Home | History | Annotate | Line # | Download | only in ic
rtl81x9.c revision 1.29
      1 /*	$NetBSD: rtl81x9.c,v 1.29 2001/02/01 04:45:17 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
     35  */
     36 
     37 /*
     38  * RealTek 8129/8139 PCI NIC driver
     39  *
     40  * Supports several extremely cheap PCI 10/100 adapters based on
     41  * the RealTek chipset. Datasheets can be obtained from
     42  * www.realtek.com.tw.
     43  *
     44  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     45  * Electrical Engineering Department
     46  * Columbia University, New York City
     47  */
     48 
     49 /*
     50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
     51  * probably the worst PCI ethernet controller ever made, with the possible
     52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
     53  * DMA, but it has a terrible interface that nullifies any performance
     54  * gains that bus-master DMA usually offers.
     55  *
     56  * For transmission, the chip offers a series of four TX descriptor
     57  * registers. Each transmit frame must be in a contiguous buffer, aligned
     58  * on a longword (32-bit) boundary. This means we almost always have to
     59  * do mbuf copies in order to transmit a frame, except in the unlikely
     60  * case where a) the packet fits into a single mbuf, and b) the packet
     61  * is 32-bit aligned within the mbuf's data area. The presence of only
     62  * four descriptor registers means that we can never have more than four
     63  * packets queued for transmission at any one time.
     64  *
     65  * Reception is not much better. The driver has to allocate a single large
     66  * buffer area (up to 64K in size) into which the chip will DMA received
     67  * frames. Because we don't know where within this region received packets
     68  * will begin or end, we have no choice but to copy data from the buffer
     69  * area into mbufs in order to pass the packets up to the higher protocol
     70  * levels.
     71  *
     72  * It's impossible given this rotten design to really achieve decent
     73  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
     74  * some equally overmuscled CPU to drive it.
     75  *
     76  * On the bright side, the 8139 does have a built-in PHY, although
     77  * rather than using an MDIO serial interface like most other NICs, the
     78  * PHY registers are directly accessible through the 8139's register
     79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
     80  * filter.
     81  *
     82  * The 8129 chip is an older version of the 8139 that uses an external PHY
     83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
     84  * the 8139 lets you directly access the on-board PHY registers. We need
     85  * to select which interface to use depending on the chip type.
     86  */
     87 
     88 #include "opt_inet.h"
     89 #include "opt_ns.h"
     90 #include "bpfilter.h"
     91 #include "rnd.h"
     92 
     93 #include <sys/param.h>
     94 #include <sys/systm.h>
     95 #include <sys/callout.h>
     96 #include <sys/device.h>
     97 #include <sys/sockio.h>
     98 #include <sys/mbuf.h>
     99 #include <sys/malloc.h>
    100 #include <sys/kernel.h>
    101 #include <sys/socket.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #include <net/if.h>
    106 #include <net/if_arp.h>
    107 #include <net/if_ether.h>
    108 #include <net/if_dl.h>
    109 #include <net/if_media.h>
    110 #ifdef INET
    111 #include <netinet/in.h>
    112 #include <netinet/if_inarp.h>
    113 #endif
    114 #ifdef NS
    115 #include <netns/ns.h>
    116 #include <netns/ns_if.h>
    117 #endif
    118 
    119 #if NBPFILTER > 0
    120 #include <net/bpf.h>
    121 #endif
    122 #if NRND > 0
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <machine/bus.h>
    127 #include <machine/endian.h>
    128 
    129 #include <dev/mii/mii.h>
    130 #include <dev/mii/miivar.h>
    131 
    132 #include <dev/ic/rtl81x9reg.h>
    133 #include <dev/ic/rtl81x9var.h>
    134 
    135 #if defined(DEBUG)
    136 #define STATIC
    137 #else
    138 #define STATIC static
    139 #endif
    140 
    141 STATIC void rtk_reset		__P((struct rtk_softc *));
    142 STATIC void rtk_rxeof		__P((struct rtk_softc *));
    143 STATIC void rtk_txeof		__P((struct rtk_softc *));
    144 STATIC void rtk_start		__P((struct ifnet *));
    145 STATIC int rtk_ioctl		__P((struct ifnet *, u_long, caddr_t));
    146 STATIC int rtk_init		__P((struct ifnet *));
    147 STATIC void rtk_stop		__P((struct ifnet *, int));
    148 
    149 STATIC void rtk_watchdog	__P((struct ifnet *));
    150 STATIC void rtk_shutdown	__P((void *));
    151 STATIC int rtk_ifmedia_upd	__P((struct ifnet *));
    152 STATIC void rtk_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    153 
    154 STATIC u_int16_t rtk_read_eeprom __P((struct rtk_softc *, int, int));
    155 STATIC void rtk_eeprom_putbyte	__P((struct rtk_softc *, int, int));
    156 STATIC void rtk_mii_sync	__P((struct rtk_softc *));
    157 STATIC void rtk_mii_send	__P((struct rtk_softc *, u_int32_t, int));
    158 STATIC int rtk_mii_readreg	__P((struct rtk_softc *, struct rtk_mii_frame *));
    159 STATIC int rtk_mii_writereg	__P((struct rtk_softc *, struct rtk_mii_frame *));
    160 
    161 STATIC int rtk_phy_readreg	__P((struct device *, int, int));
    162 STATIC void rtk_phy_writereg	__P((struct device *, int, int, int));
    163 STATIC void rtk_phy_statchg	__P((struct device *));
    164 STATIC void rtk_tick		__P((void *));
    165 
    166 STATIC int rtk_enable		__P((struct rtk_softc *));
    167 STATIC void rtk_disable		__P((struct rtk_softc *));
    168 STATIC void rtk_power		__P((int, void *));
    169 
    170 STATIC void rtk_setmulti	__P((struct rtk_softc *));
    171 STATIC int rtk_list_tx_init	__P((struct rtk_softc *));
    172 
    173 #define EE_SET(x)					\
    174 	CSR_WRITE_1(sc, RTK_EECMD,			\
    175 		CSR_READ_1(sc, RTK_EECMD) | (x))
    176 
    177 #define EE_CLR(x)					\
    178 	CSR_WRITE_1(sc, RTK_EECMD,			\
    179 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
    180 
    181 /*
    182  * Send a read command and address to the EEPROM, check for ACK.
    183  */
    184 STATIC void rtk_eeprom_putbyte(sc, addr, addr_len)
    185 	struct rtk_softc	*sc;
    186 	int			addr, addr_len;
    187 {
    188 	int			d, i;
    189 
    190 	d = (RTK_EECMD_READ << addr_len) | addr;
    191 
    192 	/*
    193 	 * Feed in each bit and stobe the clock.
    194 	 */
    195 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
    196 		if (d & (1 << (i - 1))) {
    197 			EE_SET(RTK_EE_DATAIN);
    198 		} else {
    199 			EE_CLR(RTK_EE_DATAIN);
    200 		}
    201 		DELAY(4);
    202 		EE_SET(RTK_EE_CLK);
    203 		DELAY(4);
    204 		EE_CLR(RTK_EE_CLK);
    205 		DELAY(4);
    206 	}
    207 }
    208 
    209 /*
    210  * Read a word of data stored in the EEPROM at address 'addr.'
    211  */
    212 u_int16_t rtk_read_eeprom(sc, addr, addr_len)
    213 	struct rtk_softc	*sc;
    214 	int			addr, addr_len;
    215 {
    216 	u_int16_t		word = 0;
    217 	int			i;
    218 
    219 	/* Enter EEPROM access mode. */
    220 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
    221 
    222 	/*
    223 	 * Send address of word we want to read.
    224 	 */
    225 	rtk_eeprom_putbyte(sc, addr, addr_len);
    226 
    227 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
    228 
    229 	/*
    230 	 * Start reading bits from EEPROM.
    231 	 */
    232 	for (i = 16; i > 0; i--) {
    233 		EE_SET(RTK_EE_CLK);
    234 		DELAY(4);
    235 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
    236 			word |= 1 << (i - 1);
    237 		EE_CLR(RTK_EE_CLK);
    238 		DELAY(4);
    239 	}
    240 
    241 	/* Turn off EEPROM access mode. */
    242 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
    243 
    244 	return (word);
    245 }
    246 
    247 /*
    248  * MII access routines are provided for the 8129, which
    249  * doesn't have a built-in PHY. For the 8139, we fake things
    250  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
    251  * direct access PHY registers.
    252  */
    253 #define MII_SET(x)					\
    254 	CSR_WRITE_1(sc, RTK_MII,			\
    255 		CSR_READ_1(sc, RTK_MII) | (x))
    256 
    257 #define MII_CLR(x)					\
    258 	CSR_WRITE_1(sc, RTK_MII,			\
    259 		CSR_READ_1(sc, RTK_MII) & ~(x))
    260 
    261 /*
    262  * Sync the PHYs by setting data bit and strobing the clock 32 times.
    263  */
    264 STATIC void rtk_mii_sync(sc)
    265 	struct rtk_softc	*sc;
    266 {
    267 	int			i;
    268 
    269 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
    270 
    271 	for (i = 0; i < 32; i++) {
    272 		MII_SET(RTK_MII_CLK);
    273 		DELAY(1);
    274 		MII_CLR(RTK_MII_CLK);
    275 		DELAY(1);
    276 	}
    277 }
    278 
    279 /*
    280  * Clock a series of bits through the MII.
    281  */
    282 STATIC void rtk_mii_send(sc, bits, cnt)
    283 	struct rtk_softc	*sc;
    284 	u_int32_t		bits;
    285 	int			cnt;
    286 {
    287 	int			i;
    288 
    289 	MII_CLR(RTK_MII_CLK);
    290 
    291 	for (i = cnt; i > 0; i--) {
    292                 if (bits & (1 << (i - 1))) {
    293 			MII_SET(RTK_MII_DATAOUT);
    294                 } else {
    295 			MII_CLR(RTK_MII_DATAOUT);
    296                 }
    297 		DELAY(1);
    298 		MII_CLR(RTK_MII_CLK);
    299 		DELAY(1);
    300 		MII_SET(RTK_MII_CLK);
    301 	}
    302 }
    303 
    304 /*
    305  * Read an PHY register through the MII.
    306  */
    307 STATIC int rtk_mii_readreg(sc, frame)
    308 	struct rtk_softc	*sc;
    309 	struct rtk_mii_frame	*frame;
    310 {
    311 	int			i, ack, s;
    312 
    313 	s = splnet();
    314 
    315 	/*
    316 	 * Set up frame for RX.
    317 	 */
    318 	frame->mii_stdelim = RTK_MII_STARTDELIM;
    319 	frame->mii_opcode = RTK_MII_READOP;
    320 	frame->mii_turnaround = 0;
    321 	frame->mii_data = 0;
    322 
    323 	CSR_WRITE_2(sc, RTK_MII, 0);
    324 
    325 	/*
    326  	 * Turn on data xmit.
    327 	 */
    328 	MII_SET(RTK_MII_DIR);
    329 
    330 	rtk_mii_sync(sc);
    331 
    332 	/*
    333 	 * Send command/address info.
    334 	 */
    335 	rtk_mii_send(sc, frame->mii_stdelim, 2);
    336 	rtk_mii_send(sc, frame->mii_opcode, 2);
    337 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
    338 	rtk_mii_send(sc, frame->mii_regaddr, 5);
    339 
    340 	/* Idle bit */
    341 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
    342 	DELAY(1);
    343 	MII_SET(RTK_MII_CLK);
    344 	DELAY(1);
    345 
    346 	/* Turn off xmit. */
    347 	MII_CLR(RTK_MII_DIR);
    348 
    349 	/* Check for ack */
    350 	MII_CLR(RTK_MII_CLK);
    351 	DELAY(1);
    352 	MII_SET(RTK_MII_CLK);
    353 	DELAY(1);
    354 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
    355 
    356 	/*
    357 	 * Now try reading data bits. If the ack failed, we still
    358 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
    359 	 */
    360 	if (ack) {
    361 		for (i = 0; i < 16; i++) {
    362 			MII_CLR(RTK_MII_CLK);
    363 			DELAY(1);
    364 			MII_SET(RTK_MII_CLK);
    365 			DELAY(1);
    366 		}
    367 		goto fail;
    368 	}
    369 
    370 	for (i = 16; i > 0; i--) {
    371 		MII_CLR(RTK_MII_CLK);
    372 		DELAY(1);
    373 		if (!ack) {
    374 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
    375 				frame->mii_data |= 1 << (i - 1);
    376 			DELAY(1);
    377 		}
    378 		MII_SET(RTK_MII_CLK);
    379 		DELAY(1);
    380 	}
    381 
    382  fail:
    383 	MII_CLR(RTK_MII_CLK);
    384 	DELAY(1);
    385 	MII_SET(RTK_MII_CLK);
    386 	DELAY(1);
    387 
    388 	splx(s);
    389 
    390 	if (ack)
    391 		return (1);
    392 	return (0);
    393 }
    394 
    395 /*
    396  * Write to a PHY register through the MII.
    397  */
    398 STATIC int rtk_mii_writereg(sc, frame)
    399 	struct rtk_softc	*sc;
    400 	struct rtk_mii_frame	*frame;
    401 {
    402 	int			s;
    403 
    404 	s = splnet();
    405 	/*
    406 	 * Set up frame for TX.
    407 	 */
    408 	frame->mii_stdelim = RTK_MII_STARTDELIM;
    409 	frame->mii_opcode = RTK_MII_WRITEOP;
    410 	frame->mii_turnaround = RTK_MII_TURNAROUND;
    411 
    412 	/*
    413  	 * Turn on data output.
    414 	 */
    415 	MII_SET(RTK_MII_DIR);
    416 
    417 	rtk_mii_sync(sc);
    418 
    419 	rtk_mii_send(sc, frame->mii_stdelim, 2);
    420 	rtk_mii_send(sc, frame->mii_opcode, 2);
    421 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
    422 	rtk_mii_send(sc, frame->mii_regaddr, 5);
    423 	rtk_mii_send(sc, frame->mii_turnaround, 2);
    424 	rtk_mii_send(sc, frame->mii_data, 16);
    425 
    426 	/* Idle bit. */
    427 	MII_SET(RTK_MII_CLK);
    428 	DELAY(1);
    429 	MII_CLR(RTK_MII_CLK);
    430 	DELAY(1);
    431 
    432 	/*
    433 	 * Turn off xmit.
    434 	 */
    435 	MII_CLR(RTK_MII_DIR);
    436 
    437 	splx(s);
    438 
    439 	return (0);
    440 }
    441 
    442 STATIC int rtk_phy_readreg(self, phy, reg)
    443 	struct device		*self;
    444 	int			phy, reg;
    445 {
    446 	struct rtk_softc	*sc = (void *)self;
    447 	struct rtk_mii_frame	frame;
    448 	int			rval = 0;
    449 	int			rtk8139_reg = 0;
    450 
    451 	if (sc->rtk_type == RTK_8139) {
    452 		if (phy != 7)
    453 			return (0);
    454 
    455 		switch(reg) {
    456 		case MII_BMCR:
    457 			rtk8139_reg = RTK_BMCR;
    458 			break;
    459 		case MII_BMSR:
    460 			rtk8139_reg = RTK_BMSR;
    461 			break;
    462 		case MII_ANAR:
    463 			rtk8139_reg = RTK_ANAR;
    464 			break;
    465 		case MII_ANER:
    466 			rtk8139_reg = RTK_ANER;
    467 			break;
    468 		case MII_ANLPAR:
    469 			rtk8139_reg = RTK_LPAR;
    470 			break;
    471 		default:
    472 #if 0
    473 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
    474 #endif
    475 			return (0);
    476 		}
    477 		rval = CSR_READ_2(sc, rtk8139_reg);
    478 		return (rval);
    479 	}
    480 
    481 	bzero((char *)&frame, sizeof(frame));
    482 
    483 	frame.mii_phyaddr = phy;
    484 	frame.mii_regaddr = reg;
    485 	rtk_mii_readreg(sc, &frame);
    486 
    487 	return (frame.mii_data);
    488 }
    489 
    490 STATIC void rtk_phy_writereg(self, phy, reg, data)
    491 	struct device		*self;
    492 	int			phy, reg;
    493 	int			data;
    494 {
    495 	struct rtk_softc	*sc = (void *)self;
    496 	struct rtk_mii_frame	frame;
    497 	int			rtk8139_reg = 0;
    498 
    499 	if (sc->rtk_type == RTK_8139) {
    500 		if (phy != 7)
    501 			return;
    502 
    503 		switch(reg) {
    504 		case MII_BMCR:
    505 			rtk8139_reg = RTK_BMCR;
    506 			break;
    507 		case MII_BMSR:
    508 			rtk8139_reg = RTK_BMSR;
    509 			break;
    510 		case MII_ANAR:
    511 			rtk8139_reg = RTK_ANAR;
    512 			break;
    513 		case MII_ANER:
    514 			rtk8139_reg = RTK_ANER;
    515 			break;
    516 		case MII_ANLPAR:
    517 			rtk8139_reg = RTK_LPAR;
    518 			break;
    519 		default:
    520 #if 0
    521 			printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
    522 #endif
    523 			return;
    524 		}
    525 		CSR_WRITE_2(sc, rtk8139_reg, data);
    526 		return;
    527 	}
    528 
    529 	bzero((char *)&frame, sizeof(frame));
    530 
    531 	frame.mii_phyaddr = phy;
    532 	frame.mii_regaddr = reg;
    533 	frame.mii_data = data;
    534 
    535 	rtk_mii_writereg(sc, &frame);
    536 }
    537 
    538 STATIC void
    539 rtk_phy_statchg(v)
    540 	struct device *v;
    541 {
    542 
    543 	/* Nothing to do. */
    544 }
    545 
    546 #define	rtk_calchash(addr) \
    547 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    548 
    549 /*
    550  * Program the 64-bit multicast hash filter.
    551  */
    552 STATIC void rtk_setmulti(sc)
    553 	struct rtk_softc	*sc;
    554 {
    555 	struct ifnet		*ifp;
    556 	int			h = 0;
    557 	u_int32_t		hashes[2] = { 0, 0 };
    558 	u_int32_t		rxfilt;
    559 	int			mcnt = 0;
    560 	struct ether_multi *enm;
    561 	struct ether_multistep step;
    562 
    563 	ifp = &sc->ethercom.ec_if;
    564 
    565 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
    566 
    567 	if (ifp->if_flags & IFF_PROMISC) {
    568 allmulti:
    569 		ifp->if_flags |= IFF_ALLMULTI;
    570 		rxfilt |= RTK_RXCFG_RX_MULTI;
    571 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
    572 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
    573 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
    574 		return;
    575 	}
    576 
    577 	/* first, zot all the existing hash bits */
    578 	CSR_WRITE_4(sc, RTK_MAR0, 0);
    579 	CSR_WRITE_4(sc, RTK_MAR4, 0);
    580 
    581 	/* now program new ones */
    582 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
    583 	while (enm != NULL) {
    584 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    585 		    ETHER_ADDR_LEN) != 0)
    586 			goto allmulti;
    587 
    588 		h = rtk_calchash(enm->enm_addrlo);
    589 		if (h < 32)
    590 			hashes[0] |= (1 << h);
    591 		else
    592 			hashes[1] |= (1 << (h - 32));
    593 		mcnt++;
    594 		ETHER_NEXT_MULTI(step, enm);
    595 	}
    596 
    597 	ifp->if_flags &= ~IFF_ALLMULTI;
    598 
    599 	if (mcnt)
    600 		rxfilt |= RTK_RXCFG_RX_MULTI;
    601 	else
    602 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
    603 
    604 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
    605 	CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
    606 	CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
    607 }
    608 
    609 void rtk_reset(sc)
    610 	struct rtk_softc	*sc;
    611 {
    612 	int			i;
    613 
    614 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    615 
    616 	for (i = 0; i < RTK_TIMEOUT; i++) {
    617 		DELAY(10);
    618 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    619 			break;
    620 	}
    621 	if (i == RTK_TIMEOUT)
    622 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
    623 }
    624 
    625 /*
    626  * Attach the interface. Allocate softc structures, do ifmedia
    627  * setup and ethernet/BPF attach.
    628  */
    629 void
    630 rtk_attach(sc)
    631 	struct rtk_softc *sc;
    632 {
    633 	struct ifnet *ifp;
    634 	u_int16_t val;
    635 	u_int8_t eaddr[ETHER_ADDR_LEN];
    636 	int error;
    637 	int i, addr_len;
    638 
    639 	callout_init(&sc->rtk_tick_ch);
    640 
    641 	/*
    642 	 * Check EEPROM type 9346 or 9356.
    643 	 */
    644 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    645 		addr_len = RTK_EEADDR_LEN1;
    646 	else
    647 		addr_len = RTK_EEADDR_LEN0;
    648 
    649 	/*
    650 	 * Get station address.
    651 	 */
    652 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
    653 	eaddr[0] = val & 0xff;
    654 	eaddr[1] = val >> 8;
    655 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
    656 	eaddr[2] = val & 0xff;
    657 	eaddr[3] = val >> 8;
    658 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
    659 	eaddr[4] = val & 0xff;
    660 	eaddr[5] = val >> 8;
    661 
    662 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    663 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
    664 	    BUS_DMA_NOWAIT)) != 0) {
    665 		printf("%s: can't allocate recv buffer, error = %d\n",
    666 		       sc->sc_dev.dv_xname, error);
    667 		goto fail_0;
    668 	}
    669 
    670 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
    671 	    RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_cdata.rtk_rx_buf,
    672 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    673 		printf("%s: can't map recv buffer, error = %d\n",
    674 		       sc->sc_dev.dv_xname, error);
    675 		goto fail_1;
    676 	}
    677 
    678 	if ((error = bus_dmamap_create(sc->sc_dmat,
    679 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
    680 	    &sc->recv_dmamap)) != 0) {
    681 		printf("%s: can't create recv buffer DMA map, error = %d\n",
    682 		       sc->sc_dev.dv_xname, error);
    683 		goto fail_2;
    684 	}
    685 
    686 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
    687 	    sc->rtk_cdata.rtk_rx_buf, RTK_RXBUFLEN + 16,
    688 	    NULL, BUS_DMA_NOWAIT)) != 0) {
    689 		printf("%s: can't load recv buffer DMA map, error = %d\n",
    690 		       sc->sc_dev.dv_xname, error);
    691 		goto fail_3;
    692 	}
    693 
    694 	for (i = 0; i < RTK_TX_LIST_CNT; i++)
    695 		if ((error = bus_dmamap_create(sc->sc_dmat,
    696 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    697 		    &sc->snd_dmamap[i])) != 0) {
    698 			printf("%s: can't create snd buffer DMA map,"
    699 			    " error = %d\n", sc->sc_dev.dv_xname, error);
    700 			goto fail_4;
    701 		}
    702 	/*
    703 	 * From this point forward, the attachment cannot fail. A failure
    704 	 * before this releases all resources thar may have been
    705 	 * allocated.
    706 	 */
    707 	sc->sc_flags |= RTK_ATTACHED;
    708 
    709 	/* Reset the adapter. */
    710 	rtk_reset(sc);
    711 
    712 	printf("%s: Ethernet address %s\n",
    713 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    714 
    715 	ifp = &sc->ethercom.ec_if;
    716 	ifp->if_softc = sc;
    717 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    718 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    719 	ifp->if_ioctl = rtk_ioctl;
    720 	ifp->if_start = rtk_start;
    721 	ifp->if_watchdog = rtk_watchdog;
    722 	ifp->if_init = rtk_init;
    723 	ifp->if_stop = rtk_stop;
    724 	IFQ_SET_READY(&ifp->if_snd);
    725 
    726 	/*
    727 	 * Do ifmedia setup.
    728 	 */
    729 	sc->mii.mii_ifp = ifp;
    730 	sc->mii.mii_readreg = rtk_phy_readreg;
    731 	sc->mii.mii_writereg = rtk_phy_writereg;
    732 	sc->mii.mii_statchg = rtk_phy_statchg;
    733 	ifmedia_init(&sc->mii.mii_media, 0, rtk_ifmedia_upd, rtk_ifmedia_sts);
    734 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
    735 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    736 
    737 	/* Choose a default media. */
    738 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
    739 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    740 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
    741 	} else {
    742 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
    743 	}
    744 
    745 	/*
    746 	 * Call MI attach routines.
    747 	 */
    748 	if_attach(ifp);
    749 	ether_ifattach(ifp, eaddr);
    750 
    751 	/*
    752 	 * Make sure the interface is shutdown during reboot.
    753 	 */
    754 	sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
    755 	if (sc->sc_sdhook == NULL)
    756 		printf("%s: WARNING: unbale to establish shutdown hook\n",
    757 		    sc->sc_dev.dv_xname);
    758 	/*
    759 	 * Add a suspend hook to make sure we come back up after a
    760 	 * resume.
    761 	 */
    762 	sc->sc_powerhook = powerhook_establish(rtk_power, sc);
    763 	if (sc->sc_powerhook == NULL)
    764 		printf("%s: WARNING: unable to establish power hook\n",
    765 		    sc->sc_dev.dv_xname);
    766 
    767 	return;
    768  fail_4:
    769 	for (i = 0; i < RTK_TX_LIST_CNT; i++)
    770 		if (sc->snd_dmamap[i] != NULL)
    771 			bus_dmamap_destroy(sc->sc_dmat, sc->snd_dmamap[i]);
    772  fail_3:
    773 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    774  fail_2:
    775 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_cdata.rtk_rx_buf,
    776 	    RTK_RXBUFLEN + 16);
    777  fail_1:
    778 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    779  fail_0:
    780 	return;
    781 }
    782 
    783 /*
    784  * Initialize the transmit descriptors.
    785  */
    786 STATIC int rtk_list_tx_init(sc)
    787 	struct rtk_softc	*sc;
    788 {
    789 	struct rtk_chain_data	*cd;
    790 	int			i;
    791 
    792 	cd = &sc->rtk_cdata;
    793 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    794 		cd->rtk_tx_chain[i] = NULL;
    795 		CSR_WRITE_4(sc,
    796 		    RTK_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
    797 	}
    798 
    799 	sc->rtk_cdata.cur_tx = 0;
    800 	sc->rtk_cdata.last_tx = 0;
    801 
    802 	return (0);
    803 }
    804 
    805 /*
    806  * rtk_activate:
    807  *     Handle device activation/deactivation requests.
    808  */
    809 int
    810 rtk_activate(self, act)
    811 	struct device *self;
    812 	enum devact act;
    813 {
    814 	struct rtk_softc *sc = (void *) self;
    815 	int s, error = 0;
    816 
    817 	s = splnet();
    818 	switch (act) {
    819 	case DVACT_ACTIVATE:
    820 		error = EOPNOTSUPP;
    821 		break;
    822 	case DVACT_DEACTIVATE:
    823 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    824 		if_deactivate(&sc->ethercom.ec_if);
    825 		break;
    826 	}
    827 	splx(s);
    828 
    829 	return (error);
    830 }
    831 
    832 /*
    833  * rtk_detach:
    834  *     Detach a rtk interface.
    835  */
    836 int
    837 rtk_detach(sc)
    838 	struct rtk_softc *sc;
    839 {
    840 	struct ifnet *ifp = &sc->ethercom.ec_if;
    841 	int i;
    842 
    843 	/*
    844 	 * Succeed now if thereisn't any work to do.
    845 	 */
    846 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    847 		return (0);
    848 
    849 	/* Unhook our tick handler. */
    850 	callout_stop(&sc->rtk_tick_ch);
    851 
    852 	/* Detach all PHYs. */
    853 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    854 
    855 	/* Delete all remaining media. */
    856 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    857 
    858 	ether_ifdetach(ifp);
    859 	if_detach(ifp);
    860 
    861 	for (i = 0; i < RTK_TX_LIST_CNT; i++)
    862 		if (sc->snd_dmamap[i] != NULL)
    863 			bus_dmamap_destroy(sc->sc_dmat, sc->snd_dmamap[i]);
    864 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    865 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_cdata.rtk_rx_buf,
    866 	    RTK_RXBUFLEN + 16);
    867 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    868 
    869 	shutdownhook_disestablish(sc->sc_sdhook);
    870 	powerhook_disestablish(sc->sc_powerhook);
    871 
    872 	return (0);
    873 }
    874 
    875 /*
    876  * rtk_enable:
    877  *     Enable the RTL81X9 chip.
    878  */
    879 int
    880 rtk_enable(sc)
    881 	struct rtk_softc *sc;
    882 {
    883 
    884 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    885 		if ((*sc->sc_enable)(sc) != 0) {
    886 			printf("%s: device enable failed\n",
    887 			    sc->sc_dev.dv_xname);
    888 			return (EIO);
    889 		}
    890 		sc->sc_flags |= RTK_ENABLED;
    891 	}
    892 	return (0);
    893 }
    894 
    895 /*
    896  * rtk_disable:
    897  *     Disable the RTL81X9 chip.
    898  */
    899 void
    900 rtk_disable(sc)
    901 	struct rtk_softc *sc;
    902 {
    903 
    904 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    905 		(*sc->sc_disable)(sc);
    906 		sc->sc_flags &= ~RTK_ENABLED;
    907 	}
    908 }
    909 
    910 /*
    911  * rtk_power:
    912  *     Power management (suspend/resume) hook.
    913  */
    914 void
    915 rtk_power(why, arg)
    916 	int why;
    917 	void *arg;
    918 {
    919 	struct rtk_softc *sc = (void *) arg;
    920 	struct ifnet *ifp = &sc->ethercom.ec_if;
    921 	int s;
    922 
    923 	s = splnet();
    924 	switch (why) {
    925 	case PWR_SUSPEND:
    926 	case PWR_STANDBY:
    927 		rtk_stop(ifp, 0);
    928 		if (sc->sc_power != NULL)
    929 			(*sc->sc_power)(sc, why);
    930 		break;
    931 	case PWR_RESUME:
    932 		if (ifp->if_flags & IFF_UP) {
    933 			if (sc->sc_power != NULL)
    934 				(*sc->sc_power)(sc, why);
    935 			rtk_init(ifp);
    936 		}
    937 		break;
    938 	case PWR_SOFTSUSPEND:
    939 	case PWR_SOFTSTANDBY:
    940 	case PWR_SOFTRESUME:
    941 		break;
    942 	}
    943 	splx(s);
    944 }
    945 
    946 /*
    947  * A frame has been uploaded: pass the resulting mbuf chain up to
    948  * the higher level protocols.
    949  *
    950  * You know there's something wrong with a PCI bus-master chip design.
    951  *
    952  * The receive operation is badly documented in the datasheet, so I'll
    953  * attempt to document it here. The driver provides a buffer area and
    954  * places its base address in the RX buffer start address register.
    955  * The chip then begins copying frames into the RX buffer. Each frame
    956  * is preceeded by a 32-bit RX status word which specifies the length
    957  * of the frame and certain other status bits. Each frame (starting with
    958  * the status word) is also 32-bit aligned. The frame length is in the
    959  * first 16 bits of the status word; the lower 15 bits correspond with
    960  * the 'rx status register' mentioned in the datasheet.
    961  *
    962  * Note: to make the Alpha happy, the frame payload needs to be aligned
    963  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
    964  * shifted forward 2 bytes.
    965  */
    966 STATIC void rtk_rxeof(sc)
    967 	struct rtk_softc	*sc;
    968 {
    969         struct mbuf		*m;
    970         struct ifnet		*ifp;
    971 	caddr_t			rxbufpos, dst;
    972 	int			total_len, wrap = 0;
    973 	u_int32_t		rxstat;
    974 	u_int16_t		cur_rx, new_rx;
    975 	u_int16_t		limit;
    976 	u_int16_t		rx_bytes = 0, max_bytes;
    977 
    978 	ifp = &sc->ethercom.ec_if;
    979 
    980 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
    981 
    982 	/* Do not try to read past this point. */
    983 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
    984 
    985 	if (limit < cur_rx)
    986 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
    987 	else
    988 		max_bytes = limit - cur_rx;
    989 
    990 	while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
    991 		rxbufpos = sc->rtk_cdata.rtk_rx_buf + cur_rx;
    992 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
    993 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
    994 		rxstat = le32toh(*(u_int32_t *)rxbufpos);
    995 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
    996 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
    997 
    998 		/*
    999 		 * Here's a totally undocumented fact for you. When the
   1000 		 * RealTek chip is in the process of copying a packet into
   1001 		 * RAM for you, the length will be 0xfff0. If you spot a
   1002 		 * packet header with this value, you need to stop. The
   1003 		 * datasheet makes absolutely no mention of this and
   1004 		 * RealTek should be shot for this.
   1005 		 */
   1006 		total_len = rxstat >> 16;
   1007 		if (total_len == RTK_RXSTAT_UNFINISHED)
   1008 			break;
   1009 
   1010 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
   1011 		    total_len > ETHER_MAX_LEN) {
   1012 			ifp->if_ierrors++;
   1013 
   1014 			/*
   1015 			 * submitted by:[netbsd-pcmcia:00484]
   1016 			 *	Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
   1017 			 * obtain from:
   1018 			 *     FreeBSD if_rl.c rev 1.24->1.25
   1019 			 *
   1020 			 */
   1021 #if 0
   1022 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
   1023 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
   1024 			    RTK_RXSTAT_ALIGNERR)) {
   1025 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
   1026 				CSR_WRITE_2(sc, RTK_COMMAND,
   1027 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1028 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1029 				CSR_WRITE_4(sc, RTK_RXADDR,
   1030 				    sc->recv_dmamap->dm_segs[0].ds_addr);
   1031 				cur_rx = 0;
   1032 			}
   1033 			break;
   1034 #else
   1035 			rtk_init(ifp);
   1036 			return;
   1037 #endif
   1038 		}
   1039 
   1040 		/* No errors; receive the packet. */
   1041 		rx_bytes += total_len + RTK_RXSTAT_LEN;
   1042 
   1043 		/*
   1044 		 * Avoid trying to read more bytes than we know
   1045 		 * the chip has prepared for us.
   1046 		 */
   1047 		if (rx_bytes > max_bytes)
   1048 			break;
   1049 
   1050 		/*
   1051 		 * Skip the status word, wrapping around to the beginning
   1052 		 * of the Rx area, if necessary.
   1053 		 */
   1054 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
   1055 		rxbufpos = sc->rtk_cdata.rtk_rx_buf + cur_rx;
   1056 
   1057 		/*
   1058 		 * Compute the number of bytes at which the packet
   1059 		 * will wrap to the beginning of the ring buffer.
   1060 		 */
   1061 		wrap = RTK_RXBUFLEN - cur_rx;
   1062 
   1063 		/*
   1064 		 * Compute where the next pending packet is.
   1065 		 */
   1066 		if (total_len > wrap)
   1067 			new_rx = total_len - wrap;
   1068 		else
   1069 			new_rx = cur_rx + total_len;
   1070 		/* Round up to 32-bit boundary. */
   1071 		new_rx = (new_rx + 3) & ~3;
   1072 
   1073 		/*
   1074 		 * Now allocate an mbuf (and possibly a cluster) to hold
   1075 		 * the packet. Note we offset the packet 2 bytes so that
   1076 		 * data after the Ethernet header will be 4-byte aligned.
   1077 		 */
   1078 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1079 		if (m == NULL) {
   1080 			printf("%s: unable to allocate Rx mbuf\n",
   1081 			    sc->sc_dev.dv_xname);
   1082 			ifp->if_ierrors++;
   1083 			goto next_packet;
   1084 		}
   1085 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
   1086 			MCLGET(m, M_DONTWAIT);
   1087 			if ((m->m_flags & M_EXT) == 0) {
   1088 				printf("%s: unable to allocate Rx cluster\n",
   1089 				    sc->sc_dev.dv_xname);
   1090 				ifp->if_ierrors++;
   1091 				m_freem(m);
   1092 				m = NULL;
   1093 				goto next_packet;
   1094 			}
   1095 		}
   1096 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
   1097 		m->m_pkthdr.rcvif = ifp;
   1098 		m->m_pkthdr.len = m->m_len = total_len;
   1099 		dst = mtod(m, caddr_t);
   1100 
   1101 		/*
   1102 		 * If the packet wraps, copy up to the wrapping point.
   1103 		 */
   1104 		if (total_len > wrap) {
   1105 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1106 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
   1107 			memcpy(dst, rxbufpos, wrap);
   1108 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1109 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
   1110 			cur_rx = 0;
   1111 			rxbufpos = sc->rtk_cdata.rtk_rx_buf;
   1112 			total_len -= wrap;
   1113 			dst += wrap;
   1114 		}
   1115 
   1116 		/*
   1117 		 * ...and now the rest.
   1118 		 */
   1119 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1120 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
   1121 		memcpy(dst, rxbufpos, total_len);
   1122 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1123 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
   1124 
   1125  next_packet:
   1126 		CSR_WRITE_2(sc, RTK_CURRXADDR, new_rx - 16);
   1127 		cur_rx = new_rx;
   1128 
   1129 		if (m == NULL)
   1130 			continue;
   1131 
   1132 		/*
   1133 		 * The RealTek chip includes the CRC with every
   1134 		 * incoming packet.
   1135 		 */
   1136 		m->m_flags |= M_HASFCS;
   1137 
   1138 		ifp->if_ipackets++;
   1139 
   1140 #if NBPFILTER > 0
   1141 		if (ifp->if_bpf)
   1142 			bpf_mtap(ifp->if_bpf, m);
   1143 #endif
   1144 		/* pass it on. */
   1145 		(*ifp->if_input)(ifp, m);
   1146 	}
   1147 }
   1148 
   1149 /*
   1150  * A frame was downloaded to the chip. It's safe for us to clean up
   1151  * the list buffers.
   1152  */
   1153 STATIC void rtk_txeof(sc)
   1154 	struct rtk_softc	*sc;
   1155 {
   1156 	struct ifnet		*ifp;
   1157 	u_int32_t		txstat;
   1158 
   1159 	ifp = &sc->ethercom.ec_if;
   1160 
   1161 	/* Clear the timeout timer. */
   1162 	ifp->if_timer = 0;
   1163 
   1164 	/*
   1165 	 * Go through our tx list and free mbufs for those
   1166 	 * frames that have been uploaded.
   1167 	 */
   1168 	do {
   1169 		txstat = CSR_READ_4(sc, RTK_LAST_TXSTAT(sc));
   1170 		if ((txstat & (RTK_TXSTAT_TX_OK|
   1171 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
   1172 			break;
   1173 
   1174 		bus_dmamap_sync(sc->sc_dmat,
   1175 		    sc->snd_dmamap[sc->rtk_cdata.last_tx], 0,
   1176 		    sc->snd_dmamap[sc->rtk_cdata.last_tx]->dm_mapsize,
   1177 		    BUS_DMASYNC_POSTWRITE);
   1178 		bus_dmamap_unload(sc->sc_dmat,
   1179 		    sc->snd_dmamap[sc->rtk_cdata.last_tx]);
   1180 		m_freem(RTK_LAST_TXMBUF(sc));
   1181 		RTK_LAST_TXMBUF(sc) = NULL;
   1182 
   1183 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
   1184 
   1185 		if (txstat & RTK_TXSTAT_TX_OK)
   1186 			ifp->if_opackets++;
   1187 		else {
   1188 			ifp->if_oerrors++;
   1189 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
   1190 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1191 		}
   1192 		RTK_INC(sc->rtk_cdata.last_tx);
   1193 		ifp->if_flags &= ~IFF_OACTIVE;
   1194 	} while (sc->rtk_cdata.last_tx != sc->rtk_cdata.cur_tx);
   1195 }
   1196 
   1197 int rtk_intr(arg)
   1198 	void			*arg;
   1199 {
   1200 	struct rtk_softc	*sc;
   1201 	struct ifnet		*ifp;
   1202 	u_int16_t		status;
   1203 	int handled = 0;
   1204 
   1205 	sc = arg;
   1206 	ifp = &sc->ethercom.ec_if;
   1207 
   1208 	/* Disable interrupts. */
   1209 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1210 
   1211 	for (;;) {
   1212 
   1213 		status = CSR_READ_2(sc, RTK_ISR);
   1214 		if (status)
   1215 			CSR_WRITE_2(sc, RTK_ISR, status);
   1216 
   1217 		handled = 1;
   1218 
   1219 		if ((status & RTK_INTRS) == 0)
   1220 			break;
   1221 
   1222 		if (status & RTK_ISR_RX_OK)
   1223 			rtk_rxeof(sc);
   1224 
   1225 		if (status & RTK_ISR_RX_ERR)
   1226 			rtk_rxeof(sc);
   1227 
   1228 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
   1229 			rtk_txeof(sc);
   1230 
   1231 		if (status & RTK_ISR_SYSTEM_ERR) {
   1232 			rtk_reset(sc);
   1233 			rtk_init(ifp);
   1234 		}
   1235 	}
   1236 
   1237 	/* Re-enable interrupts. */
   1238 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
   1239 
   1240 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1241 		rtk_start(ifp);
   1242 
   1243 	return (handled);
   1244 }
   1245 
   1246 /*
   1247  * Main transmit routine.
   1248  */
   1249 
   1250 STATIC void rtk_start(ifp)
   1251 	struct ifnet		*ifp;
   1252 {
   1253 	struct rtk_softc	*sc;
   1254 	struct mbuf		*m_head = NULL, *m_new;
   1255 	int			error, idx, len;
   1256 
   1257 	sc = ifp->if_softc;
   1258 
   1259 	while(RTK_CUR_TXMBUF(sc) == NULL) {
   1260 		IFQ_POLL(&ifp->if_snd, m_head);
   1261 		if (m_head == NULL)
   1262 			break;
   1263 		m_new = NULL;
   1264 
   1265 		idx = sc->rtk_cdata.cur_tx;
   1266 
   1267 		/*
   1268 		 * Load the DMA map.  If this fails, the packet didn't
   1269 		 * fit in one DMA segment, and we need to copy.  Note,
   1270 		 * the packet must also be aligned.
   1271 		 */
   1272 		if ((mtod(m_head, bus_addr_t) & 3) != 0 ||
   1273 		    bus_dmamap_load_mbuf(sc->sc_dmat, sc->snd_dmamap[idx],
   1274 			m_head, BUS_DMA_NOWAIT) != 0) {
   1275 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1276 			if (m_new == NULL) {
   1277 				printf("%s: unable to allocate Tx mbuf\n",
   1278 				    sc->sc_dev.dv_xname);
   1279 				break;
   1280 			}
   1281 			if (m_head->m_pkthdr.len > MHLEN) {
   1282 				MCLGET(m_new, M_DONTWAIT);
   1283 				if ((m_new->m_flags & M_EXT) == 0) {
   1284 					printf("%s: unable to allocate Tx "
   1285 					    "cluster\n", sc->sc_dev.dv_xname);
   1286 					m_freem(m_new);
   1287 					break;
   1288 				}
   1289 			}
   1290 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
   1291 			    mtod(m_new, caddr_t));
   1292 			m_new->m_pkthdr.len = m_new->m_len =
   1293 			    m_head->m_pkthdr.len;
   1294 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
   1295 			    sc->snd_dmamap[idx], m_new, BUS_DMA_NOWAIT);
   1296 			if (error) {
   1297 				printf("%s: unable to load Tx buffer, "
   1298 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1299 				break;
   1300 			}
   1301 		}
   1302 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1303 		if (m_new != NULL) {
   1304 			m_freem(m_head);
   1305 			m_head = m_new;
   1306 		}
   1307 
   1308 		RTK_CUR_TXMBUF(sc) = m_head;
   1309 
   1310 #if NBPFILTER > 0
   1311 		/*
   1312 		 * If there's a BPF listener, bounce a copy of this frame
   1313 		 * to him.
   1314 		 */
   1315 		if (ifp->if_bpf)
   1316 			bpf_mtap(ifp->if_bpf, RTK_CUR_TXMBUF(sc));
   1317 #endif
   1318 		/*
   1319 		 * Transmit the frame.
   1320 	 	 */
   1321 		bus_dmamap_sync(sc->sc_dmat,
   1322 		    sc->snd_dmamap[idx], 0, sc->snd_dmamap[idx]->dm_mapsize,
   1323 		    BUS_DMASYNC_PREWRITE);
   1324 
   1325 		len = sc->snd_dmamap[idx]->dm_segs[0].ds_len;
   1326 		if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
   1327 			len = (ETHER_MIN_LEN - ETHER_CRC_LEN);
   1328 
   1329 		CSR_WRITE_4(sc, RTK_CUR_TXADDR(sc),
   1330 		    sc->snd_dmamap[idx]->dm_segs[0].ds_addr);
   1331 		CSR_WRITE_4(sc, RTK_CUR_TXSTAT(sc), RTK_TX_EARLYTHRESH | len);
   1332 
   1333 		RTK_INC(sc->rtk_cdata.cur_tx);
   1334 	}
   1335 
   1336 	/*
   1337 	 * We broke out of the loop because all our TX slots are
   1338 	 * full. Mark the NIC as busy until it drains some of the
   1339 	 * packets from the queue.
   1340 	 */
   1341 	if (RTK_CUR_TXMBUF(sc) != NULL)
   1342 		ifp->if_flags |= IFF_OACTIVE;
   1343 
   1344 	/*
   1345 	 * Set a timeout in case the chip goes out to lunch.
   1346 	 */
   1347 	ifp->if_timer = 5;
   1348 }
   1349 
   1350 STATIC int rtk_init(ifp)
   1351 	struct ifnet *ifp;
   1352 {
   1353 	struct rtk_softc	*sc = ifp->if_softc;
   1354 	int			error = 0, i;
   1355 	u_int32_t		rxcfg;
   1356 
   1357 	if ((error = rtk_enable(sc)) != 0)
   1358 		goto out;
   1359 
   1360 	/*
   1361 	 * Cancel pending I/O.
   1362 	 */
   1363 	rtk_stop(ifp, 0);
   1364 
   1365 	/* Init our MAC address */
   1366 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1367 		CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
   1368 	}
   1369 
   1370 	/* Init the RX buffer pointer register. */
   1371 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
   1372 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1373 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
   1374 
   1375 	/* Init TX descriptors. */
   1376 	rtk_list_tx_init(sc);
   1377 
   1378 	/*
   1379 	 * Enable transmit and receive.
   1380 	 */
   1381 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1382 
   1383 	/*
   1384 	 * Set the initial TX and RX configuration.
   1385 	 */
   1386 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1387 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1388 
   1389 	/* Set the individual bit to receive frames for this host only. */
   1390 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1391 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1392 
   1393 	/* If we want promiscuous mode, set the allframes bit. */
   1394 	if (ifp->if_flags & IFF_PROMISC) {
   1395 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1396 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1397 	} else {
   1398 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1399 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1400 	}
   1401 
   1402 	/*
   1403 	 * Set capture broadcast bit to capture broadcast frames.
   1404 	 */
   1405 	if (ifp->if_flags & IFF_BROADCAST) {
   1406 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1407 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1408 	} else {
   1409 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1410 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1411 	}
   1412 
   1413 	/*
   1414 	 * Program the multicast filter, if necessary.
   1415 	 */
   1416 	rtk_setmulti(sc);
   1417 
   1418 	/*
   1419 	 * Enable interrupts.
   1420 	 */
   1421 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
   1422 
   1423 	/* Start RX/TX process. */
   1424 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1425 
   1426 	/* Enable receiver and transmitter. */
   1427 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1428 
   1429 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
   1430 
   1431 	/*
   1432 	 * Set current media.
   1433 	 */
   1434 	mii_mediachg(&sc->mii);
   1435 
   1436 	ifp->if_flags |= IFF_RUNNING;
   1437 	ifp->if_flags &= ~IFF_OACTIVE;
   1438 
   1439 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
   1440 
   1441  out:
   1442 	if (error) {
   1443 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1444 		ifp->if_timer = 0;
   1445 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1446 	}
   1447 	return (error);
   1448 }
   1449 
   1450 /*
   1451  * Set media options.
   1452  */
   1453 STATIC int rtk_ifmedia_upd(ifp)
   1454 	struct ifnet		*ifp;
   1455 {
   1456 	struct rtk_softc	*sc;
   1457 
   1458 	sc = ifp->if_softc;
   1459 
   1460 	return (mii_mediachg(&sc->mii));
   1461 }
   1462 
   1463 /*
   1464  * Report current media status.
   1465  */
   1466 STATIC void rtk_ifmedia_sts(ifp, ifmr)
   1467 	struct ifnet		*ifp;
   1468 	struct ifmediareq	*ifmr;
   1469 {
   1470 	struct rtk_softc	*sc;
   1471 
   1472 	sc = ifp->if_softc;
   1473 
   1474 	mii_pollstat(&sc->mii);
   1475 	ifmr->ifm_status = sc->mii.mii_media_status;
   1476 	ifmr->ifm_active = sc->mii.mii_media_active;
   1477 }
   1478 
   1479 STATIC int rtk_ioctl(ifp, command, data)
   1480 	struct ifnet		*ifp;
   1481 	u_long			command;
   1482 	caddr_t			data;
   1483 {
   1484 	struct rtk_softc	*sc = ifp->if_softc;
   1485 	struct ifreq		*ifr = (struct ifreq *) data;
   1486 	int			s, error = 0;
   1487 
   1488 	s = splnet();
   1489 
   1490 	switch (command) {
   1491 	case SIOCGIFMEDIA:
   1492 	case SIOCSIFMEDIA:
   1493 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1494 		break;
   1495 
   1496 	default:
   1497 		error = ether_ioctl(ifp, command, data);
   1498 		if (error == ENETRESET) {
   1499 			if (RTK_IS_ENABLED(sc)) {
   1500 				/*
   1501 				 * Multicast list has changed.  Set the
   1502 				 * hardware filter accordingly.
   1503 				 */
   1504 				rtk_setmulti(sc);
   1505 			}
   1506 			error = 0;
   1507 		}
   1508 		break;
   1509 	}
   1510 
   1511 	splx(s);
   1512 
   1513 	return (error);
   1514 }
   1515 
   1516 STATIC void rtk_watchdog(ifp)
   1517 	struct ifnet		*ifp;
   1518 {
   1519 	struct rtk_softc	*sc;
   1520 
   1521 	sc = ifp->if_softc;
   1522 
   1523 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1524 	ifp->if_oerrors++;
   1525 	rtk_txeof(sc);
   1526 	rtk_rxeof(sc);
   1527 	rtk_init(ifp);
   1528 }
   1529 
   1530 /*
   1531  * Stop the adapter and free any mbufs allocated to the
   1532  * RX and TX lists.
   1533  */
   1534 STATIC void rtk_stop(ifp, disable)
   1535 	struct ifnet *ifp;
   1536 	int disable;
   1537 {
   1538 	struct rtk_softc *sc = ifp->if_softc;
   1539 	int i;
   1540 
   1541 	callout_stop(&sc->rtk_tick_ch);
   1542 
   1543 	mii_down(&sc->mii);
   1544 
   1545 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   1546 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1547 
   1548 	/*
   1549 	 * Free the TX list buffers.
   1550 	 */
   1551 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
   1552 		if (sc->rtk_cdata.rtk_tx_chain[i] != NULL) {
   1553 			bus_dmamap_unload(sc->sc_dmat, sc->snd_dmamap[i]);
   1554 			m_freem(sc->rtk_cdata.rtk_tx_chain[i]);
   1555 			sc->rtk_cdata.rtk_tx_chain[i] = NULL;
   1556 			CSR_WRITE_4(sc, RTK_TXADDR0 + i, 0x0000000);
   1557 		}
   1558 	}
   1559 
   1560 	if (disable)
   1561 		rtk_disable(sc);
   1562 
   1563 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1564 	ifp->if_timer = 0;
   1565 }
   1566 
   1567 /*
   1568  * Stop all chip I/O so that the kernel's probe routines don't
   1569  * get confused by errant DMAs when rebooting.
   1570  */
   1571 STATIC void rtk_shutdown(vsc)
   1572 	void			*vsc;
   1573 {
   1574 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1575 
   1576 	rtk_stop(&sc->ethercom.ec_if, 0);
   1577 }
   1578 
   1579 STATIC void
   1580 rtk_tick(arg)
   1581 	void *arg;
   1582 {
   1583 	struct rtk_softc *sc = arg;
   1584 	int s = splnet();
   1585 
   1586 	mii_tick(&sc->mii);
   1587 	splx(s);
   1588 
   1589 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
   1590 }
   1591