rtl81x9.c revision 1.10 1 /* $NetBSD: rtl81x9.c,v 1.10 2000/05/19 13:42:29 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include "opt_inet.h"
89 #include "opt_ns.h"
90 #include "bpfilter.h"
91 #include "rnd.h"
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/device.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <machine/bus.h>
125 #include <machine/endian.h>
126
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129
130 #include <dev/ic/rtl81x9reg.h>
131 #include <dev/ic/rtl81x9var.h>
132
133 #if defined DEBUG
134 #define STATIC
135 #else
136 #define STATIC static
137 #endif
138
139 STATIC void rtk_reset __P((struct rtk_softc *));
140 STATIC void rtk_rxeof __P((struct rtk_softc *));
141 STATIC void rtk_txeof __P((struct rtk_softc *));
142 STATIC void rtk_start __P((struct ifnet *));
143 STATIC int rtk_ioctl __P((struct ifnet *, u_long, caddr_t));
144 STATIC void rtk_init __P((void *));
145 STATIC void rtk_stop __P((struct rtk_softc *));
146 STATIC void rtk_watchdog __P((struct ifnet *));
147 STATIC void rtk_shutdown __P((void *));
148 STATIC int rtk_ifmedia_upd __P((struct ifnet *));
149 STATIC void rtk_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
150
151 STATIC u_int16_t rtk_read_eeprom __P((struct rtk_softc *, int, int));
152 STATIC void rtk_eeprom_putbyte __P((struct rtk_softc *, int, int));
153 STATIC void rtk_mii_sync __P((struct rtk_softc *));
154 STATIC void rtk_mii_send __P((struct rtk_softc *, u_int32_t, int));
155 STATIC int rtk_mii_readreg __P((struct rtk_softc *, struct rtk_mii_frame *));
156 STATIC int rtk_mii_writereg __P((struct rtk_softc *, struct rtk_mii_frame *));
157
158 STATIC int rtk_phy_readreg __P((struct device *, int, int));
159 STATIC void rtk_phy_writereg __P((struct device *, int, int, int));
160 STATIC void rtk_phy_statchg __P((struct device *));
161 STATIC void rtk_tick __P((void *));
162
163 STATIC int rtk_enable __P((struct rtk_softc *));
164 STATIC void rtk_disable __P((struct rtk_softc *));
165 STATIC void rtk_power __P((int, void *));
166
167 STATIC void rtk_setmulti __P((struct rtk_softc *));
168 STATIC int rtk_list_tx_init __P((struct rtk_softc *));
169
170 STATIC int rtk_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
171
172
173 #define EE_SET(x) \
174 CSR_WRITE_1(sc, RTK_EECMD, \
175 CSR_READ_1(sc, RTK_EECMD) | (x))
176
177 #define EE_CLR(x) \
178 CSR_WRITE_1(sc, RTK_EECMD, \
179 CSR_READ_1(sc, RTK_EECMD) & ~(x))
180
181 /*
182 * Send a read command and address to the EEPROM, check for ACK.
183 */
184 STATIC void rtk_eeprom_putbyte(sc, addr, addr_len)
185 struct rtk_softc *sc;
186 int addr, addr_len;
187 {
188 int d, i;
189
190 d = (RTK_EECMD_READ << addr_len) | addr;
191
192 /*
193 * Feed in each bit and stobe the clock.
194 */
195 for (i = RTK_EECMD_LEN + addr_len - 1; i >= 0; i--) {
196 if (d & (1 << i)) {
197 EE_SET(RTK_EE_DATAIN);
198 } else {
199 EE_CLR(RTK_EE_DATAIN);
200 }
201 DELAY(100);
202 EE_SET(RTK_EE_CLK);
203 DELAY(150);
204 EE_CLR(RTK_EE_CLK);
205 DELAY(100);
206 }
207 }
208
209 /*
210 * Read a word of data stored in the EEPROM at address 'addr.'
211 */
212 u_int16_t rtk_read_eeprom(sc, addr, addr_len)
213 struct rtk_softc *sc;
214 int addr, addr_len;
215 {
216 u_int16_t word = 0;
217 int i;
218
219 /* Enter EEPROM access mode. */
220 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
221
222 /*
223 * Send address of word we want to read.
224 */
225 rtk_eeprom_putbyte(sc, addr, addr_len);
226
227 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
228
229 /*
230 * Start reading bits from EEPROM.
231 */
232 for (i = 15; i >= 0; i--) {
233 EE_SET(RTK_EE_CLK);
234 DELAY(100);
235 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
236 word |= (1 << i);
237 EE_CLR(RTK_EE_CLK);
238 DELAY(100);
239 }
240
241 /* Turn off EEPROM access mode. */
242 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
243
244 return (word);
245 }
246
247 /*
248 * MII access routines are provided for the 8129, which
249 * doesn't have a built-in PHY. For the 8139, we fake things
250 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
251 * direct access PHY registers.
252 */
253 #define MII_SET(x) \
254 CSR_WRITE_1(sc, RTK_MII, \
255 CSR_READ_1(sc, RTK_MII) | (x))
256
257 #define MII_CLR(x) \
258 CSR_WRITE_1(sc, RTK_MII, \
259 CSR_READ_1(sc, RTK_MII) & ~(x))
260
261 /*
262 * Sync the PHYs by setting data bit and strobing the clock 32 times.
263 */
264 STATIC void rtk_mii_sync(sc)
265 struct rtk_softc *sc;
266 {
267 int i;
268
269 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
270
271 for (i = 0; i < 32; i++) {
272 MII_SET(RTK_MII_CLK);
273 DELAY(1);
274 MII_CLR(RTK_MII_CLK);
275 DELAY(1);
276 }
277
278 return;
279 }
280
281 /*
282 * Clock a series of bits through the MII.
283 */
284 STATIC void rtk_mii_send(sc, bits, cnt)
285 struct rtk_softc *sc;
286 u_int32_t bits;
287 int cnt;
288 {
289 int i;
290
291 MII_CLR(RTK_MII_CLK);
292
293 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
294 if (bits & i) {
295 MII_SET(RTK_MII_DATAOUT);
296 } else {
297 MII_CLR(RTK_MII_DATAOUT);
298 }
299 DELAY(1);
300 MII_CLR(RTK_MII_CLK);
301 DELAY(1);
302 MII_SET(RTK_MII_CLK);
303 }
304 }
305
306 /*
307 * Read an PHY register through the MII.
308 */
309 STATIC int rtk_mii_readreg(sc, frame)
310 struct rtk_softc *sc;
311 struct rtk_mii_frame *frame;
312
313 {
314 int i, ack, s;
315
316 s = splnet();
317
318 /*
319 * Set up frame for RX.
320 */
321 frame->mii_stdelim = RTK_MII_STARTDELIM;
322 frame->mii_opcode = RTK_MII_READOP;
323 frame->mii_turnaround = 0;
324 frame->mii_data = 0;
325
326 CSR_WRITE_2(sc, RTK_MII, 0);
327
328 /*
329 * Turn on data xmit.
330 */
331 MII_SET(RTK_MII_DIR);
332
333 rtk_mii_sync(sc);
334
335 /*
336 * Send command/address info.
337 */
338 rtk_mii_send(sc, frame->mii_stdelim, 2);
339 rtk_mii_send(sc, frame->mii_opcode, 2);
340 rtk_mii_send(sc, frame->mii_phyaddr, 5);
341 rtk_mii_send(sc, frame->mii_regaddr, 5);
342
343 /* Idle bit */
344 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
345 DELAY(1);
346 MII_SET(RTK_MII_CLK);
347 DELAY(1);
348
349 /* Turn off xmit. */
350 MII_CLR(RTK_MII_DIR);
351
352 /* Check for ack */
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
358
359 /*
360 * Now try reading data bits. If the ack failed, we still
361 * need to clock through 16 cycles to keep the PHY(s) in sync.
362 */
363 if (ack) {
364 for(i = 0; i < 16; i++) {
365 MII_CLR(RTK_MII_CLK);
366 DELAY(1);
367 MII_SET(RTK_MII_CLK);
368 DELAY(1);
369 }
370 goto fail;
371 }
372
373 for (i = 0x8000; i; i >>= 1) {
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 if (!ack) {
377 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
378 frame->mii_data |= i;
379 DELAY(1);
380 }
381 MII_SET(RTK_MII_CLK);
382 DELAY(1);
383 }
384
385 fail:
386
387 MII_CLR(RTK_MII_CLK);
388 DELAY(1);
389 MII_SET(RTK_MII_CLK);
390 DELAY(1);
391
392 splx(s);
393
394 if (ack)
395 return(1);
396 return(0);
397 }
398
399 /*
400 * Write to a PHY register through the MII.
401 */
402 STATIC int rtk_mii_writereg(sc, frame)
403 struct rtk_softc *sc;
404 struct rtk_mii_frame *frame;
405
406 {
407 int s;
408
409 s = splnet();
410 /*
411 * Set up frame for TX.
412 */
413
414 frame->mii_stdelim = RTK_MII_STARTDELIM;
415 frame->mii_opcode = RTK_MII_WRITEOP;
416 frame->mii_turnaround = RTK_MII_TURNAROUND;
417
418 /*
419 * Turn on data output.
420 */
421 MII_SET(RTK_MII_DIR);
422
423 rtk_mii_sync(sc);
424
425 rtk_mii_send(sc, frame->mii_stdelim, 2);
426 rtk_mii_send(sc, frame->mii_opcode, 2);
427 rtk_mii_send(sc, frame->mii_phyaddr, 5);
428 rtk_mii_send(sc, frame->mii_regaddr, 5);
429 rtk_mii_send(sc, frame->mii_turnaround, 2);
430 rtk_mii_send(sc, frame->mii_data, 16);
431
432 /* Idle bit. */
433 MII_SET(RTK_MII_CLK);
434 DELAY(1);
435 MII_CLR(RTK_MII_CLK);
436 DELAY(1);
437
438 /*
439 * Turn off xmit.
440 */
441 MII_CLR(RTK_MII_DIR);
442
443 splx(s);
444
445 return(0);
446 }
447
448 STATIC int rtk_phy_readreg(self, phy, reg)
449 struct device *self;
450 int phy, reg;
451 {
452 struct rtk_softc *sc = (void *)self;
453 struct rtk_mii_frame frame;
454 u_int16_t rval = 0;
455 u_int16_t rtk8139_reg = 0;
456
457 if (sc->rtk_type == RTK_8139) {
458 if (phy != 7)
459 return (0);
460
461 switch(reg) {
462 case MII_BMCR:
463 rtk8139_reg = RTK_BMCR;
464 break;
465 case MII_BMSR:
466 rtk8139_reg = RTK_BMSR;
467 break;
468 case MII_ANAR:
469 rtk8139_reg = RTK_ANAR;
470 break;
471 case MII_ANLPAR:
472 rtk8139_reg = RTK_LPAR;
473 break;
474 default:
475 #if 0
476 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
477 #endif
478 return(0);
479 }
480 rval = CSR_READ_2(sc, rtk8139_reg);
481 return(rval);
482 }
483
484 bzero((char *)&frame, sizeof(frame));
485
486 frame.mii_phyaddr = phy;
487 frame.mii_regaddr = reg;
488 rtk_mii_readreg(sc, &frame);
489
490 return(frame.mii_data);
491 }
492
493 STATIC void rtk_phy_writereg(self, phy, reg, data)
494 struct device *self;
495 int phy, reg;
496 int data;
497 {
498 struct rtk_softc *sc = (void *)self;
499 struct rtk_mii_frame frame;
500 u_int16_t rtk8139_reg = 0;
501
502 if (sc->rtk_type == RTK_8139) {
503 if (phy != 7)
504 return;
505
506 switch(reg) {
507 case MII_BMCR:
508 rtk8139_reg = RTK_BMCR;
509 break;
510 case MII_BMSR:
511 rtk8139_reg = RTK_BMSR;
512 break;
513 case MII_ANAR:
514 rtk8139_reg = RTK_ANAR;
515 break;
516 case MII_ANLPAR:
517 rtk8139_reg = RTK_LPAR;
518 break;
519 default:
520 #if 0
521 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
522 #endif
523 return;
524 }
525 CSR_WRITE_2(sc, rtk8139_reg, data);
526 return;
527 }
528
529 bzero((char *)&frame, sizeof(frame));
530
531 frame.mii_phyaddr = phy;
532 frame.mii_regaddr = reg;
533 frame.mii_data = data;
534
535 rtk_mii_writereg(sc, &frame);
536
537 return;
538 }
539
540 STATIC void
541 rtk_phy_statchg(v)
542 struct device *v;
543 {
544
545 /* Nothing to do. */
546 }
547
548 #define rtk_calchash(addr) \
549 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
550
551 /*
552 * Program the 64-bit multicast hash filter.
553 */
554 STATIC void rtk_setmulti(sc)
555 struct rtk_softc *sc;
556 {
557 struct ifnet *ifp;
558 int h = 0;
559 u_int32_t hashes[2] = { 0, 0 };
560 u_int32_t rxfilt;
561 int mcnt = 0;
562 struct ether_multi *enm;
563 struct ether_multistep step;
564
565 ifp = &sc->ethercom.ec_if;
566
567 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
568
569 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
570 rxfilt |= RTK_RXCFG_RX_MULTI;
571 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
572 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
573 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
574 return;
575 }
576
577 /* first, zot all the existing hash bits */
578 CSR_WRITE_4(sc, RTK_MAR0, 0);
579 CSR_WRITE_4(sc, RTK_MAR4, 0);
580
581 /* now program new ones */
582 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
583 while (enm != NULL) {
584 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
585 ETHER_ADDR_LEN) != 0)
586 continue;
587
588 h = rtk_calchash(enm->enm_addrlo);
589 if (h < 32)
590 hashes[0] |= (1 << h);
591 else
592 hashes[1] |= (1 << (h - 32));
593 mcnt++;
594 ETHER_NEXT_MULTI(step, enm);
595 }
596
597 if (mcnt)
598 rxfilt |= RTK_RXCFG_RX_MULTI;
599 else
600 rxfilt &= ~RTK_RXCFG_RX_MULTI;
601
602 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
603 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
604 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
605
606 return;
607 }
608
609 void rtk_reset(sc)
610 struct rtk_softc *sc;
611 {
612 int i;
613
614 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
615
616 for (i = 0; i < RTK_TIMEOUT; i++) {
617 DELAY(10);
618 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
619 break;
620 }
621 if (i == RTK_TIMEOUT)
622 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
623
624 return;
625 }
626
627 /*
628 * Attach the interface. Allocate softc structures, do ifmedia
629 * setup and ethernet/BPF attach.
630 */
631 void
632 rtk_attach(sc)
633 struct rtk_softc *sc;
634 {
635
636 struct ifnet *ifp;
637 u_int16_t val;
638 u_int8_t eaddr[ETHER_ADDR_LEN];
639 int error;
640 int i,addr_len;
641
642 callout_init(&sc->rtk_tick_ch);
643
644 /*
645 * Check EEPROM type 9346 or 9356.
646 */
647 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
648 addr_len = RTK_EEADDR_LEN1;
649 else
650 addr_len = RTK_EEADDR_LEN0;
651
652 /*
653 * Get station address.
654 */
655 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
656 eaddr[0] = val & 0xff;
657 eaddr[1] = val >> 8;
658 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
659 eaddr[2] = val & 0xff;
660 eaddr[3] = val >> 8;
661 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
662 eaddr[4] = val & 0xff;
663 eaddr[5] = val >> 8;
664
665 if ((error = bus_dmamem_alloc(sc->sc_dmat,
666 RTK_RXBUFLEN + 32, NBPG, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
667 BUS_DMA_NOWAIT)) != 0) {
668 printf("%s: can't allocate recv buffer, error = %d\n",
669 sc->sc_dev.dv_xname, error);
670 goto fail_0;
671 }
672
673 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
674 RTK_RXBUFLEN + 32, (caddr_t *)&sc->rtk_cdata.rtk_rx_buf,
675 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
676 printf("%s: can't map recv buffer, error = %d\n",
677 sc->sc_dev.dv_xname, error);
678 goto fail_1;
679 }
680
681 /* Leave a few bytes before the start of the RX ring buffer. */
682 sc->rtk_cdata.rtk_rx_buf_ptr = sc->rtk_cdata.rtk_rx_buf;
683 sc->rtk_cdata.rtk_rx_buf += sizeof(u_int64_t);
684
685 if ((error = bus_dmamap_create(sc->sc_dmat,
686 RTK_RXBUFLEN + 32 - sizeof(u_int64_t), 1,
687 RTK_RXBUFLEN + 32 - sizeof(u_int64_t), 0, BUS_DMA_NOWAIT,
688 &sc->recv_dmamap)) != 0) {
689 printf("%s: can't create recv buffer DMA map, error = %d\n",
690 sc->sc_dev.dv_xname, error);
691 goto fail_2;
692 }
693
694 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
695 sc->rtk_cdata.rtk_rx_buf, RTK_RXBUFLEN + 32 - sizeof(u_int64_t),
696 NULL, BUS_DMA_NOWAIT)) != 0) {
697 printf("%s: can't load recv buffer DMA map, error = %d\n",
698 sc->sc_dev.dv_xname, error);
699 goto fail_3;
700 }
701
702 for (i = 0; i < RTK_TX_LIST_CNT; i++)
703 if ((error = bus_dmamap_create(sc->sc_dmat,
704 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
705 &sc->snd_dmamap[i])) != 0) {
706 printf("%s: can't create snd buffer DMA map,"
707 " error = %d\n", sc->sc_dev.dv_xname, error);
708 goto fail_4;
709 }
710 /*
711 * From this point forward, the attachment cannot fail. A failure
712 * before this releases all resources thar may have been
713 * allocated.
714 */
715 sc->sc_flags |= RTK_ATTACHED;
716
717 /* Reset the adapter. */
718 rtk_reset(sc);
719
720 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
721 ether_sprintf(eaddr));
722
723 ifp = &sc->ethercom.ec_if;
724 ifp->if_softc = sc;
725 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
726 ifp->if_mtu = ETHERMTU;
727 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
728 ifp->if_ioctl = rtk_ioctl;
729 #if 0
730 ifp->if_output = ether_output;
731 #endif
732 ifp->if_start = rtk_start;
733 ifp->if_watchdog = rtk_watchdog;
734 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
735
736 /*
737 * Do ifmedia setup.
738 */
739 sc->mii.mii_ifp = ifp;
740 sc->mii.mii_readreg = rtk_phy_readreg;
741 sc->mii.mii_writereg = rtk_phy_writereg;
742 sc->mii.mii_statchg = rtk_phy_statchg;
743 ifmedia_init(&sc->mii.mii_media, 0, rtk_ifmedia_upd, rtk_ifmedia_sts);
744 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
745 MII_PHY_ANY, MII_OFFSET_ANY, 0);
746
747 /* Choose a default media. */
748 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
749 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
750 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
751 } else {
752 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
753 }
754
755 /*
756 * Call MI attach routines.
757 */
758 if_attach(ifp);
759 ether_ifattach(ifp, eaddr);
760
761 #if NBPFILTER > 0
762 bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
763 sizeof(struct ether_header));
764 #endif
765 /*
766 * Make sure the interface is shutdown during reboot.
767 */
768 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
769 if (sc->sc_sdhook == NULL)
770 printf("%s: WARNING: unbale to establish shutdown hook\n",
771 sc->sc_dev.dv_xname);
772 /*
773 * Add a suspend hook to make sure we come back up after a
774 * resume.
775 */
776 sc->sc_powerhook = powerhook_establish(rtk_power, sc);
777 if (sc->sc_powerhook == NULL)
778 printf("%s: WARNING: unable to establish power hook\n",
779 sc->sc_dev.dv_xname);
780
781 return;
782 fail_4:
783 for (i = 0; i < RTK_TX_LIST_CNT; i++)
784 if (sc->snd_dmamap[i] != NULL)
785 bus_dmamap_destroy(sc->sc_dmat, sc->snd_dmamap[i]);
786 fail_3:
787 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
788 fail_2:
789 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_cdata.rtk_rx_buf_ptr,
790 RTK_RXBUFLEN + 32 - sizeof(u_int64_t));
791 fail_1:
792 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
793 fail_0:
794 return;
795 }
796
797 /*
798 * Initialize the transmit descriptors.
799 */
800 STATIC int rtk_list_tx_init(sc)
801 struct rtk_softc *sc;
802 {
803 struct rtk_chain_data *cd;
804 int i;
805
806 cd = &sc->rtk_cdata;
807 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
808 cd->rtk_tx_chain[i] = NULL;
809 CSR_WRITE_4(sc,
810 RTK_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
811 }
812
813 sc->rtk_cdata.cur_tx = 0;
814 sc->rtk_cdata.last_tx = 0;
815
816 return(0);
817 }
818
819 /*
820 * rtk_activate:
821 * Handle device activation/deactivation requests.
822 */
823 int
824 rtk_activate(self, act)
825 struct device *self;
826 enum devact act;
827 {
828 struct rtk_softc *sc = (void *) self;
829 int s, error = 0;
830
831 s = splnet();
832 switch (act) {
833 case DVACT_ACTIVATE:
834 error = EOPNOTSUPP;
835 break;
836 case DVACT_DEACTIVATE:
837 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
838 if_deactivate(&sc->ethercom.ec_if);
839 break;
840 }
841 splx(s);
842
843 return (error);
844 }
845
846 /*
847 * rtk_detach:
848 * Detach a rtk interface.
849 */
850 int
851 rtk_detach(sc)
852 struct rtk_softc *sc;
853 {
854 struct ifnet *ifp = &sc->ethercom.ec_if;
855 int i;
856
857 /*
858 * Succeed now if thereisn't any work to do.
859 */
860 if ((sc->sc_flags & RTK_ATTACHED) == 0)
861 return (0);
862
863 /* Unhook our tick handler. */
864 callout_stop(&sc->rtk_tick_ch);
865
866 /* Detach all PHYs. */
867 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
868
869 /* Delete all remaining media. */
870 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
871
872 #if NBPFILTER > 0
873 bpfdetach(ifp);
874 #endif
875 ether_ifdetach(ifp);
876 if_detach(ifp);
877
878 for (i = 0; i < RTK_TX_LIST_CNT; i++)
879 if (sc->snd_dmamap[i] != NULL)
880 bus_dmamap_destroy(sc->sc_dmat, sc->snd_dmamap[i]);
881 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
882 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_cdata.rtk_rx_buf_ptr,
883 RTK_RXBUFLEN + 32 - sizeof(u_int64_t));
884
885 shutdownhook_disestablish(sc->sc_sdhook);
886 powerhook_disestablish(sc->sc_powerhook);
887
888 return (0);
889 }
890
891 /*
892 * rtk_enable:
893 * Enable the RTL81X9 chip.
894 */
895 int
896 rtk_enable(sc)
897 struct rtk_softc *sc;
898 {
899 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
900 if ((*sc->sc_enable)(sc) != 0) {
901 printf("%s: device enable failed\n",
902 sc->sc_dev.dv_xname);
903 return(EIO);
904 }
905 sc->sc_flags |= RTK_ENABLED;
906 }
907 return (0);
908 }
909
910 /*
911 * rtk_disable:
912 * Disable the RTL81X9 chip.
913 */
914 void
915 rtk_disable(sc)
916 struct rtk_softc *sc;
917 {
918 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
919 (*sc->sc_disable)(sc);
920 sc->sc_flags &= ~RTK_ENABLED;
921 }
922 }
923
924 /*
925 * rtk_power:
926 * Power management (suspend/resume) hook.
927 */
928 void
929 rtk_power(why, arg)
930 int why;
931 void *arg;
932 {
933 struct rtk_softc *sc = (void *) arg;
934 struct ifnet *ifp = &sc->ethercom.ec_if;
935 int s;
936
937 s = splnet();
938 if (why != PWR_RESUME) {
939 rtk_stop(sc);
940 if (sc->sc_power != NULL)
941 (*sc->sc_power)(sc, why);
942 } else if (ifp->if_flags & IFF_UP) {
943 if (sc->sc_power != NULL)
944 (*sc->sc_power)(sc, why);
945 rtk_init(sc);
946 }
947 splx(s);
948
949 }
950
951 /*
952 * A frame has been uploaded: pass the resulting mbuf chain up to
953 * the higher level protocols.
954 *
955 * You know there's something wrong with a PCI bus-master chip design
956 * when you have to use m_devget().
957 *
958 * The receive operation is badly documented in the datasheet, so I'll
959 * attempt to document it here. The driver provides a buffer area and
960 * places its base address in the RX buffer start address register.
961 * The chip then begins copying frames into the RX buffer. Each frame
962 * is preceeded by a 32-bit RX status word which specifies the length
963 * of the frame and certain other status bits. Each frame (starting with
964 * the status word) is also 32-bit aligned. The frame length is in the
965 * first 16 bits of the status word; the lower 15 bits correspond with
966 * the 'rx status register' mentioned in the datasheet.
967 *
968 * Note: to make the Alpha happy, the frame payload needs to be aligned
969 * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
970 * the ring buffer starting at an address two bytes before the actual
971 * data location. We can then shave off the first two bytes using m_adj().
972 * The reason we do this is because m_devget() doesn't let us specify an
973 * offset into the mbuf storage space, so we have to artificially create
974 * one. The ring is allocated in such a way that there are a few unused
975 * bytes of space preceecing it so that it will be safe for us to do the
976 * 2-byte backstep even if reading from the ring at offset 0.
977 */
978 STATIC void rtk_rxeof(sc)
979 struct rtk_softc *sc;
980 {
981 struct ether_header *eh;
982 struct mbuf *m;
983 struct ifnet *ifp;
984 int total_len = 0;
985 u_int32_t rxstat;
986 caddr_t rxbufpos;
987 int wrap = 0;
988 u_int16_t cur_rx;
989 u_int16_t limit;
990 u_int16_t rx_bytes = 0, max_bytes;
991
992 ifp = &sc->ethercom.ec_if;
993
994 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
995
996 /* Do not try to read past this point. */
997 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
998
999 if (limit < cur_rx)
1000 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1001 else
1002 max_bytes = limit - cur_rx;
1003
1004 while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1005 rxbufpos = sc->rtk_cdata.rtk_rx_buf + cur_rx;
1006 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1007 sizeof(u_int32_t *), BUS_DMASYNC_POSTREAD);
1008 rxstat = le32toh(*(u_int32_t *)rxbufpos);
1009 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1010 sizeof(u_int32_t *), BUS_DMASYNC_PREREAD);
1011
1012 /*
1013 * Here's a totally undocumented fact for you. When the
1014 * RealTek chip is in the process of copying a packet into
1015 * RAM for you, the length will be 0xfff0. If you spot a
1016 * packet header with this value, you need to stop. The
1017 * datasheet makes absolutely no mention of this and
1018 * RealTek should be shot for this.
1019 */
1020 if ((u_int16_t)(rxstat >> 16) == RTK_RXSTAT_UNFINISHED)
1021 break;
1022
1023 if (!(rxstat & RTK_RXSTAT_RXOK)) {
1024 ifp->if_ierrors++;
1025
1026 /*
1027 * submitted by:[netbsd-pcmcia:00484]
1028 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1029 * obtain from:
1030 * FreeBSD if_rl.c rev 1.24->1.25
1031 *
1032 */
1033 #if 0
1034 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1035 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1036 RTK_RXSTAT_ALIGNERR)) {
1037 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1038 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1039 RTK_RXSTAT_ALIGNERR)) {
1040 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1041 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB|
1042 RTK_CMD_RX_ENB);
1043 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1044 CSR_WRITE_4(sc, RTK_RXADDR,
1045 sc->recv_dmamap->dm_segs[0].ds_addr);
1046 CSR_WRITE_2(sc, RTK_CURRXADDR, cur_rx - 16);
1047 cur_rx = 0;
1048 }
1049 break;
1050 #else
1051 rtk_init(sc);
1052 return;
1053 #endif
1054 }
1055
1056 /* No errors; receive the packet. */
1057 total_len = rxstat >> 16;
1058 rx_bytes += total_len + 4;
1059
1060 /*
1061 * XXX The RealTek chip includes the CRC with every
1062 * received frame, and there's no way to turn this
1063 * behavior off (at least, I can't find anything in
1064 * the manual that explains how to do it) so we have
1065 * to trim off the CRC manually.
1066 */
1067 total_len -= ETHER_CRC_LEN;
1068
1069 /*
1070 * Avoid trying to read more bytes than we know
1071 * the chip has prepared for us.
1072 */
1073 if (rx_bytes > max_bytes)
1074 break;
1075
1076 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1077 cur_rx + sizeof(u_int32_t), total_len,
1078 BUS_DMASYNC_POSTREAD);
1079
1080 rxbufpos = sc->rtk_cdata.rtk_rx_buf +
1081 ((cur_rx + sizeof(u_int32_t)) % RTK_RXBUFLEN);
1082
1083 if (rxbufpos == (sc->rtk_cdata.rtk_rx_buf + RTK_RXBUFLEN))
1084 rxbufpos = sc->rtk_cdata.rtk_rx_buf;
1085
1086 wrap = (sc->rtk_cdata.rtk_rx_buf + RTK_RXBUFLEN) - rxbufpos;
1087
1088 if (total_len > wrap) {
1089 m = m_devget(rxbufpos - RTK_ETHER_ALIGN,
1090 wrap + RTK_ETHER_ALIGN, 0, ifp, NULL);
1091 if (m == NULL) {
1092 ifp->if_ierrors++;
1093 printf("%s: out of mbufs, tried to "
1094 "copy %d bytes\n", sc->sc_dev.dv_xname,
1095 wrap);
1096 } else {
1097 m_adj(m, RTK_ETHER_ALIGN);
1098 m_copyback(m, wrap, total_len - wrap,
1099 sc->rtk_cdata.rtk_rx_buf);
1100 }
1101 cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1102 } else {
1103 m = m_devget(rxbufpos - RTK_ETHER_ALIGN,
1104 total_len + RTK_ETHER_ALIGN, 0, ifp, NULL);
1105 if (m == NULL) {
1106 ifp->if_ierrors++;
1107 printf("%s: out of mbufs, tried to "
1108 "copy %d bytes\n", sc->sc_dev.dv_xname,
1109 total_len);
1110 } else
1111 m_adj(m, RTK_ETHER_ALIGN);
1112 cur_rx += total_len + 4 + ETHER_CRC_LEN;
1113 }
1114
1115 /*
1116 * Round up to 32-bit boundary.
1117 */
1118 cur_rx = (cur_rx + 3) & ~3;
1119 CSR_WRITE_2(sc, RTK_CURRXADDR, cur_rx - 16);
1120
1121 if (m == NULL)
1122 continue;
1123
1124 eh = mtod(m, struct ether_header *);
1125 ifp->if_ipackets++;
1126
1127 #if NBPFILTER > 0
1128 /*
1129 * Handle BPF listeners. Let the BPF user see the packet, but
1130 * don't pass it up to the ether_input() layer unless it's
1131 * a broadcast packet, multicast packet, matches our ethernet
1132 * address or the interface is in promiscuous mode.
1133 */
1134 if (ifp->if_bpf) {
1135 bpf_mtap(ifp->if_bpf, m);
1136 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1137 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
1138 memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
1139 ETHER_ADDR_LEN) != 0) {
1140 m_freem(m);
1141 continue;
1142 }
1143 }
1144 #endif
1145 /* pass it on. */
1146 (*ifp->if_input)(ifp, m);
1147
1148 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1149 cur_rx + sizeof(u_int32_t),
1150 total_len, BUS_DMASYNC_PREREAD);
1151 }
1152
1153 return;
1154 }
1155
1156 /*
1157 * A frame was downloaded to the chip. It's safe for us to clean up
1158 * the list buffers.
1159 */
1160 STATIC void rtk_txeof(sc)
1161 struct rtk_softc *sc;
1162 {
1163 struct ifnet *ifp;
1164 u_int32_t txstat;
1165
1166 ifp = &sc->ethercom.ec_if;
1167
1168 /* Clear the timeout timer. */
1169 ifp->if_timer = 0;
1170
1171 /*
1172 * Go through our tx list and free mbufs for those
1173 * frames that have been uploaded.
1174 */
1175 do {
1176 txstat = CSR_READ_4(sc, RTK_LAST_TXSTAT(sc));
1177 if (!(txstat & (RTK_TXSTAT_TX_OK|
1178 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)))
1179 break;
1180
1181 bus_dmamap_sync(sc->sc_dmat,
1182 sc->snd_dmamap[sc->rtk_cdata.last_tx], 0,
1183 sc->snd_dmamap[sc->rtk_cdata.last_tx]->dm_mapsize,
1184 BUS_DMASYNC_POSTWRITE);
1185 bus_dmamap_unload(sc->sc_dmat,
1186 sc->snd_dmamap[sc->rtk_cdata.last_tx]);
1187 m_freem(RTK_LAST_TXMBUF(sc));
1188 RTK_LAST_TXMBUF(sc) = NULL;
1189
1190 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1191
1192 if (txstat & RTK_TXSTAT_TX_OK)
1193 ifp->if_opackets++;
1194 else {
1195 ifp->if_oerrors++;
1196 if ((txstat & RTK_TXSTAT_TXABRT) ||
1197 (txstat & RTK_TXSTAT_OUTOFWIN))
1198 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1199 }
1200 RTK_INC(sc->rtk_cdata.last_tx);
1201 ifp->if_flags &= ~IFF_OACTIVE;
1202 } while (sc->rtk_cdata.last_tx != sc->rtk_cdata.cur_tx);
1203
1204 return;
1205 }
1206
1207 int rtk_intr(arg)
1208 void *arg;
1209 {
1210 struct rtk_softc *sc;
1211 struct ifnet *ifp;
1212 u_int16_t status;
1213 int handled = 0;
1214
1215 sc = arg;
1216 ifp = &sc->ethercom.ec_if;
1217
1218 /* Disable interrupts. */
1219 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1220
1221 for (;;) {
1222
1223 status = CSR_READ_2(sc, RTK_ISR);
1224 if (status)
1225 CSR_WRITE_2(sc, RTK_ISR, status);
1226
1227 handled = 1;
1228
1229 if ((status & RTK_INTRS) == 0)
1230 break;
1231
1232 if (status & RTK_ISR_RX_OK)
1233 rtk_rxeof(sc);
1234
1235 if (status & RTK_ISR_RX_ERR)
1236 rtk_rxeof(sc);
1237
1238 if ((status & RTK_ISR_TX_OK) || (status & RTK_ISR_TX_ERR))
1239 rtk_txeof(sc);
1240
1241 if (status & RTK_ISR_SYSTEM_ERR) {
1242 rtk_reset(sc);
1243 rtk_init(sc);
1244 }
1245
1246 }
1247
1248 /* Re-enable interrupts. */
1249 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1250
1251 if (ifp->if_snd.ifq_head != NULL) {
1252 rtk_start(ifp);
1253 }
1254
1255 return (handled);
1256 }
1257
1258 /*
1259 * Main transmit routine.
1260 */
1261
1262 STATIC void rtk_start(ifp)
1263 struct ifnet *ifp;
1264 {
1265 struct rtk_softc *sc;
1266 struct mbuf *m_head = NULL, *m_new;
1267 int error, idx, len;
1268
1269 sc = ifp->if_softc;
1270
1271 while(RTK_CUR_TXMBUF(sc) == NULL) {
1272 IF_DEQUEUE(&ifp->if_snd, m_head);
1273 if (m_head == NULL)
1274 break;
1275
1276 idx = sc->rtk_cdata.cur_tx;
1277
1278 /*
1279 * Load the DMA map. If this fails, the packet didn't
1280 * fit in one DMA segment, and we need to copy. Note,
1281 * the packet must also be aligned.
1282 */
1283 if ((mtod(m_head, bus_addr_t) & 3) != 0 ||
1284 bus_dmamap_load_mbuf(sc->sc_dmat, sc->snd_dmamap[idx],
1285 m_head, BUS_DMA_NOWAIT) != 0) {
1286 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1287 if (m_new == NULL) {
1288 printf("%s: unable to allocate Tx mbuf\n",
1289 sc->sc_dev.dv_xname);
1290 IF_PREPEND(&ifp->if_snd, m_new);
1291 break;
1292 }
1293 if (m_head->m_pkthdr.len > MHLEN) {
1294 MCLGET(m_new, M_DONTWAIT);
1295 if ((m_new->m_flags & M_EXT) == 0) {
1296 printf("%s: unable to allocate Tx "
1297 "cluster\n", sc->sc_dev.dv_xname);
1298 m_freem(m_new);
1299 IF_PREPEND(&ifp->if_snd, m_head);
1300 break;
1301 }
1302 }
1303 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1304 mtod(m_new, caddr_t));
1305 m_new->m_pkthdr.len = m_new->m_len =
1306 m_head->m_pkthdr.len;
1307 m_freem(m_head);
1308 m_head = m_new;
1309 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1310 sc->snd_dmamap[idx], m_head, BUS_DMA_NOWAIT);
1311 if (error) {
1312 printf("%s: unable to load Tx buffer, "
1313 "error = %d\n", sc->sc_dev.dv_xname, error);
1314 IF_PREPEND(&ifp->if_snd, m_head);
1315 break;
1316 }
1317 }
1318
1319 RTK_CUR_TXMBUF(sc) = m_head;
1320
1321 #if NBPFILTER > 0
1322 /*
1323 * If there's a BPF listener, bounce a copy of this frame
1324 * to him.
1325 */
1326 if (ifp->if_bpf)
1327 bpf_mtap(ifp->if_bpf, RTK_CUR_TXMBUF(sc));
1328 #endif
1329 /*
1330 * Transmit the frame.
1331 */
1332 bus_dmamap_sync(sc->sc_dmat,
1333 sc->snd_dmamap[idx], 0, sc->snd_dmamap[idx]->dm_mapsize,
1334 BUS_DMASYNC_PREWRITE);
1335
1336 len = sc->snd_dmamap[idx]->dm_segs[0].ds_len;
1337 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1338 len = (ETHER_MIN_LEN - ETHER_CRC_LEN);
1339
1340 CSR_WRITE_4(sc, RTK_CUR_TXADDR(sc),
1341 sc->snd_dmamap[idx]->dm_segs[0].ds_addr);
1342 CSR_WRITE_4(sc, RTK_CUR_TXSTAT(sc), RTK_TX_EARLYTHRESH | len);
1343
1344 RTK_INC(sc->rtk_cdata.cur_tx);
1345 }
1346
1347 /*
1348 * We broke out of the loop because all our TX slots are
1349 * full. Mark the NIC as busy until it drains some of the
1350 * packets from the queue.
1351 */
1352 if (RTK_CUR_TXMBUF(sc) != NULL)
1353 ifp->if_flags |= IFF_OACTIVE;
1354
1355 /*
1356 * Set a timeout in case the chip goes out to lunch.
1357 */
1358 ifp->if_timer = 5;
1359
1360 return;
1361 }
1362
1363 STATIC void rtk_init(xsc)
1364 void *xsc;
1365 {
1366 struct rtk_softc *sc = xsc;
1367 struct ifnet *ifp = &sc->ethercom.ec_if;
1368 int s, i;
1369 u_int32_t rxcfg;
1370 u_int16_t phy_bmcr = 0;
1371
1372 s = splnet();
1373
1374 /*
1375 * XXX Hack for the 8139: the built-in autoneg logic's state
1376 * gets reset by rtk_init() when we don't want it to. Try
1377 * to preserve it.
1378 */
1379 if (sc->rtk_type == RTK_8139)
1380 phy_bmcr = rtk_phy_readreg((struct device *)sc, 7, MII_BMCR);
1381
1382 /*
1383 * Cancel pending I/O and free all RX/TX buffers.
1384 */
1385 rtk_stop(sc);
1386
1387 /* Init our MAC address */
1388 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1389 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1390 }
1391
1392 /* Init the RX buffer pointer register. */
1393 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1394 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1395 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1396
1397 /* Init TX descriptors. */
1398 rtk_list_tx_init(sc);
1399
1400 /*
1401 * Enable transmit and receive.
1402 */
1403 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1404
1405 /*
1406 * Set the initial TX and RX configuration.
1407 */
1408 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1409 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1410
1411 /* Set the individual bit to receive frames for this host only. */
1412 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1413 rxcfg |= RTK_RXCFG_RX_INDIV;
1414
1415 /* If we want promiscuous mode, set the allframes bit. */
1416 if (ifp->if_flags & IFF_PROMISC) {
1417 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1418 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1419 } else {
1420 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1421 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1422 }
1423
1424 /*
1425 * Set capture broadcast bit to capture broadcast frames.
1426 */
1427 if (ifp->if_flags & IFF_BROADCAST) {
1428 rxcfg |= RTK_RXCFG_RX_BROAD;
1429 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1430 } else {
1431 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1432 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1433 }
1434
1435 /*
1436 * Program the multicast filter, if necessary.
1437 */
1438 rtk_setmulti(sc);
1439
1440 /*
1441 * Enable interrupts.
1442 */
1443 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1444
1445 /* Start RX/TX process. */
1446 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1447
1448 /* Enable receiver and transmitter. */
1449 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1450
1451 /* Restore state of BMCR */
1452 if (sc->rtk_type == RTK_8139)
1453 rtk_phy_writereg((struct device *)sc, 7, MII_BMCR, phy_bmcr);
1454
1455 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1456
1457 /*
1458 * Set current media.
1459 */
1460 mii_mediachg(&sc->mii);
1461
1462 ifp->if_flags |= IFF_RUNNING;
1463 ifp->if_flags &= ~IFF_OACTIVE;
1464
1465 (void)splx(s);
1466
1467 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1468 }
1469
1470 /*
1471 * Set media options.
1472 */
1473 STATIC int rtk_ifmedia_upd(ifp)
1474 struct ifnet *ifp;
1475 {
1476 struct rtk_softc *sc;
1477 struct ifmedia *ifm;
1478
1479 sc = ifp->if_softc;
1480 ifm = &sc->mii.mii_media;
1481
1482 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1483 return(EINVAL);
1484
1485 return (mii_mediachg(&sc->mii));
1486 }
1487
1488 /*
1489 * Report current media status.
1490 */
1491 STATIC void rtk_ifmedia_sts(ifp, ifmr)
1492 struct ifnet *ifp;
1493 struct ifmediareq *ifmr;
1494 {
1495 struct rtk_softc *sc;
1496
1497 sc = ifp->if_softc;
1498
1499 mii_pollstat(&sc->mii);
1500 ifmr->ifm_status = sc->mii.mii_media_status;
1501 ifmr->ifm_active = sc->mii.mii_media_active;
1502 }
1503
1504 STATIC int
1505 rtk_ether_ioctl(ifp, cmd, data)
1506 struct ifnet *ifp;
1507 u_long cmd;
1508 caddr_t data;
1509 {
1510 struct ifaddr *ifa = (struct ifaddr *) data;
1511 struct rtk_softc *sc = ifp->if_softc;
1512 int error = 0;
1513
1514 switch (cmd) {
1515 case SIOCSIFADDR:
1516 if ((error = rtk_enable(sc)) != 0)
1517 break;
1518 ifp->if_flags |= IFF_UP;
1519
1520 switch (ifa->ifa_addr->sa_family) {
1521 #ifdef INET
1522 case AF_INET:
1523 rtk_init(sc);
1524 arp_ifinit(ifp, ifa);
1525 break;
1526 #endif
1527 #ifdef NS
1528 case AF_NS:
1529 {
1530 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1531
1532 if (ns_nullhost(*ina))
1533 ina->x_host = *(union ns_host *)
1534 LLADDR(ifp->if_sadl);
1535 else
1536 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1537 ifp->if_addrlen);
1538 /* Set new address. */
1539 rtk_init(sc);
1540 break;
1541 }
1542 #endif
1543 default:
1544 rtk_init(sc);
1545 break;
1546 }
1547 break;
1548
1549 default:
1550 return (EINVAL);
1551 }
1552
1553 return (error);
1554 }
1555
1556 STATIC int rtk_ioctl(ifp, command, data)
1557 struct ifnet *ifp;
1558 u_long command;
1559 caddr_t data;
1560 {
1561 struct rtk_softc *sc = ifp->if_softc;
1562 struct ifreq *ifr = (struct ifreq *) data;
1563 int s, error = 0;
1564
1565 s = splnet();
1566
1567 switch(command) {
1568 case SIOCSIFADDR:
1569 case SIOCGIFADDR:
1570 case SIOCSIFMTU:
1571 error = rtk_ether_ioctl(ifp, command, data);
1572 break;
1573 case SIOCSIFFLAGS:
1574 if (ifp->if_flags & IFF_UP) {
1575 if ((error = rtk_enable(sc)) != 0)
1576 break;
1577 rtk_init(sc);
1578 } else {
1579 if (ifp->if_flags & IFF_RUNNING) {
1580 rtk_stop(sc);
1581 rtk_disable(sc);
1582 }
1583 }
1584 error = 0;
1585 break;
1586 case SIOCADDMULTI:
1587 case SIOCDELMULTI:
1588 rtk_setmulti(sc);
1589 error = 0;
1590 break;
1591 case SIOCGIFMEDIA:
1592 case SIOCSIFMEDIA:
1593 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1594 break;
1595 default:
1596 error = EINVAL;
1597 break;
1598 }
1599
1600 (void)splx(s);
1601
1602 return(error);
1603 }
1604
1605 STATIC void rtk_watchdog(ifp)
1606 struct ifnet *ifp;
1607 {
1608 struct rtk_softc *sc;
1609
1610 sc = ifp->if_softc;
1611
1612 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1613 ifp->if_oerrors++;
1614 rtk_txeof(sc);
1615 rtk_rxeof(sc);
1616 rtk_init(sc);
1617
1618 return;
1619 }
1620
1621 /*
1622 * Stop the adapter and free any mbufs allocated to the
1623 * RX and TX lists.
1624 */
1625 STATIC void rtk_stop(sc)
1626 struct rtk_softc *sc;
1627 {
1628 int i;
1629 struct ifnet *ifp;
1630
1631 ifp = &sc->ethercom.ec_if;
1632 ifp->if_timer = 0;
1633
1634 callout_stop(&sc->rtk_tick_ch);
1635
1636 mii_down(&sc->mii);
1637
1638 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1639 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1640
1641 /*
1642 * Free the TX list buffers.
1643 */
1644 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
1645 if (sc->rtk_cdata.rtk_tx_chain[i] != NULL) {
1646 m_freem(sc->rtk_cdata.rtk_tx_chain[i]);
1647 sc->rtk_cdata.rtk_tx_chain[i] = NULL;
1648 CSR_WRITE_4(sc, RTK_TXADDR0 + i, 0x0000000);
1649 }
1650 }
1651
1652 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1653
1654 return;
1655 }
1656
1657 /*
1658 * Stop all chip I/O so that the kernel's probe routines don't
1659 * get confused by errant DMAs when rebooting.
1660 */
1661 STATIC void rtk_shutdown(vsc)
1662 void *vsc;
1663 {
1664 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1665
1666 rtk_stop(sc);
1667
1668 return;
1669 }
1670
1671 STATIC void
1672 rtk_tick(arg)
1673 void *arg;
1674 {
1675 struct rtk_softc *sc = arg;
1676 int s = splnet();
1677
1678 mii_tick(&sc->mii);
1679 splx(s);
1680
1681 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1682 }
1683