Home | History | Annotate | Line # | Download | only in ic
rtl81x9.c revision 1.100
      1 /*	$NetBSD: rtl81x9.c,v 1.100 2016/06/10 13:27:13 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
     35  */
     36 
     37 /*
     38  * RealTek 8129/8139 PCI NIC driver
     39  *
     40  * Supports several extremely cheap PCI 10/100 adapters based on
     41  * the RealTek chipset. Datasheets can be obtained from
     42  * www.realtek.com.tw.
     43  *
     44  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     45  * Electrical Engineering Department
     46  * Columbia University, New York City
     47  */
     48 
     49 /*
     50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
     51  * probably the worst PCI ethernet controller ever made, with the possible
     52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
     53  * DMA, but it has a terrible interface that nullifies any performance
     54  * gains that bus-master DMA usually offers.
     55  *
     56  * For transmission, the chip offers a series of four TX descriptor
     57  * registers. Each transmit frame must be in a contiguous buffer, aligned
     58  * on a longword (32-bit) boundary. This means we almost always have to
     59  * do mbuf copies in order to transmit a frame, except in the unlikely
     60  * case where a) the packet fits into a single mbuf, and b) the packet
     61  * is 32-bit aligned within the mbuf's data area. The presence of only
     62  * four descriptor registers means that we can never have more than four
     63  * packets queued for transmission at any one time.
     64  *
     65  * Reception is not much better. The driver has to allocate a single large
     66  * buffer area (up to 64K in size) into which the chip will DMA received
     67  * frames. Because we don't know where within this region received packets
     68  * will begin or end, we have no choice but to copy data from the buffer
     69  * area into mbufs in order to pass the packets up to the higher protocol
     70  * levels.
     71  *
     72  * It's impossible given this rotten design to really achieve decent
     73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
     74  * some equally overmuscled CPU to drive it.
     75  *
     76  * On the bright side, the 8139 does have a built-in PHY, although
     77  * rather than using an MDIO serial interface like most other NICs, the
     78  * PHY registers are directly accessible through the 8139's register
     79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
     80  * filter.
     81  *
     82  * The 8129 chip is an older version of the 8139 that uses an external PHY
     83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
     84  * the 8139 lets you directly access the on-board PHY registers. We need
     85  * to select which interface to use depending on the chip type.
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.100 2016/06/10 13:27:13 ozaki-r Exp $");
     90 
     91 
     92 #include <sys/param.h>
     93 #include <sys/systm.h>
     94 #include <sys/callout.h>
     95 #include <sys/device.h>
     96 #include <sys/sockio.h>
     97 #include <sys/mbuf.h>
     98 #include <sys/malloc.h>
     99 #include <sys/kernel.h>
    100 #include <sys/socket.h>
    101 
    102 #include <net/if.h>
    103 #include <net/if_arp.h>
    104 #include <net/if_ether.h>
    105 #include <net/if_dl.h>
    106 #include <net/if_media.h>
    107 
    108 #include <net/bpf.h>
    109 #include <sys/rndsource.h>
    110 
    111 #include <sys/bus.h>
    112 #include <machine/endian.h>
    113 
    114 #include <dev/mii/mii.h>
    115 #include <dev/mii/miivar.h>
    116 
    117 #include <dev/ic/rtl81x9reg.h>
    118 #include <dev/ic/rtl81x9var.h>
    119 
    120 static void rtk_reset(struct rtk_softc *);
    121 static void rtk_rxeof(struct rtk_softc *);
    122 static void rtk_txeof(struct rtk_softc *);
    123 static void rtk_start(struct ifnet *);
    124 static int rtk_ioctl(struct ifnet *, u_long, void *);
    125 static int rtk_init(struct ifnet *);
    126 static void rtk_stop(struct ifnet *, int);
    127 
    128 static void rtk_watchdog(struct ifnet *);
    129 
    130 static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
    131 static void rtk_mii_sync(struct rtk_softc *);
    132 static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
    133 static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
    134 static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
    135 
    136 static int rtk_phy_readreg(device_t, int, int);
    137 static void rtk_phy_writereg(device_t, int, int, int);
    138 static void rtk_phy_statchg(struct ifnet *);
    139 static void rtk_tick(void *);
    140 
    141 static int rtk_enable(struct rtk_softc *);
    142 static void rtk_disable(struct rtk_softc *);
    143 
    144 static void rtk_list_tx_init(struct rtk_softc *);
    145 
    146 #define EE_SET(x)					\
    147 	CSR_WRITE_1(sc, RTK_EECMD,			\
    148 		CSR_READ_1(sc, RTK_EECMD) | (x))
    149 
    150 #define EE_CLR(x)					\
    151 	CSR_WRITE_1(sc, RTK_EECMD,			\
    152 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
    153 
    154 #define EE_DELAY()	DELAY(100)
    155 
    156 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
    157 
    158 /*
    159  * Send a read command and address to the EEPROM, check for ACK.
    160  */
    161 static void
    162 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
    163 {
    164 	int d, i;
    165 
    166 	d = (RTK_EECMD_READ << addr_len) | addr;
    167 
    168 	/*
    169 	 * Feed in each bit and stobe the clock.
    170 	 */
    171 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
    172 		if (d & (1 << (i - 1))) {
    173 			EE_SET(RTK_EE_DATAIN);
    174 		} else {
    175 			EE_CLR(RTK_EE_DATAIN);
    176 		}
    177 		EE_DELAY();
    178 		EE_SET(RTK_EE_CLK);
    179 		EE_DELAY();
    180 		EE_CLR(RTK_EE_CLK);
    181 		EE_DELAY();
    182 	}
    183 }
    184 
    185 /*
    186  * Read a word of data stored in the EEPROM at address 'addr.'
    187  */
    188 uint16_t
    189 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
    190 {
    191 	uint16_t word;
    192 	int i;
    193 
    194 	/* Enter EEPROM access mode. */
    195 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
    196 	EE_DELAY();
    197 	EE_SET(RTK_EE_SEL);
    198 
    199 	/*
    200 	 * Send address of word we want to read.
    201 	 */
    202 	rtk_eeprom_putbyte(sc, addr, addr_len);
    203 
    204 	/*
    205 	 * Start reading bits from EEPROM.
    206 	 */
    207 	word = 0;
    208 	for (i = 16; i > 0; i--) {
    209 		EE_SET(RTK_EE_CLK);
    210 		EE_DELAY();
    211 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
    212 			word |= 1 << (i - 1);
    213 		EE_CLR(RTK_EE_CLK);
    214 		EE_DELAY();
    215 	}
    216 
    217 	/* Turn off EEPROM access mode. */
    218 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
    219 
    220 	return word;
    221 }
    222 
    223 /*
    224  * MII access routines are provided for the 8129, which
    225  * doesn't have a built-in PHY. For the 8139, we fake things
    226  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
    227  * direct access PHY registers.
    228  */
    229 #define MII_SET(x)					\
    230 	CSR_WRITE_1(sc, RTK_MII,			\
    231 		CSR_READ_1(sc, RTK_MII) | (x))
    232 
    233 #define MII_CLR(x)					\
    234 	CSR_WRITE_1(sc, RTK_MII,			\
    235 		CSR_READ_1(sc, RTK_MII) & ~(x))
    236 
    237 /*
    238  * Sync the PHYs by setting data bit and strobing the clock 32 times.
    239  */
    240 static void
    241 rtk_mii_sync(struct rtk_softc *sc)
    242 {
    243 	int i;
    244 
    245 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
    246 
    247 	for (i = 0; i < 32; i++) {
    248 		MII_SET(RTK_MII_CLK);
    249 		DELAY(1);
    250 		MII_CLR(RTK_MII_CLK);
    251 		DELAY(1);
    252 	}
    253 }
    254 
    255 /*
    256  * Clock a series of bits through the MII.
    257  */
    258 static void
    259 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
    260 {
    261 	int i;
    262 
    263 	MII_CLR(RTK_MII_CLK);
    264 
    265 	for (i = cnt; i > 0; i--) {
    266 		if (bits & (1 << (i - 1))) {
    267 			MII_SET(RTK_MII_DATAOUT);
    268 		} else {
    269 			MII_CLR(RTK_MII_DATAOUT);
    270 		}
    271 		DELAY(1);
    272 		MII_CLR(RTK_MII_CLK);
    273 		DELAY(1);
    274 		MII_SET(RTK_MII_CLK);
    275 	}
    276 }
    277 
    278 /*
    279  * Read an PHY register through the MII.
    280  */
    281 static int
    282 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
    283 {
    284 	int i, ack, s;
    285 
    286 	s = splnet();
    287 
    288 	/*
    289 	 * Set up frame for RX.
    290 	 */
    291 	frame->mii_stdelim = RTK_MII_STARTDELIM;
    292 	frame->mii_opcode = RTK_MII_READOP;
    293 	frame->mii_turnaround = 0;
    294 	frame->mii_data = 0;
    295 
    296 	CSR_WRITE_2(sc, RTK_MII, 0);
    297 
    298 	/*
    299 	 * Turn on data xmit.
    300 	 */
    301 	MII_SET(RTK_MII_DIR);
    302 
    303 	rtk_mii_sync(sc);
    304 
    305 	/*
    306 	 * Send command/address info.
    307 	 */
    308 	rtk_mii_send(sc, frame->mii_stdelim, 2);
    309 	rtk_mii_send(sc, frame->mii_opcode, 2);
    310 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
    311 	rtk_mii_send(sc, frame->mii_regaddr, 5);
    312 
    313 	/* Idle bit */
    314 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
    315 	DELAY(1);
    316 	MII_SET(RTK_MII_CLK);
    317 	DELAY(1);
    318 
    319 	/* Turn off xmit. */
    320 	MII_CLR(RTK_MII_DIR);
    321 
    322 	/* Check for ack */
    323 	MII_CLR(RTK_MII_CLK);
    324 	DELAY(1);
    325 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
    326 	MII_SET(RTK_MII_CLK);
    327 	DELAY(1);
    328 
    329 	/*
    330 	 * Now try reading data bits. If the ack failed, we still
    331 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
    332 	 */
    333 	if (ack) {
    334 		for (i = 0; i < 16; i++) {
    335 			MII_CLR(RTK_MII_CLK);
    336 			DELAY(1);
    337 			MII_SET(RTK_MII_CLK);
    338 			DELAY(1);
    339 		}
    340 		goto fail;
    341 	}
    342 
    343 	for (i = 16; i > 0; i--) {
    344 		MII_CLR(RTK_MII_CLK);
    345 		DELAY(1);
    346 		if (!ack) {
    347 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
    348 				frame->mii_data |= 1 << (i - 1);
    349 			DELAY(1);
    350 		}
    351 		MII_SET(RTK_MII_CLK);
    352 		DELAY(1);
    353 	}
    354 
    355  fail:
    356 	MII_CLR(RTK_MII_CLK);
    357 	DELAY(1);
    358 	MII_SET(RTK_MII_CLK);
    359 	DELAY(1);
    360 
    361 	splx(s);
    362 
    363 	if (ack)
    364 		return 1;
    365 	return 0;
    366 }
    367 
    368 /*
    369  * Write to a PHY register through the MII.
    370  */
    371 static int
    372 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
    373 {
    374 	int s;
    375 
    376 	s = splnet();
    377 	/*
    378 	 * Set up frame for TX.
    379 	 */
    380 	frame->mii_stdelim = RTK_MII_STARTDELIM;
    381 	frame->mii_opcode = RTK_MII_WRITEOP;
    382 	frame->mii_turnaround = RTK_MII_TURNAROUND;
    383 
    384 	/*
    385 	 * Turn on data output.
    386 	 */
    387 	MII_SET(RTK_MII_DIR);
    388 
    389 	rtk_mii_sync(sc);
    390 
    391 	rtk_mii_send(sc, frame->mii_stdelim, 2);
    392 	rtk_mii_send(sc, frame->mii_opcode, 2);
    393 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
    394 	rtk_mii_send(sc, frame->mii_regaddr, 5);
    395 	rtk_mii_send(sc, frame->mii_turnaround, 2);
    396 	rtk_mii_send(sc, frame->mii_data, 16);
    397 
    398 	/* Idle bit. */
    399 	MII_SET(RTK_MII_CLK);
    400 	DELAY(1);
    401 	MII_CLR(RTK_MII_CLK);
    402 	DELAY(1);
    403 
    404 	/*
    405 	 * Turn off xmit.
    406 	 */
    407 	MII_CLR(RTK_MII_DIR);
    408 
    409 	splx(s);
    410 
    411 	return 0;
    412 }
    413 
    414 static int
    415 rtk_phy_readreg(device_t self, int phy, int reg)
    416 {
    417 	struct rtk_softc *sc = device_private(self);
    418 	struct rtk_mii_frame frame;
    419 	int rval;
    420 	int rtk8139_reg;
    421 
    422 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
    423 		if (phy != 7)
    424 			return 0;
    425 
    426 		switch (reg) {
    427 		case MII_BMCR:
    428 			rtk8139_reg = RTK_BMCR;
    429 			break;
    430 		case MII_BMSR:
    431 			rtk8139_reg = RTK_BMSR;
    432 			break;
    433 		case MII_ANAR:
    434 			rtk8139_reg = RTK_ANAR;
    435 			break;
    436 		case MII_ANER:
    437 			rtk8139_reg = RTK_ANER;
    438 			break;
    439 		case MII_ANLPAR:
    440 			rtk8139_reg = RTK_LPAR;
    441 			break;
    442 		default:
    443 #if 0
    444 			printf("%s: bad phy register\n", device_xname(self));
    445 #endif
    446 			return 0;
    447 		}
    448 		rval = CSR_READ_2(sc, rtk8139_reg);
    449 		return rval;
    450 	}
    451 
    452 	memset(&frame, 0, sizeof(frame));
    453 
    454 	frame.mii_phyaddr = phy;
    455 	frame.mii_regaddr = reg;
    456 	rtk_mii_readreg(sc, &frame);
    457 
    458 	return frame.mii_data;
    459 }
    460 
    461 static void
    462 rtk_phy_writereg(device_t self, int phy, int reg, int data)
    463 {
    464 	struct rtk_softc *sc = device_private(self);
    465 	struct rtk_mii_frame frame;
    466 	int rtk8139_reg;
    467 
    468 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
    469 		if (phy != 7)
    470 			return;
    471 
    472 		switch (reg) {
    473 		case MII_BMCR:
    474 			rtk8139_reg = RTK_BMCR;
    475 			break;
    476 		case MII_BMSR:
    477 			rtk8139_reg = RTK_BMSR;
    478 			break;
    479 		case MII_ANAR:
    480 			rtk8139_reg = RTK_ANAR;
    481 			break;
    482 		case MII_ANER:
    483 			rtk8139_reg = RTK_ANER;
    484 			break;
    485 		case MII_ANLPAR:
    486 			rtk8139_reg = RTK_LPAR;
    487 			break;
    488 		default:
    489 #if 0
    490 			printf("%s: bad phy register\n", device_xname(self));
    491 #endif
    492 			return;
    493 		}
    494 		CSR_WRITE_2(sc, rtk8139_reg, data);
    495 		return;
    496 	}
    497 
    498 	memset(&frame, 0, sizeof(frame));
    499 
    500 	frame.mii_phyaddr = phy;
    501 	frame.mii_regaddr = reg;
    502 	frame.mii_data = data;
    503 
    504 	rtk_mii_writereg(sc, &frame);
    505 }
    506 
    507 static void
    508 rtk_phy_statchg(struct ifnet *ifp)
    509 {
    510 
    511 	/* Nothing to do. */
    512 }
    513 
    514 #define	rtk_calchash(addr) \
    515 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    516 
    517 /*
    518  * Program the 64-bit multicast hash filter.
    519  */
    520 void
    521 rtk_setmulti(struct rtk_softc *sc)
    522 {
    523 	struct ifnet *ifp;
    524 	uint32_t hashes[2] = { 0, 0 };
    525 	uint32_t rxfilt;
    526 	struct ether_multi *enm;
    527 	struct ether_multistep step;
    528 	int h, mcnt;
    529 
    530 	ifp = &sc->ethercom.ec_if;
    531 
    532 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
    533 
    534 	if (ifp->if_flags & IFF_PROMISC) {
    535  allmulti:
    536 		ifp->if_flags |= IFF_ALLMULTI;
    537 		rxfilt |= RTK_RXCFG_RX_MULTI;
    538 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
    539 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
    540 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
    541 		return;
    542 	}
    543 
    544 	/* first, zot all the existing hash bits */
    545 	CSR_WRITE_4(sc, RTK_MAR0, 0);
    546 	CSR_WRITE_4(sc, RTK_MAR4, 0);
    547 
    548 	/* now program new ones */
    549 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
    550 	mcnt = 0;
    551 	while (enm != NULL) {
    552 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    553 		    ETHER_ADDR_LEN) != 0)
    554 			goto allmulti;
    555 
    556 		h = rtk_calchash(enm->enm_addrlo);
    557 		if (h < 32)
    558 			hashes[0] |= (1 << h);
    559 		else
    560 			hashes[1] |= (1 << (h - 32));
    561 		mcnt++;
    562 		ETHER_NEXT_MULTI(step, enm);
    563 	}
    564 
    565 	ifp->if_flags &= ~IFF_ALLMULTI;
    566 
    567 	if (mcnt)
    568 		rxfilt |= RTK_RXCFG_RX_MULTI;
    569 	else
    570 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
    571 
    572 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
    573 
    574 	/*
    575 	 * For some unfathomable reason, RealTek decided to reverse
    576 	 * the order of the multicast hash registers in the PCI Express
    577 	 * parts. This means we have to write the hash pattern in reverse
    578 	 * order for those devices.
    579 	 */
    580 	if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
    581 		CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
    582 		CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
    583 	} else {
    584 		CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
    585 		CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
    586 	}
    587 }
    588 
    589 void
    590 rtk_reset(struct rtk_softc *sc)
    591 {
    592 	int i;
    593 
    594 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    595 
    596 	for (i = 0; i < RTK_TIMEOUT; i++) {
    597 		DELAY(10);
    598 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    599 			break;
    600 	}
    601 	if (i == RTK_TIMEOUT)
    602 		printf("%s: reset never completed!\n",
    603 		    device_xname(sc->sc_dev));
    604 }
    605 
    606 /*
    607  * Attach the interface. Allocate softc structures, do ifmedia
    608  * setup and ethernet/BPF attach.
    609  */
    610 void
    611 rtk_attach(struct rtk_softc *sc)
    612 {
    613 	device_t self = sc->sc_dev;
    614 	struct ifnet *ifp;
    615 	struct rtk_tx_desc *txd;
    616 	uint16_t val;
    617 	uint8_t eaddr[ETHER_ADDR_LEN];
    618 	int error;
    619 	int i, addr_len;
    620 
    621 	callout_init(&sc->rtk_tick_ch, 0);
    622 
    623 	/*
    624 	 * Check EEPROM type 9346 or 9356.
    625 	 */
    626 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    627 		addr_len = RTK_EEADDR_LEN1;
    628 	else
    629 		addr_len = RTK_EEADDR_LEN0;
    630 
    631 	/*
    632 	 * Get station address.
    633 	 */
    634 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
    635 	eaddr[0] = val & 0xff;
    636 	eaddr[1] = val >> 8;
    637 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
    638 	eaddr[2] = val & 0xff;
    639 	eaddr[3] = val >> 8;
    640 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
    641 	eaddr[4] = val & 0xff;
    642 	eaddr[5] = val >> 8;
    643 
    644 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    645 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
    646 	    BUS_DMA_NOWAIT)) != 0) {
    647 		aprint_error_dev(self,
    648 		    "can't allocate recv buffer, error = %d\n", error);
    649 		goto fail_0;
    650 	}
    651 
    652 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
    653 	    RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
    654 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    655 		aprint_error_dev(self,
    656 		    "can't map recv buffer, error = %d\n", error);
    657 		goto fail_1;
    658 	}
    659 
    660 	if ((error = bus_dmamap_create(sc->sc_dmat,
    661 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
    662 	    &sc->recv_dmamap)) != 0) {
    663 		aprint_error_dev(self,
    664 		    "can't create recv buffer DMA map, error = %d\n", error);
    665 		goto fail_2;
    666 	}
    667 
    668 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
    669 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
    670 	    NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    671 		aprint_error_dev(self,
    672 		    "can't load recv buffer DMA map, error = %d\n", error);
    673 		goto fail_3;
    674 	}
    675 
    676 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    677 		txd = &sc->rtk_tx_descs[i];
    678 		if ((error = bus_dmamap_create(sc->sc_dmat,
    679 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    680 		    &txd->txd_dmamap)) != 0) {
    681 			aprint_error_dev(self,
    682 			    "can't create snd buffer DMA map, error = %d\n",
    683 			    error);
    684 			goto fail_4;
    685 		}
    686 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
    687 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
    688 	}
    689 	SIMPLEQ_INIT(&sc->rtk_tx_free);
    690 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
    691 
    692 	/*
    693 	 * From this point forward, the attachment cannot fail. A failure
    694 	 * before this releases all resources thar may have been
    695 	 * allocated.
    696 	 */
    697 	sc->sc_flags |= RTK_ATTACHED;
    698 
    699 	/* Reset the adapter. */
    700 	rtk_reset(sc);
    701 
    702 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
    703 
    704 	ifp = &sc->ethercom.ec_if;
    705 	ifp->if_softc = sc;
    706 	strcpy(ifp->if_xname, device_xname(self));
    707 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    708 	ifp->if_ioctl = rtk_ioctl;
    709 	ifp->if_start = rtk_start;
    710 	ifp->if_watchdog = rtk_watchdog;
    711 	ifp->if_init = rtk_init;
    712 	ifp->if_stop = rtk_stop;
    713 	IFQ_SET_READY(&ifp->if_snd);
    714 
    715 	/*
    716 	 * Do ifmedia setup.
    717 	 */
    718 	sc->mii.mii_ifp = ifp;
    719 	sc->mii.mii_readreg = rtk_phy_readreg;
    720 	sc->mii.mii_writereg = rtk_phy_writereg;
    721 	sc->mii.mii_statchg = rtk_phy_statchg;
    722 	sc->ethercom.ec_mii = &sc->mii;
    723 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
    724 	    ether_mediastatus);
    725 	mii_attach(self, &sc->mii, 0xffffffff,
    726 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    727 
    728 	/* Choose a default media. */
    729 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
    730 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    731 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
    732 	} else {
    733 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
    734 	}
    735 
    736 	/*
    737 	 * Call MI attach routines.
    738 	 */
    739 	if_attach(ifp);
    740 	ether_ifattach(ifp, eaddr);
    741 
    742 	rnd_attach_source(&sc->rnd_source, device_xname(self),
    743 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    744 
    745 	return;
    746  fail_4:
    747 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    748 		txd = &sc->rtk_tx_descs[i];
    749 		if (txd->txd_dmamap != NULL)
    750 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
    751 	}
    752  fail_3:
    753 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    754  fail_2:
    755 	bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
    756 	    RTK_RXBUFLEN + 16);
    757  fail_1:
    758 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    759  fail_0:
    760 	return;
    761 }
    762 
    763 /*
    764  * Initialize the transmit descriptors.
    765  */
    766 static void
    767 rtk_list_tx_init(struct rtk_softc *sc)
    768 {
    769 	struct rtk_tx_desc *txd;
    770 	int i;
    771 
    772 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
    773 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
    774 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
    775 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
    776 
    777 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    778 		txd = &sc->rtk_tx_descs[i];
    779 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
    780 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
    781 	}
    782 }
    783 
    784 /*
    785  * rtk_activate:
    786  *     Handle device activation/deactivation requests.
    787  */
    788 int
    789 rtk_activate(device_t self, enum devact act)
    790 {
    791 	struct rtk_softc *sc = device_private(self);
    792 
    793 	switch (act) {
    794 	case DVACT_DEACTIVATE:
    795 		if_deactivate(&sc->ethercom.ec_if);
    796 		return 0;
    797 	default:
    798 		return EOPNOTSUPP;
    799 	}
    800 }
    801 
    802 /*
    803  * rtk_detach:
    804  *     Detach a rtk interface.
    805  */
    806 int
    807 rtk_detach(struct rtk_softc *sc)
    808 {
    809 	struct ifnet *ifp = &sc->ethercom.ec_if;
    810 	struct rtk_tx_desc *txd;
    811 	int i;
    812 
    813 	/*
    814 	 * Succeed now if there isn't any work to do.
    815 	 */
    816 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    817 		return 0;
    818 
    819 	/* Unhook our tick handler. */
    820 	callout_stop(&sc->rtk_tick_ch);
    821 
    822 	/* Detach all PHYs. */
    823 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    824 
    825 	/* Delete all remaining media. */
    826 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    827 
    828 	rnd_detach_source(&sc->rnd_source);
    829 
    830 	ether_ifdetach(ifp);
    831 	if_detach(ifp);
    832 
    833 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    834 		txd = &sc->rtk_tx_descs[i];
    835 		if (txd->txd_dmamap != NULL)
    836 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
    837 	}
    838 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    839 	bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
    840 	    RTK_RXBUFLEN + 16);
    841 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    842 
    843 	/* we don't want to run again */
    844 	sc->sc_flags &= ~RTK_ATTACHED;
    845 
    846 	return 0;
    847 }
    848 
    849 /*
    850  * rtk_enable:
    851  *     Enable the RTL81X9 chip.
    852  */
    853 int
    854 rtk_enable(struct rtk_softc *sc)
    855 {
    856 
    857 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    858 		if ((*sc->sc_enable)(sc) != 0) {
    859 			printf("%s: device enable failed\n",
    860 			    device_xname(sc->sc_dev));
    861 			return EIO;
    862 		}
    863 		sc->sc_flags |= RTK_ENABLED;
    864 	}
    865 	return 0;
    866 }
    867 
    868 /*
    869  * rtk_disable:
    870  *     Disable the RTL81X9 chip.
    871  */
    872 void
    873 rtk_disable(struct rtk_softc *sc)
    874 {
    875 
    876 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    877 		(*sc->sc_disable)(sc);
    878 		sc->sc_flags &= ~RTK_ENABLED;
    879 	}
    880 }
    881 
    882 /*
    883  * A frame has been uploaded: pass the resulting mbuf chain up to
    884  * the higher level protocols.
    885  *
    886  * You know there's something wrong with a PCI bus-master chip design.
    887  *
    888  * The receive operation is badly documented in the datasheet, so I'll
    889  * attempt to document it here. The driver provides a buffer area and
    890  * places its base address in the RX buffer start address register.
    891  * The chip then begins copying frames into the RX buffer. Each frame
    892  * is preceded by a 32-bit RX status word which specifies the length
    893  * of the frame and certain other status bits. Each frame (starting with
    894  * the status word) is also 32-bit aligned. The frame length is in the
    895  * first 16 bits of the status word; the lower 15 bits correspond with
    896  * the 'rx status register' mentioned in the datasheet.
    897  *
    898  * Note: to make the Alpha happy, the frame payload needs to be aligned
    899  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
    900  * shifted forward 2 bytes.
    901  */
    902 static void
    903 rtk_rxeof(struct rtk_softc *sc)
    904 {
    905 	struct mbuf *m;
    906 	struct ifnet *ifp;
    907 	uint8_t *rxbufpos, *dst;
    908 	u_int total_len, wrap;
    909 	uint32_t rxstat;
    910 	uint16_t cur_rx, new_rx;
    911 	uint16_t limit;
    912 	uint16_t rx_bytes, max_bytes;
    913 
    914 	ifp = &sc->ethercom.ec_if;
    915 
    916 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
    917 
    918 	/* Do not try to read past this point. */
    919 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
    920 
    921 	if (limit < cur_rx)
    922 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
    923 	else
    924 		max_bytes = limit - cur_rx;
    925 	rx_bytes = 0;
    926 
    927 	while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
    928 		rxbufpos = sc->rtk_rx_buf + cur_rx;
    929 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
    930 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
    931 		rxstat = le32toh(*(uint32_t *)rxbufpos);
    932 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
    933 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
    934 
    935 		/*
    936 		 * Here's a totally undocumented fact for you. When the
    937 		 * RealTek chip is in the process of copying a packet into
    938 		 * RAM for you, the length will be 0xfff0. If you spot a
    939 		 * packet header with this value, you need to stop. The
    940 		 * datasheet makes absolutely no mention of this and
    941 		 * RealTek should be shot for this.
    942 		 */
    943 		total_len = rxstat >> 16;
    944 		if (total_len == RTK_RXSTAT_UNFINISHED)
    945 			break;
    946 
    947 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
    948 		    total_len < ETHER_MIN_LEN ||
    949 		    total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
    950 			ifp->if_ierrors++;
    951 
    952 			/*
    953 			 * submitted by:[netbsd-pcmcia:00484]
    954 			 *	Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
    955 			 * obtain from:
    956 			 *     FreeBSD if_rl.c rev 1.24->1.25
    957 			 *
    958 			 */
    959 #if 0
    960 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
    961 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
    962 			    RTK_RXSTAT_ALIGNERR)) {
    963 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
    964 				CSR_WRITE_2(sc, RTK_COMMAND,
    965 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
    966 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
    967 				CSR_WRITE_4(sc, RTK_RXADDR,
    968 				    sc->recv_dmamap->dm_segs[0].ds_addr);
    969 				cur_rx = 0;
    970 			}
    971 			break;
    972 #else
    973 			rtk_init(ifp);
    974 			return;
    975 #endif
    976 		}
    977 
    978 		/* No errors; receive the packet. */
    979 		rx_bytes += total_len + RTK_RXSTAT_LEN;
    980 
    981 		/*
    982 		 * Avoid trying to read more bytes than we know
    983 		 * the chip has prepared for us.
    984 		 */
    985 		if (rx_bytes > max_bytes)
    986 			break;
    987 
    988 		/*
    989 		 * Skip the status word, wrapping around to the beginning
    990 		 * of the Rx area, if necessary.
    991 		 */
    992 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
    993 		rxbufpos = sc->rtk_rx_buf + cur_rx;
    994 
    995 		/*
    996 		 * Compute the number of bytes at which the packet
    997 		 * will wrap to the beginning of the ring buffer.
    998 		 */
    999 		wrap = RTK_RXBUFLEN - cur_rx;
   1000 
   1001 		/*
   1002 		 * Compute where the next pending packet is.
   1003 		 */
   1004 		if (total_len > wrap)
   1005 			new_rx = total_len - wrap;
   1006 		else
   1007 			new_rx = cur_rx + total_len;
   1008 		/* Round up to 32-bit boundary. */
   1009 		new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
   1010 
   1011 		/*
   1012 		 * The RealTek chip includes the CRC with every
   1013 		 * incoming packet; trim it off here.
   1014 		 */
   1015 		total_len -= ETHER_CRC_LEN;
   1016 
   1017 		/*
   1018 		 * Now allocate an mbuf (and possibly a cluster) to hold
   1019 		 * the packet. Note we offset the packet 2 bytes so that
   1020 		 * data after the Ethernet header will be 4-byte aligned.
   1021 		 */
   1022 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1023 		if (m == NULL) {
   1024 			printf("%s: unable to allocate Rx mbuf\n",
   1025 			    device_xname(sc->sc_dev));
   1026 			ifp->if_ierrors++;
   1027 			goto next_packet;
   1028 		}
   1029 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
   1030 			MCLGET(m, M_DONTWAIT);
   1031 			if ((m->m_flags & M_EXT) == 0) {
   1032 				printf("%s: unable to allocate Rx cluster\n",
   1033 				    device_xname(sc->sc_dev));
   1034 				ifp->if_ierrors++;
   1035 				m_freem(m);
   1036 				m = NULL;
   1037 				goto next_packet;
   1038 			}
   1039 		}
   1040 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
   1041 		m_set_rcvif(m, ifp);
   1042 		m->m_pkthdr.len = m->m_len = total_len;
   1043 		dst = mtod(m, void *);
   1044 
   1045 		/*
   1046 		 * If the packet wraps, copy up to the wrapping point.
   1047 		 */
   1048 		if (total_len > wrap) {
   1049 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1050 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
   1051 			memcpy(dst, rxbufpos, wrap);
   1052 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1053 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
   1054 			cur_rx = 0;
   1055 			rxbufpos = sc->rtk_rx_buf;
   1056 			total_len -= wrap;
   1057 			dst += wrap;
   1058 		}
   1059 
   1060 		/*
   1061 		 * ...and now the rest.
   1062 		 */
   1063 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1064 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
   1065 		memcpy(dst, rxbufpos, total_len);
   1066 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1067 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
   1068 
   1069  next_packet:
   1070 		CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
   1071 		cur_rx = new_rx;
   1072 
   1073 		if (m == NULL)
   1074 			continue;
   1075 
   1076 		ifp->if_ipackets++;
   1077 
   1078 		bpf_mtap(ifp, m);
   1079 		/* pass it on. */
   1080 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1081 	}
   1082 }
   1083 
   1084 /*
   1085  * A frame was downloaded to the chip. It's safe for us to clean up
   1086  * the list buffers.
   1087  */
   1088 static void
   1089 rtk_txeof(struct rtk_softc *sc)
   1090 {
   1091 	struct ifnet *ifp;
   1092 	struct rtk_tx_desc *txd;
   1093 	uint32_t txstat;
   1094 
   1095 	ifp = &sc->ethercom.ec_if;
   1096 
   1097 	/*
   1098 	 * Go through our tx list and free mbufs for those
   1099 	 * frames that have been uploaded.
   1100 	 */
   1101 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
   1102 		txstat = CSR_READ_4(sc, txd->txd_txstat);
   1103 		if ((txstat & (RTK_TXSTAT_TX_OK|
   1104 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
   1105 			break;
   1106 
   1107 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
   1108 
   1109 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
   1110 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1111 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
   1112 		m_freem(txd->txd_mbuf);
   1113 		txd->txd_mbuf = NULL;
   1114 
   1115 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
   1116 
   1117 		if (txstat & RTK_TXSTAT_TX_OK)
   1118 			ifp->if_opackets++;
   1119 		else {
   1120 			ifp->if_oerrors++;
   1121 
   1122 			/*
   1123 			 * Increase Early TX threshold if underrun occurred.
   1124 			 * Increase step 64 bytes.
   1125 			 */
   1126 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
   1127 #ifdef DEBUG
   1128 				printf("%s: transmit underrun;",
   1129 				    device_xname(sc->sc_dev));
   1130 #endif
   1131 				if (sc->sc_txthresh < RTK_TXTH_MAX) {
   1132 					sc->sc_txthresh += 2;
   1133 #ifdef DEBUG
   1134 					printf(" new threshold: %d bytes",
   1135 					    sc->sc_txthresh * 32);
   1136 #endif
   1137 				}
   1138 #ifdef DEBUG
   1139 				printf("\n");
   1140 #endif
   1141 			}
   1142 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
   1143 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1144 		}
   1145 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
   1146 		ifp->if_flags &= ~IFF_OACTIVE;
   1147 	}
   1148 
   1149 	/* Clear the timeout timer if there is no pending packet. */
   1150 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
   1151 		ifp->if_timer = 0;
   1152 
   1153 }
   1154 
   1155 int
   1156 rtk_intr(void *arg)
   1157 {
   1158 	struct rtk_softc *sc;
   1159 	struct ifnet *ifp;
   1160 	uint16_t status;
   1161 	int handled;
   1162 
   1163 	sc = arg;
   1164 	ifp = &sc->ethercom.ec_if;
   1165 
   1166 	if (!device_has_power(sc->sc_dev))
   1167 		return 0;
   1168 
   1169 	/* Disable interrupts. */
   1170 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1171 
   1172 	handled = 0;
   1173 	for (;;) {
   1174 
   1175 		status = CSR_READ_2(sc, RTK_ISR);
   1176 
   1177 		if (status == 0xffff)
   1178 			break; /* Card is gone... */
   1179 
   1180 		if (status)
   1181 			CSR_WRITE_2(sc, RTK_ISR, status);
   1182 
   1183 		if ((status & RTK_INTRS) == 0)
   1184 			break;
   1185 
   1186 		handled = 1;
   1187 
   1188 		if (status & RTK_ISR_RX_OK)
   1189 			rtk_rxeof(sc);
   1190 
   1191 		if (status & RTK_ISR_RX_ERR)
   1192 			rtk_rxeof(sc);
   1193 
   1194 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
   1195 			rtk_txeof(sc);
   1196 
   1197 		if (status & RTK_ISR_SYSTEM_ERR) {
   1198 			rtk_reset(sc);
   1199 			rtk_init(ifp);
   1200 		}
   1201 	}
   1202 
   1203 	/* Re-enable interrupts. */
   1204 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
   1205 
   1206 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1207 		rtk_start(ifp);
   1208 
   1209 	rnd_add_uint32(&sc->rnd_source, status);
   1210 
   1211 	return handled;
   1212 }
   1213 
   1214 /*
   1215  * Main transmit routine.
   1216  */
   1217 
   1218 static void
   1219 rtk_start(struct ifnet *ifp)
   1220 {
   1221 	struct rtk_softc *sc;
   1222 	struct rtk_tx_desc *txd;
   1223 	struct mbuf *m_head, *m_new;
   1224 	int error, len;
   1225 
   1226 	sc = ifp->if_softc;
   1227 
   1228 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
   1229 		IFQ_POLL(&ifp->if_snd, m_head);
   1230 		if (m_head == NULL)
   1231 			break;
   1232 		m_new = NULL;
   1233 
   1234 		/*
   1235 		 * Load the DMA map.  If this fails, the packet didn't
   1236 		 * fit in one DMA segment, and we need to copy.  Note,
   1237 		 * the packet must also be aligned.
   1238 		 * if the packet is too small, copy it too, so we're sure
   1239 		 * so have enough room for the pad buffer.
   1240 		 */
   1241 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
   1242 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
   1243 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
   1244 			m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1245 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1246 			if (m_new == NULL) {
   1247 				printf("%s: unable to allocate Tx mbuf\n",
   1248 				    device_xname(sc->sc_dev));
   1249 				break;
   1250 			}
   1251 			if (m_head->m_pkthdr.len > MHLEN) {
   1252 				MCLGET(m_new, M_DONTWAIT);
   1253 				if ((m_new->m_flags & M_EXT) == 0) {
   1254 					printf("%s: unable to allocate Tx "
   1255 					    "cluster\n",
   1256 					    device_xname(sc->sc_dev));
   1257 					m_freem(m_new);
   1258 					break;
   1259 				}
   1260 			}
   1261 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
   1262 			    mtod(m_new, void *));
   1263 			m_new->m_pkthdr.len = m_new->m_len =
   1264 			    m_head->m_pkthdr.len;
   1265 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
   1266 				memset(
   1267 				    mtod(m_new, char *) + m_head->m_pkthdr.len,
   1268 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
   1269 				m_new->m_pkthdr.len = m_new->m_len =
   1270 				    ETHER_PAD_LEN;
   1271 			}
   1272 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
   1273 			    txd->txd_dmamap, m_new,
   1274 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1275 			if (error) {
   1276 				printf("%s: unable to load Tx buffer, "
   1277 				    "error = %d\n",
   1278 				    device_xname(sc->sc_dev), error);
   1279 				break;
   1280 			}
   1281 		}
   1282 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1283 		/*
   1284 		 * If there's a BPF listener, bounce a copy of this frame
   1285 		 * to him.
   1286 		 */
   1287 		bpf_mtap(ifp, m_head);
   1288 		if (m_new != NULL) {
   1289 			m_freem(m_head);
   1290 			m_head = m_new;
   1291 		}
   1292 		txd->txd_mbuf = m_head;
   1293 
   1294 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
   1295 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
   1296 
   1297 		/*
   1298 		 * Transmit the frame.
   1299 		 */
   1300 		bus_dmamap_sync(sc->sc_dmat,
   1301 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
   1302 		    BUS_DMASYNC_PREWRITE);
   1303 
   1304 		len = txd->txd_dmamap->dm_segs[0].ds_len;
   1305 
   1306 		CSR_WRITE_4(sc, txd->txd_txaddr,
   1307 		    txd->txd_dmamap->dm_segs[0].ds_addr);
   1308 		CSR_WRITE_4(sc, txd->txd_txstat,
   1309 		    RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
   1310 
   1311 		/*
   1312 		 * Set a timeout in case the chip goes out to lunch.
   1313 		 */
   1314 		ifp->if_timer = 5;
   1315 	}
   1316 
   1317 	/*
   1318 	 * We broke out of the loop because all our TX slots are
   1319 	 * full. Mark the NIC as busy until it drains some of the
   1320 	 * packets from the queue.
   1321 	 */
   1322 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
   1323 		ifp->if_flags |= IFF_OACTIVE;
   1324 }
   1325 
   1326 static int
   1327 rtk_init(struct ifnet *ifp)
   1328 {
   1329 	struct rtk_softc *sc = ifp->if_softc;
   1330 	int error, i;
   1331 	uint32_t rxcfg;
   1332 
   1333 	if ((error = rtk_enable(sc)) != 0)
   1334 		goto out;
   1335 
   1336 	/*
   1337 	 * Cancel pending I/O.
   1338 	 */
   1339 	rtk_stop(ifp, 0);
   1340 
   1341 	/* Init our MAC address */
   1342 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1343 		CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
   1344 	}
   1345 
   1346 	/* Init the RX buffer pointer register. */
   1347 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
   1348 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1349 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
   1350 
   1351 	/* Init TX descriptors. */
   1352 	rtk_list_tx_init(sc);
   1353 
   1354 	/* Init Early TX threshold. */
   1355 	sc->sc_txthresh = RTK_TXTH_256;
   1356 	/*
   1357 	 * Enable transmit and receive.
   1358 	 */
   1359 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1360 
   1361 	/*
   1362 	 * Set the initial TX and RX configuration.
   1363 	 */
   1364 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1365 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1366 
   1367 	/* Set the individual bit to receive frames for this host only. */
   1368 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1369 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1370 
   1371 	/* If we want promiscuous mode, set the allframes bit. */
   1372 	if (ifp->if_flags & IFF_PROMISC) {
   1373 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1374 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1375 	} else {
   1376 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1377 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1378 	}
   1379 
   1380 	/*
   1381 	 * Set capture broadcast bit to capture broadcast frames.
   1382 	 */
   1383 	if (ifp->if_flags & IFF_BROADCAST) {
   1384 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1385 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1386 	} else {
   1387 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1388 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1389 	}
   1390 
   1391 	/*
   1392 	 * Program the multicast filter, if necessary.
   1393 	 */
   1394 	rtk_setmulti(sc);
   1395 
   1396 	/*
   1397 	 * Enable interrupts.
   1398 	 */
   1399 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
   1400 
   1401 	/* Start RX/TX process. */
   1402 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1403 
   1404 	/* Enable receiver and transmitter. */
   1405 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1406 
   1407 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
   1408 
   1409 	/*
   1410 	 * Set current media.
   1411 	 */
   1412 	if ((error = ether_mediachange(ifp)) != 0)
   1413 		goto out;
   1414 
   1415 	ifp->if_flags |= IFF_RUNNING;
   1416 	ifp->if_flags &= ~IFF_OACTIVE;
   1417 
   1418 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
   1419 
   1420  out:
   1421 	if (error) {
   1422 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1423 		ifp->if_timer = 0;
   1424 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1425 	}
   1426 	return error;
   1427 }
   1428 
   1429 static int
   1430 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1431 {
   1432 	struct rtk_softc *sc = ifp->if_softc;
   1433 	int s, error;
   1434 
   1435 	s = splnet();
   1436 	error = ether_ioctl(ifp, command, data);
   1437 	if (error == ENETRESET) {
   1438 		if (ifp->if_flags & IFF_RUNNING) {
   1439 			/*
   1440 			 * Multicast list has changed.  Set the
   1441 			 * hardware filter accordingly.
   1442 			 */
   1443 			rtk_setmulti(sc);
   1444 		}
   1445 		error = 0;
   1446 	}
   1447 	splx(s);
   1448 
   1449 	return error;
   1450 }
   1451 
   1452 static void
   1453 rtk_watchdog(struct ifnet *ifp)
   1454 {
   1455 	struct rtk_softc *sc;
   1456 
   1457 	sc = ifp->if_softc;
   1458 
   1459 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1460 	ifp->if_oerrors++;
   1461 	rtk_txeof(sc);
   1462 	rtk_rxeof(sc);
   1463 	rtk_init(ifp);
   1464 }
   1465 
   1466 /*
   1467  * Stop the adapter and free any mbufs allocated to the
   1468  * RX and TX lists.
   1469  */
   1470 static void
   1471 rtk_stop(struct ifnet *ifp, int disable)
   1472 {
   1473 	struct rtk_softc *sc = ifp->if_softc;
   1474 	struct rtk_tx_desc *txd;
   1475 
   1476 	callout_stop(&sc->rtk_tick_ch);
   1477 
   1478 	mii_down(&sc->mii);
   1479 
   1480 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   1481 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1482 
   1483 	/*
   1484 	 * Free the TX list buffers.
   1485 	 */
   1486 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
   1487 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
   1488 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
   1489 		m_freem(txd->txd_mbuf);
   1490 		txd->txd_mbuf = NULL;
   1491 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
   1492 	}
   1493 
   1494 	if (disable)
   1495 		rtk_disable(sc);
   1496 
   1497 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1498 	ifp->if_timer = 0;
   1499 }
   1500 
   1501 static void
   1502 rtk_tick(void *arg)
   1503 {
   1504 	struct rtk_softc *sc = arg;
   1505 	int s;
   1506 
   1507 	s = splnet();
   1508 	mii_tick(&sc->mii);
   1509 	splx(s);
   1510 
   1511 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
   1512 }
   1513