rtl81x9.c revision 1.6 1 1.6 tsutsui /* $NetBSD: rtl81x9.c,v 1.6 2000/05/01 15:08:55 tsutsui Exp $ */
2 1.1 haya
3 1.1 haya /*
4 1.1 haya * Copyright (c) 1997, 1998
5 1.1 haya * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 1.1 haya *
7 1.1 haya * Redistribution and use in source and binary forms, with or without
8 1.1 haya * modification, are permitted provided that the following conditions
9 1.1 haya * are met:
10 1.1 haya * 1. Redistributions of source code must retain the above copyright
11 1.1 haya * notice, this list of conditions and the following disclaimer.
12 1.1 haya * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 haya * notice, this list of conditions and the following disclaimer in the
14 1.1 haya * documentation and/or other materials provided with the distribution.
15 1.1 haya * 3. All advertising materials mentioning features or use of this software
16 1.1 haya * must display the following acknowledgement:
17 1.1 haya * This product includes software developed by Bill Paul.
18 1.1 haya * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 haya * may be used to endorse or promote products derived from this software
20 1.1 haya * without specific prior written permission.
21 1.1 haya *
22 1.1 haya * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 haya * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 haya * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 haya * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 haya * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 haya * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 haya * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 haya * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 haya * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 haya * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 haya * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 haya *
34 1.1 haya * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 1.1 haya */
36 1.1 haya
37 1.1 haya /*
38 1.1 haya * RealTek 8129/8139 PCI NIC driver
39 1.1 haya *
40 1.1 haya * Supports several extremely cheap PCI 10/100 adapters based on
41 1.1 haya * the RealTek chipset. Datasheets can be obtained from
42 1.1 haya * www.realtek.com.tw.
43 1.1 haya *
44 1.1 haya * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 1.1 haya * Electrical Engineering Department
46 1.1 haya * Columbia University, New York City
47 1.1 haya */
48 1.1 haya
49 1.1 haya /*
50 1.1 haya * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 1.1 haya * probably the worst PCI ethernet controller ever made, with the possible
52 1.1 haya * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 1.1 haya * DMA, but it has a terrible interface that nullifies any performance
54 1.1 haya * gains that bus-master DMA usually offers.
55 1.1 haya *
56 1.1 haya * For transmission, the chip offers a series of four TX descriptor
57 1.1 haya * registers. Each transmit frame must be in a contiguous buffer, aligned
58 1.1 haya * on a longword (32-bit) boundary. This means we almost always have to
59 1.1 haya * do mbuf copies in order to transmit a frame, except in the unlikely
60 1.1 haya * case where a) the packet fits into a single mbuf, and b) the packet
61 1.1 haya * is 32-bit aligned within the mbuf's data area. The presence of only
62 1.1 haya * four descriptor registers means that we can never have more than four
63 1.1 haya * packets queued for transmission at any one time.
64 1.1 haya *
65 1.1 haya * Reception is not much better. The driver has to allocate a single large
66 1.1 haya * buffer area (up to 64K in size) into which the chip will DMA received
67 1.1 haya * frames. Because we don't know where within this region received packets
68 1.1 haya * will begin or end, we have no choice but to copy data from the buffer
69 1.1 haya * area into mbufs in order to pass the packets up to the higher protocol
70 1.1 haya * levels.
71 1.1 haya *
72 1.1 haya * It's impossible given this rotten design to really achieve decent
73 1.1 haya * performance at 100Mbps, unless you happen to have a 400Mhz PII or
74 1.1 haya * some equally overmuscled CPU to drive it.
75 1.1 haya *
76 1.1 haya * On the bright side, the 8139 does have a built-in PHY, although
77 1.1 haya * rather than using an MDIO serial interface like most other NICs, the
78 1.1 haya * PHY registers are directly accessible through the 8139's register
79 1.1 haya * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 1.1 haya * filter.
81 1.1 haya *
82 1.1 haya * The 8129 chip is an older version of the 8139 that uses an external PHY
83 1.1 haya * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 1.1 haya * the 8139 lets you directly access the on-board PHY registers. We need
85 1.1 haya * to select which interface to use depending on the chip type.
86 1.1 haya */
87 1.1 haya
88 1.1 haya #include "opt_inet.h"
89 1.1 haya #include "opt_ns.h"
90 1.1 haya #include "bpfilter.h"
91 1.1 haya #include "rnd.h"
92 1.1 haya
93 1.1 haya #include <sys/param.h>
94 1.1 haya #include <sys/systm.h>
95 1.1 haya #include <sys/callout.h>
96 1.1 haya #include <sys/device.h>
97 1.1 haya #include <sys/sockio.h>
98 1.1 haya #include <sys/mbuf.h>
99 1.1 haya #include <sys/malloc.h>
100 1.1 haya #include <sys/kernel.h>
101 1.1 haya #include <sys/socket.h>
102 1.1 haya
103 1.1 haya #include <net/if.h>
104 1.1 haya #include <net/if_arp.h>
105 1.1 haya #include <net/if_ether.h>
106 1.1 haya #include <net/if_dl.h>
107 1.1 haya #include <net/if_media.h>
108 1.1 haya #ifdef INET
109 1.1 haya #include <netinet/in.h>
110 1.1 haya #include <netinet/if_inarp.h>
111 1.1 haya #endif
112 1.1 haya #ifdef NS
113 1.1 haya #include <netns/ns.h>
114 1.1 haya #include <netns/ns_if.h>
115 1.1 haya #endif
116 1.1 haya
117 1.1 haya #if NBPFILTER > 0
118 1.1 haya #include <net/bpf.h>
119 1.1 haya #endif
120 1.1 haya #if NRND > 0
121 1.1 haya #include <sys/rnd.h>
122 1.1 haya #endif
123 1.1 haya
124 1.1 haya #include <machine/bus.h>
125 1.3 tsutsui #include <machine/endian.h>
126 1.1 haya
127 1.1 haya #include <dev/mii/mii.h>
128 1.1 haya #include <dev/mii/miivar.h>
129 1.1 haya
130 1.1 haya /*
131 1.1 haya * Default to using PIO access for this driver. On SMP systems,
132 1.1 haya * there appear to be problems with memory mapped mode: it looks like
133 1.1 haya * doing too many memory mapped access back to back in rapid succession
134 1.1 haya * can hang the bus. I'm inclined to blame this on crummy design/construction
135 1.1 haya * on the part of RealTek. Memory mapped mode does appear to work on
136 1.1 haya * uniprocessor systems though.
137 1.1 haya */
138 1.1 haya
139 1.1 haya #include <dev/ic/rtl81x9reg.h>
140 1.4 tsutsui #include <dev/ic/rtl81x9var.h>
141 1.1 haya
142 1.1 haya #if defined DEBUG
143 1.1 haya #define STATIC
144 1.1 haya #else
145 1.1 haya #define STATIC static
146 1.1 haya #endif
147 1.1 haya
148 1.6 tsutsui STATIC void rl_reset __P((struct rl_softc *));
149 1.1 haya STATIC void rl_rxeof __P((struct rl_softc *));
150 1.1 haya STATIC void rl_txeof __P((struct rl_softc *));
151 1.1 haya STATIC void rl_start __P((struct ifnet *));
152 1.1 haya STATIC int rl_ioctl __P((struct ifnet *, u_long, caddr_t));
153 1.1 haya STATIC void rl_init __P((void *));
154 1.1 haya STATIC void rl_stop __P((struct rl_softc *));
155 1.1 haya STATIC void rl_watchdog __P((struct ifnet *));
156 1.1 haya STATIC void rl_shutdown __P((void *));
157 1.1 haya STATIC int rl_ifmedia_upd __P((struct ifnet *));
158 1.1 haya STATIC void rl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
159 1.1 haya
160 1.6 tsutsui STATIC u_int16_t rl_read_eeprom __P((struct rl_softc *, int, int));
161 1.5 tsutsui STATIC void rl_eeprom_putbyte __P((struct rl_softc *, int, int));
162 1.1 haya STATIC void rl_mii_sync __P((struct rl_softc *));
163 1.1 haya STATIC void rl_mii_send __P((struct rl_softc *, u_int32_t, int));
164 1.1 haya STATIC int rl_mii_readreg __P((struct rl_softc *, struct rl_mii_frame *));
165 1.1 haya STATIC int rl_mii_writereg __P((struct rl_softc *, struct rl_mii_frame *));
166 1.1 haya
167 1.1 haya STATIC int rl_phy_readreg __P((struct device *, int, int));
168 1.1 haya STATIC void rl_phy_writereg __P((struct device *, int, int, int));
169 1.1 haya STATIC void rl_phy_statchg __P((struct device *));
170 1.1 haya STATIC void rl_tick __P((void *));
171 1.1 haya
172 1.1 haya STATIC u_int8_t rl_calchash __P((caddr_t));
173 1.1 haya STATIC void rl_setmulti __P((struct rl_softc *));
174 1.1 haya STATIC int rl_list_tx_init __P((struct rl_softc *));
175 1.1 haya
176 1.1 haya STATIC int rl_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
177 1.1 haya
178 1.1 haya
179 1.1 haya #define EE_SET(x) \
180 1.1 haya CSR_WRITE_1(sc, RL_EECMD, \
181 1.5 tsutsui CSR_READ_1(sc, RL_EECMD) | (x))
182 1.1 haya
183 1.1 haya #define EE_CLR(x) \
184 1.1 haya CSR_WRITE_1(sc, RL_EECMD, \
185 1.5 tsutsui CSR_READ_1(sc, RL_EECMD) & ~(x))
186 1.1 haya
187 1.1 haya /*
188 1.1 haya * Send a read command and address to the EEPROM, check for ACK.
189 1.1 haya */
190 1.5 tsutsui STATIC void rl_eeprom_putbyte(sc, addr, addr_len)
191 1.1 haya struct rl_softc *sc;
192 1.5 tsutsui int addr, addr_len;
193 1.1 haya {
194 1.2 tsutsui int d, i;
195 1.1 haya
196 1.5 tsutsui d = (RL_EECMD_READ << addr_len) | addr;
197 1.1 haya
198 1.1 haya /*
199 1.1 haya * Feed in each bit and stobe the clock.
200 1.1 haya */
201 1.5 tsutsui for (i = RL_EECMD_LEN + addr_len - 1; i >= 0; i--) {
202 1.5 tsutsui if (d & (1 << i)) {
203 1.1 haya EE_SET(RL_EE_DATAIN);
204 1.1 haya } else {
205 1.1 haya EE_CLR(RL_EE_DATAIN);
206 1.1 haya }
207 1.1 haya DELAY(100);
208 1.1 haya EE_SET(RL_EE_CLK);
209 1.1 haya DELAY(150);
210 1.1 haya EE_CLR(RL_EE_CLK);
211 1.1 haya DELAY(100);
212 1.1 haya }
213 1.1 haya }
214 1.1 haya
215 1.1 haya /*
216 1.1 haya * Read a word of data stored in the EEPROM at address 'addr.'
217 1.1 haya */
218 1.5 tsutsui u_int16_t rl_read_eeprom(sc, addr, addr_len)
219 1.1 haya struct rl_softc *sc;
220 1.5 tsutsui int addr, addr_len;
221 1.1 haya {
222 1.5 tsutsui u_int16_t word = 0;
223 1.2 tsutsui int i;
224 1.1 haya
225 1.1 haya /* Enter EEPROM access mode. */
226 1.1 haya CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
227 1.1 haya
228 1.1 haya /*
229 1.1 haya * Send address of word we want to read.
230 1.1 haya */
231 1.5 tsutsui rl_eeprom_putbyte(sc, addr, addr_len);
232 1.1 haya
233 1.1 haya CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
234 1.1 haya
235 1.1 haya /*
236 1.1 haya * Start reading bits from EEPROM.
237 1.1 haya */
238 1.5 tsutsui for (i = 15; i >= 0; i--) {
239 1.1 haya EE_SET(RL_EE_CLK);
240 1.1 haya DELAY(100);
241 1.1 haya if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
242 1.5 tsutsui word |= (1 << i);
243 1.1 haya EE_CLR(RL_EE_CLK);
244 1.1 haya DELAY(100);
245 1.1 haya }
246 1.1 haya
247 1.1 haya /* Turn off EEPROM access mode. */
248 1.1 haya CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
249 1.1 haya
250 1.5 tsutsui return (word);
251 1.1 haya }
252 1.1 haya
253 1.1 haya /*
254 1.1 haya * MII access routines are provided for the 8129, which
255 1.1 haya * doesn't have a built-in PHY. For the 8139, we fake things
256 1.1 haya * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
257 1.1 haya * direct access PHY registers.
258 1.1 haya */
259 1.1 haya #define MII_SET(x) \
260 1.1 haya CSR_WRITE_1(sc, RL_MII, \
261 1.6 tsutsui CSR_READ_1(sc, RL_MII) | (x))
262 1.1 haya
263 1.1 haya #define MII_CLR(x) \
264 1.1 haya CSR_WRITE_1(sc, RL_MII, \
265 1.6 tsutsui CSR_READ_1(sc, RL_MII) & ~(x))
266 1.1 haya
267 1.1 haya /*
268 1.1 haya * Sync the PHYs by setting data bit and strobing the clock 32 times.
269 1.1 haya */
270 1.1 haya STATIC void rl_mii_sync(sc)
271 1.1 haya struct rl_softc *sc;
272 1.1 haya {
273 1.2 tsutsui int i;
274 1.1 haya
275 1.1 haya MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
276 1.1 haya
277 1.1 haya for (i = 0; i < 32; i++) {
278 1.1 haya MII_SET(RL_MII_CLK);
279 1.1 haya DELAY(1);
280 1.1 haya MII_CLR(RL_MII_CLK);
281 1.1 haya DELAY(1);
282 1.1 haya }
283 1.1 haya
284 1.1 haya return;
285 1.1 haya }
286 1.1 haya
287 1.1 haya /*
288 1.1 haya * Clock a series of bits through the MII.
289 1.1 haya */
290 1.1 haya STATIC void rl_mii_send(sc, bits, cnt)
291 1.1 haya struct rl_softc *sc;
292 1.1 haya u_int32_t bits;
293 1.1 haya int cnt;
294 1.1 haya {
295 1.1 haya int i;
296 1.1 haya
297 1.1 haya MII_CLR(RL_MII_CLK);
298 1.1 haya
299 1.1 haya for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
300 1.1 haya if (bits & i) {
301 1.1 haya MII_SET(RL_MII_DATAOUT);
302 1.1 haya } else {
303 1.1 haya MII_CLR(RL_MII_DATAOUT);
304 1.1 haya }
305 1.1 haya DELAY(1);
306 1.1 haya MII_CLR(RL_MII_CLK);
307 1.1 haya DELAY(1);
308 1.1 haya MII_SET(RL_MII_CLK);
309 1.1 haya }
310 1.1 haya }
311 1.1 haya
312 1.1 haya /*
313 1.1 haya * Read an PHY register through the MII.
314 1.1 haya */
315 1.1 haya STATIC int rl_mii_readreg(sc, frame)
316 1.1 haya struct rl_softc *sc;
317 1.1 haya struct rl_mii_frame *frame;
318 1.1 haya
319 1.1 haya {
320 1.1 haya int i, ack, s;
321 1.1 haya
322 1.1 haya s = splimp();
323 1.1 haya
324 1.1 haya /*
325 1.1 haya * Set up frame for RX.
326 1.1 haya */
327 1.1 haya frame->mii_stdelim = RL_MII_STARTDELIM;
328 1.1 haya frame->mii_opcode = RL_MII_READOP;
329 1.1 haya frame->mii_turnaround = 0;
330 1.1 haya frame->mii_data = 0;
331 1.1 haya
332 1.1 haya CSR_WRITE_2(sc, RL_MII, 0);
333 1.1 haya
334 1.1 haya /*
335 1.1 haya * Turn on data xmit.
336 1.1 haya */
337 1.1 haya MII_SET(RL_MII_DIR);
338 1.1 haya
339 1.1 haya rl_mii_sync(sc);
340 1.1 haya
341 1.1 haya /*
342 1.1 haya * Send command/address info.
343 1.1 haya */
344 1.1 haya rl_mii_send(sc, frame->mii_stdelim, 2);
345 1.1 haya rl_mii_send(sc, frame->mii_opcode, 2);
346 1.1 haya rl_mii_send(sc, frame->mii_phyaddr, 5);
347 1.1 haya rl_mii_send(sc, frame->mii_regaddr, 5);
348 1.1 haya
349 1.1 haya /* Idle bit */
350 1.1 haya MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
351 1.1 haya DELAY(1);
352 1.1 haya MII_SET(RL_MII_CLK);
353 1.1 haya DELAY(1);
354 1.1 haya
355 1.1 haya /* Turn off xmit. */
356 1.1 haya MII_CLR(RL_MII_DIR);
357 1.1 haya
358 1.1 haya /* Check for ack */
359 1.1 haya MII_CLR(RL_MII_CLK);
360 1.1 haya DELAY(1);
361 1.1 haya MII_SET(RL_MII_CLK);
362 1.1 haya DELAY(1);
363 1.1 haya ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
364 1.1 haya
365 1.1 haya /*
366 1.1 haya * Now try reading data bits. If the ack failed, we still
367 1.1 haya * need to clock through 16 cycles to keep the PHY(s) in sync.
368 1.1 haya */
369 1.1 haya if (ack) {
370 1.1 haya for(i = 0; i < 16; i++) {
371 1.1 haya MII_CLR(RL_MII_CLK);
372 1.1 haya DELAY(1);
373 1.1 haya MII_SET(RL_MII_CLK);
374 1.1 haya DELAY(1);
375 1.1 haya }
376 1.1 haya goto fail;
377 1.1 haya }
378 1.1 haya
379 1.1 haya for (i = 0x8000; i; i >>= 1) {
380 1.1 haya MII_CLR(RL_MII_CLK);
381 1.1 haya DELAY(1);
382 1.1 haya if (!ack) {
383 1.1 haya if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
384 1.1 haya frame->mii_data |= i;
385 1.1 haya DELAY(1);
386 1.1 haya }
387 1.1 haya MII_SET(RL_MII_CLK);
388 1.1 haya DELAY(1);
389 1.1 haya }
390 1.1 haya
391 1.1 haya fail:
392 1.1 haya
393 1.1 haya MII_CLR(RL_MII_CLK);
394 1.1 haya DELAY(1);
395 1.1 haya MII_SET(RL_MII_CLK);
396 1.1 haya DELAY(1);
397 1.1 haya
398 1.1 haya splx(s);
399 1.1 haya
400 1.1 haya if (ack)
401 1.1 haya return(1);
402 1.1 haya return(0);
403 1.1 haya }
404 1.1 haya
405 1.1 haya /*
406 1.1 haya * Write to a PHY register through the MII.
407 1.1 haya */
408 1.1 haya STATIC int rl_mii_writereg(sc, frame)
409 1.1 haya struct rl_softc *sc;
410 1.1 haya struct rl_mii_frame *frame;
411 1.1 haya
412 1.1 haya {
413 1.1 haya int s;
414 1.1 haya
415 1.1 haya s = splimp();
416 1.1 haya /*
417 1.1 haya * Set up frame for TX.
418 1.1 haya */
419 1.1 haya
420 1.1 haya frame->mii_stdelim = RL_MII_STARTDELIM;
421 1.1 haya frame->mii_opcode = RL_MII_WRITEOP;
422 1.1 haya frame->mii_turnaround = RL_MII_TURNAROUND;
423 1.1 haya
424 1.1 haya /*
425 1.1 haya * Turn on data output.
426 1.1 haya */
427 1.1 haya MII_SET(RL_MII_DIR);
428 1.1 haya
429 1.1 haya rl_mii_sync(sc);
430 1.1 haya
431 1.1 haya rl_mii_send(sc, frame->mii_stdelim, 2);
432 1.1 haya rl_mii_send(sc, frame->mii_opcode, 2);
433 1.1 haya rl_mii_send(sc, frame->mii_phyaddr, 5);
434 1.1 haya rl_mii_send(sc, frame->mii_regaddr, 5);
435 1.1 haya rl_mii_send(sc, frame->mii_turnaround, 2);
436 1.1 haya rl_mii_send(sc, frame->mii_data, 16);
437 1.1 haya
438 1.1 haya /* Idle bit. */
439 1.1 haya MII_SET(RL_MII_CLK);
440 1.1 haya DELAY(1);
441 1.1 haya MII_CLR(RL_MII_CLK);
442 1.1 haya DELAY(1);
443 1.1 haya
444 1.1 haya /*
445 1.1 haya * Turn off xmit.
446 1.1 haya */
447 1.1 haya MII_CLR(RL_MII_DIR);
448 1.1 haya
449 1.1 haya splx(s);
450 1.1 haya
451 1.1 haya return(0);
452 1.1 haya }
453 1.1 haya
454 1.1 haya STATIC int rl_phy_readreg(self, phy, reg)
455 1.1 haya struct device *self;
456 1.1 haya int phy, reg;
457 1.1 haya {
458 1.1 haya struct rl_softc *sc = (void *)self;
459 1.1 haya struct rl_mii_frame frame;
460 1.1 haya u_int16_t rval = 0;
461 1.1 haya u_int16_t rl8139_reg = 0;
462 1.1 haya
463 1.1 haya if (sc->rl_type == RL_8139) {
464 1.1 haya if (phy != 7)
465 1.1 haya return (0);
466 1.1 haya
467 1.1 haya switch(reg) {
468 1.1 haya case MII_BMCR:
469 1.1 haya rl8139_reg = RL_BMCR;
470 1.1 haya break;
471 1.1 haya case MII_BMSR:
472 1.1 haya rl8139_reg = RL_BMSR;
473 1.1 haya break;
474 1.1 haya case MII_ANAR:
475 1.1 haya rl8139_reg = RL_ANAR;
476 1.1 haya break;
477 1.1 haya case MII_ANLPAR:
478 1.1 haya rl8139_reg = RL_LPAR;
479 1.1 haya break;
480 1.1 haya default:
481 1.1 haya #if 0
482 1.1 haya printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
483 1.1 haya #endif
484 1.1 haya return(0);
485 1.1 haya }
486 1.1 haya rval = CSR_READ_2(sc, rl8139_reg);
487 1.1 haya return(rval);
488 1.1 haya }
489 1.1 haya
490 1.1 haya bzero((char *)&frame, sizeof(frame));
491 1.1 haya
492 1.1 haya frame.mii_phyaddr = phy;
493 1.1 haya frame.mii_regaddr = reg;
494 1.1 haya rl_mii_readreg(sc, &frame);
495 1.1 haya
496 1.1 haya return(frame.mii_data);
497 1.1 haya }
498 1.1 haya
499 1.1 haya STATIC void rl_phy_writereg(self, phy, reg, data)
500 1.1 haya struct device *self;
501 1.1 haya int phy, reg;
502 1.1 haya int data;
503 1.1 haya {
504 1.1 haya struct rl_softc *sc = (void *)self;
505 1.1 haya struct rl_mii_frame frame;
506 1.1 haya u_int16_t rl8139_reg = 0;
507 1.1 haya
508 1.1 haya if (sc->rl_type == RL_8139) {
509 1.1 haya if (phy != 7)
510 1.1 haya return;
511 1.1 haya
512 1.1 haya switch(reg) {
513 1.1 haya case MII_BMCR:
514 1.1 haya rl8139_reg = RL_BMCR;
515 1.1 haya break;
516 1.1 haya case MII_BMSR:
517 1.1 haya rl8139_reg = RL_BMSR;
518 1.1 haya break;
519 1.1 haya case MII_ANAR:
520 1.1 haya rl8139_reg = RL_ANAR;
521 1.1 haya break;
522 1.1 haya case MII_ANLPAR:
523 1.1 haya rl8139_reg = RL_LPAR;
524 1.1 haya break;
525 1.1 haya default:
526 1.1 haya #if 0
527 1.1 haya printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
528 1.1 haya #endif
529 1.1 haya return;
530 1.1 haya }
531 1.1 haya CSR_WRITE_2(sc, rl8139_reg, data);
532 1.1 haya return;
533 1.1 haya }
534 1.1 haya
535 1.1 haya bzero((char *)&frame, sizeof(frame));
536 1.1 haya
537 1.1 haya frame.mii_phyaddr = phy;
538 1.1 haya frame.mii_regaddr = reg;
539 1.1 haya frame.mii_data = data;
540 1.1 haya
541 1.1 haya rl_mii_writereg(sc, &frame);
542 1.1 haya
543 1.1 haya return;
544 1.1 haya }
545 1.1 haya
546 1.1 haya STATIC void
547 1.1 haya rl_phy_statchg(v)
548 1.1 haya struct device *v;
549 1.1 haya {
550 1.1 haya
551 1.1 haya /* Nothing to do. */
552 1.1 haya }
553 1.1 haya
554 1.1 haya /*
555 1.1 haya * Calculate CRC of a multicast group address, return the upper 6 bits.
556 1.1 haya */
557 1.1 haya STATIC u_int8_t rl_calchash(addr)
558 1.1 haya caddr_t addr;
559 1.1 haya {
560 1.1 haya u_int32_t crc, carry;
561 1.1 haya int i, j;
562 1.1 haya u_int8_t c;
563 1.1 haya
564 1.1 haya /* Compute CRC for the address value. */
565 1.1 haya crc = 0xFFFFFFFF; /* initial value */
566 1.1 haya
567 1.1 haya for (i = 0; i < 6; i++) {
568 1.1 haya c = *(addr + i);
569 1.1 haya for (j = 0; j < 8; j++) {
570 1.1 haya carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
571 1.1 haya crc <<= 1;
572 1.1 haya c >>= 1;
573 1.1 haya if (carry)
574 1.1 haya crc = (crc ^ 0x04c11db6) | carry;
575 1.1 haya }
576 1.1 haya }
577 1.1 haya
578 1.1 haya /* return the filter bit position */
579 1.1 haya return(crc >> 26);
580 1.1 haya }
581 1.1 haya
582 1.1 haya /*
583 1.1 haya * Program the 64-bit multicast hash filter.
584 1.1 haya */
585 1.1 haya STATIC void rl_setmulti(sc)
586 1.1 haya struct rl_softc *sc;
587 1.1 haya {
588 1.1 haya struct ifnet *ifp;
589 1.1 haya int h = 0;
590 1.1 haya u_int32_t hashes[2] = { 0, 0 };
591 1.1 haya u_int32_t rxfilt;
592 1.1 haya int mcnt = 0;
593 1.1 haya struct ether_multi *enm;
594 1.1 haya struct ether_multistep step;
595 1.1 haya
596 1.1 haya ifp = &sc->ethercom.ec_if;
597 1.1 haya
598 1.1 haya rxfilt = CSR_READ_4(sc, RL_RXCFG);
599 1.1 haya
600 1.1 haya if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
601 1.1 haya rxfilt |= RL_RXCFG_RX_MULTI;
602 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
603 1.1 haya CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
604 1.1 haya CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
605 1.1 haya return;
606 1.1 haya }
607 1.1 haya
608 1.1 haya /* first, zot all the existing hash bits */
609 1.1 haya CSR_WRITE_4(sc, RL_MAR0, 0);
610 1.1 haya CSR_WRITE_4(sc, RL_MAR4, 0);
611 1.1 haya
612 1.1 haya /* now program new ones */
613 1.1 haya ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
614 1.1 haya while (enm != NULL) {
615 1.4 tsutsui if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
616 1.4 tsutsui ETHER_ADDR_LEN) != 0)
617 1.4 tsutsui continue;
618 1.4 tsutsui
619 1.1 haya h = rl_calchash(enm->enm_addrlo);
620 1.1 haya if (h < 32)
621 1.1 haya hashes[0] |= (1 << h);
622 1.1 haya else
623 1.1 haya hashes[1] |= (1 << (h - 32));
624 1.1 haya mcnt++;
625 1.1 haya ETHER_NEXT_MULTI(step, enm);
626 1.1 haya }
627 1.1 haya
628 1.1 haya if (mcnt)
629 1.1 haya rxfilt |= RL_RXCFG_RX_MULTI;
630 1.1 haya else
631 1.1 haya rxfilt &= ~RL_RXCFG_RX_MULTI;
632 1.1 haya
633 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
634 1.1 haya CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
635 1.1 haya CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
636 1.1 haya
637 1.1 haya return;
638 1.1 haya }
639 1.1 haya
640 1.1 haya void rl_reset(sc)
641 1.1 haya struct rl_softc *sc;
642 1.1 haya {
643 1.2 tsutsui int i;
644 1.1 haya
645 1.1 haya CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
646 1.1 haya
647 1.1 haya for (i = 0; i < RL_TIMEOUT; i++) {
648 1.1 haya DELAY(10);
649 1.1 haya if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
650 1.1 haya break;
651 1.1 haya }
652 1.1 haya if (i == RL_TIMEOUT)
653 1.1 haya printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
654 1.1 haya
655 1.1 haya return;
656 1.1 haya }
657 1.1 haya
658 1.1 haya /*
659 1.1 haya * Attach the interface. Allocate softc structures, do ifmedia
660 1.1 haya * setup and ethernet/BPF attach.
661 1.1 haya */
662 1.1 haya void
663 1.6 tsutsui rl_attach(sc)
664 1.1 haya struct rl_softc *sc;
665 1.1 haya {
666 1.1 haya
667 1.1 haya struct ifnet *ifp;
668 1.6 tsutsui u_int16_t val;
669 1.6 tsutsui u_int8_t eaddr[ETHER_ADDR_LEN];
670 1.1 haya bus_dma_segment_t dmaseg;
671 1.1 haya int error,dmanseg;
672 1.6 tsutsui int i,addr_len;
673 1.1 haya
674 1.1 haya callout_init(&sc->rl_tick_ch);
675 1.1 haya
676 1.6 tsutsui /*
677 1.6 tsutsui * Check EEPROM type 9346 or 9356.
678 1.6 tsutsui */
679 1.6 tsutsui if (rl_read_eeprom(sc, RL_EE_ID, RL_EEADDR_LEN1) == 0x8129)
680 1.6 tsutsui addr_len = RL_EEADDR_LEN1;
681 1.6 tsutsui else
682 1.6 tsutsui addr_len = RL_EEADDR_LEN0;
683 1.6 tsutsui
684 1.6 tsutsui /*
685 1.6 tsutsui * Get station address.
686 1.6 tsutsui */
687 1.6 tsutsui val = rl_read_eeprom(sc, RL_EE_EADDR0, addr_len);
688 1.6 tsutsui eaddr[0] = val & 0xff;
689 1.6 tsutsui eaddr[1] = val >> 8;
690 1.6 tsutsui val = rl_read_eeprom(sc, RL_EE_EADDR1, addr_len);
691 1.6 tsutsui eaddr[2] = val & 0xff;
692 1.6 tsutsui eaddr[3] = val >> 8;
693 1.6 tsutsui val = rl_read_eeprom(sc, RL_EE_EADDR2, addr_len);
694 1.6 tsutsui eaddr[4] = val & 0xff;
695 1.6 tsutsui eaddr[5] = val >> 8;
696 1.6 tsutsui
697 1.1 haya if ((error = bus_dmamem_alloc(sc->sc_dmat,
698 1.1 haya RL_RXBUFLEN + 32, NBPG, 0, &dmaseg, 1, &dmanseg,
699 1.1 haya BUS_DMA_NOWAIT)) != 0) {
700 1.1 haya printf("%s: can't allocate recv buffer, error = %d\n",
701 1.1 haya sc->sc_dev.dv_xname, error);
702 1.1 haya goto fail;
703 1.1 haya }
704 1.1 haya
705 1.1 haya if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
706 1.1 haya RL_RXBUFLEN + 32, (caddr_t *)&sc->rl_cdata.rl_rx_buf,
707 1.1 haya BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
708 1.1 haya printf("%s: can't map recv buffer, error = %d\n",
709 1.1 haya sc->sc_dev.dv_xname, error);
710 1.1 haya goto fail;
711 1.1 haya }
712 1.1 haya
713 1.1 haya /* Leave a few bytes before the start of the RX ring buffer. */
714 1.1 haya sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
715 1.1 haya sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
716 1.1 haya
717 1.1 haya if ((error = bus_dmamap_create(sc->sc_dmat,
718 1.1 haya RL_RXBUFLEN + 32 - sizeof(u_int64_t), 1,
719 1.1 haya RL_RXBUFLEN + 32 - sizeof(u_int64_t), 0, BUS_DMA_NOWAIT,
720 1.1 haya &sc->recv_dmamap)) != 0) {
721 1.1 haya printf("%s: can't create recv buffer DMA map, error = %d\n",
722 1.1 haya sc->sc_dev.dv_xname, error);
723 1.1 haya goto fail;
724 1.1 haya }
725 1.1 haya
726 1.1 haya if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
727 1.1 haya sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN + 32 - sizeof(u_int64_t), NULL,
728 1.1 haya BUS_DMA_NOWAIT)) != 0) {
729 1.1 haya printf("%s: can't load recv buffer DMA map, error = %d\n",
730 1.1 haya sc->sc_dev.dv_xname, error);
731 1.1 haya goto fail;
732 1.1 haya }
733 1.1 haya
734 1.1 haya for (i = 0; i < RL_TX_LIST_CNT; i++)
735 1.4 tsutsui if ((error = bus_dmamap_create(sc->sc_dmat,
736 1.6 tsutsui MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
737 1.4 tsutsui &sc->snd_dmamap[i])) != 0) {
738 1.4 tsutsui printf("%s: can't create snd buffer DMA map,"
739 1.4 tsutsui " error = %d\n", sc->sc_dev.dv_xname, error);
740 1.4 tsutsui goto fail;
741 1.5 tsutsui }
742 1.1 haya
743 1.6 tsutsui /* Reset the adapter. */
744 1.6 tsutsui rl_reset(sc);
745 1.6 tsutsui
746 1.6 tsutsui printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
747 1.6 tsutsui ether_sprintf(eaddr));
748 1.6 tsutsui
749 1.1 haya ifp = &sc->ethercom.ec_if;
750 1.1 haya ifp->if_softc = sc;
751 1.1 haya bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
752 1.1 haya ifp->if_mtu = ETHERMTU;
753 1.1 haya ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
754 1.1 haya ifp->if_ioctl = rl_ioctl;
755 1.1 haya #if 0
756 1.1 haya ifp->if_output = ether_output;
757 1.1 haya #endif
758 1.1 haya ifp->if_start = rl_start;
759 1.1 haya ifp->if_watchdog = rl_watchdog;
760 1.1 haya ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
761 1.1 haya
762 1.1 haya /*
763 1.1 haya * Do ifmedia setup.
764 1.1 haya */
765 1.1 haya sc->mii.mii_ifp = ifp;
766 1.1 haya sc->mii.mii_readreg = rl_phy_readreg;
767 1.1 haya sc->mii.mii_writereg = rl_phy_writereg;
768 1.1 haya sc->mii.mii_statchg = rl_phy_statchg;
769 1.1 haya ifmedia_init(&sc->mii.mii_media, 0, rl_ifmedia_upd, rl_ifmedia_sts);
770 1.1 haya mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
771 1.1 haya MII_PHY_ANY, MII_OFFSET_ANY, 0);
772 1.1 haya
773 1.1 haya /* Choose a default media. */
774 1.1 haya if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
775 1.1 haya ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE,
776 1.1 haya 0, NULL);
777 1.1 haya ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
778 1.1 haya } else {
779 1.1 haya ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
780 1.1 haya }
781 1.1 haya
782 1.1 haya /*
783 1.1 haya * Call MI attach routines.
784 1.1 haya */
785 1.1 haya if_attach(ifp);
786 1.1 haya ether_ifattach(ifp, eaddr);
787 1.1 haya
788 1.1 haya #if NBPFILTER > 0
789 1.1 haya bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
790 1.1 haya sizeof(struct ether_header));
791 1.1 haya #endif
792 1.1 haya shutdownhook_establish(rl_shutdown, sc);
793 1.1 haya
794 1.1 haya fail:
795 1.1 haya return;
796 1.1 haya }
797 1.1 haya
798 1.1 haya /*
799 1.1 haya * Initialize the transmit descriptors.
800 1.1 haya */
801 1.1 haya STATIC int rl_list_tx_init(sc)
802 1.1 haya struct rl_softc *sc;
803 1.1 haya {
804 1.1 haya struct rl_chain_data *cd;
805 1.1 haya int i;
806 1.1 haya
807 1.1 haya cd = &sc->rl_cdata;
808 1.1 haya for (i = 0; i < RL_TX_LIST_CNT; i++) {
809 1.1 haya cd->rl_tx_chain[i] = NULL;
810 1.1 haya CSR_WRITE_4(sc,
811 1.1 haya RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
812 1.1 haya }
813 1.1 haya
814 1.1 haya sc->rl_cdata.cur_tx = 0;
815 1.1 haya sc->rl_cdata.last_tx = 0;
816 1.1 haya
817 1.1 haya return(0);
818 1.1 haya }
819 1.1 haya
820 1.1 haya /*
821 1.1 haya * A frame has been uploaded: pass the resulting mbuf chain up to
822 1.1 haya * the higher level protocols.
823 1.1 haya *
824 1.1 haya * You know there's something wrong with a PCI bus-master chip design
825 1.1 haya * when you have to use m_devget().
826 1.1 haya *
827 1.1 haya * The receive operation is badly documented in the datasheet, so I'll
828 1.1 haya * attempt to document it here. The driver provides a buffer area and
829 1.1 haya * places its base address in the RX buffer start address register.
830 1.1 haya * The chip then begins copying frames into the RX buffer. Each frame
831 1.1 haya * is preceeded by a 32-bit RX status word which specifies the length
832 1.1 haya * of the frame and certain other status bits. Each frame (starting with
833 1.1 haya * the status word) is also 32-bit aligned. The frame length is in the
834 1.1 haya * first 16 bits of the status word; the lower 15 bits correspond with
835 1.1 haya * the 'rx status register' mentioned in the datasheet.
836 1.1 haya *
837 1.1 haya * Note: to make the Alpha happy, the frame payload needs to be aligned
838 1.1 haya * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
839 1.1 haya * the ring buffer starting at an address two bytes before the actual
840 1.1 haya * data location. We can then shave off the first two bytes using m_adj().
841 1.1 haya * The reason we do this is because m_devget() doesn't let us specify an
842 1.1 haya * offset into the mbuf storage space, so we have to artificially create
843 1.1 haya * one. The ring is allocated in such a way that there are a few unused
844 1.1 haya * bytes of space preceecing it so that it will be safe for us to do the
845 1.1 haya * 2-byte backstep even if reading from the ring at offset 0.
846 1.1 haya */
847 1.1 haya STATIC void rl_rxeof(sc)
848 1.1 haya struct rl_softc *sc;
849 1.1 haya {
850 1.1 haya struct ether_header *eh;
851 1.1 haya struct mbuf *m;
852 1.1 haya struct ifnet *ifp;
853 1.1 haya int total_len = 0;
854 1.1 haya u_int32_t rxstat;
855 1.1 haya caddr_t rxbufpos;
856 1.1 haya int wrap = 0;
857 1.1 haya u_int16_t cur_rx;
858 1.1 haya u_int16_t limit;
859 1.1 haya u_int16_t rx_bytes = 0, max_bytes;
860 1.1 haya
861 1.1 haya ifp = &sc->ethercom.ec_if;
862 1.1 haya
863 1.1 haya cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
864 1.1 haya
865 1.1 haya /* Do not try to read past this point. */
866 1.1 haya limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
867 1.1 haya
868 1.1 haya if (limit < cur_rx)
869 1.1 haya max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
870 1.1 haya else
871 1.1 haya max_bytes = limit - cur_rx;
872 1.1 haya
873 1.1 haya while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
874 1.1 haya rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
875 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
876 1.4 tsutsui sizeof(u_int32_t *), BUS_DMASYNC_POSTREAD);
877 1.3 tsutsui rxstat = le32toh(*(u_int32_t *)rxbufpos);
878 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
879 1.4 tsutsui sizeof(u_int32_t *), BUS_DMASYNC_PREREAD);
880 1.1 haya
881 1.1 haya /*
882 1.1 haya * Here's a totally undocumented fact for you. When the
883 1.1 haya * RealTek chip is in the process of copying a packet into
884 1.1 haya * RAM for you, the length will be 0xfff0. If you spot a
885 1.1 haya * packet header with this value, you need to stop. The
886 1.1 haya * datasheet makes absolutely no mention of this and
887 1.1 haya * RealTek should be shot for this.
888 1.1 haya */
889 1.1 haya if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
890 1.1 haya break;
891 1.1 haya
892 1.1 haya if (!(rxstat & RL_RXSTAT_RXOK)) {
893 1.1 haya ifp->if_ierrors++;
894 1.1 haya
895 1.1 haya /*
896 1.1 haya * submitted by:[netbsd-pcmcia:00484]
897 1.1 haya * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
898 1.1 haya * obtain from:
899 1.1 haya * FreeBSD if_rl.c rev 1.24->1.25
900 1.1 haya *
901 1.1 haya */
902 1.1 haya #if 0
903 1.1 haya if (rxstat & (RL_RXSTAT_BADSYM|RL_RXSTAT_RUNT|
904 1.1 haya RL_RXSTAT_GIANT|RL_RXSTAT_CRCERR|
905 1.1 haya RL_RXSTAT_ALIGNERR)) {
906 1.1 haya if (rxstat & (RL_RXSTAT_BADSYM|RL_RXSTAT_RUNT|
907 1.1 haya RL_RXSTAT_GIANT|RL_RXSTAT_CRCERR|
908 1.1 haya RL_RXSTAT_ALIGNERR)) {
909 1.1 haya CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB);
910 1.1 haya CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB|
911 1.1 haya RL_CMD_RX_ENB);
912 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
913 1.1 haya CSR_WRITE_4(sc, RL_RXADDR,
914 1.1 haya sc->recv_dmamap->dm_segs[0].ds_addr);
915 1.1 haya CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
916 1.1 haya cur_rx = 0;
917 1.1 haya }
918 1.1 haya break;
919 1.1 haya #else
920 1.1 haya rl_init(sc);
921 1.1 haya return;
922 1.1 haya #endif
923 1.1 haya }
924 1.1 haya
925 1.1 haya /* No errors; receive the packet. */
926 1.1 haya total_len = rxstat >> 16;
927 1.1 haya rx_bytes += total_len + 4;
928 1.1 haya
929 1.1 haya /*
930 1.1 haya * XXX The RealTek chip includes the CRC with every
931 1.1 haya * received frame, and there's no way to turn this
932 1.1 haya * behavior off (at least, I can't find anything in
933 1.1 haya * the manual that explains how to do it) so we have
934 1.1 haya * to trim off the CRC manually.
935 1.1 haya */
936 1.1 haya total_len -= ETHER_CRC_LEN;
937 1.1 haya
938 1.1 haya /*
939 1.1 haya * Avoid trying to read more bytes than we know
940 1.1 haya * the chip has prepared for us.
941 1.1 haya */
942 1.1 haya if (rx_bytes > max_bytes)
943 1.1 haya break;
944 1.1 haya
945 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
946 1.6 tsutsui cur_rx + sizeof(u_int32_t), total_len,
947 1.6 tsutsui BUS_DMASYNC_POSTREAD);
948 1.4 tsutsui
949 1.1 haya rxbufpos = sc->rl_cdata.rl_rx_buf +
950 1.1 haya ((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
951 1.1 haya
952 1.1 haya if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
953 1.1 haya rxbufpos = sc->rl_cdata.rl_rx_buf;
954 1.1 haya
955 1.1 haya wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
956 1.1 haya
957 1.1 haya if (total_len > wrap) {
958 1.1 haya m = m_devget(rxbufpos - RL_ETHER_ALIGN,
959 1.1 haya wrap + RL_ETHER_ALIGN, 0, ifp, NULL);
960 1.1 haya if (m == NULL) {
961 1.1 haya ifp->if_ierrors++;
962 1.1 haya printf("%s: out of mbufs, tried to "
963 1.6 tsutsui "copy %d bytes\n", sc->sc_dev.dv_xname,
964 1.6 tsutsui wrap);
965 1.1 haya }
966 1.1 haya else {
967 1.1 haya m_adj(m, RL_ETHER_ALIGN);
968 1.1 haya m_copyback(m, wrap, total_len - wrap,
969 1.1 haya sc->rl_cdata.rl_rx_buf);
970 1.1 haya }
971 1.1 haya cur_rx = (total_len - wrap + ETHER_CRC_LEN);
972 1.1 haya } else {
973 1.1 haya m = m_devget(rxbufpos - RL_ETHER_ALIGN,
974 1.1 haya total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
975 1.1 haya if (m == NULL) {
976 1.1 haya ifp->if_ierrors++;
977 1.1 haya printf("%s: out of mbufs, tried to "
978 1.6 tsutsui "copy %d bytes\n", sc->sc_dev.dv_xname,
979 1.6 tsutsui total_len);
980 1.1 haya } else
981 1.1 haya m_adj(m, RL_ETHER_ALIGN);
982 1.1 haya cur_rx += total_len + 4 + ETHER_CRC_LEN;
983 1.1 haya }
984 1.1 haya
985 1.1 haya /*
986 1.1 haya * Round up to 32-bit boundary.
987 1.1 haya */
988 1.1 haya cur_rx = (cur_rx + 3) & ~3;
989 1.1 haya CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
990 1.1 haya
991 1.1 haya if (m == NULL)
992 1.1 haya continue;
993 1.1 haya
994 1.1 haya eh = mtod(m, struct ether_header *);
995 1.1 haya ifp->if_ipackets++;
996 1.1 haya
997 1.1 haya #if NBPFILTER > 0
998 1.1 haya /*
999 1.1 haya * Handle BPF listeners. Let the BPF user see the packet, but
1000 1.1 haya * don't pass it up to the ether_input() layer unless it's
1001 1.1 haya * a broadcast packet, multicast packet, matches our ethernet
1002 1.1 haya * address or the interface is in promiscuous mode.
1003 1.1 haya */
1004 1.1 haya if (ifp->if_bpf) {
1005 1.1 haya bpf_mtap(ifp->if_bpf, m);
1006 1.4 tsutsui if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1007 1.4 tsutsui ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
1008 1.4 tsutsui memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
1009 1.4 tsutsui ETHER_ADDR_LEN) != 0) {
1010 1.1 haya m_freem(m);
1011 1.1 haya continue;
1012 1.1 haya }
1013 1.1 haya }
1014 1.1 haya #endif
1015 1.1 haya /* pass it on. */
1016 1.1 haya (*ifp->if_input)(ifp, m);
1017 1.4 tsutsui
1018 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1019 1.4 tsutsui cur_rx + sizeof(u_int32_t),
1020 1.4 tsutsui total_len, BUS_DMASYNC_PREREAD);
1021 1.1 haya }
1022 1.1 haya
1023 1.1 haya return;
1024 1.1 haya }
1025 1.1 haya
1026 1.1 haya /*
1027 1.1 haya * A frame was downloaded to the chip. It's safe for us to clean up
1028 1.1 haya * the list buffers.
1029 1.1 haya */
1030 1.1 haya STATIC void rl_txeof(sc)
1031 1.1 haya struct rl_softc *sc;
1032 1.1 haya {
1033 1.1 haya struct ifnet *ifp;
1034 1.1 haya u_int32_t txstat;
1035 1.1 haya
1036 1.1 haya ifp = &sc->ethercom.ec_if;
1037 1.1 haya
1038 1.1 haya /* Clear the timeout timer. */
1039 1.1 haya ifp->if_timer = 0;
1040 1.1 haya
1041 1.1 haya /*
1042 1.1 haya * Go through our tx list and free mbufs for those
1043 1.1 haya * frames that have been uploaded.
1044 1.1 haya */
1045 1.1 haya do {
1046 1.1 haya txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1047 1.1 haya if (!(txstat & (RL_TXSTAT_TX_OK|
1048 1.1 haya RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1049 1.1 haya break;
1050 1.1 haya
1051 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat,
1052 1.4 tsutsui sc->snd_dmamap[sc->rl_cdata.last_tx], 0,
1053 1.4 tsutsui sc->snd_dmamap[sc->rl_cdata.last_tx]->dm_mapsize,
1054 1.4 tsutsui BUS_DMASYNC_POSTWRITE);
1055 1.4 tsutsui bus_dmamap_unload(sc->sc_dmat,
1056 1.4 tsutsui sc->snd_dmamap[sc->rl_cdata.last_tx]);
1057 1.4 tsutsui m_freem(RL_LAST_TXMBUF(sc));
1058 1.4 tsutsui RL_LAST_TXMBUF(sc) = NULL;
1059 1.4 tsutsui
1060 1.1 haya ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1061 1.1 haya
1062 1.1 haya if (txstat & RL_TXSTAT_TX_OK)
1063 1.1 haya ifp->if_opackets++;
1064 1.1 haya else {
1065 1.1 haya ifp->if_oerrors++;
1066 1.1 haya if ((txstat & RL_TXSTAT_TXABRT) ||
1067 1.1 haya (txstat & RL_TXSTAT_OUTOFWIN))
1068 1.1 haya CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1069 1.1 haya }
1070 1.1 haya RL_INC(sc->rl_cdata.last_tx);
1071 1.1 haya ifp->if_flags &= ~IFF_OACTIVE;
1072 1.1 haya } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1073 1.1 haya
1074 1.1 haya return;
1075 1.1 haya }
1076 1.1 haya
1077 1.1 haya int rl_intr(arg)
1078 1.1 haya void *arg;
1079 1.1 haya {
1080 1.1 haya struct rl_softc *sc;
1081 1.1 haya struct ifnet *ifp;
1082 1.1 haya u_int16_t status;
1083 1.1 haya int handled = 0;
1084 1.1 haya
1085 1.1 haya sc = arg;
1086 1.1 haya ifp = &sc->ethercom.ec_if;
1087 1.1 haya
1088 1.1 haya /* Disable interrupts. */
1089 1.1 haya CSR_WRITE_2(sc, RL_IMR, 0x0000);
1090 1.1 haya
1091 1.1 haya for (;;) {
1092 1.1 haya
1093 1.1 haya status = CSR_READ_2(sc, RL_ISR);
1094 1.1 haya if (status)
1095 1.1 haya CSR_WRITE_2(sc, RL_ISR, status);
1096 1.1 haya
1097 1.1 haya handled = 1;
1098 1.1 haya
1099 1.1 haya if ((status & RL_INTRS) == 0)
1100 1.1 haya break;
1101 1.1 haya
1102 1.1 haya if (status & RL_ISR_RX_OK)
1103 1.1 haya rl_rxeof(sc);
1104 1.1 haya
1105 1.1 haya if (status & RL_ISR_RX_ERR)
1106 1.1 haya rl_rxeof(sc);
1107 1.1 haya
1108 1.1 haya if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1109 1.1 haya rl_txeof(sc);
1110 1.1 haya
1111 1.1 haya if (status & RL_ISR_SYSTEM_ERR) {
1112 1.1 haya rl_reset(sc);
1113 1.1 haya rl_init(sc);
1114 1.1 haya }
1115 1.1 haya
1116 1.1 haya }
1117 1.1 haya
1118 1.1 haya /* Re-enable interrupts. */
1119 1.1 haya CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1120 1.1 haya
1121 1.1 haya if (ifp->if_snd.ifq_head != NULL) {
1122 1.1 haya rl_start(ifp);
1123 1.1 haya }
1124 1.1 haya
1125 1.1 haya return (handled);
1126 1.1 haya }
1127 1.1 haya
1128 1.1 haya /*
1129 1.1 haya * Main transmit routine.
1130 1.1 haya */
1131 1.1 haya
1132 1.1 haya STATIC void rl_start(ifp)
1133 1.1 haya struct ifnet *ifp;
1134 1.1 haya {
1135 1.1 haya struct rl_softc *sc;
1136 1.4 tsutsui struct mbuf *m_head = NULL, *m_new;
1137 1.4 tsutsui int error, idx, len;
1138 1.1 haya
1139 1.1 haya sc = ifp->if_softc;
1140 1.1 haya
1141 1.1 haya while(RL_CUR_TXMBUF(sc) == NULL) {
1142 1.1 haya IF_DEQUEUE(&ifp->if_snd, m_head);
1143 1.1 haya if (m_head == NULL)
1144 1.1 haya break;
1145 1.1 haya
1146 1.4 tsutsui idx = sc->rl_cdata.cur_tx;
1147 1.4 tsutsui
1148 1.4 tsutsui /*
1149 1.4 tsutsui * Load the DMA map. If this fails, the packet didn't
1150 1.4 tsutsui * fit in one DMA segment, and we need to copy. Note,
1151 1.4 tsutsui * the packet must also be aligned.
1152 1.4 tsutsui */
1153 1.4 tsutsui if ((mtod(m_head, bus_addr_t) & 3) != 0 ||
1154 1.4 tsutsui bus_dmamap_load_mbuf(sc->sc_dmat, sc->snd_dmamap[idx],
1155 1.4 tsutsui m_head, BUS_DMA_NOWAIT) != 0) {
1156 1.4 tsutsui MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1157 1.4 tsutsui if (m_new == NULL) {
1158 1.4 tsutsui printf("%s: unable to allocate Tx mbuf\n",
1159 1.4 tsutsui sc->sc_dev.dv_xname);
1160 1.4 tsutsui IF_PREPEND(&ifp->if_snd, m_new);
1161 1.4 tsutsui break;
1162 1.4 tsutsui }
1163 1.4 tsutsui if (m_head->m_pkthdr.len > MHLEN) {
1164 1.4 tsutsui MCLGET(m_new, M_DONTWAIT);
1165 1.4 tsutsui if ((m_new->m_flags & M_EXT) == 0) {
1166 1.4 tsutsui printf("%s: unable to allocate Tx "
1167 1.4 tsutsui "cluster\n", sc->sc_dev.dv_xname);
1168 1.4 tsutsui m_freem(m_new);
1169 1.4 tsutsui IF_PREPEND(&ifp->if_snd, m_head);
1170 1.4 tsutsui break;
1171 1.4 tsutsui }
1172 1.4 tsutsui }
1173 1.4 tsutsui m_copydata(m_head, 0, m_head->m_pkthdr.len,
1174 1.4 tsutsui mtod(m_new, caddr_t));
1175 1.4 tsutsui m_new->m_pkthdr.len = m_new->m_len =
1176 1.4 tsutsui m_head->m_pkthdr.len;
1177 1.4 tsutsui m_freem(m_head);
1178 1.4 tsutsui m_head = m_new;
1179 1.4 tsutsui error = bus_dmamap_load_mbuf(sc->sc_dmat,
1180 1.4 tsutsui sc->snd_dmamap[idx], m_head, BUS_DMA_NOWAIT);
1181 1.4 tsutsui if (error) {
1182 1.4 tsutsui printf("%s: unable to load Tx buffer, "
1183 1.4 tsutsui "error = %d\n", sc->sc_dev.dv_xname, error);
1184 1.4 tsutsui IF_PREPEND(&ifp->if_snd, m_head);
1185 1.4 tsutsui break;
1186 1.4 tsutsui }
1187 1.4 tsutsui }
1188 1.4 tsutsui
1189 1.4 tsutsui RL_CUR_TXMBUF(sc) = m_head;
1190 1.1 haya
1191 1.1 haya #if NBPFILTER > 0
1192 1.1 haya /*
1193 1.1 haya * If there's a BPF listener, bounce a copy of this frame
1194 1.1 haya * to him.
1195 1.1 haya */
1196 1.1 haya if (ifp->if_bpf)
1197 1.1 haya bpf_mtap(ifp->if_bpf, RL_CUR_TXMBUF(sc));
1198 1.1 haya #endif
1199 1.1 haya /*
1200 1.1 haya * Transmit the frame.
1201 1.1 haya */
1202 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat,
1203 1.4 tsutsui sc->snd_dmamap[idx], 0, sc->snd_dmamap[idx]->dm_mapsize,
1204 1.4 tsutsui BUS_DMASYNC_PREWRITE);
1205 1.4 tsutsui
1206 1.4 tsutsui len = sc->snd_dmamap[idx]->dm_segs[0].ds_len;
1207 1.4 tsutsui if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1208 1.4 tsutsui len = (ETHER_MIN_LEN - ETHER_CRC_LEN);
1209 1.4 tsutsui
1210 1.1 haya CSR_WRITE_4(sc, RL_CUR_TXADDR(sc),
1211 1.4 tsutsui sc->snd_dmamap[idx]->dm_segs[0].ds_addr);
1212 1.4 tsutsui CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc), RL_TX_EARLYTHRESH | len);
1213 1.1 haya
1214 1.1 haya RL_INC(sc->rl_cdata.cur_tx);
1215 1.1 haya }
1216 1.1 haya
1217 1.1 haya /*
1218 1.1 haya * We broke out of the loop because all our TX slots are
1219 1.1 haya * full. Mark the NIC as busy until it drains some of the
1220 1.1 haya * packets from the queue.
1221 1.1 haya */
1222 1.1 haya if (RL_CUR_TXMBUF(sc) != NULL)
1223 1.1 haya ifp->if_flags |= IFF_OACTIVE;
1224 1.1 haya
1225 1.1 haya /*
1226 1.1 haya * Set a timeout in case the chip goes out to lunch.
1227 1.1 haya */
1228 1.1 haya ifp->if_timer = 5;
1229 1.1 haya
1230 1.1 haya return;
1231 1.1 haya }
1232 1.1 haya
1233 1.1 haya STATIC void rl_init(xsc)
1234 1.1 haya void *xsc;
1235 1.1 haya {
1236 1.1 haya struct rl_softc *sc = xsc;
1237 1.1 haya struct ifnet *ifp = &sc->ethercom.ec_if;
1238 1.1 haya int s, i;
1239 1.4 tsutsui u_int32_t rxcfg;
1240 1.1 haya u_int16_t phy_bmcr = 0;
1241 1.1 haya
1242 1.1 haya s = splimp();
1243 1.1 haya
1244 1.1 haya /*
1245 1.1 haya * XXX Hack for the 8139: the built-in autoneg logic's state
1246 1.1 haya * gets reset by rl_init() when we don't want it to. Try
1247 1.1 haya * to preserve it.
1248 1.1 haya */
1249 1.1 haya if (sc->rl_type == RL_8139)
1250 1.1 haya phy_bmcr = rl_phy_readreg((struct device *)sc, 7, MII_BMCR);
1251 1.1 haya
1252 1.1 haya /*
1253 1.1 haya * Cancel pending I/O and free all RX/TX buffers.
1254 1.1 haya */
1255 1.1 haya rl_stop(sc);
1256 1.1 haya
1257 1.1 haya /* Init our MAC address */
1258 1.1 haya for (i = 0; i < ETHER_ADDR_LEN; i++) {
1259 1.1 haya CSR_WRITE_1(sc, RL_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1260 1.1 haya }
1261 1.1 haya
1262 1.1 haya /* Init the RX buffer pointer register. */
1263 1.4 tsutsui bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1264 1.4 tsutsui sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1265 1.1 haya CSR_WRITE_4(sc, RL_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1266 1.1 haya
1267 1.1 haya /* Init TX descriptors. */
1268 1.1 haya rl_list_tx_init(sc);
1269 1.1 haya
1270 1.1 haya /*
1271 1.1 haya * Enable transmit and receive.
1272 1.1 haya */
1273 1.1 haya CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1274 1.1 haya
1275 1.1 haya /*
1276 1.1 haya * Set the initial TX and RX configuration.
1277 1.1 haya */
1278 1.1 haya CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1279 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1280 1.1 haya
1281 1.1 haya /* Set the individual bit to receive frames for this host only. */
1282 1.1 haya rxcfg = CSR_READ_4(sc, RL_RXCFG);
1283 1.1 haya rxcfg |= RL_RXCFG_RX_INDIV;
1284 1.1 haya
1285 1.1 haya /* If we want promiscuous mode, set the allframes bit. */
1286 1.1 haya if (ifp->if_flags & IFF_PROMISC) {
1287 1.1 haya rxcfg |= RL_RXCFG_RX_ALLPHYS;
1288 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1289 1.1 haya } else {
1290 1.1 haya rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1291 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1292 1.1 haya }
1293 1.1 haya
1294 1.1 haya /*
1295 1.1 haya * Set capture broadcast bit to capture broadcast frames.
1296 1.1 haya */
1297 1.1 haya if (ifp->if_flags & IFF_BROADCAST) {
1298 1.1 haya rxcfg |= RL_RXCFG_RX_BROAD;
1299 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1300 1.1 haya } else {
1301 1.1 haya rxcfg &= ~RL_RXCFG_RX_BROAD;
1302 1.1 haya CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1303 1.1 haya }
1304 1.1 haya
1305 1.1 haya /*
1306 1.1 haya * Program the multicast filter, if necessary.
1307 1.1 haya */
1308 1.1 haya rl_setmulti(sc);
1309 1.1 haya
1310 1.1 haya /*
1311 1.1 haya * Enable interrupts.
1312 1.1 haya */
1313 1.1 haya CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1314 1.1 haya
1315 1.1 haya /* Start RX/TX process. */
1316 1.1 haya CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1317 1.1 haya
1318 1.1 haya /* Enable receiver and transmitter. */
1319 1.1 haya CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1320 1.1 haya
1321 1.1 haya /* Restore state of BMCR */
1322 1.1 haya if (sc->rl_type == RL_8139)
1323 1.1 haya rl_phy_writereg((struct device *)sc, 7, MII_BMCR, phy_bmcr);
1324 1.1 haya
1325 1.1 haya CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1326 1.1 haya
1327 1.1 haya /*
1328 1.1 haya * Set current media.
1329 1.1 haya */
1330 1.1 haya mii_mediachg(&sc->mii);
1331 1.1 haya
1332 1.1 haya ifp->if_flags |= IFF_RUNNING;
1333 1.1 haya ifp->if_flags &= ~IFF_OACTIVE;
1334 1.1 haya
1335 1.1 haya (void)splx(s);
1336 1.1 haya
1337 1.1 haya callout_reset(&sc->rl_tick_ch, hz, rl_tick, sc);
1338 1.1 haya }
1339 1.1 haya
1340 1.1 haya /*
1341 1.1 haya * Set media options.
1342 1.1 haya */
1343 1.1 haya STATIC int rl_ifmedia_upd(ifp)
1344 1.1 haya struct ifnet *ifp;
1345 1.1 haya {
1346 1.1 haya struct rl_softc *sc;
1347 1.1 haya struct ifmedia *ifm;
1348 1.1 haya
1349 1.1 haya sc = ifp->if_softc;
1350 1.1 haya ifm = &sc->mii.mii_media;
1351 1.1 haya
1352 1.1 haya if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1353 1.1 haya return(EINVAL);
1354 1.1 haya
1355 1.1 haya return (mii_mediachg(&sc->mii));
1356 1.1 haya }
1357 1.1 haya
1358 1.1 haya /*
1359 1.1 haya * Report current media status.
1360 1.1 haya */
1361 1.1 haya STATIC void rl_ifmedia_sts(ifp, ifmr)
1362 1.1 haya struct ifnet *ifp;
1363 1.1 haya struct ifmediareq *ifmr;
1364 1.1 haya {
1365 1.1 haya struct rl_softc *sc;
1366 1.1 haya
1367 1.1 haya sc = ifp->if_softc;
1368 1.1 haya
1369 1.1 haya mii_pollstat(&sc->mii);
1370 1.1 haya ifmr->ifm_status = sc->mii.mii_media_status;
1371 1.1 haya ifmr->ifm_active = sc->mii.mii_media_active;
1372 1.1 haya }
1373 1.1 haya
1374 1.1 haya STATIC int
1375 1.1 haya rl_ether_ioctl(ifp, cmd, data)
1376 1.1 haya struct ifnet *ifp;
1377 1.1 haya u_long cmd;
1378 1.1 haya caddr_t data;
1379 1.1 haya {
1380 1.1 haya struct ifaddr *ifa = (struct ifaddr *) data;
1381 1.1 haya struct rl_softc *sc = ifp->if_softc;
1382 1.1 haya
1383 1.1 haya switch (cmd) {
1384 1.1 haya case SIOCSIFADDR:
1385 1.1 haya ifp->if_flags |= IFF_UP;
1386 1.1 haya
1387 1.1 haya switch (ifa->ifa_addr->sa_family) {
1388 1.1 haya #ifdef INET
1389 1.1 haya case AF_INET:
1390 1.1 haya rl_init(sc);
1391 1.1 haya arp_ifinit(ifp, ifa);
1392 1.1 haya break;
1393 1.1 haya #endif
1394 1.1 haya #ifdef NS
1395 1.1 haya case AF_NS:
1396 1.1 haya {
1397 1.2 tsutsui struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1398 1.1 haya
1399 1.1 haya if (ns_nullhost(*ina))
1400 1.1 haya ina->x_host = *(union ns_host *)
1401 1.1 haya LLADDR(ifp->if_sadl);
1402 1.1 haya else
1403 1.1 haya bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1404 1.1 haya ifp->if_addrlen);
1405 1.1 haya /* Set new address. */
1406 1.1 haya rl_init(sc);
1407 1.1 haya break;
1408 1.1 haya }
1409 1.1 haya #endif
1410 1.1 haya default:
1411 1.1 haya rl_init(sc);
1412 1.1 haya break;
1413 1.1 haya }
1414 1.1 haya break;
1415 1.1 haya
1416 1.1 haya default:
1417 1.1 haya return (EINVAL);
1418 1.1 haya }
1419 1.1 haya
1420 1.1 haya return (0);
1421 1.1 haya }
1422 1.1 haya
1423 1.1 haya STATIC int rl_ioctl(ifp, command, data)
1424 1.1 haya struct ifnet *ifp;
1425 1.1 haya u_long command;
1426 1.1 haya caddr_t data;
1427 1.1 haya {
1428 1.1 haya struct rl_softc *sc = ifp->if_softc;
1429 1.1 haya struct ifreq *ifr = (struct ifreq *) data;
1430 1.1 haya int s, error = 0;
1431 1.1 haya
1432 1.1 haya s = splimp();
1433 1.1 haya
1434 1.1 haya switch(command) {
1435 1.1 haya case SIOCSIFADDR:
1436 1.1 haya case SIOCGIFADDR:
1437 1.1 haya case SIOCSIFMTU:
1438 1.1 haya error = rl_ether_ioctl(ifp, command, data);
1439 1.1 haya break;
1440 1.1 haya case SIOCSIFFLAGS:
1441 1.1 haya if (ifp->if_flags & IFF_UP) {
1442 1.1 haya rl_init(sc);
1443 1.1 haya } else {
1444 1.1 haya if (ifp->if_flags & IFF_RUNNING)
1445 1.1 haya rl_stop(sc);
1446 1.1 haya }
1447 1.1 haya error = 0;
1448 1.1 haya break;
1449 1.1 haya case SIOCADDMULTI:
1450 1.1 haya case SIOCDELMULTI:
1451 1.1 haya rl_setmulti(sc);
1452 1.1 haya error = 0;
1453 1.1 haya break;
1454 1.1 haya case SIOCGIFMEDIA:
1455 1.1 haya case SIOCSIFMEDIA:
1456 1.1 haya error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1457 1.1 haya break;
1458 1.1 haya default:
1459 1.1 haya error = EINVAL;
1460 1.1 haya break;
1461 1.1 haya }
1462 1.1 haya
1463 1.1 haya (void)splx(s);
1464 1.1 haya
1465 1.1 haya return(error);
1466 1.1 haya }
1467 1.1 haya
1468 1.1 haya STATIC void rl_watchdog(ifp)
1469 1.1 haya struct ifnet *ifp;
1470 1.1 haya {
1471 1.1 haya struct rl_softc *sc;
1472 1.1 haya
1473 1.1 haya sc = ifp->if_softc;
1474 1.1 haya
1475 1.1 haya printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1476 1.1 haya ifp->if_oerrors++;
1477 1.1 haya rl_txeof(sc);
1478 1.1 haya rl_rxeof(sc);
1479 1.1 haya rl_init(sc);
1480 1.1 haya
1481 1.1 haya return;
1482 1.1 haya }
1483 1.1 haya
1484 1.1 haya /*
1485 1.1 haya * Stop the adapter and free any mbufs allocated to the
1486 1.1 haya * RX and TX lists.
1487 1.1 haya */
1488 1.1 haya STATIC void rl_stop(sc)
1489 1.1 haya struct rl_softc *sc;
1490 1.1 haya {
1491 1.2 tsutsui int i;
1492 1.1 haya struct ifnet *ifp;
1493 1.1 haya
1494 1.1 haya ifp = &sc->ethercom.ec_if;
1495 1.1 haya ifp->if_timer = 0;
1496 1.1 haya
1497 1.1 haya callout_stop(&sc->rl_tick_ch);
1498 1.1 haya
1499 1.1 haya mii_down(&sc->mii);
1500 1.1 haya
1501 1.1 haya CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1502 1.1 haya CSR_WRITE_2(sc, RL_IMR, 0x0000);
1503 1.1 haya
1504 1.1 haya /*
1505 1.1 haya * Free the TX list buffers.
1506 1.1 haya */
1507 1.1 haya for (i = 0; i < RL_TX_LIST_CNT; i++) {
1508 1.1 haya if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1509 1.1 haya m_freem(sc->rl_cdata.rl_tx_chain[i]);
1510 1.1 haya sc->rl_cdata.rl_tx_chain[i] = NULL;
1511 1.1 haya CSR_WRITE_4(sc, RL_TXADDR0 + i, 0x0000000);
1512 1.1 haya }
1513 1.1 haya }
1514 1.1 haya
1515 1.1 haya ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1516 1.1 haya
1517 1.1 haya return;
1518 1.1 haya }
1519 1.1 haya
1520 1.1 haya /*
1521 1.1 haya * Stop all chip I/O so that the kernel's probe routines don't
1522 1.1 haya * get confused by errant DMAs when rebooting.
1523 1.1 haya */
1524 1.1 haya STATIC void rl_shutdown(vsc)
1525 1.1 haya void *vsc;
1526 1.1 haya {
1527 1.1 haya struct rl_softc *sc = (struct rl_softc *)vsc;
1528 1.1 haya
1529 1.1 haya rl_stop(sc);
1530 1.1 haya
1531 1.1 haya return;
1532 1.1 haya }
1533 1.1 haya
1534 1.1 haya STATIC void
1535 1.1 haya rl_tick(arg)
1536 1.1 haya void *arg;
1537 1.1 haya {
1538 1.1 haya struct rl_softc *sc = arg;
1539 1.1 haya int s = splnet();
1540 1.1 haya
1541 1.1 haya mii_tick(&sc->mii);
1542 1.1 haya splx(s);
1543 1.1 haya
1544 1.1 haya callout_reset(&sc->rl_tick_ch, hz, rl_tick, sc);
1545 1.1 haya }
1546