rtl81x9.c revision 1.104 1 /* $NetBSD: rtl81x9.c,v 1.104 2019/01/22 03:42:26 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.104 2019/01/22 03:42:26 msaitoh Exp $");
90
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/callout.h>
95 #include <sys/device.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/socket.h>
101
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/if_ether.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107
108 #include <net/bpf.h>
109 #include <sys/rndsource.h>
110
111 #include <sys/bus.h>
112 #include <machine/endian.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116
117 #include <dev/ic/rtl81x9reg.h>
118 #include <dev/ic/rtl81x9var.h>
119
120 static void rtk_reset(struct rtk_softc *);
121 static void rtk_rxeof(struct rtk_softc *);
122 static void rtk_txeof(struct rtk_softc *);
123 static void rtk_start(struct ifnet *);
124 static int rtk_ioctl(struct ifnet *, u_long, void *);
125 static int rtk_init(struct ifnet *);
126 static void rtk_stop(struct ifnet *, int);
127
128 static void rtk_watchdog(struct ifnet *);
129
130 static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
131 static void rtk_mii_sync(struct rtk_softc *);
132 static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
133 static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
134 static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
135
136 static int rtk_phy_readreg(device_t, int, int, uint16_t *);
137 static int rtk_phy_writereg(device_t, int, int, uint16_t);
138 static void rtk_phy_statchg(struct ifnet *);
139 static void rtk_tick(void *);
140
141 static int rtk_enable(struct rtk_softc *);
142 static void rtk_disable(struct rtk_softc *);
143
144 static void rtk_list_tx_init(struct rtk_softc *);
145
146 #define EE_SET(x) \
147 CSR_WRITE_1(sc, RTK_EECMD, \
148 CSR_READ_1(sc, RTK_EECMD) | (x))
149
150 #define EE_CLR(x) \
151 CSR_WRITE_1(sc, RTK_EECMD, \
152 CSR_READ_1(sc, RTK_EECMD) & ~(x))
153
154 #define EE_DELAY() DELAY(100)
155
156 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
157
158 /*
159 * Send a read command and address to the EEPROM, check for ACK.
160 */
161 static void
162 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
163 {
164 int d, i;
165
166 d = (RTK_EECMD_READ << addr_len) | addr;
167
168 /*
169 * Feed in each bit and stobe the clock.
170 */
171 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
172 if (d & (1 << (i - 1))) {
173 EE_SET(RTK_EE_DATAIN);
174 } else {
175 EE_CLR(RTK_EE_DATAIN);
176 }
177 EE_DELAY();
178 EE_SET(RTK_EE_CLK);
179 EE_DELAY();
180 EE_CLR(RTK_EE_CLK);
181 EE_DELAY();
182 }
183 }
184
185 /*
186 * Read a word of data stored in the EEPROM at address 'addr.'
187 */
188 uint16_t
189 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
190 {
191 uint16_t word;
192 int i;
193
194 /* Enter EEPROM access mode. */
195 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
196 EE_DELAY();
197 EE_SET(RTK_EE_SEL);
198
199 /*
200 * Send address of word we want to read.
201 */
202 rtk_eeprom_putbyte(sc, addr, addr_len);
203
204 /*
205 * Start reading bits from EEPROM.
206 */
207 word = 0;
208 for (i = 16; i > 0; i--) {
209 EE_SET(RTK_EE_CLK);
210 EE_DELAY();
211 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
212 word |= 1 << (i - 1);
213 EE_CLR(RTK_EE_CLK);
214 EE_DELAY();
215 }
216
217 /* Turn off EEPROM access mode. */
218 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
219
220 return word;
221 }
222
223 /*
224 * MII access routines are provided for the 8129, which
225 * doesn't have a built-in PHY. For the 8139, we fake things
226 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
227 * direct access PHY registers.
228 */
229 #define MII_SET(x) \
230 CSR_WRITE_1(sc, RTK_MII, \
231 CSR_READ_1(sc, RTK_MII) | (x))
232
233 #define MII_CLR(x) \
234 CSR_WRITE_1(sc, RTK_MII, \
235 CSR_READ_1(sc, RTK_MII) & ~(x))
236
237 /*
238 * Sync the PHYs by setting data bit and strobing the clock 32 times.
239 */
240 static void
241 rtk_mii_sync(struct rtk_softc *sc)
242 {
243 int i;
244
245 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
246
247 for (i = 0; i < 32; i++) {
248 MII_SET(RTK_MII_CLK);
249 DELAY(1);
250 MII_CLR(RTK_MII_CLK);
251 DELAY(1);
252 }
253 }
254
255 /*
256 * Clock a series of bits through the MII.
257 */
258 static void
259 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
260 {
261 int i;
262
263 MII_CLR(RTK_MII_CLK);
264
265 for (i = cnt; i > 0; i--) {
266 if (bits & (1 << (i - 1))) {
267 MII_SET(RTK_MII_DATAOUT);
268 } else {
269 MII_CLR(RTK_MII_DATAOUT);
270 }
271 DELAY(1);
272 MII_CLR(RTK_MII_CLK);
273 DELAY(1);
274 MII_SET(RTK_MII_CLK);
275 }
276 }
277
278 /*
279 * Read an PHY register through the MII.
280 */
281 static int
282 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
283 {
284 int i, ack, s, rv = 0;
285
286 s = splnet();
287
288 /*
289 * Set up frame for RX.
290 */
291 frame->mii_stdelim = RTK_MII_STARTDELIM;
292 frame->mii_opcode = RTK_MII_READOP;
293 frame->mii_turnaround = 0;
294 frame->mii_data = 0;
295
296 CSR_WRITE_2(sc, RTK_MII, 0);
297
298 /*
299 * Turn on data xmit.
300 */
301 MII_SET(RTK_MII_DIR);
302
303 rtk_mii_sync(sc);
304
305 /*
306 * Send command/address info.
307 */
308 rtk_mii_send(sc, frame->mii_stdelim, 2);
309 rtk_mii_send(sc, frame->mii_opcode, 2);
310 rtk_mii_send(sc, frame->mii_phyaddr, 5);
311 rtk_mii_send(sc, frame->mii_regaddr, 5);
312
313 /* Idle bit */
314 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
315 DELAY(1);
316 MII_SET(RTK_MII_CLK);
317 DELAY(1);
318
319 /* Turn off xmit. */
320 MII_CLR(RTK_MII_DIR);
321
322 /* Check for ack */
323 MII_CLR(RTK_MII_CLK);
324 DELAY(1);
325 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
326 MII_SET(RTK_MII_CLK);
327 DELAY(1);
328
329 /*
330 * Now try reading data bits. If the ack failed, we still
331 * need to clock through 16 cycles to keep the PHY(s) in sync.
332 */
333 if (ack) {
334 for (i = 0; i < 16; i++) {
335 MII_CLR(RTK_MII_CLK);
336 DELAY(1);
337 MII_SET(RTK_MII_CLK);
338 DELAY(1);
339 }
340 rv = -1;
341 goto fail;
342 }
343
344 for (i = 16; i > 0; i--) {
345 MII_CLR(RTK_MII_CLK);
346 DELAY(1);
347 if (!ack) {
348 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
349 frame->mii_data |= 1 << (i - 1);
350 DELAY(1);
351 }
352 MII_SET(RTK_MII_CLK);
353 DELAY(1);
354 }
355
356 fail:
357 MII_CLR(RTK_MII_CLK);
358 DELAY(1);
359 MII_SET(RTK_MII_CLK);
360 DELAY(1);
361
362 splx(s);
363
364 return rv;
365 }
366
367 /*
368 * Write to a PHY register through the MII.
369 */
370 static int
371 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
372 {
373 int s;
374
375 s = splnet();
376 /*
377 * Set up frame for TX.
378 */
379 frame->mii_stdelim = RTK_MII_STARTDELIM;
380 frame->mii_opcode = RTK_MII_WRITEOP;
381 frame->mii_turnaround = RTK_MII_TURNAROUND;
382
383 /*
384 * Turn on data output.
385 */
386 MII_SET(RTK_MII_DIR);
387
388 rtk_mii_sync(sc);
389
390 rtk_mii_send(sc, frame->mii_stdelim, 2);
391 rtk_mii_send(sc, frame->mii_opcode, 2);
392 rtk_mii_send(sc, frame->mii_phyaddr, 5);
393 rtk_mii_send(sc, frame->mii_regaddr, 5);
394 rtk_mii_send(sc, frame->mii_turnaround, 2);
395 rtk_mii_send(sc, frame->mii_data, 16);
396
397 /* Idle bit. */
398 MII_SET(RTK_MII_CLK);
399 DELAY(1);
400 MII_CLR(RTK_MII_CLK);
401 DELAY(1);
402
403 /*
404 * Turn off xmit.
405 */
406 MII_CLR(RTK_MII_DIR);
407
408 splx(s);
409
410 return 0;
411 }
412
413 static int
414 rtk_phy_readreg(device_t self, int phy, int reg, uint16_t *val)
415 {
416 struct rtk_softc *sc = device_private(self);
417 struct rtk_mii_frame frame;
418 int rv;
419 int rtk8139_reg;
420
421 if ((sc->sc_quirk & RTKQ_8129) == 0) {
422 if (phy != 7)
423 return -1;
424
425 switch (reg) {
426 case MII_BMCR:
427 rtk8139_reg = RTK_BMCR;
428 break;
429 case MII_BMSR:
430 rtk8139_reg = RTK_BMSR;
431 break;
432 case MII_ANAR:
433 rtk8139_reg = RTK_ANAR;
434 break;
435 case MII_ANER:
436 rtk8139_reg = RTK_ANER;
437 break;
438 case MII_ANLPAR:
439 rtk8139_reg = RTK_LPAR;
440 break;
441 case MII_PHYIDR1:
442 case MII_PHYIDR2:
443 *val = 0;
444 return 0;
445 default:
446 #if 0
447 printf("%s: bad phy register\n", device_xname(self));
448 #endif
449 return -1;
450 }
451 *val = CSR_READ_2(sc, rtk8139_reg);
452 return 0;
453 }
454
455 memset(&frame, 0, sizeof(frame));
456
457 frame.mii_phyaddr = phy;
458 frame.mii_regaddr = reg;
459 rv = rtk_mii_readreg(sc, &frame);
460 *val = frame.mii_data;
461
462 return rv;
463 }
464
465 static int
466 rtk_phy_writereg(device_t self, int phy, int reg, uint16_t val)
467 {
468 struct rtk_softc *sc = device_private(self);
469 struct rtk_mii_frame frame;
470 int rtk8139_reg;
471
472 if ((sc->sc_quirk & RTKQ_8129) == 0) {
473 if (phy != 7)
474 return -1;
475
476 switch (reg) {
477 case MII_BMCR:
478 rtk8139_reg = RTK_BMCR;
479 break;
480 case MII_BMSR:
481 rtk8139_reg = RTK_BMSR;
482 break;
483 case MII_ANAR:
484 rtk8139_reg = RTK_ANAR;
485 break;
486 case MII_ANER:
487 rtk8139_reg = RTK_ANER;
488 break;
489 case MII_ANLPAR:
490 rtk8139_reg = RTK_LPAR;
491 break;
492 default:
493 #if 0
494 printf("%s: bad phy register\n", device_xname(self));
495 #endif
496 return -1;
497 }
498 CSR_WRITE_2(sc, rtk8139_reg, val);
499 return 0;
500 }
501
502 memset(&frame, 0, sizeof(frame));
503
504 frame.mii_phyaddr = phy;
505 frame.mii_regaddr = reg;
506 frame.mii_data = val;
507
508 return rtk_mii_writereg(sc, &frame);
509 }
510
511 static void
512 rtk_phy_statchg(struct ifnet *ifp)
513 {
514
515 /* Nothing to do. */
516 }
517
518 #define rtk_calchash(addr) \
519 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
520
521 /*
522 * Program the 64-bit multicast hash filter.
523 */
524 void
525 rtk_setmulti(struct rtk_softc *sc)
526 {
527 struct ifnet *ifp;
528 uint32_t hashes[2] = { 0, 0 };
529 uint32_t rxfilt;
530 struct ether_multi *enm;
531 struct ether_multistep step;
532 int h, mcnt;
533
534 ifp = &sc->ethercom.ec_if;
535
536 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
537
538 if (ifp->if_flags & IFF_PROMISC) {
539 allmulti:
540 ifp->if_flags |= IFF_ALLMULTI;
541 rxfilt |= RTK_RXCFG_RX_MULTI;
542 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
543 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
544 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
545 return;
546 }
547
548 /* first, zot all the existing hash bits */
549 CSR_WRITE_4(sc, RTK_MAR0, 0);
550 CSR_WRITE_4(sc, RTK_MAR4, 0);
551
552 /* now program new ones */
553 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
554 mcnt = 0;
555 while (enm != NULL) {
556 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
557 ETHER_ADDR_LEN) != 0)
558 goto allmulti;
559
560 h = rtk_calchash(enm->enm_addrlo);
561 if (h < 32)
562 hashes[0] |= (1 << h);
563 else
564 hashes[1] |= (1 << (h - 32));
565 mcnt++;
566 ETHER_NEXT_MULTI(step, enm);
567 }
568
569 ifp->if_flags &= ~IFF_ALLMULTI;
570
571 if (mcnt)
572 rxfilt |= RTK_RXCFG_RX_MULTI;
573 else
574 rxfilt &= ~RTK_RXCFG_RX_MULTI;
575
576 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
577
578 /*
579 * For some unfathomable reason, RealTek decided to reverse
580 * the order of the multicast hash registers in the PCI Express
581 * parts. This means we have to write the hash pattern in reverse
582 * order for those devices.
583 */
584 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
585 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
586 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
587 } else {
588 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
589 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
590 }
591 }
592
593 void
594 rtk_reset(struct rtk_softc *sc)
595 {
596 int i;
597
598 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
599
600 for (i = 0; i < RTK_TIMEOUT; i++) {
601 DELAY(10);
602 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
603 break;
604 }
605 if (i == RTK_TIMEOUT)
606 printf("%s: reset never completed!\n",
607 device_xname(sc->sc_dev));
608 }
609
610 /*
611 * Attach the interface. Allocate softc structures, do ifmedia
612 * setup and ethernet/BPF attach.
613 */
614 void
615 rtk_attach(struct rtk_softc *sc)
616 {
617 device_t self = sc->sc_dev;
618 struct ifnet *ifp;
619 struct rtk_tx_desc *txd;
620 uint16_t val;
621 uint8_t eaddr[ETHER_ADDR_LEN];
622 int error;
623 int i, addr_len;
624
625 callout_init(&sc->rtk_tick_ch, 0);
626
627 /*
628 * Check EEPROM type 9346 or 9356.
629 */
630 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
631 addr_len = RTK_EEADDR_LEN1;
632 else
633 addr_len = RTK_EEADDR_LEN0;
634
635 /*
636 * Get station address.
637 */
638 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
639 eaddr[0] = val & 0xff;
640 eaddr[1] = val >> 8;
641 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
642 eaddr[2] = val & 0xff;
643 eaddr[3] = val >> 8;
644 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
645 eaddr[4] = val & 0xff;
646 eaddr[5] = val >> 8;
647
648 if ((error = bus_dmamem_alloc(sc->sc_dmat,
649 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
650 BUS_DMA_NOWAIT)) != 0) {
651 aprint_error_dev(self,
652 "can't allocate recv buffer, error = %d\n", error);
653 goto fail_0;
654 }
655
656 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
657 RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
658 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
659 aprint_error_dev(self,
660 "can't map recv buffer, error = %d\n", error);
661 goto fail_1;
662 }
663
664 if ((error = bus_dmamap_create(sc->sc_dmat,
665 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
666 &sc->recv_dmamap)) != 0) {
667 aprint_error_dev(self,
668 "can't create recv buffer DMA map, error = %d\n", error);
669 goto fail_2;
670 }
671
672 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
673 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
674 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
675 aprint_error_dev(self,
676 "can't load recv buffer DMA map, error = %d\n", error);
677 goto fail_3;
678 }
679
680 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
681 txd = &sc->rtk_tx_descs[i];
682 if ((error = bus_dmamap_create(sc->sc_dmat,
683 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
684 &txd->txd_dmamap)) != 0) {
685 aprint_error_dev(self,
686 "can't create snd buffer DMA map, error = %d\n",
687 error);
688 goto fail_4;
689 }
690 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
691 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
692 }
693 SIMPLEQ_INIT(&sc->rtk_tx_free);
694 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
695
696 /*
697 * From this point forward, the attachment cannot fail. A failure
698 * before this releases all resources thar may have been
699 * allocated.
700 */
701 sc->sc_flags |= RTK_ATTACHED;
702
703 /* Reset the adapter. */
704 rtk_reset(sc);
705
706 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
707
708 ifp = &sc->ethercom.ec_if;
709 ifp->if_softc = sc;
710 strcpy(ifp->if_xname, device_xname(self));
711 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
712 ifp->if_ioctl = rtk_ioctl;
713 ifp->if_start = rtk_start;
714 ifp->if_watchdog = rtk_watchdog;
715 ifp->if_init = rtk_init;
716 ifp->if_stop = rtk_stop;
717 IFQ_SET_READY(&ifp->if_snd);
718
719 /*
720 * Do ifmedia setup.
721 */
722 sc->mii.mii_ifp = ifp;
723 sc->mii.mii_readreg = rtk_phy_readreg;
724 sc->mii.mii_writereg = rtk_phy_writereg;
725 sc->mii.mii_statchg = rtk_phy_statchg;
726 sc->ethercom.ec_mii = &sc->mii;
727 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
728 ether_mediastatus);
729 mii_attach(self, &sc->mii, 0xffffffff,
730 MII_PHY_ANY, MII_OFFSET_ANY, 0);
731
732 /* Choose a default media. */
733 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
734 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
735 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
736 } else {
737 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
738 }
739
740 /*
741 * Call MI attach routines.
742 */
743 if_attach(ifp);
744 if_deferred_start_init(ifp, NULL);
745 ether_ifattach(ifp, eaddr);
746
747 rnd_attach_source(&sc->rnd_source, device_xname(self),
748 RND_TYPE_NET, RND_FLAG_DEFAULT);
749
750 return;
751 fail_4:
752 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
753 txd = &sc->rtk_tx_descs[i];
754 if (txd->txd_dmamap != NULL)
755 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
756 }
757 fail_3:
758 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
759 fail_2:
760 bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
761 RTK_RXBUFLEN + 16);
762 fail_1:
763 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
764 fail_0:
765 return;
766 }
767
768 /*
769 * Initialize the transmit descriptors.
770 */
771 static void
772 rtk_list_tx_init(struct rtk_softc *sc)
773 {
774 struct rtk_tx_desc *txd;
775 int i;
776
777 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
778 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
779 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
780 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
781
782 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
783 txd = &sc->rtk_tx_descs[i];
784 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
785 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
786 }
787 }
788
789 /*
790 * rtk_activate:
791 * Handle device activation/deactivation requests.
792 */
793 int
794 rtk_activate(device_t self, enum devact act)
795 {
796 struct rtk_softc *sc = device_private(self);
797
798 switch (act) {
799 case DVACT_DEACTIVATE:
800 if_deactivate(&sc->ethercom.ec_if);
801 return 0;
802 default:
803 return EOPNOTSUPP;
804 }
805 }
806
807 /*
808 * rtk_detach:
809 * Detach a rtk interface.
810 */
811 int
812 rtk_detach(struct rtk_softc *sc)
813 {
814 struct ifnet *ifp = &sc->ethercom.ec_if;
815 struct rtk_tx_desc *txd;
816 int i;
817
818 /*
819 * Succeed now if there isn't any work to do.
820 */
821 if ((sc->sc_flags & RTK_ATTACHED) == 0)
822 return 0;
823
824 /* Unhook our tick handler. */
825 callout_stop(&sc->rtk_tick_ch);
826
827 /* Detach all PHYs. */
828 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
829
830 /* Delete all remaining media. */
831 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
832
833 rnd_detach_source(&sc->rnd_source);
834
835 ether_ifdetach(ifp);
836 if_detach(ifp);
837
838 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
839 txd = &sc->rtk_tx_descs[i];
840 if (txd->txd_dmamap != NULL)
841 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
842 }
843 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
844 bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
845 RTK_RXBUFLEN + 16);
846 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
847
848 /* we don't want to run again */
849 sc->sc_flags &= ~RTK_ATTACHED;
850
851 return 0;
852 }
853
854 /*
855 * rtk_enable:
856 * Enable the RTL81X9 chip.
857 */
858 int
859 rtk_enable(struct rtk_softc *sc)
860 {
861
862 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
863 if ((*sc->sc_enable)(sc) != 0) {
864 printf("%s: device enable failed\n",
865 device_xname(sc->sc_dev));
866 return EIO;
867 }
868 sc->sc_flags |= RTK_ENABLED;
869 }
870 return 0;
871 }
872
873 /*
874 * rtk_disable:
875 * Disable the RTL81X9 chip.
876 */
877 void
878 rtk_disable(struct rtk_softc *sc)
879 {
880
881 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
882 (*sc->sc_disable)(sc);
883 sc->sc_flags &= ~RTK_ENABLED;
884 }
885 }
886
887 /*
888 * A frame has been uploaded: pass the resulting mbuf chain up to
889 * the higher level protocols.
890 *
891 * You know there's something wrong with a PCI bus-master chip design.
892 *
893 * The receive operation is badly documented in the datasheet, so I'll
894 * attempt to document it here. The driver provides a buffer area and
895 * places its base address in the RX buffer start address register.
896 * The chip then begins copying frames into the RX buffer. Each frame
897 * is preceded by a 32-bit RX status word which specifies the length
898 * of the frame and certain other status bits. Each frame (starting with
899 * the status word) is also 32-bit aligned. The frame length is in the
900 * first 16 bits of the status word; the lower 15 bits correspond with
901 * the 'rx status register' mentioned in the datasheet.
902 *
903 * Note: to make the Alpha happy, the frame payload needs to be aligned
904 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
905 * shifted forward 2 bytes.
906 */
907 static void
908 rtk_rxeof(struct rtk_softc *sc)
909 {
910 struct mbuf *m;
911 struct ifnet *ifp;
912 uint8_t *rxbufpos, *dst;
913 u_int total_len, wrap;
914 uint32_t rxstat;
915 uint16_t cur_rx, new_rx;
916 uint16_t limit;
917 uint16_t rx_bytes, max_bytes;
918
919 ifp = &sc->ethercom.ec_if;
920
921 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
922
923 /* Do not try to read past this point. */
924 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
925
926 if (limit < cur_rx)
927 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
928 else
929 max_bytes = limit - cur_rx;
930 rx_bytes = 0;
931
932 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
933 rxbufpos = sc->rtk_rx_buf + cur_rx;
934 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
935 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
936 rxstat = le32toh(*(uint32_t *)rxbufpos);
937 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
938 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
939
940 /*
941 * Here's a totally undocumented fact for you. When the
942 * RealTek chip is in the process of copying a packet into
943 * RAM for you, the length will be 0xfff0. If you spot a
944 * packet header with this value, you need to stop. The
945 * datasheet makes absolutely no mention of this and
946 * RealTek should be shot for this.
947 */
948 total_len = rxstat >> 16;
949 if (total_len == RTK_RXSTAT_UNFINISHED)
950 break;
951
952 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
953 total_len < ETHER_MIN_LEN ||
954 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
955 ifp->if_ierrors++;
956
957 /*
958 * submitted by:[netbsd-pcmcia:00484]
959 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
960 * obtain from:
961 * FreeBSD if_rl.c rev 1.24->1.25
962 *
963 */
964 #if 0
965 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
966 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
967 RTK_RXSTAT_ALIGNERR)) {
968 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
969 CSR_WRITE_2(sc, RTK_COMMAND,
970 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
971 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
972 CSR_WRITE_4(sc, RTK_RXADDR,
973 sc->recv_dmamap->dm_segs[0].ds_addr);
974 cur_rx = 0;
975 }
976 break;
977 #else
978 rtk_init(ifp);
979 return;
980 #endif
981 }
982
983 /* No errors; receive the packet. */
984 rx_bytes += total_len + RTK_RXSTAT_LEN;
985
986 /*
987 * Avoid trying to read more bytes than we know
988 * the chip has prepared for us.
989 */
990 if (rx_bytes > max_bytes)
991 break;
992
993 /*
994 * Skip the status word, wrapping around to the beginning
995 * of the Rx area, if necessary.
996 */
997 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
998 rxbufpos = sc->rtk_rx_buf + cur_rx;
999
1000 /*
1001 * Compute the number of bytes at which the packet
1002 * will wrap to the beginning of the ring buffer.
1003 */
1004 wrap = RTK_RXBUFLEN - cur_rx;
1005
1006 /*
1007 * Compute where the next pending packet is.
1008 */
1009 if (total_len > wrap)
1010 new_rx = total_len - wrap;
1011 else
1012 new_rx = cur_rx + total_len;
1013 /* Round up to 32-bit boundary. */
1014 new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
1015
1016 /*
1017 * The RealTek chip includes the CRC with every
1018 * incoming packet; trim it off here.
1019 */
1020 total_len -= ETHER_CRC_LEN;
1021
1022 /*
1023 * Now allocate an mbuf (and possibly a cluster) to hold
1024 * the packet. Note we offset the packet 2 bytes so that
1025 * data after the Ethernet header will be 4-byte aligned.
1026 */
1027 MGETHDR(m, M_DONTWAIT, MT_DATA);
1028 if (m == NULL) {
1029 printf("%s: unable to allocate Rx mbuf\n",
1030 device_xname(sc->sc_dev));
1031 ifp->if_ierrors++;
1032 goto next_packet;
1033 }
1034 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1035 MCLGET(m, M_DONTWAIT);
1036 if ((m->m_flags & M_EXT) == 0) {
1037 printf("%s: unable to allocate Rx cluster\n",
1038 device_xname(sc->sc_dev));
1039 ifp->if_ierrors++;
1040 m_freem(m);
1041 m = NULL;
1042 goto next_packet;
1043 }
1044 }
1045 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1046 m_set_rcvif(m, ifp);
1047 m->m_pkthdr.len = m->m_len = total_len;
1048 dst = mtod(m, void *);
1049
1050 /*
1051 * If the packet wraps, copy up to the wrapping point.
1052 */
1053 if (total_len > wrap) {
1054 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1055 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1056 memcpy(dst, rxbufpos, wrap);
1057 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1058 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1059 cur_rx = 0;
1060 rxbufpos = sc->rtk_rx_buf;
1061 total_len -= wrap;
1062 dst += wrap;
1063 }
1064
1065 /*
1066 * ...and now the rest.
1067 */
1068 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1069 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1070 memcpy(dst, rxbufpos, total_len);
1071 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1072 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1073
1074 next_packet:
1075 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1076 cur_rx = new_rx;
1077
1078 if (m == NULL)
1079 continue;
1080
1081 /* pass it on. */
1082 if_percpuq_enqueue(ifp->if_percpuq, m);
1083 }
1084 }
1085
1086 /*
1087 * A frame was downloaded to the chip. It's safe for us to clean up
1088 * the list buffers.
1089 */
1090 static void
1091 rtk_txeof(struct rtk_softc *sc)
1092 {
1093 struct ifnet *ifp;
1094 struct rtk_tx_desc *txd;
1095 uint32_t txstat;
1096
1097 ifp = &sc->ethercom.ec_if;
1098
1099 /*
1100 * Go through our tx list and free mbufs for those
1101 * frames that have been uploaded.
1102 */
1103 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1104 txstat = CSR_READ_4(sc, txd->txd_txstat);
1105 if ((txstat & (RTK_TXSTAT_TX_OK|
1106 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1107 break;
1108
1109 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1110
1111 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1112 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1113 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1114 m_freem(txd->txd_mbuf);
1115 txd->txd_mbuf = NULL;
1116
1117 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1118
1119 if (txstat & RTK_TXSTAT_TX_OK)
1120 ifp->if_opackets++;
1121 else {
1122 ifp->if_oerrors++;
1123
1124 /*
1125 * Increase Early TX threshold if underrun occurred.
1126 * Increase step 64 bytes.
1127 */
1128 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1129 #ifdef DEBUG
1130 printf("%s: transmit underrun;",
1131 device_xname(sc->sc_dev));
1132 #endif
1133 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1134 sc->sc_txthresh += 2;
1135 #ifdef DEBUG
1136 printf(" new threshold: %d bytes",
1137 sc->sc_txthresh * 32);
1138 #endif
1139 }
1140 #ifdef DEBUG
1141 printf("\n");
1142 #endif
1143 }
1144 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1145 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1146 }
1147 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1148 ifp->if_flags &= ~IFF_OACTIVE;
1149 }
1150
1151 /* Clear the timeout timer if there is no pending packet. */
1152 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1153 ifp->if_timer = 0;
1154
1155 }
1156
1157 int
1158 rtk_intr(void *arg)
1159 {
1160 struct rtk_softc *sc;
1161 struct ifnet *ifp;
1162 uint16_t status;
1163 int handled;
1164
1165 sc = arg;
1166 ifp = &sc->ethercom.ec_if;
1167
1168 if (!device_has_power(sc->sc_dev))
1169 return 0;
1170
1171 /* Disable interrupts. */
1172 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1173
1174 handled = 0;
1175 for (;;) {
1176
1177 status = CSR_READ_2(sc, RTK_ISR);
1178
1179 if (status == 0xffff)
1180 break; /* Card is gone... */
1181
1182 if (status)
1183 CSR_WRITE_2(sc, RTK_ISR, status);
1184
1185 if ((status & RTK_INTRS) == 0)
1186 break;
1187
1188 handled = 1;
1189
1190 if (status & RTK_ISR_RX_OK)
1191 rtk_rxeof(sc);
1192
1193 if (status & RTK_ISR_RX_ERR)
1194 rtk_rxeof(sc);
1195
1196 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1197 rtk_txeof(sc);
1198
1199 if (status & RTK_ISR_SYSTEM_ERR) {
1200 rtk_reset(sc);
1201 rtk_init(ifp);
1202 }
1203 }
1204
1205 /* Re-enable interrupts. */
1206 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1207
1208 if_schedule_deferred_start(ifp);
1209
1210 rnd_add_uint32(&sc->rnd_source, status);
1211
1212 return handled;
1213 }
1214
1215 /*
1216 * Main transmit routine.
1217 */
1218
1219 static void
1220 rtk_start(struct ifnet *ifp)
1221 {
1222 struct rtk_softc *sc;
1223 struct rtk_tx_desc *txd;
1224 struct mbuf *m_head, *m_new;
1225 int error, len;
1226
1227 sc = ifp->if_softc;
1228
1229 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1230 IFQ_POLL(&ifp->if_snd, m_head);
1231 if (m_head == NULL)
1232 break;
1233 m_new = NULL;
1234
1235 /*
1236 * Load the DMA map. If this fails, the packet didn't
1237 * fit in one DMA segment, and we need to copy. Note,
1238 * the packet must also be aligned.
1239 * if the packet is too small, copy it too, so we're sure
1240 * so have enough room for the pad buffer.
1241 */
1242 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1243 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1244 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1245 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1246 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1247 if (m_new == NULL) {
1248 printf("%s: unable to allocate Tx mbuf\n",
1249 device_xname(sc->sc_dev));
1250 break;
1251 }
1252 if (m_head->m_pkthdr.len > MHLEN) {
1253 MCLGET(m_new, M_DONTWAIT);
1254 if ((m_new->m_flags & M_EXT) == 0) {
1255 printf("%s: unable to allocate Tx "
1256 "cluster\n",
1257 device_xname(sc->sc_dev));
1258 m_freem(m_new);
1259 break;
1260 }
1261 }
1262 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1263 mtod(m_new, void *));
1264 m_new->m_pkthdr.len = m_new->m_len =
1265 m_head->m_pkthdr.len;
1266 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1267 memset(
1268 mtod(m_new, char *) + m_head->m_pkthdr.len,
1269 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1270 m_new->m_pkthdr.len = m_new->m_len =
1271 ETHER_PAD_LEN;
1272 }
1273 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1274 txd->txd_dmamap, m_new,
1275 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1276 if (error) {
1277 printf("%s: unable to load Tx buffer, "
1278 "error = %d\n",
1279 device_xname(sc->sc_dev), error);
1280 break;
1281 }
1282 }
1283 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1284 /*
1285 * If there's a BPF listener, bounce a copy of this frame
1286 * to him.
1287 */
1288 bpf_mtap(ifp, m_head, BPF_D_OUT);
1289 if (m_new != NULL) {
1290 m_freem(m_head);
1291 m_head = m_new;
1292 }
1293 txd->txd_mbuf = m_head;
1294
1295 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1296 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1297
1298 /*
1299 * Transmit the frame.
1300 */
1301 bus_dmamap_sync(sc->sc_dmat,
1302 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1303 BUS_DMASYNC_PREWRITE);
1304
1305 len = txd->txd_dmamap->dm_segs[0].ds_len;
1306
1307 CSR_WRITE_4(sc, txd->txd_txaddr,
1308 txd->txd_dmamap->dm_segs[0].ds_addr);
1309 CSR_WRITE_4(sc, txd->txd_txstat,
1310 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1311
1312 /*
1313 * Set a timeout in case the chip goes out to lunch.
1314 */
1315 ifp->if_timer = 5;
1316 }
1317
1318 /*
1319 * We broke out of the loop because all our TX slots are
1320 * full. Mark the NIC as busy until it drains some of the
1321 * packets from the queue.
1322 */
1323 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1324 ifp->if_flags |= IFF_OACTIVE;
1325 }
1326
1327 static int
1328 rtk_init(struct ifnet *ifp)
1329 {
1330 struct rtk_softc *sc = ifp->if_softc;
1331 int error, i;
1332 uint32_t rxcfg;
1333
1334 if ((error = rtk_enable(sc)) != 0)
1335 goto out;
1336
1337 /*
1338 * Cancel pending I/O.
1339 */
1340 rtk_stop(ifp, 0);
1341
1342 /* Init our MAC address */
1343 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1344 CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1345 }
1346
1347 /* Init the RX buffer pointer register. */
1348 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1349 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1350 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1351
1352 /* Init TX descriptors. */
1353 rtk_list_tx_init(sc);
1354
1355 /* Init Early TX threshold. */
1356 sc->sc_txthresh = RTK_TXTH_256;
1357 /*
1358 * Enable transmit and receive.
1359 */
1360 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1361
1362 /*
1363 * Set the initial TX and RX configuration.
1364 */
1365 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1366 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1367
1368 /* Set the individual bit to receive frames for this host only. */
1369 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1370 rxcfg |= RTK_RXCFG_RX_INDIV;
1371
1372 /* If we want promiscuous mode, set the allframes bit. */
1373 if (ifp->if_flags & IFF_PROMISC) {
1374 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1375 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1376 } else {
1377 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1378 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1379 }
1380
1381 /*
1382 * Set capture broadcast bit to capture broadcast frames.
1383 */
1384 if (ifp->if_flags & IFF_BROADCAST) {
1385 rxcfg |= RTK_RXCFG_RX_BROAD;
1386 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1387 } else {
1388 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1389 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1390 }
1391
1392 /*
1393 * Program the multicast filter, if necessary.
1394 */
1395 rtk_setmulti(sc);
1396
1397 /*
1398 * Enable interrupts.
1399 */
1400 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1401
1402 /* Start RX/TX process. */
1403 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1404
1405 /* Enable receiver and transmitter. */
1406 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1407
1408 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1409
1410 /*
1411 * Set current media.
1412 */
1413 if ((error = ether_mediachange(ifp)) != 0)
1414 goto out;
1415
1416 ifp->if_flags |= IFF_RUNNING;
1417 ifp->if_flags &= ~IFF_OACTIVE;
1418
1419 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1420
1421 out:
1422 if (error) {
1423 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1424 ifp->if_timer = 0;
1425 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1426 }
1427 return error;
1428 }
1429
1430 static int
1431 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1432 {
1433 struct rtk_softc *sc = ifp->if_softc;
1434 int s, error;
1435
1436 s = splnet();
1437 error = ether_ioctl(ifp, command, data);
1438 if (error == ENETRESET) {
1439 if (ifp->if_flags & IFF_RUNNING) {
1440 /*
1441 * Multicast list has changed. Set the
1442 * hardware filter accordingly.
1443 */
1444 rtk_setmulti(sc);
1445 }
1446 error = 0;
1447 }
1448 splx(s);
1449
1450 return error;
1451 }
1452
1453 static void
1454 rtk_watchdog(struct ifnet *ifp)
1455 {
1456 struct rtk_softc *sc;
1457
1458 sc = ifp->if_softc;
1459
1460 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1461 ifp->if_oerrors++;
1462 rtk_txeof(sc);
1463 rtk_rxeof(sc);
1464 rtk_init(ifp);
1465 }
1466
1467 /*
1468 * Stop the adapter and free any mbufs allocated to the
1469 * RX and TX lists.
1470 */
1471 static void
1472 rtk_stop(struct ifnet *ifp, int disable)
1473 {
1474 struct rtk_softc *sc = ifp->if_softc;
1475 struct rtk_tx_desc *txd;
1476
1477 callout_stop(&sc->rtk_tick_ch);
1478
1479 mii_down(&sc->mii);
1480
1481 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1482 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1483
1484 /*
1485 * Free the TX list buffers.
1486 */
1487 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1488 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1489 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1490 m_freem(txd->txd_mbuf);
1491 txd->txd_mbuf = NULL;
1492 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1493 }
1494
1495 if (disable)
1496 rtk_disable(sc);
1497
1498 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1499 ifp->if_timer = 0;
1500 }
1501
1502 static void
1503 rtk_tick(void *arg)
1504 {
1505 struct rtk_softc *sc = arg;
1506 int s;
1507
1508 s = splnet();
1509 mii_tick(&sc->mii);
1510 splx(s);
1511
1512 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1513 }
1514