defect is that the
    417  * NIC will not work right if you plug it into a 64-bit slot: DMA
    418  * operations will be done with 64-bit transfers, which will fail
    419  * because the 64-bit data lines aren't connected.
    420  *
    421  * There's no way to work around this (short of talking a soldering
    422  * iron to the board), however we can detect it. The method we use
    423  * here is to put the NIC into digital loopback mode, set the receiver
    424  * to promiscuous mode, and then try to send a frame. We then compare
    425  * the frame data we sent to what was received. If the data matches,
    426  * then the NIC is working correctly, otherwise we know the user has
    427  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    428  * slot. In the latter case, there's no way the NIC can work correctly,
    429  * so we print out a message on the console and abort the device attach.
    430  */
    431 
    432 int
    433 re_diag(struct rtk_softc *sc)
    434 {
    435 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    436 	struct mbuf		*m0;
    437 	struct ether_header	*eh;
    438 	struct rtk_desc		*cur_rx;
    439 	bus_dmamap_t		dmamap;
    440 	u_int16_t		status;
    441 	u_int32_t		rxstat;
    442 	int			total_len, i, s, error = 0;
    443 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    444 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    445 
    446 	/* Allocate a single mbuf */
    447 
    448 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    449 	if (m0 == NULL)
    450 		return ENOBUFS;
    451 
    452 	/*
    453 	 * Initialize the NIC in test mode. This sets the chip up
    454 	 * so that it can send and receive frames, but performs the
    455 	 * following special functions:
    456 	 * - Puts receiver in promiscuous mode
    457 	 * - Enables digital loopback mode
    458 	 * - Leaves interrupts turned off
    459 	 */
    460 
    461 	ifp->if_flags |= IFF_PROMISC;
    462 	sc->rtk_testmode = 1;
    463 	re_init(ifp);
    464 	re_stop(ifp, 0);
    465 	DELAY(100000);
    466 	re_init(ifp);
    467 
    468 	/* Put some data in the mbuf */
    469 
    470 	eh = mtod(m0, struct ether_header *);
    471 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
    472 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
    473 	eh->ether_type = htons(ETHERTYPE_IP);
    474 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    475 
    476 	/*
    477 	 * Queue the packet, start transmission.
    478 	 */
    479 
    480 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    481 	s = splnet();
    482 	IF_ENQUEUE(&ifp->if_snd, m0);
    483 	re_start(ifp);
    484 	splx(s);
    485 	m0 = NULL;
    486 
    487 	/* Wait for it to propagate through the chip */
    488 
    489 	DELAY(100000);
    490 	for (i = 0; i < RTK_TIMEOUT; i++) {
    491 		status = CSR_READ_2(sc, RTK_ISR);
    492 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    493 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    494 			break;
    495 		DELAY(10);
    496 	}
    497 	if (i == RTK_TIMEOUT) {
    498 		aprint_error("%s: diagnostic failed, failed to receive packet "
    499 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    500 		error = EIO;
    501 		goto done;
    502 	}
    503 
    504 	/*
    505 	 * The packet should have been dumped into the first
    506 	 * entry in the RX DMA ring. Grab it from there.
    507 	 */
    508 
    509 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
    510 	bus_dmamap_sync(sc->sc_dmat,
    511 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    512 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    513 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    514 	    BUS_DMASYNC_POSTWRITE);
    515 	bus_dmamap_unload(sc->sc_dmat,
    516 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    517 
    518 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    519 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    520 	eh = mtod(m0, struct ether_header *);
    521 
    522 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    523 	total_len = RTK_RXBYTES(cur_rx);
    524 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    525 
    526 	if (total_len != ETHER_MIN_LEN) {
    527 		aprint_error("%s: diagnostic failed, received short packet\n",
    528 		    sc->sc_dev.dv_xname);
    529 		error = EIO;
    530 		goto done;
    531 	}
    532 
    533 	/* Test that the received packet data matches what we sent. */
    534 
    535 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    536 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    537 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    538 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    539 		    sc->sc_dev.dv_xname);
    540 		aprint_error("%s: expected TX data: %s",
    541 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    542 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    543 		aprint_error("%s: received RX data: %s",
    544 		    sc->sc_dev.dv_xname,
    545 		    ether_sprintf(eh->ether_dhost));
    546 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    547 		    ntohs(eh->ether_type));
    548 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    549 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    550 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    551 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    552 		aprint_error("%s: Read the re(4) man page for more details.\n",
    553 		    sc->sc_dev.dv_xname);
    554 		error = EIO;
    555 	}
    556 
    557 done:
    558 	/* Turn interface off, release resources */
    559 
    560 	sc->rtk_testmode = 0;
    561 	ifp->if_flags &= ~IFF_PROMISC;
    562 	re_stop(ifp, 0);
    563 	if (m0 != NULL)
    564 		m_freem(m0);
    565 
    566 	return error;
    567 }
    568 
    569 
    570 /*
    571  * Attach the interface. Allocate softc structures, do ifmedia
    572  * setup and ethernet/BPF attach.
    573  */
    574 void
    575 re_attach(struct rtk_softc *sc)
    576 {
    577 	u_char			eaddr[ETHER_ADDR_LEN];
    578 	u_int16_t		val;
    579 	struct ifnet		*ifp;
    580 	int			error = 0, i, addr_len;
    581 
    582 
    583 	/* XXX JRS: bus-attach-independent code begins approximately here */
    584 
    585 	/* Reset the adapter. */
    586 	re_reset(sc);
    587 
    588 	if (sc->rtk_type == RTK_8169) {
    589 		uint32_t hwrev;
    590 
    591 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    592 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    593 		if (hwrev == (0x1 << 28)) {
    594 			sc->sc_rev = 4;
    595 		} else if (hwrev == (0x1 << 26)) {
    596 			sc->sc_rev = 3;
    597 		} else if (hwrev == (0x1 << 23)) {
    598 			sc->sc_rev = 2;
    599 		} else
    600 			sc->sc_rev = 1;
    601 
    602 		/* Set RX length mask */
    603 
    604 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    605 
    606 		/* Force station address autoload from the EEPROM */
    607 
    608 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    609 		for (i = 0; i < RTK_TIMEOUT; i++) {
    610 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
    611 				break;
    612 			DELAY(100);
    613 		}
    614 		if (i == RTK_TIMEOUT)
    615 			aprint_error("%s: eeprom autoload timed out\n",
    616 			    sc->sc_dev.dv_xname);
    617 
    618 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    619 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    620 	} else {
    621 
    622 		/* Set RX length mask */
    623 
    624 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    625 
    626 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    627 			addr_len = RTK_EEADDR_LEN1;
    628 		else
    629 			addr_len = RTK_EEADDR_LEN0;
    630 
    631 		/*
    632 		 * Get station address from the EEPROM.
    633 		 */
    634 		for (i = 0; i < 3; i++) {
    635 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    636 			eaddr[(i * 2) + 0] = val & 0xff;
    637 			eaddr[(i * 2) + 1] = val >> 8;
    638 		}
    639 	}
    640 
    641 	aprint_normal("%s: Ethernet address %s\n",
    642 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    643 
    644 
    645 	/* Allocate DMA'able memory for the TX ring */
    646 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
    647 		    RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
    648 		    1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    649 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    650 		    sc->sc_dev.dv_xname, error);
    651 		goto fail_0;
    652 	}
    653 
    654 	/* Load the map for the TX ring. */
    655 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    656 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
    657 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    658 		    BUS_DMA_NOWAIT)) != 0) {
    659 		aprint_error("%s: can't map tx list, error = %d\n",
    660 		    sc->sc_dev.dv_xname, error);
    661 	  	goto fail_1;
    662 	}
    663 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
    664 
    665 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
    666 		    RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    667 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    668 		aprint_error("%s: can't create tx list map, error = %d\n",
    669 		    sc->sc_dev.dv_xname, error);
    670 		goto fail_2;
    671 	}
    672 
    673 
    674 	if ((error = bus_dmamap_load(sc->sc_dmat,
    675 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    676 		    RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    677 		aprint_error("%s: can't load tx list, error = %d\n",
    678 		    sc->sc_dev.dv_xname, error);
    679 		goto fail_3;
    680 	}
    681 
    682 	/* Create DMA maps for TX buffers */
    683 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
    684 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * RTK_NTXSEGS,
    685 		    RTK_NTXSEGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
    686 		    &sc->rtk_ldata.rtk_tx_dmamap[i]);
    687 		if (error) {
    688 			aprint_error("%s: can't create DMA map for TX\n",
    689 			    sc->sc_dev.dv_xname);
    690 			goto fail_4;
    691 		}
    692 	}
    693 
    694 	/* Allocate DMA'able memory for the RX ring */
    695         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    696 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    697 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    698 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    699 		    sc->sc_dev.dv_xname, error);
    700 		goto fail_4;
    701 	}
    702 
    703 	/* Load the map for the RX ring. */
    704 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    705 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    706 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    707 		    BUS_DMA_NOWAIT)) != 0) {
    708 		aprint_error("%s: can't map rx list, error = %d\n",
    709 		    sc->sc_dev.dv_xname, error);
    710 		goto fail_5;
    711 	}
    712 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
    713 
    714 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    715 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    716 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    717 		aprint_error("%s: can't create rx list map, error = %d\n",
    718 		    sc->sc_dev.dv_xname, error);
    719 		goto fail_6;
    720 	}
    721 
    722 	if ((error = bus_dmamap_load(sc->sc_dmat,
    723 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    724 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    725 		aprint_error("%s: can't load rx list, error = %d\n",
    726 		    sc->sc_dev.dv_xname, error);
    727 		goto fail_7;
    728 	}
    729 
    730 	/* Create DMA maps for RX buffers */
    731 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    732 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    733 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
    734 		if (error) {
    735 			aprint_error("%s: can't create DMA map for RX\n",
    736 			    sc->sc_dev.dv_xname);
    737 			goto fail_8;
    738 		}
    739 	}
    740 
    741 	/*
    742 	 * Record interface as attached. From here, we should not fail.
    743 	 */
    744 	sc->sc_flags |= RTK_ATTACHED;
    745 
    746 	ifp = &sc->ethercom.ec_if;
    747 	ifp->if_softc = sc;
    748 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    749 	ifp->if_mtu = ETHERMTU;
    750 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    751 	ifp->if_ioctl = re_ioctl;
    752 	sc->ethercom.ec_capabilities |=
    753 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    754 	ifp->if_start = re_start;
    755 	ifp->if_stop = re_stop;
    756 	ifp->if_capabilities |=
    757 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    758 	ifp->if_watchdog = re_watchdog;
    759 	ifp->if_init = re_init;
    760 	if (sc->rtk_type == RTK_8169)
    761 		ifp->if_baudrate = 1000000000;
    762 	else
    763 		ifp->if_baudrate = 100000000;
    764 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    765 	ifp->if_capenable = ifp->if_capabilities;
    766 	IFQ_SET_READY(&ifp->if_snd);
    767 
    768 	callout_init(&sc->rtk_tick_ch);
    769 
    770 	/* Do MII setup */
    771 	sc->mii.mii_ifp = ifp;
    772 	sc->mii.mii_readreg = re_miibus_readreg;
    773 	sc->mii.mii_writereg = re_miibus_writereg;
    774 	sc->mii.mii_statchg = re_miibus_statchg;
    775 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    776 	    re_ifmedia_sts);
    777 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    778 	    MII_OFFSET_ANY, 0);
    779 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    780 
    781 	/*
    782 	 * Call MI attach routine.
    783 	 */
    784 	if_attach(ifp);
    785 	ether_ifattach(ifp, eaddr);
    786 
    787 
    788 	/*
    789 	 * Make sure the interface is shutdown during reboot.
    790 	 */
    791 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    792 	if (sc->sc_sdhook == NULL)
    793 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    794 		    sc->sc_dev.dv_xname);
    795 	/*
    796 	 * Add a suspend hook to make sure we come back up after a
    797 	 * resume.
    798 	 */
    799 	sc->sc_powerhook = powerhook_establish(re_power, sc);
    800 	if (sc->sc_powerhook == NULL)
    801 		aprint_error("%s: WARNING: unable to establish power hook\n",
    802 		    sc->sc_dev.dv_xname);
    803 
    804 
    805 	return;
    806 
    807 fail_8:
    808 	/* Destroy DMA maps for RX buffers. */
    809 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    810 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    811 			bus_dmamap_destroy(sc->sc_dmat,
    812 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    813 
    814 	/* Free DMA'able memory for the RX ring. */
    815 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    816 fail_7:
    817 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    818 fail_6:
    819 	bus_dmamem_unmap(sc->sc_dmat,
    820 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    821 fail_5:
    822 	bus_dmamem_free(sc->sc_dmat,
    823 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    824 
    825 fail_4:
    826 	/* Destroy DMA maps for TX buffers. */
    827 	for (i = 0; i < RTK_TX_DESC_CNT; i++)
    828 		if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
    829 			bus_dmamap_destroy(sc->sc_dmat,
    830 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
    831 
    832 	/* Free DMA'able memory for the TX ring. */
    833 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    834 fail_3:
    835 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    836 fail_2:
    837 	bus_dmamem_unmap(sc->sc_dmat,
    838 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
    839 fail_1:
    840 	bus_dmamem_free(sc->sc_dmat,
    841 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    842 fail_0:
    843 	return;
    844 }
    845 
    846 
    847 /*
    848  * re_activate:
    849  *     Handle device activation/deactivation requests.
    850  */
    851 int
    852 re_activate(struct device *self, enum devact act)
    853 {
    854 	struct rtk_softc *sc = (void *) self;
    855 	int s, error = 0;
    856 
    857 	s = splnet();
    858 	switch (act) {
    859 	case DVACT_ACTIVATE:
    860 		error = EOPNOTSUPP;
    861 		break;
    862 	case DVACT_DEACTIVATE:
    863 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    864 		if_deactivate(&sc->ethercom.ec_if);
    865 		break;
    866 	}
    867 	splx(s);
    868 
    869 	return error;
    870 }
    871 
    872 /*
    873  * re_detach:
    874  *     Detach a rtk interface.
    875  */
    876 int
    877 re_detach(struct rtk_softc *sc)
    878 {
    879 	struct ifnet *ifp = &sc->ethercom.ec_if;
    880 	int i;
    881 
    882 	/*
    883 	 * Succeed now if there isn't any work to do.
    884 	 */
    885 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    886 		return 0;
    887 
    888 	/* Unhook our tick handler. */
    889 	callout_stop(&sc->rtk_tick_ch);
    890 
    891 	/* Detach all PHYs. */
    892 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    893 
    894 	/* Delete all remaining media. */
    895 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    896 
    897 	ether_ifdetach(ifp);
    898 	if_detach(ifp);
    899 
    900 	/* XXX undo re_allocmem() */
    901 
    902 	/* Destroy DMA maps for RX buffers. */
    903 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    904 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    905 			bus_dmamap_destroy(sc->sc_dmat,
    906 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    907 
    908 	/* Free DMA'able memory for the RX ring. */
    909 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    910 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    911 	bus_dmamem_unmap(sc->sc_dmat,
    912 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    913 	bus_dmamem_free(sc->sc_dmat,
    914 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    915 
    916 	/* Destroy DMA maps for TX buffers. */
    917 	for (i = 0; i < RTK_TX_DESC_CNT; i++)
    918 		if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
    919 			bus_dmamap_destroy(sc->sc_dmat,
    920 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
    921 
    922 	/* Free DMA'able memory for the TX ring. */
    923 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    924 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    925 	bus_dmamem_unmap(sc->sc_dmat,
    926 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
    927 	bus_dmamem_free(sc->sc_dmat,
    928 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    929 
    930 
    931 	shutdownhook_disestablish(sc->sc_sdhook);
    932 	powerhook_disestablish(sc->sc_powerhook);
    933 
    934 	return 0;
    935 }
    936 
    937 /*
    938  * re_enable:
    939  *     Enable the RTL81X9 chip.
    940  */
    941 static int
    942 re_enable(struct rtk_softc *sc)
    943 {
    944 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    945 		if ((*sc->sc_enable)(sc) != 0) {
    946 			aprint_error("%s: device enable failed\n",
    947 			    sc->sc_dev.dv_xname);
    948 			return EIO;
    949 		}
    950 		sc->sc_flags |= RTK_ENABLED;
    951 	}
    952 	return 0;
    953 }
    954 
    955 /*
    956  * re_disable:
    957  *     Disable the RTL81X9 chip.
    958  */
    959 static void
    960 re_disable(struct rtk_softc *sc)
    961 {
    962 
    963 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    964 		(*sc->sc_disable)(sc);
    965 		sc->sc_flags &= ~RTK_ENABLED;
    966 	}
    967 }
    968 
    969 /*
    970  * re_power:
    971  *     Power management (suspend/resume) hook.
    972  */
    973 void
    974 re_power(int why, void *arg)
    975 {
    976 	struct rtk_softc *sc = (void *) arg;
    977 	struct ifnet *ifp = &sc->ethercom.ec_if;
    978 	int s;
    979 
    980 	s = splnet();
    981 	switch (why) {
    982 	case PWR_SUSPEND:
    983 	case PWR_STANDBY:
    984 		re_stop(ifp, 0);
    985 		if (sc->sc_power != NULL)
    986 			(*sc->sc_power)(sc, why);
    987 		break;
    988 	case PWR_RESUME:
    989 		if (ifp->if_flags & IFF_UP) {
    990 			if (sc->sc_power != NULL)
    991 				(*sc->sc_power)(sc, why);
    992 			re_init(ifp);
    993 		}
    994 		break;
    995 	case PWR_SOFTSUSPEND:
    996 	case PWR_SOFTSTANDBY:
    997 	case PWR_SOFTRESUME:
    998 		break;
    999 	}
   1000 	splx(s);
   1001 }
   1002 
   1003 
   1004 static int
   1005 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1006 {
   1007 	struct mbuf		*n = NULL;
   1008 	bus_dmamap_t		map;
   1009 	struct rtk_desc		*d;
   1010 	u_int32_t		cmdstat;
   1011 	int			error;
   1012 
   1013 	if (m == NULL) {
   1014 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1015 		if (n == NULL)
   1016 			return ENOBUFS;
   1017 		m = n;
   1018 
   1019 		MCLGET(m, M_DONTWAIT);
   1020 		if (!(m->m_flags & M_EXT)) {
   1021 			m_freem(m);
   1022 			return ENOBUFS;
   1023 		}
   1024 	} else
   1025 		m->m_data = m->m_ext.ext_buf;
   1026 
   1027 	/*
   1028 	 * Initialize mbuf length fields and fixup
   1029 	 * alignment so that the frame payload is
   1030 	 * longword aligned.
   1031 	 */
   1032 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1033 	m_adj(m, RTK_ETHER_ALIGN);
   1034 
   1035 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
   1036 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1037 
   1038 	if (error)
   1039 		goto out;
   1040 
   1041 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1042 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1043 		goto out;
   1044 
   1045 	cmdstat = map->dm_segs[0].ds_len;
   1046 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1047 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1048 	cmdstat |= RTK_TDESC_CMD_SOF;
   1049 	if (idx == (RTK_RX_DESC_CNT - 1))
   1050 		cmdstat |= RTK_TDESC_CMD_EOR;
   1051 	d->rtk_cmdstat = htole32(cmdstat);
   1052 
   1053 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1054 
   1055 
   1056 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
   1057 	    htole32(RTK_RDESC_CMD_OWN);
   1058 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1059 
   1060 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
   1061 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
   1062 	    BUS_DMASYNC_PREREAD);
   1063 
   1064 	return 0;
   1065 out:
   1066 	if (n != NULL)
   1067 		m_freem(n);
   1068 	return ENOMEM;
   1069 }
   1070 
   1071 static int
   1072 re_tx_list_init(struct rtk_softc *sc)
   1073 {
   1074 	memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
   1075 	memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
   1076 	    (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
   1077 
   1078 	bus_dmamap_sync(sc->sc_dmat,
   1079 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1080 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1081 	sc->rtk_ldata.rtk_tx_prodidx = 0;
   1082 	sc->rtk_ldata.rtk_tx_considx = 0;
   1083 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
   1084 
   1085 	return 0;
   1086 }
   1087 
   1088 static int
   1089 re_rx_list_init(struct rtk_softc *sc)
   1090 {
   1091 	int			i;
   1092 
   1093 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1094 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1095 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1096 
   1097 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1098 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1099 			return ENOBUFS;
   1100 	}
   1101 
   1102 	/* Flush the RX descriptors */
   1103 
   1104 	bus_dmamap_sync(sc->sc_dmat,
   1105 	    sc->rtk_ldata.rtk_rx_list_map,
   1106 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1107 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1108 
   1109 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1110 	sc->rtk_head = sc->rtk_tail = NULL;
   1111 
   1112 	return 0;
   1113 }
   1114 
   1115 /*
   1116  * RX handler for C+ and 8169. For the gigE chips, we support
   1117  * the reception of jumbo frames that have been fragmented
   1118  * across multiple 2K mbuf cluster buffers.
   1119  */
   1120 static void
   1121 re_rxeof(struct rtk_softc *sc)
   1122 {
   1123 	struct mbuf		*m;
   1124 	struct ifnet		*ifp;
   1125 	int			i, total_len;
   1126 	struct rtk_desc		*cur_rx;
   1127 	u_int32_t		rxstat, rxvlan;
   1128 
   1129 	ifp = &sc->ethercom.ec_if;
   1130 	i = sc->rtk_ldata.rtk_rx_prodidx;
   1131 
   1132 	/* Invalidate the descriptor memory */
   1133 
   1134 	bus_dmamap_sync(sc->sc_dmat,
   1135 	    sc->rtk_ldata.rtk_rx_list_map,
   1136 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1137 	    BUS_DMASYNC_POSTREAD);
   1138 
   1139 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
   1140 
   1141 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1142 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1143 		total_len = RTK_RXBYTES(cur_rx);
   1144 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1145 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1146 
   1147 		/* Invalidate the RX mbuf and unload its map */
   1148 
   1149 		bus_dmamap_sync(sc->sc_dmat,
   1150 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1151 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1152 		    BUS_DMASYNC_POSTWRITE);
   1153 		bus_dmamap_unload(sc->sc_dmat,
   1154 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1155 
   1156 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
   1157 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1158 			if (sc->rtk_head == NULL)
   1159 				sc->rtk_head = sc->rtk_tail = m;
   1160 			else {
   1161 				m->m_flags &= ~M_PKTHDR;
   1162 				sc->rtk_tail->m_next = m;
   1163 				sc->rtk_tail = m;
   1164 			}
   1165 			re_newbuf(sc, i, NULL);
   1166 			RTK_DESC_INC(i);
   1167 			continue;
   1168 		}
   1169 
   1170 		/*
   1171 		 * NOTE: for the 8139C+, the frame length field
   1172 		 * is always 12 bits in size, but for the gigE chips,
   1173 		 * it is 13 bits (since the max RX frame length is 16K).
   1174 		 * Unfortunately, all 32 bits in the status word
   1175 		 * were already used, so to make room for the extra
   1176 		 * length bit, RealTek took out the 'frame alignment
   1177 		 * error' bit and shifted the other status bits
   1178 		 * over one slot. The OWN, EOR, FS and LS bits are
   1179 		 * still in the same places. We have already extracted
   1180 		 * the frame length and checked the OWN bit, so rather
   1181 		 * than using an alternate bit mapping, we shift the
   1182 		 * status bits one space to the right so we can evaluate
   1183 		 * them using the 8169 status as though it was in the
   1184 		 * same format as that of the 8139C+.
   1185 		 */
   1186 		if (sc->rtk_type == RTK_8169)
   1187 			rxstat >>= 1;
   1188 
   1189 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
   1190 			ifp->if_ierrors++;
   1191 			/*
   1192 			 * If this is part of a multi-fragment packet,
   1193 			 * discard all the pieces.
   1194 			 */
   1195 			if (sc->rtk_head != NULL) {
   1196 				m_freem(sc->rtk_head);
   1197 				sc->rtk_head = sc->rtk_tail = NULL;
   1198 			}
   1199 			re_newbuf(sc, i, m);
   1200 			RTK_DESC_INC(i);
   1201 			continue;
   1202 		}
   1203 
   1204 		/*
   1205 		 * If allocating a replacement mbuf fails,
   1206 		 * reload the current one.
   1207 		 */
   1208 
   1209 		if (re_newbuf(sc, i, NULL)) {
   1210 			ifp->if_ierrors++;
   1211 			if (sc->rtk_head != NULL) {
   1212 				m_freem(sc->rtk_head);
   1213 				sc->rtk_head = sc->rtk_tail = NULL;
   1214 			}
   1215 			re_newbuf(sc, i, m);
   1216 			RTK_DESC_INC(i);
   1217 			continue;
   1218 		}
   1219 
   1220 		RTK_DESC_INC(i);
   1221 
   1222 		if (sc->rtk_head != NULL) {
   1223 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1224 			/*
   1225 			 * Special case: if there's 4 bytes or less
   1226 			 * in this buffer, the mbuf can be discarded:
   1227 			 * the last 4 bytes is the CRC, which we don't
   1228 			 * care about anyway.
   1229 			 */
   1230 			if (m->m_len <= ETHER_CRC_LEN) {
   1231 				sc->rtk_tail->m_len -=
   1232 				    (ETHER_CRC_LEN - m->m_len);
   1233 				m_freem(m);
   1234 			} else {
   1235 				m->m_len -= ETHER_CRC_LEN;
   1236 				m->m_flags &= ~M_PKTHDR;
   1237 				sc->rtk_tail->m_next = m;
   1238 			}
   1239 			m = sc->rtk_head;
   1240 			sc->rtk_head = sc->rtk_tail = NULL;
   1241 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1242 		} else
   1243 			m->m_pkthdr.len = m->m_len =
   1244 			    (total_len - ETHER_CRC_LEN);
   1245 
   1246 		ifp->if_ipackets++;
   1247 		m->m_pkthdr.rcvif = ifp;
   1248 
   1249 		/* Do RX checksumming if enabled */
   1250 
   1251 		if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
   1252 
   1253 			/* Check IP header checksum */
   1254 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1255 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1256 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1257 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1258 		}
   1259 
   1260 		/* Check TCP/UDP checksum */
   1261 		if (RTK_TCPPKT(rxstat) &&
   1262 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
   1263 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1264 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1265 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1266 		}
   1267 		if (RTK_UDPPKT(rxstat) &&
   1268 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
   1269 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1270 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1271 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1272 		}
   1273 
   1274 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1275 			VLAN_INPUT_TAG(ifp, m,
   1276 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
   1277 			     continue);
   1278 		}
   1279 #if NBPFILTER > 0
   1280 		if (ifp->if_bpf)
   1281 			bpf_mtap(ifp->if_bpf, m);
   1282 #endif
   1283 		(*ifp->if_input)(ifp, m);
   1284 	}
   1285 
   1286 	/* Flush the RX DMA ring */
   1287 
   1288 	bus_dmamap_sync(sc->sc_dmat,
   1289 	    sc->rtk_ldata.rtk_rx_list_map,
   1290 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1291 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1292 
   1293 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1294 
   1295 	return;
   1296 }
   1297 
   1298 static void
   1299 re_txeof(struct rtk_softc *sc)
   1300 {
   1301 	struct ifnet		*ifp;
   1302 	u_int32_t		txstat;
   1303 	int			idx;
   1304 
   1305 	ifp = &sc->ethercom.ec_if;
   1306 	idx = sc->rtk_ldata.rtk_tx_considx;
   1307 
   1308 	/* Invalidate the TX descriptor list */
   1309 
   1310 	bus_dmamap_sync(sc->sc_dmat,
   1311 	    sc->rtk_ldata.rtk_tx_list_map,
   1312 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1313 	    BUS_DMASYNC_POSTREAD);
   1314 
   1315 	while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
   1316 
   1317 		txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
   1318 		if (txstat & RTK_TDESC_CMD_OWN)
   1319 			break;
   1320 
   1321 		/*
   1322 		 * We only stash mbufs in the last descriptor
   1323 		 * in a fragment chain, which also happens to
   1324 		 * be the only place where the TX status bits
   1325 		 * are valid.
   1326 		 */
   1327 
   1328 		if (txstat & RTK_TDESC_CMD_EOF) {
   1329 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
   1330 			sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
   1331 			bus_dmamap_unload(sc->sc_dmat,
   1332 			    sc->rtk_ldata.rtk_tx_dmamap[idx]);
   1333 			if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
   1334 			    RTK_TDESC_STAT_COLCNT))
   1335 				ifp->if_collisions++;
   1336 			if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1337 				ifp->if_oerrors++;
   1338 			else
   1339 				ifp->if_opackets++;
   1340 		}
   1341 		sc->rtk_ldata.rtk_tx_free++;
   1342 		RTK_DESC_INC(idx);
   1343 	}
   1344 
   1345 	/* No changes made to the TX ring, so no flush needed */
   1346 
   1347 	if (idx != sc->rtk_ldata.rtk_tx_considx) {
   1348 		sc->rtk_ldata.rtk_tx_considx = idx;
   1349 		ifp->if_flags &= ~IFF_OACTIVE;
   1350 		ifp->if_timer = 0;
   1351 	}
   1352 
   1353 	/*
   1354 	 * If not all descriptors have been released reaped yet,
   1355 	 * reload the timer so that we will eventually get another
   1356 	 * interrupt that will cause us to re-enter this routine.
   1357 	 * This is done in case the transmitter has gone idle.
   1358 	 */
   1359 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
   1360 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1361 
   1362 	return;
   1363 }
   1364 
   1365 /*
   1366  * Stop all chip I/O so that the kernel's probe routines don't
   1367  * get confused by errant DMAs when rebooting.
   1368  */
   1369 static void
   1370 re_shutdown(void *vsc)
   1371 
   1372 {
   1373 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1374 
   1375 	re_stop(&sc->ethercom.ec_if, 0);
   1376 }
   1377 
   1378 
   1379 static void
   1380 re_tick(void *xsc)
   1381 {
   1382 	struct rtk_softc	*sc = xsc;
   1383 	int s;
   1384 
   1385 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1386 	s = splnet();
   1387 
   1388 	mii_tick(&sc->mii);
   1389 	splx(s);
   1390 
   1391 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1392 }
   1393 
   1394 #ifdef DEVICE_POLLING
   1395 static void
   1396 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1397 {
   1398 	struct rtk_softc *sc = ifp->if_softc;
   1399 
   1400 	RTK_LOCK(sc);
   1401 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1402 		ether_poll_deregister(ifp);
   1403 		cmd = POLL_DEREGISTER;
   1404 	}
   1405 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1406 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1407 		goto done;
   1408 	}
   1409 
   1410 	sc->rxcycles = count;
   1411 	re_rxeof(sc);
   1412 	re_txeof(sc);
   1413 
   1414 	if (ifp->if_snd.ifq_head != NULL)
   1415 		(*ifp->if_start)(ifp);
   1416 
   1417 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1418 		u_int16_t       status;
   1419 
   1420 		status = CSR_READ_2(sc, RTK_ISR);
   1421 		if (status == 0xffff)
   1422 			goto done;
   1423 		if (status)
   1424 			CSR_WRITE_2(sc, RTK_ISR, status);
   1425 
   1426 		/*
   1427 		 * XXX check behaviour on receiver stalls.
   1428 		 */
   1429 
   1430 		if (status & RTK_ISR_SYSTEM_ERR) {
   1431 			re_reset(sc);
   1432 			re_init(sc);
   1433 		}
   1434 	}
   1435 done:
   1436 	RTK_UNLOCK(sc);
   1437 }
   1438 #endif /* DEVICE_POLLING */
   1439 
   1440 int
   1441 re_intr(void *arg)
   1442 {
   1443 	struct rtk_softc	*sc = arg;
   1444 	struct ifnet		*ifp;
   1445 	u_int16_t		status;
   1446 	int			handled = 0;
   1447 
   1448 	ifp = &sc->ethercom.ec_if;
   1449 
   1450 	if (!(ifp->if_flags & IFF_UP))
   1451 		return 0;
   1452 
   1453 #ifdef DEVICE_POLLING
   1454 	if (ifp->if_flags & IFF_POLLING)
   1455 		goto done;
   1456 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1457 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1458 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1459 		re_poll(ifp, 0, 1);
   1460 		goto done;
   1461 	}
   1462 #endif /* DEVICE_POLLING */
   1463 
   1464 	for (;;) {
   1465 
   1466 		status = CSR_READ_2(sc, RTK_ISR);
   1467 		/* If the card has gone away the read returns 0xffff. */
   1468 		if (status == 0xffff)
   1469 			break;
   1470 		if (status) {
   1471 			handled = 1;
   1472 			CSR_WRITE_2(sc, RTK_ISR, status);
   1473 		}
   1474 
   1475 		if ((status & RTK_INTRS_CPLUS) == 0)
   1476 			break;
   1477 
   1478 		if ((status & RTK_ISR_RX_OK) ||
   1479 		    (status & RTK_ISR_RX_ERR))
   1480 			re_rxeof(sc);
   1481 
   1482 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1483 		    (status & RTK_ISR_TX_ERR) ||
   1484 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1485 			re_txeof(sc);
   1486 
   1487 		if (status & RTK_ISR_SYSTEM_ERR) {
   1488 			re_reset(sc);
   1489 			re_init(ifp);
   1490 		}
   1491 
   1492 		if (status & RTK_ISR_LINKCHG) {
   1493 			callout_stop(&sc->rtk_tick_ch);
   1494 			re_tick(sc);
   1495 		}
   1496 	}
   1497 
   1498 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1499 		if (ifp->if_snd.ifq_head != NULL)
   1500 			(*ifp->if_start)(ifp);
   1501 
   1502 #ifdef DEVICE_POLLING
   1503 done:
   1504 #endif
   1505 
   1506 	return handled;
   1507 }
   1508 
   1509 static int
   1510 re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
   1511 {
   1512 	bus_dmamap_t		map;
   1513 	int			error, i, curidx;
   1514 	struct m_tag		*mtag;
   1515 	struct rtk_desc		*d;
   1516 	u_int32_t		cmdstat, rtk_flags;
   1517 
   1518 	if (sc->rtk_ldata.rtk_tx_free <= 4)
   1519 		return EFBIG;
   1520 
   1521 	/*
   1522 	 * Set up checksum offload. Note: checksum offload bits must
   1523 	 * appear in all descriptors of a multi-descriptor transmit
   1524 	 * attempt. (This is according to testing done with an 8169
   1525 	 * chip. I'm not sure if this is a requirement or a bug.)
   1526 	 */
   1527 
   1528 	rtk_flags = 0;
   1529 
   1530 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1531 		rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1532 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1533 		rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1534 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1535 		rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1536 
   1537 	map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
   1538 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1539 	    m_head, BUS_DMA_NOWAIT);
   1540 
   1541 	if (error) {
   1542 		aprint_error("%s: can't map mbuf (error %d)\n",
   1543 		    sc->sc_dev.dv_xname, error);
   1544 		return ENOBUFS;
   1545 	}
   1546 
   1547 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
   1548 		return ENOBUFS;
   1549 	/*
   1550 	 * Map the segment array into descriptors. Note that we set the
   1551 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1552 	 * they really only have meaning in the TX case. (In the RX case,
   1553 	 * it's the chip that tells us where packets begin and end.)
   1554 	 * We also keep track of the end of the ring and set the
   1555 	 * end-of-ring bits as needed, and we set the ownership bits
   1556 	 * in all except the very first descriptor. (The caller will
   1557 	 * set this descriptor later when it start transmission or
   1558 	 * reception.)
   1559 	 */
   1560 	i = 0;
   1561 	curidx = *idx;
   1562 	while (1) {
   1563 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1564 		if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1565 			return ENOBUFS;
   1566 
   1567 		cmdstat = map->dm_segs[i].ds_len;
   1568 		d->rtk_bufaddr_lo =
   1569 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
   1570 		d->rtk_bufaddr_hi =
   1571 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
   1572 		if (i == 0)
   1573 			cmdstat |= RTK_TDESC_CMD_SOF;
   1574 		else
   1575 			cmdstat |= RTK_TDESC_CMD_OWN;
   1576 		if (curidx == (RTK_RX_DESC_CNT - 1))
   1577 			cmdstat |= RTK_TDESC_CMD_EOR;
   1578 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1579 		i++;
   1580 		if (i == map->dm_nsegs)
   1581 			break;
   1582 		RTK_DESC_INC(curidx);
   1583 	}
   1584 
   1585 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1586 
   1587 	/*
   1588 	 * Insure that the map for this transmission
   1589 	 * is placed at the array index of the last descriptor
   1590 	 * in this chain.
   1591 	 */
   1592 	sc->rtk_ldata.rtk_tx_dmamap[*idx] =
   1593 	    sc->rtk_ldata.rtk_tx_dmamap[curidx];
   1594 	sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
   1595 	sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
   1596 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1597 
   1598 	/*
   1599 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1600 	 * appear in the first descriptor of a multi-descriptor
   1601 	 * transmission attempt.
   1602 	 */
   1603 
   1604 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head)) != NULL) {
   1605 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
   1606 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1607 		    RTK_TDESC_VLANCTL_TAG);
   1608 	}
   1609 
   1610 	/* Transfer ownership of packet to the chip. */
   1611 
   1612 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
   1613 	    htole32(RTK_TDESC_CMD_OWN);
   1614 	if (*idx != curidx)
   1615 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
   1616 		    htole32(RTK_TDESC_CMD_OWN);
   1617 
   1618 	RTK_DESC_INC(curidx);
   1619 	*idx = curidx;
   1620 
   1621 	return 0;
   1622 }
   1623 
   1624 /*
   1625  * Main transmit routine for C+ and gigE NICs.
   1626  */
   1627 
   1628 static void
   1629 re_start(struct ifnet *ifp)
   1630 {
   1631 	struct rtk_softc	*sc;
   1632 	struct mbuf		*m_head = NULL;
   1633 	int			idx;
   1634 
   1635 	sc = ifp->if_softc;
   1636 
   1637 	idx = sc->rtk_ldata.rtk_tx_prodidx;
   1638 	while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
   1639 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1640 		if (m_head == NULL)
   1641 			break;
   1642 
   1643 		if (re_encap(sc, m_head, &idx)) {
   1644 			IF_PREPEND(&ifp->if_snd, m_head);
   1645 			ifp->if_flags |= IFF_OACTIVE;
   1646 			break;
   1647 		}
   1648 #if NBPFILTER > 0
   1649 		/*
   1650 		 * If there's a BPF listener, bounce a copy of this frame
   1651 		 * to him.
   1652 		 */
   1653 		if (ifp->if_bpf)
   1654 			bpf_mtap(ifp->if_bpf, m_head);
   1655 #endif
   1656 	}
   1657 
   1658 	/* Flush the TX descriptors */
   1659 
   1660 	bus_dmamap_sync(sc->sc_dmat,
   1661 	    sc->rtk_ldata.rtk_tx_list_map,
   1662 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1663 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1664 
   1665 	sc->rtk_ldata.rtk_tx_prodidx = idx;
   1666 
   1667 	/*
   1668 	 * RealTek put the TX poll request register in a different
   1669 	 * location on the 8169 gigE chip. I don't know why.
   1670 	 */
   1671 
   1672 	if (sc->rtk_type == RTK_8169)
   1673 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1674 	else
   1675 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
   1676 
   1677 	/*
   1678 	 * Use the countdown timer for interrupt moderation.
   1679 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1680 	 * countdown timer, which will begin counting until it hits
   1681 	 * the value in the TIMERINT register, and then trigger an
   1682 	 * interrupt. Each time we write to the TIMERCNT register,
   1683 	 * the timer count is reset to 0.
   1684 	 */
   1685 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1686 
   1687 	/*
   1688 	 * Set a timeout in case the chip goes out to lunch.
   1689 	 */
   1690 	ifp->if_timer = 5;
   1691 
   1692 	return;
   1693 }
   1694 
   1695 static int
   1696 re_init(struct ifnet *ifp)
   1697 {
   1698 	struct rtk_softc	*sc = ifp->if_softc;
   1699 	u_int32_t		rxcfg = 0;
   1700 	u_int32_t		reg;
   1701 	int error;
   1702 
   1703 	if ((error = re_enable(sc)) != 0)
   1704 		goto out;
   1705 
   1706 	/*
   1707 	 * Cancel pending I/O and free all RX/TX buffers.
   1708 	 */
   1709 	re_stop(ifp, 0);
   1710 
   1711 	/*
   1712 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1713 	 * RX checksum offload. We must configure the C+ register
   1714 	 * before all others.
   1715 	 */
   1716 	reg = 0;
   1717 
   1718 	/*
   1719 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1720 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1721 	 * So far, it works.
   1722 	 */
   1723 
   1724 	/*
   1725 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1726 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1727 	 */
   1728 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1729 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1730 
   1731 	if (1)  {/* not for 8169S ? */
   1732 		reg |= RTK_CPLUSCMD_VLANSTRIP |
   1733 		    (ifp->if_capenable &
   1734 		    (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
   1735 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1736 	}
   1737 
   1738 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1739 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1740 
   1741 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1742 	if (sc->rtk_type == RTK_8169)
   1743 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1744 
   1745 	DELAY(10000);
   1746 
   1747 	/*
   1748 	 * Init our MAC address.  Even though the chipset
   1749 	 * documentation doesn't mention it, we need to enter "Config
   1750 	 * register write enable" mode to modify the ID registers.
   1751 	 */
   1752 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1753 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
   1754 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
   1755 	reg = 0;
   1756 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
   1757 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
   1758 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1759 
   1760 	/*
   1761 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1762 	 */
   1763 	re_rx_list_init(sc);
   1764 	re_tx_list_init(sc);
   1765 
   1766 	/*
   1767 	 * Enable transmit and receive.
   1768 	 */
   1769 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1770 
   1771 	/*
   1772 	 * Set the initial TX and RX configuration.
   1773 	 */
   1774 	if (sc->rtk_testmode) {
   1775 		if (sc->rtk_type == RTK_8169)
   1776 			CSR_WRITE_4(sc, RTK_TXCFG,
   1777 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1778 		else
   1779 			CSR_WRITE_4(sc, RTK_TXCFG,
   1780 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1781 	} else
   1782 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1783 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1784 
   1785 	/* Set the individual bit to receive frames for this host only. */
   1786 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1787 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1788 
   1789 	/* If we want promiscuous mode, set the allframes bit. */
   1790 	if (ifp->if_flags & IFF_PROMISC)
   1791 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1792 	else
   1793 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1794 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1795 
   1796 	/*
   1797 	 * Set capture broadcast bit to capture broadcast frames.
   1798 	 */
   1799 	if (ifp->if_flags & IFF_BROADCAST)
   1800 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1801 	else
   1802 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1803 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1804 
   1805 	/*
   1806 	 * Program the multicast filter, if necessary.
   1807 	 */
   1808 	rtk_setmulti(sc);
   1809 
   1810 #ifdef DEVICE_POLLING
   1811 	/*
   1812 	 * Disable interrupts if we are polling.
   1813 	 */
   1814 	if (ifp->if_flags & IFF_POLLING)
   1815 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1816 	else	/* otherwise ... */
   1817 #endif /* DEVICE_POLLING */
   1818 	/*
   1819 	 * Enable interrupts.
   1820 	 */
   1821 	if (sc->rtk_testmode)
   1822 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1823 	else
   1824 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1825 
   1826 	/* Start RX/TX process. */
   1827 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1828 #ifdef notdef
   1829 	/* Enable receiver and transmitter. */
   1830 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1831 #endif
   1832 	/*
   1833 	 * Load the addresses of the RX and TX lists into the chip.
   1834 	 */
   1835 
   1836 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1837 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
   1838 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1839 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
   1840 
   1841 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1842 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
   1843 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1844 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
   1845 
   1846 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1847 
   1848 	/*
   1849 	 * Initialize the timer interrupt register so that
   1850 	 * a timer interrupt will be generated once the timer
   1851 	 * reaches a certain number of ticks. The timer is
   1852 	 * reloaded on each transmit. This gives us TX interrupt
   1853 	 * moderation, which dramatically improves TX frame rate.
   1854 	 */
   1855 
   1856 	if (sc->rtk_type == RTK_8169)
   1857 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1858 	else
   1859 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1860 
   1861 	/*
   1862 	 * For 8169 gigE NICs, set the max allowed RX packet
   1863 	 * size so we can receive jumbo frames.
   1864 	 */
   1865 	if (sc->rtk_type == RTK_8169)
   1866 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1867 
   1868 	if (sc->rtk_testmode)
   1869 		return 0;
   1870 
   1871 	mii_mediachg(&sc->mii);
   1872 
   1873 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1874 
   1875 	ifp->if_flags |= IFF_RUNNING;
   1876 	ifp->if_flags &= ~IFF_OACTIVE;
   1877 
   1878 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1879 
   1880 out:
   1881 	if (error) {
   1882 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1883 		ifp->if_timer = 0;
   1884 		aprint_error("%s: interface not running\n",
   1885 		    sc->sc_dev.dv_xname);
   1886 	}
   1887 
   1888 	return error;
   1889 
   1890 }
   1891 
   1892 /*
   1893  * Set media options.
   1894  */
   1895 static int
   1896 re_ifmedia_upd(struct ifnet *ifp)
   1897 {
   1898 	struct rtk_softc	*sc;
   1899 
   1900 	sc = ifp->if_softc;
   1901 
   1902 	return mii_mediachg(&sc->mii);
   1903 }
   1904 
   1905 /*
   1906  * Report current media status.
   1907  */
   1908 static void
   1909 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1910 {
   1911 	struct rtk_softc	*sc;
   1912 
   1913 	sc = ifp->if_softc;
   1914 
   1915 	mii_pollstat(&sc->mii);
   1916 	ifmr->ifm_active = sc->mii.mii_media_active;
   1917 	ifmr->ifm_status = sc->mii.mii_media_status;
   1918 
   1919 	return;
   1920 }
   1921 
   1922 static int
   1923 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1924 {
   1925 	struct rtk_softc	*sc = ifp->if_softc;
   1926 	struct ifreq		*ifr = (struct ifreq *) data;
   1927 	int			s, error = 0;
   1928 
   1929 	s = splnet();
   1930 
   1931 	switch (command) {
   1932 	case SIOCSIFMTU:
   1933 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   1934 			error = EINVAL;
   1935 		ifp->if_mtu = ifr->ifr_mtu;
   1936 		break;
   1937 	case SIOCGIFMEDIA:
   1938 	case SIOCSIFMEDIA:
   1939 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1940 		break;
   1941 	default:
   1942 		error = ether_ioctl(ifp, command, data);
   1943 		if (error == ENETRESET) {
   1944 			if (ifp->if_flags & IFF_RUNNING)
   1945 				rtk_setmulti(sc);
   1946 			error = 0;
   1947 		}
   1948 		break;
   1949 	}
   1950 
   1951 	splx(s);
   1952 
   1953 	return error;
   1954 }
   1955 
   1956 static void
   1957 re_watchdog(struct ifnet *ifp)
   1958 {
   1959 	struct rtk_softc	*sc;
   1960 	int			s;
   1961 
   1962 	sc = ifp->if_softc;
   1963 	s = splnet();
   1964 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1965 	ifp->if_oerrors++;
   1966 
   1967 	re_txeof(sc);
   1968 	re_rxeof(sc);
   1969 
   1970 	re_init(ifp);
   1971 
   1972 	splx(s);
   1973 }
   1974 
   1975 /*
   1976  * Stop the adapter and free any mbufs allocated to the
   1977  * RX and TX lists.
   1978  */
   1979 static void
   1980 re_stop(struct ifnet *ifp, int disable)
   1981 {
   1982 	register int		i;
   1983 	struct rtk_softc *sc = ifp->if_softc;
   1984 
   1985 	callout_stop(&sc->rtk_tick_ch);
   1986 
   1987 #ifdef DEVICE_POLLING
   1988 	ether_poll_deregister(ifp);
   1989 #endif /* DEVICE_POLLING */
   1990 
   1991 	mii_down(&sc->mii);
   1992 
   1993 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   1994 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1995 
   1996 	if (sc->rtk_head != NULL) {
   1997 		m_freem(sc->rtk_head);
   1998 		sc->rtk_head = sc->rtk_tail = NULL;
   1999 	}
   2000 
   2001 	/* Free the TX list buffers. */
   2002 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
   2003 		if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
   2004 			bus_dmamap_unload(sc->sc_dmat,
   2005 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
   2006 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
   2007 			sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
   2008 		}
   2009 	}
   2010 
   2011 	/* Free the RX list buffers. */
   2012 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2013 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   2014 			bus_dmamap_unload(sc->sc_dmat,
   2015 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   2016 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   2017 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   2018 		}
   2019 	}
   2020 
   2021 	if (disable)
   2022 		re_disable(sc);
   2023 
   2024 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2025 	ifp->if_timer = 0;
   2026 
   2027 	return;
   2028 }
   2029