rtl81x9.c revision 1.20 1 /* $NetBSD: rtl81x9.c,v 1.20 2000/11/30 15:33:04 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include "opt_inet.h"
89 #include "opt_ns.h"
90 #include "bpfilter.h"
91 #include "rnd.h"
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/device.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/if_ether.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #endif
114 #ifdef NS
115 #include <netns/ns.h>
116 #include <netns/ns_if.h>
117 #endif
118
119 #if NBPFILTER > 0
120 #include <net/bpf.h>
121 #endif
122 #if NRND > 0
123 #include <sys/rnd.h>
124 #endif
125
126 #include <machine/bus.h>
127 #include <machine/endian.h>
128
129 #include <dev/mii/mii.h>
130 #include <dev/mii/miivar.h>
131
132 #include <dev/ic/rtl81x9reg.h>
133 #include <dev/ic/rtl81x9var.h>
134
135 #if defined DEBUG
136 #define STATIC
137 #else
138 #define STATIC static
139 #endif
140
141 STATIC void rtk_reset __P((struct rtk_softc *));
142 STATIC void rtk_rxeof __P((struct rtk_softc *));
143 STATIC void rtk_txeof __P((struct rtk_softc *));
144 STATIC void rtk_start __P((struct ifnet *));
145 STATIC int rtk_ioctl __P((struct ifnet *, u_long, caddr_t));
146 STATIC int rtk_init __P((struct ifnet *));
147 STATIC void rtk_stop __P((struct ifnet *, int));
148
149 STATIC void rtk_watchdog __P((struct ifnet *));
150 STATIC void rtk_shutdown __P((void *));
151 STATIC int rtk_ifmedia_upd __P((struct ifnet *));
152 STATIC void rtk_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
153
154 STATIC u_int16_t rtk_read_eeprom __P((struct rtk_softc *, int, int));
155 STATIC void rtk_eeprom_putbyte __P((struct rtk_softc *, int, int));
156 STATIC void rtk_mii_sync __P((struct rtk_softc *));
157 STATIC void rtk_mii_send __P((struct rtk_softc *, u_int32_t, int));
158 STATIC int rtk_mii_readreg __P((struct rtk_softc *, struct rtk_mii_frame *));
159 STATIC int rtk_mii_writereg __P((struct rtk_softc *, struct rtk_mii_frame *));
160
161 STATIC int rtk_phy_readreg __P((struct device *, int, int));
162 STATIC void rtk_phy_writereg __P((struct device *, int, int, int));
163 STATIC void rtk_phy_statchg __P((struct device *));
164 STATIC void rtk_tick __P((void *));
165
166 STATIC int rtk_enable __P((struct rtk_softc *));
167 STATIC void rtk_disable __P((struct rtk_softc *));
168 STATIC void rtk_power __P((int, void *));
169
170 STATIC void rtk_setmulti __P((struct rtk_softc *));
171 STATIC int rtk_list_tx_init __P((struct rtk_softc *));
172
173 #define EE_SET(x) \
174 CSR_WRITE_1(sc, RTK_EECMD, \
175 CSR_READ_1(sc, RTK_EECMD) | (x))
176
177 #define EE_CLR(x) \
178 CSR_WRITE_1(sc, RTK_EECMD, \
179 CSR_READ_1(sc, RTK_EECMD) & ~(x))
180
181 /*
182 * Send a read command and address to the EEPROM, check for ACK.
183 */
184 STATIC void rtk_eeprom_putbyte(sc, addr, addr_len)
185 struct rtk_softc *sc;
186 int addr, addr_len;
187 {
188 int d, i;
189
190 d = (RTK_EECMD_READ << addr_len) | addr;
191
192 /*
193 * Feed in each bit and stobe the clock.
194 */
195 for (i = RTK_EECMD_LEN + addr_len - 1; i >= 0; i--) {
196 if (d & (1 << i)) {
197 EE_SET(RTK_EE_DATAIN);
198 } else {
199 EE_CLR(RTK_EE_DATAIN);
200 }
201 DELAY(100);
202 EE_SET(RTK_EE_CLK);
203 DELAY(150);
204 EE_CLR(RTK_EE_CLK);
205 DELAY(100);
206 }
207 }
208
209 /*
210 * Read a word of data stored in the EEPROM at address 'addr.'
211 */
212 u_int16_t rtk_read_eeprom(sc, addr, addr_len)
213 struct rtk_softc *sc;
214 int addr, addr_len;
215 {
216 u_int16_t word = 0;
217 int i;
218
219 /* Enter EEPROM access mode. */
220 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
221
222 /*
223 * Send address of word we want to read.
224 */
225 rtk_eeprom_putbyte(sc, addr, addr_len);
226
227 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
228
229 /*
230 * Start reading bits from EEPROM.
231 */
232 for (i = 15; i >= 0; i--) {
233 EE_SET(RTK_EE_CLK);
234 DELAY(100);
235 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
236 word |= (1 << i);
237 EE_CLR(RTK_EE_CLK);
238 DELAY(100);
239 }
240
241 /* Turn off EEPROM access mode. */
242 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
243
244 return (word);
245 }
246
247 /*
248 * MII access routines are provided for the 8129, which
249 * doesn't have a built-in PHY. For the 8139, we fake things
250 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
251 * direct access PHY registers.
252 */
253 #define MII_SET(x) \
254 CSR_WRITE_1(sc, RTK_MII, \
255 CSR_READ_1(sc, RTK_MII) | (x))
256
257 #define MII_CLR(x) \
258 CSR_WRITE_1(sc, RTK_MII, \
259 CSR_READ_1(sc, RTK_MII) & ~(x))
260
261 /*
262 * Sync the PHYs by setting data bit and strobing the clock 32 times.
263 */
264 STATIC void rtk_mii_sync(sc)
265 struct rtk_softc *sc;
266 {
267 int i;
268
269 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
270
271 for (i = 0; i < 32; i++) {
272 MII_SET(RTK_MII_CLK);
273 DELAY(1);
274 MII_CLR(RTK_MII_CLK);
275 DELAY(1);
276 }
277
278 return;
279 }
280
281 /*
282 * Clock a series of bits through the MII.
283 */
284 STATIC void rtk_mii_send(sc, bits, cnt)
285 struct rtk_softc *sc;
286 u_int32_t bits;
287 int cnt;
288 {
289 int i;
290
291 MII_CLR(RTK_MII_CLK);
292
293 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
294 if (bits & i) {
295 MII_SET(RTK_MII_DATAOUT);
296 } else {
297 MII_CLR(RTK_MII_DATAOUT);
298 }
299 DELAY(1);
300 MII_CLR(RTK_MII_CLK);
301 DELAY(1);
302 MII_SET(RTK_MII_CLK);
303 }
304 }
305
306 /*
307 * Read an PHY register through the MII.
308 */
309 STATIC int rtk_mii_readreg(sc, frame)
310 struct rtk_softc *sc;
311 struct rtk_mii_frame *frame;
312
313 {
314 int i, ack, s;
315
316 s = splnet();
317
318 /*
319 * Set up frame for RX.
320 */
321 frame->mii_stdelim = RTK_MII_STARTDELIM;
322 frame->mii_opcode = RTK_MII_READOP;
323 frame->mii_turnaround = 0;
324 frame->mii_data = 0;
325
326 CSR_WRITE_2(sc, RTK_MII, 0);
327
328 /*
329 * Turn on data xmit.
330 */
331 MII_SET(RTK_MII_DIR);
332
333 rtk_mii_sync(sc);
334
335 /*
336 * Send command/address info.
337 */
338 rtk_mii_send(sc, frame->mii_stdelim, 2);
339 rtk_mii_send(sc, frame->mii_opcode, 2);
340 rtk_mii_send(sc, frame->mii_phyaddr, 5);
341 rtk_mii_send(sc, frame->mii_regaddr, 5);
342
343 /* Idle bit */
344 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
345 DELAY(1);
346 MII_SET(RTK_MII_CLK);
347 DELAY(1);
348
349 /* Turn off xmit. */
350 MII_CLR(RTK_MII_DIR);
351
352 /* Check for ack */
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
358
359 /*
360 * Now try reading data bits. If the ack failed, we still
361 * need to clock through 16 cycles to keep the PHY(s) in sync.
362 */
363 if (ack) {
364 for(i = 0; i < 16; i++) {
365 MII_CLR(RTK_MII_CLK);
366 DELAY(1);
367 MII_SET(RTK_MII_CLK);
368 DELAY(1);
369 }
370 goto fail;
371 }
372
373 for (i = 0x8000; i; i >>= 1) {
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 if (!ack) {
377 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
378 frame->mii_data |= i;
379 DELAY(1);
380 }
381 MII_SET(RTK_MII_CLK);
382 DELAY(1);
383 }
384
385 fail:
386
387 MII_CLR(RTK_MII_CLK);
388 DELAY(1);
389 MII_SET(RTK_MII_CLK);
390 DELAY(1);
391
392 splx(s);
393
394 if (ack)
395 return(1);
396 return(0);
397 }
398
399 /*
400 * Write to a PHY register through the MII.
401 */
402 STATIC int rtk_mii_writereg(sc, frame)
403 struct rtk_softc *sc;
404 struct rtk_mii_frame *frame;
405
406 {
407 int s;
408
409 s = splnet();
410 /*
411 * Set up frame for TX.
412 */
413
414 frame->mii_stdelim = RTK_MII_STARTDELIM;
415 frame->mii_opcode = RTK_MII_WRITEOP;
416 frame->mii_turnaround = RTK_MII_TURNAROUND;
417
418 /*
419 * Turn on data output.
420 */
421 MII_SET(RTK_MII_DIR);
422
423 rtk_mii_sync(sc);
424
425 rtk_mii_send(sc, frame->mii_stdelim, 2);
426 rtk_mii_send(sc, frame->mii_opcode, 2);
427 rtk_mii_send(sc, frame->mii_phyaddr, 5);
428 rtk_mii_send(sc, frame->mii_regaddr, 5);
429 rtk_mii_send(sc, frame->mii_turnaround, 2);
430 rtk_mii_send(sc, frame->mii_data, 16);
431
432 /* Idle bit. */
433 MII_SET(RTK_MII_CLK);
434 DELAY(1);
435 MII_CLR(RTK_MII_CLK);
436 DELAY(1);
437
438 /*
439 * Turn off xmit.
440 */
441 MII_CLR(RTK_MII_DIR);
442
443 splx(s);
444
445 return(0);
446 }
447
448 STATIC int rtk_phy_readreg(self, phy, reg)
449 struct device *self;
450 int phy, reg;
451 {
452 struct rtk_softc *sc = (void *)self;
453 struct rtk_mii_frame frame;
454 u_int16_t rval = 0;
455 u_int16_t rtk8139_reg = 0;
456
457 if (sc->rtk_type == RTK_8139) {
458 if (phy != 7)
459 return (0);
460
461 switch(reg) {
462 case MII_BMCR:
463 rtk8139_reg = RTK_BMCR;
464 break;
465 case MII_BMSR:
466 rtk8139_reg = RTK_BMSR;
467 break;
468 case MII_ANAR:
469 rtk8139_reg = RTK_ANAR;
470 break;
471 case MII_ANER:
472 rtk8139_reg = RTK_ANER;
473 break;
474 case MII_ANLPAR:
475 rtk8139_reg = RTK_LPAR;
476 break;
477 default:
478 #if 0
479 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
480 #endif
481 return(0);
482 }
483 rval = CSR_READ_2(sc, rtk8139_reg);
484 return(rval);
485 }
486
487 bzero((char *)&frame, sizeof(frame));
488
489 frame.mii_phyaddr = phy;
490 frame.mii_regaddr = reg;
491 rtk_mii_readreg(sc, &frame);
492
493 return(frame.mii_data);
494 }
495
496 STATIC void rtk_phy_writereg(self, phy, reg, data)
497 struct device *self;
498 int phy, reg;
499 int data;
500 {
501 struct rtk_softc *sc = (void *)self;
502 struct rtk_mii_frame frame;
503 u_int16_t rtk8139_reg = 0;
504
505 if (sc->rtk_type == RTK_8139) {
506 if (phy != 7)
507 return;
508
509 switch(reg) {
510 case MII_BMCR:
511 rtk8139_reg = RTK_BMCR;
512 break;
513 case MII_BMSR:
514 rtk8139_reg = RTK_BMSR;
515 break;
516 case MII_ANAR:
517 rtk8139_reg = RTK_ANAR;
518 break;
519 case MII_ANER:
520 rtk8139_reg = RTK_ANER;
521 break;
522 case MII_ANLPAR:
523 rtk8139_reg = RTK_LPAR;
524 break;
525 default:
526 #if 0
527 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
528 #endif
529 return;
530 }
531 CSR_WRITE_2(sc, rtk8139_reg, data);
532 return;
533 }
534
535 bzero((char *)&frame, sizeof(frame));
536
537 frame.mii_phyaddr = phy;
538 frame.mii_regaddr = reg;
539 frame.mii_data = data;
540
541 rtk_mii_writereg(sc, &frame);
542
543 return;
544 }
545
546 STATIC void
547 rtk_phy_statchg(v)
548 struct device *v;
549 {
550
551 /* Nothing to do. */
552 }
553
554 #define rtk_calchash(addr) \
555 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
556
557 /*
558 * Program the 64-bit multicast hash filter.
559 */
560 STATIC void rtk_setmulti(sc)
561 struct rtk_softc *sc;
562 {
563 struct ifnet *ifp;
564 int h = 0;
565 u_int32_t hashes[2] = { 0, 0 };
566 u_int32_t rxfilt;
567 int mcnt = 0;
568 struct ether_multi *enm;
569 struct ether_multistep step;
570
571 ifp = &sc->ethercom.ec_if;
572
573 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
574
575 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
576 rxfilt |= RTK_RXCFG_RX_MULTI;
577 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
578 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
579 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
580 return;
581 }
582
583 /* first, zot all the existing hash bits */
584 CSR_WRITE_4(sc, RTK_MAR0, 0);
585 CSR_WRITE_4(sc, RTK_MAR4, 0);
586
587 /* now program new ones */
588 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
589 while (enm != NULL) {
590 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
591 ETHER_ADDR_LEN) != 0)
592 continue;
593
594 h = rtk_calchash(enm->enm_addrlo);
595 if (h < 32)
596 hashes[0] |= (1 << h);
597 else
598 hashes[1] |= (1 << (h - 32));
599 mcnt++;
600 ETHER_NEXT_MULTI(step, enm);
601 }
602
603 if (mcnt)
604 rxfilt |= RTK_RXCFG_RX_MULTI;
605 else
606 rxfilt &= ~RTK_RXCFG_RX_MULTI;
607
608 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
609 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
610 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
611
612 return;
613 }
614
615 void rtk_reset(sc)
616 struct rtk_softc *sc;
617 {
618 int i;
619
620 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
621
622 for (i = 0; i < RTK_TIMEOUT; i++) {
623 DELAY(10);
624 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
625 break;
626 }
627 if (i == RTK_TIMEOUT)
628 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
629
630 return;
631 }
632
633 /*
634 * Attach the interface. Allocate softc structures, do ifmedia
635 * setup and ethernet/BPF attach.
636 */
637 void
638 rtk_attach(sc)
639 struct rtk_softc *sc;
640 {
641
642 struct ifnet *ifp;
643 u_int16_t val;
644 u_int8_t eaddr[ETHER_ADDR_LEN];
645 int error;
646 int i,addr_len;
647
648 callout_init(&sc->rtk_tick_ch);
649
650 /*
651 * Check EEPROM type 9346 or 9356.
652 */
653 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
654 addr_len = RTK_EEADDR_LEN1;
655 else
656 addr_len = RTK_EEADDR_LEN0;
657
658 /*
659 * Get station address.
660 */
661 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
662 eaddr[0] = val & 0xff;
663 eaddr[1] = val >> 8;
664 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
665 eaddr[2] = val & 0xff;
666 eaddr[3] = val >> 8;
667 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
668 eaddr[4] = val & 0xff;
669 eaddr[5] = val >> 8;
670
671 if ((error = bus_dmamem_alloc(sc->sc_dmat,
672 RTK_RXBUFLEN + 32, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
673 BUS_DMA_NOWAIT)) != 0) {
674 printf("%s: can't allocate recv buffer, error = %d\n",
675 sc->sc_dev.dv_xname, error);
676 goto fail_0;
677 }
678
679 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
680 RTK_RXBUFLEN + 32, (caddr_t *)&sc->rtk_cdata.rtk_rx_buf,
681 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
682 printf("%s: can't map recv buffer, error = %d\n",
683 sc->sc_dev.dv_xname, error);
684 goto fail_1;
685 }
686
687 /* Leave a few bytes before the start of the RX ring buffer. */
688 sc->rtk_cdata.rtk_rx_buf_ptr = sc->rtk_cdata.rtk_rx_buf;
689 sc->rtk_cdata.rtk_rx_buf += sizeof(u_int64_t);
690
691 if ((error = bus_dmamap_create(sc->sc_dmat,
692 RTK_RXBUFLEN + 32 - sizeof(u_int64_t), 1,
693 RTK_RXBUFLEN + 32 - sizeof(u_int64_t), 0, BUS_DMA_NOWAIT,
694 &sc->recv_dmamap)) != 0) {
695 printf("%s: can't create recv buffer DMA map, error = %d\n",
696 sc->sc_dev.dv_xname, error);
697 goto fail_2;
698 }
699
700 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
701 sc->rtk_cdata.rtk_rx_buf, RTK_RXBUFLEN + 32 - sizeof(u_int64_t),
702 NULL, BUS_DMA_NOWAIT)) != 0) {
703 printf("%s: can't load recv buffer DMA map, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_3;
706 }
707
708 for (i = 0; i < RTK_TX_LIST_CNT; i++)
709 if ((error = bus_dmamap_create(sc->sc_dmat,
710 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
711 &sc->snd_dmamap[i])) != 0) {
712 printf("%s: can't create snd buffer DMA map,"
713 " error = %d\n", sc->sc_dev.dv_xname, error);
714 goto fail_4;
715 }
716 /*
717 * From this point forward, the attachment cannot fail. A failure
718 * before this releases all resources thar may have been
719 * allocated.
720 */
721 sc->sc_flags |= RTK_ATTACHED;
722
723 /* Reset the adapter. */
724 rtk_reset(sc);
725
726 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
727 ether_sprintf(eaddr));
728
729 ifp = &sc->ethercom.ec_if;
730 ifp->if_softc = sc;
731 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
732 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
733 ifp->if_ioctl = rtk_ioctl;
734 ifp->if_start = rtk_start;
735 ifp->if_watchdog = rtk_watchdog;
736 ifp->if_init = rtk_init;
737 ifp->if_stop = rtk_stop;
738
739 /*
740 * Do ifmedia setup.
741 */
742 sc->mii.mii_ifp = ifp;
743 sc->mii.mii_readreg = rtk_phy_readreg;
744 sc->mii.mii_writereg = rtk_phy_writereg;
745 sc->mii.mii_statchg = rtk_phy_statchg;
746 ifmedia_init(&sc->mii.mii_media, 0, rtk_ifmedia_upd, rtk_ifmedia_sts);
747 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
748 MII_PHY_ANY, MII_OFFSET_ANY, 0);
749
750 /* Choose a default media. */
751 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
752 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
753 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
754 } else {
755 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
756 }
757
758 /*
759 * Call MI attach routines.
760 */
761 if_attach(ifp);
762 ether_ifattach(ifp, eaddr);
763
764 /*
765 * Make sure the interface is shutdown during reboot.
766 */
767 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
768 if (sc->sc_sdhook == NULL)
769 printf("%s: WARNING: unbale to establish shutdown hook\n",
770 sc->sc_dev.dv_xname);
771 /*
772 * Add a suspend hook to make sure we come back up after a
773 * resume.
774 */
775 sc->sc_powerhook = powerhook_establish(rtk_power, sc);
776 if (sc->sc_powerhook == NULL)
777 printf("%s: WARNING: unable to establish power hook\n",
778 sc->sc_dev.dv_xname);
779
780 return;
781 fail_4:
782 for (i = 0; i < RTK_TX_LIST_CNT; i++)
783 if (sc->snd_dmamap[i] != NULL)
784 bus_dmamap_destroy(sc->sc_dmat, sc->snd_dmamap[i]);
785 fail_3:
786 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
787 fail_2:
788 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_cdata.rtk_rx_buf_ptr,
789 RTK_RXBUFLEN + 32 - sizeof(u_int64_t));
790 fail_1:
791 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
792 fail_0:
793 return;
794 }
795
796 /*
797 * Initialize the transmit descriptors.
798 */
799 STATIC int rtk_list_tx_init(sc)
800 struct rtk_softc *sc;
801 {
802 struct rtk_chain_data *cd;
803 int i;
804
805 cd = &sc->rtk_cdata;
806 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
807 cd->rtk_tx_chain[i] = NULL;
808 CSR_WRITE_4(sc,
809 RTK_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
810 }
811
812 sc->rtk_cdata.cur_tx = 0;
813 sc->rtk_cdata.last_tx = 0;
814
815 return(0);
816 }
817
818 /*
819 * rtk_activate:
820 * Handle device activation/deactivation requests.
821 */
822 int
823 rtk_activate(self, act)
824 struct device *self;
825 enum devact act;
826 {
827 struct rtk_softc *sc = (void *) self;
828 int s, error = 0;
829
830 s = splnet();
831 switch (act) {
832 case DVACT_ACTIVATE:
833 error = EOPNOTSUPP;
834 break;
835 case DVACT_DEACTIVATE:
836 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
837 if_deactivate(&sc->ethercom.ec_if);
838 break;
839 }
840 splx(s);
841
842 return (error);
843 }
844
845 /*
846 * rtk_detach:
847 * Detach a rtk interface.
848 */
849 int
850 rtk_detach(sc)
851 struct rtk_softc *sc;
852 {
853 struct ifnet *ifp = &sc->ethercom.ec_if;
854 int i;
855
856 /*
857 * Succeed now if thereisn't any work to do.
858 */
859 if ((sc->sc_flags & RTK_ATTACHED) == 0)
860 return (0);
861
862 /* Unhook our tick handler. */
863 callout_stop(&sc->rtk_tick_ch);
864
865 /* Detach all PHYs. */
866 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
867
868 /* Delete all remaining media. */
869 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
870
871 ether_ifdetach(ifp);
872 if_detach(ifp);
873
874 for (i = 0; i < RTK_TX_LIST_CNT; i++)
875 if (sc->snd_dmamap[i] != NULL)
876 bus_dmamap_destroy(sc->sc_dmat, sc->snd_dmamap[i]);
877 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
878 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_cdata.rtk_rx_buf_ptr,
879 RTK_RXBUFLEN + 32 - sizeof(u_int64_t));
880
881 shutdownhook_disestablish(sc->sc_sdhook);
882 powerhook_disestablish(sc->sc_powerhook);
883
884 return (0);
885 }
886
887 /*
888 * rtk_enable:
889 * Enable the RTL81X9 chip.
890 */
891 int
892 rtk_enable(sc)
893 struct rtk_softc *sc;
894 {
895 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
896 if ((*sc->sc_enable)(sc) != 0) {
897 printf("%s: device enable failed\n",
898 sc->sc_dev.dv_xname);
899 return(EIO);
900 }
901 sc->sc_flags |= RTK_ENABLED;
902 }
903 return (0);
904 }
905
906 /*
907 * rtk_disable:
908 * Disable the RTL81X9 chip.
909 */
910 void
911 rtk_disable(sc)
912 struct rtk_softc *sc;
913 {
914 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
915 (*sc->sc_disable)(sc);
916 sc->sc_flags &= ~RTK_ENABLED;
917 }
918 }
919
920 /*
921 * rtk_power:
922 * Power management (suspend/resume) hook.
923 */
924 void
925 rtk_power(why, arg)
926 int why;
927 void *arg;
928 {
929 struct rtk_softc *sc = (void *) arg;
930 struct ifnet *ifp = &sc->ethercom.ec_if;
931 int s;
932
933 s = splnet();
934 switch (why) {
935 case PWR_SUSPEND:
936 case PWR_STANDBY:
937 rtk_stop(ifp, 0);
938 if (sc->sc_power != NULL)
939 (*sc->sc_power)(sc, why);
940 break;
941 case PWR_RESUME:
942 if (ifp->if_flags & IFF_UP) {
943 if (sc->sc_power != NULL)
944 (*sc->sc_power)(sc, why);
945 rtk_init(ifp);
946 }
947 break;
948 case PWR_SOFTSUSPEND:
949 case PWR_SOFTSTANDBY:
950 case PWR_SOFTRESUME:
951 break;
952 }
953 splx(s);
954
955 }
956
957 /*
958 * A frame has been uploaded: pass the resulting mbuf chain up to
959 * the higher level protocols.
960 *
961 * You know there's something wrong with a PCI bus-master chip design
962 * when you have to use m_devget().
963 *
964 * The receive operation is badly documented in the datasheet, so I'll
965 * attempt to document it here. The driver provides a buffer area and
966 * places its base address in the RX buffer start address register.
967 * The chip then begins copying frames into the RX buffer. Each frame
968 * is preceeded by a 32-bit RX status word which specifies the length
969 * of the frame and certain other status bits. Each frame (starting with
970 * the status word) is also 32-bit aligned. The frame length is in the
971 * first 16 bits of the status word; the lower 15 bits correspond with
972 * the 'rx status register' mentioned in the datasheet.
973 *
974 * Note: to make the Alpha happy, the frame payload needs to be aligned
975 * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
976 * the ring buffer starting at an address two bytes before the actual
977 * data location. We can then shave off the first two bytes using m_adj().
978 * The reason we do this is because m_devget() doesn't let us specify an
979 * offset into the mbuf storage space, so we have to artificially create
980 * one. The ring is allocated in such a way that there are a few unused
981 * bytes of space preceecing it so that it will be safe for us to do the
982 * 2-byte backstep even if reading from the ring at offset 0.
983 */
984 STATIC void rtk_rxeof(sc)
985 struct rtk_softc *sc;
986 {
987 struct mbuf *m;
988 struct ifnet *ifp;
989 int total_len = 0;
990 u_int32_t rxstat;
991 caddr_t rxbufpos;
992 int wrap = 0;
993 u_int16_t cur_rx;
994 u_int16_t limit;
995 u_int16_t rx_bytes = 0, max_bytes;
996
997 ifp = &sc->ethercom.ec_if;
998
999 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
1000
1001 /* Do not try to read past this point. */
1002 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1003
1004 if (limit < cur_rx)
1005 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1006 else
1007 max_bytes = limit - cur_rx;
1008
1009 while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1010 rxbufpos = sc->rtk_cdata.rtk_rx_buf + cur_rx;
1011 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1012 sizeof(u_int32_t *), BUS_DMASYNC_POSTREAD);
1013 rxstat = le32toh(*(u_int32_t *)rxbufpos);
1014 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1015 sizeof(u_int32_t *), BUS_DMASYNC_PREREAD);
1016
1017 /*
1018 * Here's a totally undocumented fact for you. When the
1019 * RealTek chip is in the process of copying a packet into
1020 * RAM for you, the length will be 0xfff0. If you spot a
1021 * packet header with this value, you need to stop. The
1022 * datasheet makes absolutely no mention of this and
1023 * RealTek should be shot for this.
1024 */
1025 if ((u_int16_t)(rxstat >> 16) == RTK_RXSTAT_UNFINISHED)
1026 break;
1027
1028 if (!(rxstat & RTK_RXSTAT_RXOK)) {
1029 ifp->if_ierrors++;
1030
1031 /*
1032 * submitted by:[netbsd-pcmcia:00484]
1033 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1034 * obtain from:
1035 * FreeBSD if_rl.c rev 1.24->1.25
1036 *
1037 */
1038 #if 0
1039 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1040 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1041 RTK_RXSTAT_ALIGNERR)) {
1042 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1043 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB|
1044 RTK_CMD_RX_ENB);
1045 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1046 CSR_WRITE_4(sc, RTK_RXADDR,
1047 sc->recv_dmamap->dm_segs[0].ds_addr);
1048 CSR_WRITE_2(sc, RTK_CURRXADDR, cur_rx - 16);
1049 cur_rx = 0;
1050 }
1051 break;
1052 #else
1053 rtk_init(ifp);
1054 return;
1055 #endif
1056 }
1057
1058 /* No errors; receive the packet. */
1059 total_len = rxstat >> 16;
1060 rx_bytes += total_len + 4;
1061
1062 /*
1063 * Avoid trying to read more bytes than we know
1064 * the chip has prepared for us.
1065 */
1066 if (rx_bytes > max_bytes)
1067 break;
1068
1069 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1070 cur_rx + sizeof(u_int32_t), total_len,
1071 BUS_DMASYNC_POSTREAD);
1072
1073 rxbufpos = sc->rtk_cdata.rtk_rx_buf +
1074 ((cur_rx + sizeof(u_int32_t)) % RTK_RXBUFLEN);
1075
1076 if (rxbufpos == (sc->rtk_cdata.rtk_rx_buf + RTK_RXBUFLEN))
1077 rxbufpos = sc->rtk_cdata.rtk_rx_buf;
1078
1079 wrap = (sc->rtk_cdata.rtk_rx_buf + RTK_RXBUFLEN) - rxbufpos;
1080
1081 if (total_len > wrap) {
1082 m = m_devget(rxbufpos - RTK_ETHER_ALIGN,
1083 wrap + RTK_ETHER_ALIGN, 0, ifp, NULL);
1084 if (m == NULL) {
1085 ifp->if_ierrors++;
1086 printf("%s: out of mbufs, tried to "
1087 "copy %d bytes\n", sc->sc_dev.dv_xname,
1088 wrap);
1089 } else {
1090 m_adj(m, RTK_ETHER_ALIGN);
1091 m_copyback(m, wrap, total_len - wrap,
1092 sc->rtk_cdata.rtk_rx_buf);
1093 }
1094 cur_rx = total_len - wrap;
1095 } else {
1096 m = m_devget(rxbufpos - RTK_ETHER_ALIGN,
1097 total_len + RTK_ETHER_ALIGN, 0, ifp, NULL);
1098 if (m == NULL) {
1099 ifp->if_ierrors++;
1100 printf("%s: out of mbufs, tried to "
1101 "copy %d bytes\n", sc->sc_dev.dv_xname,
1102 total_len);
1103 } else
1104 m_adj(m, RTK_ETHER_ALIGN);
1105 cur_rx += total_len + 4;
1106 }
1107
1108 /*
1109 * Round up to 32-bit boundary.
1110 */
1111 cur_rx = (cur_rx + 3) & ~3;
1112 CSR_WRITE_2(sc, RTK_CURRXADDR, cur_rx - 16);
1113
1114 if (m == NULL)
1115 continue;
1116
1117 /*
1118 * The RealTek chip includes the CRC with every
1119 * incoming packet.
1120 */
1121 m->m_flags |= M_HASFCS;
1122
1123 ifp->if_ipackets++;
1124
1125 #if NBPFILTER > 0
1126 /*
1127 * Handle BPF listeners. Let the BPF user see the packet, but
1128 * don't pass it up to the ether_input() layer unless it's
1129 * a broadcast packet, multicast packet, matches our ethernet
1130 * address or the interface is in promiscuous mode.
1131 */
1132 if (ifp->if_bpf)
1133 bpf_mtap(ifp->if_bpf, m);
1134 #endif
1135 /* pass it on. */
1136 (*ifp->if_input)(ifp, m);
1137
1138 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1139 cur_rx + sizeof(u_int32_t),
1140 total_len, BUS_DMASYNC_PREREAD);
1141 }
1142
1143 return;
1144 }
1145
1146 /*
1147 * A frame was downloaded to the chip. It's safe for us to clean up
1148 * the list buffers.
1149 */
1150 STATIC void rtk_txeof(sc)
1151 struct rtk_softc *sc;
1152 {
1153 struct ifnet *ifp;
1154 u_int32_t txstat;
1155
1156 ifp = &sc->ethercom.ec_if;
1157
1158 /* Clear the timeout timer. */
1159 ifp->if_timer = 0;
1160
1161 /*
1162 * Go through our tx list and free mbufs for those
1163 * frames that have been uploaded.
1164 */
1165 do {
1166 txstat = CSR_READ_4(sc, RTK_LAST_TXSTAT(sc));
1167 if (!(txstat & (RTK_TXSTAT_TX_OK|
1168 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)))
1169 break;
1170
1171 bus_dmamap_sync(sc->sc_dmat,
1172 sc->snd_dmamap[sc->rtk_cdata.last_tx], 0,
1173 sc->snd_dmamap[sc->rtk_cdata.last_tx]->dm_mapsize,
1174 BUS_DMASYNC_POSTWRITE);
1175 bus_dmamap_unload(sc->sc_dmat,
1176 sc->snd_dmamap[sc->rtk_cdata.last_tx]);
1177 m_freem(RTK_LAST_TXMBUF(sc));
1178 RTK_LAST_TXMBUF(sc) = NULL;
1179
1180 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1181
1182 if (txstat & RTK_TXSTAT_TX_OK)
1183 ifp->if_opackets++;
1184 else {
1185 ifp->if_oerrors++;
1186 if ((txstat & RTK_TXSTAT_TXABRT) ||
1187 (txstat & RTK_TXSTAT_OUTOFWIN))
1188 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1189 }
1190 RTK_INC(sc->rtk_cdata.last_tx);
1191 ifp->if_flags &= ~IFF_OACTIVE;
1192 } while (sc->rtk_cdata.last_tx != sc->rtk_cdata.cur_tx);
1193
1194 return;
1195 }
1196
1197 int rtk_intr(arg)
1198 void *arg;
1199 {
1200 struct rtk_softc *sc;
1201 struct ifnet *ifp;
1202 u_int16_t status;
1203 int handled = 0;
1204
1205 sc = arg;
1206 ifp = &sc->ethercom.ec_if;
1207
1208 /* Disable interrupts. */
1209 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1210
1211 for (;;) {
1212
1213 status = CSR_READ_2(sc, RTK_ISR);
1214 if (status)
1215 CSR_WRITE_2(sc, RTK_ISR, status);
1216
1217 handled = 1;
1218
1219 if ((status & RTK_INTRS) == 0)
1220 break;
1221
1222 if (status & RTK_ISR_RX_OK)
1223 rtk_rxeof(sc);
1224
1225 if (status & RTK_ISR_RX_ERR)
1226 rtk_rxeof(sc);
1227
1228 if ((status & RTK_ISR_TX_OK) || (status & RTK_ISR_TX_ERR))
1229 rtk_txeof(sc);
1230
1231 if (status & RTK_ISR_SYSTEM_ERR) {
1232 rtk_reset(sc);
1233 rtk_init(ifp);
1234 }
1235
1236 }
1237
1238 /* Re-enable interrupts. */
1239 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1240
1241 if (ifp->if_snd.ifq_head != NULL) {
1242 rtk_start(ifp);
1243 }
1244
1245 return (handled);
1246 }
1247
1248 /*
1249 * Main transmit routine.
1250 */
1251
1252 STATIC void rtk_start(ifp)
1253 struct ifnet *ifp;
1254 {
1255 struct rtk_softc *sc;
1256 struct mbuf *m_head = NULL, *m_new;
1257 int error, idx, len;
1258
1259 sc = ifp->if_softc;
1260
1261 while(RTK_CUR_TXMBUF(sc) == NULL) {
1262 IF_DEQUEUE(&ifp->if_snd, m_head);
1263 if (m_head == NULL)
1264 break;
1265
1266 idx = sc->rtk_cdata.cur_tx;
1267
1268 /*
1269 * Load the DMA map. If this fails, the packet didn't
1270 * fit in one DMA segment, and we need to copy. Note,
1271 * the packet must also be aligned.
1272 */
1273 if ((mtod(m_head, bus_addr_t) & 3) != 0 ||
1274 bus_dmamap_load_mbuf(sc->sc_dmat, sc->snd_dmamap[idx],
1275 m_head, BUS_DMA_NOWAIT) != 0) {
1276 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1277 if (m_new == NULL) {
1278 printf("%s: unable to allocate Tx mbuf\n",
1279 sc->sc_dev.dv_xname);
1280 IF_PREPEND(&ifp->if_snd, m_new);
1281 break;
1282 }
1283 if (m_head->m_pkthdr.len > MHLEN) {
1284 MCLGET(m_new, M_DONTWAIT);
1285 if ((m_new->m_flags & M_EXT) == 0) {
1286 printf("%s: unable to allocate Tx "
1287 "cluster\n", sc->sc_dev.dv_xname);
1288 m_freem(m_new);
1289 IF_PREPEND(&ifp->if_snd, m_head);
1290 break;
1291 }
1292 }
1293 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1294 mtod(m_new, caddr_t));
1295 m_new->m_pkthdr.len = m_new->m_len =
1296 m_head->m_pkthdr.len;
1297 m_freem(m_head);
1298 m_head = m_new;
1299 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1300 sc->snd_dmamap[idx], m_head, BUS_DMA_NOWAIT);
1301 if (error) {
1302 printf("%s: unable to load Tx buffer, "
1303 "error = %d\n", sc->sc_dev.dv_xname, error);
1304 IF_PREPEND(&ifp->if_snd, m_head);
1305 break;
1306 }
1307 }
1308
1309 RTK_CUR_TXMBUF(sc) = m_head;
1310
1311 #if NBPFILTER > 0
1312 /*
1313 * If there's a BPF listener, bounce a copy of this frame
1314 * to him.
1315 */
1316 if (ifp->if_bpf)
1317 bpf_mtap(ifp->if_bpf, RTK_CUR_TXMBUF(sc));
1318 #endif
1319 /*
1320 * Transmit the frame.
1321 */
1322 bus_dmamap_sync(sc->sc_dmat,
1323 sc->snd_dmamap[idx], 0, sc->snd_dmamap[idx]->dm_mapsize,
1324 BUS_DMASYNC_PREWRITE);
1325
1326 len = sc->snd_dmamap[idx]->dm_segs[0].ds_len;
1327 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1328 len = (ETHER_MIN_LEN - ETHER_CRC_LEN);
1329
1330 CSR_WRITE_4(sc, RTK_CUR_TXADDR(sc),
1331 sc->snd_dmamap[idx]->dm_segs[0].ds_addr);
1332 CSR_WRITE_4(sc, RTK_CUR_TXSTAT(sc), RTK_TX_EARLYTHRESH | len);
1333
1334 RTK_INC(sc->rtk_cdata.cur_tx);
1335 }
1336
1337 /*
1338 * We broke out of the loop because all our TX slots are
1339 * full. Mark the NIC as busy until it drains some of the
1340 * packets from the queue.
1341 */
1342 if (RTK_CUR_TXMBUF(sc) != NULL)
1343 ifp->if_flags |= IFF_OACTIVE;
1344
1345 /*
1346 * Set a timeout in case the chip goes out to lunch.
1347 */
1348 ifp->if_timer = 5;
1349
1350 return;
1351 }
1352
1353 STATIC int rtk_init(ifp)
1354 struct ifnet *ifp;
1355 {
1356 struct rtk_softc *sc = ifp->if_softc;
1357 int error = 0, i;
1358 u_int32_t rxcfg;
1359
1360 if ((error = rtk_enable(sc)) != 0)
1361 goto out;
1362
1363 /*
1364 * Cancel pending I/O.
1365 */
1366 rtk_stop(ifp, 0);
1367
1368 /* Init our MAC address */
1369 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1370 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1371 }
1372
1373 /* Init the RX buffer pointer register. */
1374 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1375 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1376 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1377
1378 /* Init TX descriptors. */
1379 rtk_list_tx_init(sc);
1380
1381 /*
1382 * Enable transmit and receive.
1383 */
1384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1385
1386 /*
1387 * Set the initial TX and RX configuration.
1388 */
1389 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1390 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1391
1392 /* Set the individual bit to receive frames for this host only. */
1393 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1394 rxcfg |= RTK_RXCFG_RX_INDIV;
1395
1396 /* If we want promiscuous mode, set the allframes bit. */
1397 if (ifp->if_flags & IFF_PROMISC) {
1398 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1399 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1400 } else {
1401 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1402 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1403 }
1404
1405 /*
1406 * Set capture broadcast bit to capture broadcast frames.
1407 */
1408 if (ifp->if_flags & IFF_BROADCAST) {
1409 rxcfg |= RTK_RXCFG_RX_BROAD;
1410 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1411 } else {
1412 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1413 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1414 }
1415
1416 /*
1417 * Program the multicast filter, if necessary.
1418 */
1419 rtk_setmulti(sc);
1420
1421 /*
1422 * Enable interrupts.
1423 */
1424 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1425
1426 /* Start RX/TX process. */
1427 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1428
1429 /* Enable receiver and transmitter. */
1430 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1431
1432 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1433
1434 /*
1435 * Set current media.
1436 */
1437 mii_mediachg(&sc->mii);
1438
1439 ifp->if_flags |= IFF_RUNNING;
1440 ifp->if_flags &= ~IFF_OACTIVE;
1441
1442 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1443
1444 out:
1445 if (error) {
1446 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1447 ifp->if_timer = 0;
1448 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1449 }
1450 return (error);
1451 }
1452
1453 /*
1454 * Set media options.
1455 */
1456 STATIC int rtk_ifmedia_upd(ifp)
1457 struct ifnet *ifp;
1458 {
1459 struct rtk_softc *sc;
1460
1461 sc = ifp->if_softc;
1462
1463 return (mii_mediachg(&sc->mii));
1464 }
1465
1466 /*
1467 * Report current media status.
1468 */
1469 STATIC void rtk_ifmedia_sts(ifp, ifmr)
1470 struct ifnet *ifp;
1471 struct ifmediareq *ifmr;
1472 {
1473 struct rtk_softc *sc;
1474
1475 sc = ifp->if_softc;
1476
1477 mii_pollstat(&sc->mii);
1478 ifmr->ifm_status = sc->mii.mii_media_status;
1479 ifmr->ifm_active = sc->mii.mii_media_active;
1480 }
1481
1482 STATIC int rtk_ioctl(ifp, command, data)
1483 struct ifnet *ifp;
1484 u_long command;
1485 caddr_t data;
1486 {
1487 struct rtk_softc *sc = ifp->if_softc;
1488 struct ifreq *ifr = (struct ifreq *) data;
1489 int s, error = 0;
1490
1491 s = splnet();
1492
1493 switch (command) {
1494 case SIOCGIFMEDIA:
1495 case SIOCSIFMEDIA:
1496 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1497 break;
1498
1499 default:
1500 error = ether_ioctl(ifp, command, data);
1501 if (error == ENETRESET) {
1502 if (RTK_IS_ENABLED(sc)) {
1503 /*
1504 * Multicast list has changed. Set the
1505 * hardware filter accordingly.
1506 */
1507 rtk_setmulti(sc);
1508 }
1509 error = 0;
1510 }
1511 break;
1512 }
1513
1514 splx(s);
1515
1516 return(error);
1517 }
1518
1519 STATIC void rtk_watchdog(ifp)
1520 struct ifnet *ifp;
1521 {
1522 struct rtk_softc *sc;
1523
1524 sc = ifp->if_softc;
1525
1526 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1527 ifp->if_oerrors++;
1528 rtk_txeof(sc);
1529 rtk_rxeof(sc);
1530 rtk_init(ifp);
1531
1532 return;
1533 }
1534
1535 /*
1536 * Stop the adapter and free any mbufs allocated to the
1537 * RX and TX lists.
1538 */
1539 STATIC void rtk_stop(ifp, disable)
1540 struct ifnet *ifp;
1541 int disable;
1542 {
1543 struct rtk_softc *sc = ifp->if_softc;
1544 int i;
1545
1546 callout_stop(&sc->rtk_tick_ch);
1547
1548 mii_down(&sc->mii);
1549
1550 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1551 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1552
1553 /*
1554 * Free the TX list buffers.
1555 */
1556 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
1557 if (sc->rtk_cdata.rtk_tx_chain[i] != NULL) {
1558 bus_dmamap_unload(sc->sc_dmat, sc->snd_dmamap[i]);
1559 m_freem(sc->rtk_cdata.rtk_tx_chain[i]);
1560 sc->rtk_cdata.rtk_tx_chain[i] = NULL;
1561 CSR_WRITE_4(sc, RTK_TXADDR0 + i, 0x0000000);
1562 }
1563 }
1564
1565 if (disable)
1566 rtk_disable(sc);
1567
1568 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1569 ifp->if_timer = 0;
1570 }
1571
1572 /*
1573 * Stop all chip I/O so that the kernel's probe routines don't
1574 * get confused by errant DMAs when rebooting.
1575 */
1576 STATIC void rtk_shutdown(vsc)
1577 void *vsc;
1578 {
1579 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1580
1581 rtk_stop(&sc->ethercom.ec_if, 0);
1582 }
1583
1584 STATIC void
1585 rtk_tick(arg)
1586 void *arg;
1587 {
1588 struct rtk_softc *sc = arg;
1589 int s = splnet();
1590
1591 mii_tick(&sc->mii);
1592 splx(s);
1593
1594 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1595 }
1596