rtl81x9.c revision 1.37 1 /* $NetBSD: rtl81x9.c,v 1.37 2001/08/07 02:59:53 kanaoka Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include "bpfilter.h"
89 #include "rnd.h"
90
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/callout.h>
94 #include <sys/device.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 #if NRND > 0
113 #include <sys/rnd.h>
114 #endif
115
116 #include <machine/bus.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/rtl81x9reg.h>
123 #include <dev/ic/rtl81x9var.h>
124
125 #if defined(DEBUG)
126 #define STATIC
127 #else
128 #define STATIC static
129 #endif
130
131 STATIC void rtk_reset __P((struct rtk_softc *));
132 STATIC void rtk_rxeof __P((struct rtk_softc *));
133 STATIC void rtk_txeof __P((struct rtk_softc *));
134 STATIC void rtk_start __P((struct ifnet *));
135 STATIC int rtk_ioctl __P((struct ifnet *, u_long, caddr_t));
136 STATIC int rtk_init __P((struct ifnet *));
137 STATIC void rtk_stop __P((struct ifnet *, int));
138
139 STATIC void rtk_watchdog __P((struct ifnet *));
140 STATIC void rtk_shutdown __P((void *));
141 STATIC int rtk_ifmedia_upd __P((struct ifnet *));
142 STATIC void rtk_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
143
144 STATIC u_int16_t rtk_read_eeprom __P((struct rtk_softc *, int, int));
145 STATIC void rtk_eeprom_putbyte __P((struct rtk_softc *, int, int));
146 STATIC void rtk_mii_sync __P((struct rtk_softc *));
147 STATIC void rtk_mii_send __P((struct rtk_softc *, u_int32_t, int));
148 STATIC int rtk_mii_readreg __P((struct rtk_softc *, struct rtk_mii_frame *));
149 STATIC int rtk_mii_writereg __P((struct rtk_softc *, struct rtk_mii_frame *));
150
151 STATIC int rtk_phy_readreg __P((struct device *, int, int));
152 STATIC void rtk_phy_writereg __P((struct device *, int, int, int));
153 STATIC void rtk_phy_statchg __P((struct device *));
154 STATIC void rtk_tick __P((void *));
155
156 STATIC int rtk_enable __P((struct rtk_softc *));
157 STATIC void rtk_disable __P((struct rtk_softc *));
158 STATIC void rtk_power __P((int, void *));
159
160 STATIC void rtk_setmulti __P((struct rtk_softc *));
161 STATIC int rtk_list_tx_init __P((struct rtk_softc *));
162
163 #define EE_SET(x) \
164 CSR_WRITE_1(sc, RTK_EECMD, \
165 CSR_READ_1(sc, RTK_EECMD) | (x))
166
167 #define EE_CLR(x) \
168 CSR_WRITE_1(sc, RTK_EECMD, \
169 CSR_READ_1(sc, RTK_EECMD) & ~(x))
170
171 /*
172 * Send a read command and address to the EEPROM, check for ACK.
173 */
174 STATIC void rtk_eeprom_putbyte(sc, addr, addr_len)
175 struct rtk_softc *sc;
176 int addr, addr_len;
177 {
178 int d, i;
179
180 d = (RTK_EECMD_READ << addr_len) | addr;
181
182 /*
183 * Feed in each bit and stobe the clock.
184 */
185 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
186 if (d & (1 << (i - 1))) {
187 EE_SET(RTK_EE_DATAIN);
188 } else {
189 EE_CLR(RTK_EE_DATAIN);
190 }
191 DELAY(4);
192 EE_SET(RTK_EE_CLK);
193 DELAY(4);
194 EE_CLR(RTK_EE_CLK);
195 DELAY(4);
196 }
197 }
198
199 /*
200 * Read a word of data stored in the EEPROM at address 'addr.'
201 */
202 u_int16_t rtk_read_eeprom(sc, addr, addr_len)
203 struct rtk_softc *sc;
204 int addr, addr_len;
205 {
206 u_int16_t word = 0;
207 int i;
208
209 /* Enter EEPROM access mode. */
210 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
211
212 /*
213 * Send address of word we want to read.
214 */
215 rtk_eeprom_putbyte(sc, addr, addr_len);
216
217 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
218
219 /*
220 * Start reading bits from EEPROM.
221 */
222 for (i = 16; i > 0; i--) {
223 EE_SET(RTK_EE_CLK);
224 DELAY(4);
225 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
226 word |= 1 << (i - 1);
227 EE_CLR(RTK_EE_CLK);
228 DELAY(4);
229 }
230
231 /* Turn off EEPROM access mode. */
232 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
233
234 return (word);
235 }
236
237 /*
238 * MII access routines are provided for the 8129, which
239 * doesn't have a built-in PHY. For the 8139, we fake things
240 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
241 * direct access PHY registers.
242 */
243 #define MII_SET(x) \
244 CSR_WRITE_1(sc, RTK_MII, \
245 CSR_READ_1(sc, RTK_MII) | (x))
246
247 #define MII_CLR(x) \
248 CSR_WRITE_1(sc, RTK_MII, \
249 CSR_READ_1(sc, RTK_MII) & ~(x))
250
251 /*
252 * Sync the PHYs by setting data bit and strobing the clock 32 times.
253 */
254 STATIC void rtk_mii_sync(sc)
255 struct rtk_softc *sc;
256 {
257 int i;
258
259 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
260
261 for (i = 0; i < 32; i++) {
262 MII_SET(RTK_MII_CLK);
263 DELAY(1);
264 MII_CLR(RTK_MII_CLK);
265 DELAY(1);
266 }
267 }
268
269 /*
270 * Clock a series of bits through the MII.
271 */
272 STATIC void rtk_mii_send(sc, bits, cnt)
273 struct rtk_softc *sc;
274 u_int32_t bits;
275 int cnt;
276 {
277 int i;
278
279 MII_CLR(RTK_MII_CLK);
280
281 for (i = cnt; i > 0; i--) {
282 if (bits & (1 << (i - 1))) {
283 MII_SET(RTK_MII_DATAOUT);
284 } else {
285 MII_CLR(RTK_MII_DATAOUT);
286 }
287 DELAY(1);
288 MII_CLR(RTK_MII_CLK);
289 DELAY(1);
290 MII_SET(RTK_MII_CLK);
291 }
292 }
293
294 /*
295 * Read an PHY register through the MII.
296 */
297 STATIC int rtk_mii_readreg(sc, frame)
298 struct rtk_softc *sc;
299 struct rtk_mii_frame *frame;
300 {
301 int i, ack, s;
302
303 s = splnet();
304
305 /*
306 * Set up frame for RX.
307 */
308 frame->mii_stdelim = RTK_MII_STARTDELIM;
309 frame->mii_opcode = RTK_MII_READOP;
310 frame->mii_turnaround = 0;
311 frame->mii_data = 0;
312
313 CSR_WRITE_2(sc, RTK_MII, 0);
314
315 /*
316 * Turn on data xmit.
317 */
318 MII_SET(RTK_MII_DIR);
319
320 rtk_mii_sync(sc);
321
322 /*
323 * Send command/address info.
324 */
325 rtk_mii_send(sc, frame->mii_stdelim, 2);
326 rtk_mii_send(sc, frame->mii_opcode, 2);
327 rtk_mii_send(sc, frame->mii_phyaddr, 5);
328 rtk_mii_send(sc, frame->mii_regaddr, 5);
329
330 /* Idle bit */
331 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
332 DELAY(1);
333 MII_SET(RTK_MII_CLK);
334 DELAY(1);
335
336 /* Turn off xmit. */
337 MII_CLR(RTK_MII_DIR);
338
339 /* Check for ack */
340 MII_CLR(RTK_MII_CLK);
341 DELAY(1);
342 MII_SET(RTK_MII_CLK);
343 DELAY(1);
344 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
345
346 /*
347 * Now try reading data bits. If the ack failed, we still
348 * need to clock through 16 cycles to keep the PHY(s) in sync.
349 */
350 if (ack) {
351 for (i = 0; i < 16; i++) {
352 MII_CLR(RTK_MII_CLK);
353 DELAY(1);
354 MII_SET(RTK_MII_CLK);
355 DELAY(1);
356 }
357 goto fail;
358 }
359
360 for (i = 16; i > 0; i--) {
361 MII_CLR(RTK_MII_CLK);
362 DELAY(1);
363 if (!ack) {
364 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
365 frame->mii_data |= 1 << (i - 1);
366 DELAY(1);
367 }
368 MII_SET(RTK_MII_CLK);
369 DELAY(1);
370 }
371
372 fail:
373 MII_CLR(RTK_MII_CLK);
374 DELAY(1);
375 MII_SET(RTK_MII_CLK);
376 DELAY(1);
377
378 splx(s);
379
380 if (ack)
381 return (1);
382 return (0);
383 }
384
385 /*
386 * Write to a PHY register through the MII.
387 */
388 STATIC int rtk_mii_writereg(sc, frame)
389 struct rtk_softc *sc;
390 struct rtk_mii_frame *frame;
391 {
392 int s;
393
394 s = splnet();
395 /*
396 * Set up frame for TX.
397 */
398 frame->mii_stdelim = RTK_MII_STARTDELIM;
399 frame->mii_opcode = RTK_MII_WRITEOP;
400 frame->mii_turnaround = RTK_MII_TURNAROUND;
401
402 /*
403 * Turn on data output.
404 */
405 MII_SET(RTK_MII_DIR);
406
407 rtk_mii_sync(sc);
408
409 rtk_mii_send(sc, frame->mii_stdelim, 2);
410 rtk_mii_send(sc, frame->mii_opcode, 2);
411 rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 rtk_mii_send(sc, frame->mii_regaddr, 5);
413 rtk_mii_send(sc, frame->mii_turnaround, 2);
414 rtk_mii_send(sc, frame->mii_data, 16);
415
416 /* Idle bit. */
417 MII_SET(RTK_MII_CLK);
418 DELAY(1);
419 MII_CLR(RTK_MII_CLK);
420 DELAY(1);
421
422 /*
423 * Turn off xmit.
424 */
425 MII_CLR(RTK_MII_DIR);
426
427 splx(s);
428
429 return (0);
430 }
431
432 STATIC int rtk_phy_readreg(self, phy, reg)
433 struct device *self;
434 int phy, reg;
435 {
436 struct rtk_softc *sc = (void *)self;
437 struct rtk_mii_frame frame;
438 int rval = 0;
439 int rtk8139_reg = 0;
440
441 if (sc->rtk_type == RTK_8139) {
442 if (phy != 7)
443 return (0);
444
445 switch(reg) {
446 case MII_BMCR:
447 rtk8139_reg = RTK_BMCR;
448 break;
449 case MII_BMSR:
450 rtk8139_reg = RTK_BMSR;
451 break;
452 case MII_ANAR:
453 rtk8139_reg = RTK_ANAR;
454 break;
455 case MII_ANER:
456 rtk8139_reg = RTK_ANER;
457 break;
458 case MII_ANLPAR:
459 rtk8139_reg = RTK_LPAR;
460 break;
461 default:
462 #if 0
463 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
464 #endif
465 return (0);
466 }
467 rval = CSR_READ_2(sc, rtk8139_reg);
468 return (rval);
469 }
470
471 memset((char *)&frame, 0, sizeof(frame));
472
473 frame.mii_phyaddr = phy;
474 frame.mii_regaddr = reg;
475 rtk_mii_readreg(sc, &frame);
476
477 return (frame.mii_data);
478 }
479
480 STATIC void rtk_phy_writereg(self, phy, reg, data)
481 struct device *self;
482 int phy, reg;
483 int data;
484 {
485 struct rtk_softc *sc = (void *)self;
486 struct rtk_mii_frame frame;
487 int rtk8139_reg = 0;
488
489 if (sc->rtk_type == RTK_8139) {
490 if (phy != 7)
491 return;
492
493 switch(reg) {
494 case MII_BMCR:
495 rtk8139_reg = RTK_BMCR;
496 break;
497 case MII_BMSR:
498 rtk8139_reg = RTK_BMSR;
499 break;
500 case MII_ANAR:
501 rtk8139_reg = RTK_ANAR;
502 break;
503 case MII_ANER:
504 rtk8139_reg = RTK_ANER;
505 break;
506 case MII_ANLPAR:
507 rtk8139_reg = RTK_LPAR;
508 break;
509 default:
510 #if 0
511 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
512 #endif
513 return;
514 }
515 CSR_WRITE_2(sc, rtk8139_reg, data);
516 return;
517 }
518
519 memset((char *)&frame, 0, sizeof(frame));
520
521 frame.mii_phyaddr = phy;
522 frame.mii_regaddr = reg;
523 frame.mii_data = data;
524
525 rtk_mii_writereg(sc, &frame);
526 }
527
528 STATIC void
529 rtk_phy_statchg(v)
530 struct device *v;
531 {
532
533 /* Nothing to do. */
534 }
535
536 #define rtk_calchash(addr) \
537 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
538
539 /*
540 * Program the 64-bit multicast hash filter.
541 */
542 STATIC void rtk_setmulti(sc)
543 struct rtk_softc *sc;
544 {
545 struct ifnet *ifp;
546 int h = 0;
547 u_int32_t hashes[2] = { 0, 0 };
548 u_int32_t rxfilt;
549 int mcnt = 0;
550 struct ether_multi *enm;
551 struct ether_multistep step;
552
553 ifp = &sc->ethercom.ec_if;
554
555 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
556
557 if (ifp->if_flags & IFF_PROMISC) {
558 allmulti:
559 ifp->if_flags |= IFF_ALLMULTI;
560 rxfilt |= RTK_RXCFG_RX_MULTI;
561 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
562 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
563 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
564 return;
565 }
566
567 /* first, zot all the existing hash bits */
568 CSR_WRITE_4(sc, RTK_MAR0, 0);
569 CSR_WRITE_4(sc, RTK_MAR4, 0);
570
571 /* now program new ones */
572 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
573 while (enm != NULL) {
574 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
575 ETHER_ADDR_LEN) != 0)
576 goto allmulti;
577
578 h = rtk_calchash(enm->enm_addrlo);
579 if (h < 32)
580 hashes[0] |= (1 << h);
581 else
582 hashes[1] |= (1 << (h - 32));
583 mcnt++;
584 ETHER_NEXT_MULTI(step, enm);
585 }
586
587 ifp->if_flags &= ~IFF_ALLMULTI;
588
589 if (mcnt)
590 rxfilt |= RTK_RXCFG_RX_MULTI;
591 else
592 rxfilt &= ~RTK_RXCFG_RX_MULTI;
593
594 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
595 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
596 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
597 }
598
599 void rtk_reset(sc)
600 struct rtk_softc *sc;
601 {
602 int i;
603
604 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
605
606 for (i = 0; i < RTK_TIMEOUT; i++) {
607 DELAY(10);
608 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
609 break;
610 }
611 if (i == RTK_TIMEOUT)
612 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
613 }
614
615 /*
616 * Attach the interface. Allocate softc structures, do ifmedia
617 * setup and ethernet/BPF attach.
618 */
619 void
620 rtk_attach(sc)
621 struct rtk_softc *sc;
622 {
623 struct ifnet *ifp;
624 struct rtk_tx_desc *txd;
625 u_int16_t val;
626 u_int8_t eaddr[ETHER_ADDR_LEN];
627 int error;
628 int i, addr_len;
629
630 callout_init(&sc->rtk_tick_ch);
631
632 /*
633 * Check EEPROM type 9346 or 9356.
634 */
635 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
636 addr_len = RTK_EEADDR_LEN1;
637 else
638 addr_len = RTK_EEADDR_LEN0;
639
640 /*
641 * Get station address.
642 */
643 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
644 eaddr[0] = val & 0xff;
645 eaddr[1] = val >> 8;
646 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
647 eaddr[2] = val & 0xff;
648 eaddr[3] = val >> 8;
649 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
650 eaddr[4] = val & 0xff;
651 eaddr[5] = val >> 8;
652
653 if ((error = bus_dmamem_alloc(sc->sc_dmat,
654 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
655 BUS_DMA_NOWAIT)) != 0) {
656 printf("%s: can't allocate recv buffer, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_0;
659 }
660
661 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
662 RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
663 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
664 printf("%s: can't map recv buffer, error = %d\n",
665 sc->sc_dev.dv_xname, error);
666 goto fail_1;
667 }
668
669 if ((error = bus_dmamap_create(sc->sc_dmat,
670 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
671 &sc->recv_dmamap)) != 0) {
672 printf("%s: can't create recv buffer DMA map, error = %d\n",
673 sc->sc_dev.dv_xname, error);
674 goto fail_2;
675 }
676
677 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
678 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
679 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
680 printf("%s: can't load recv buffer DMA map, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_3;
683 }
684
685 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
686 txd = &sc->rtk_tx_descs[i];
687 if ((error = bus_dmamap_create(sc->sc_dmat,
688 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
689 &txd->txd_dmamap)) != 0) {
690 printf("%s: can't create snd buffer DMA map,"
691 " error = %d\n", sc->sc_dev.dv_xname, error);
692 goto fail_4;
693 }
694 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
695 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
696 }
697 SIMPLEQ_INIT(&sc->rtk_tx_free);
698 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
699
700 /*
701 * From this point forward, the attachment cannot fail. A failure
702 * before this releases all resources thar may have been
703 * allocated.
704 */
705 sc->sc_flags |= RTK_ATTACHED;
706
707 /* Init Early TX threshold. */
708 sc->sc_txthresh = TXTH_256;
709
710 /* Reset the adapter. */
711 rtk_reset(sc);
712
713 printf("%s: Ethernet address %s\n",
714 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
715
716 ifp = &sc->ethercom.ec_if;
717 ifp->if_softc = sc;
718 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
719 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
720 ifp->if_ioctl = rtk_ioctl;
721 ifp->if_start = rtk_start;
722 ifp->if_watchdog = rtk_watchdog;
723 ifp->if_init = rtk_init;
724 ifp->if_stop = rtk_stop;
725 IFQ_SET_READY(&ifp->if_snd);
726
727 /*
728 * Do ifmedia setup.
729 */
730 sc->mii.mii_ifp = ifp;
731 sc->mii.mii_readreg = rtk_phy_readreg;
732 sc->mii.mii_writereg = rtk_phy_writereg;
733 sc->mii.mii_statchg = rtk_phy_statchg;
734 ifmedia_init(&sc->mii.mii_media, 0, rtk_ifmedia_upd, rtk_ifmedia_sts);
735 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
736 MII_PHY_ANY, MII_OFFSET_ANY, 0);
737
738 /* Choose a default media. */
739 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
740 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
741 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
742 } else {
743 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
744 }
745
746 /*
747 * Call MI attach routines.
748 */
749 if_attach(ifp);
750 ether_ifattach(ifp, eaddr);
751
752 /*
753 * Make sure the interface is shutdown during reboot.
754 */
755 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
756 if (sc->sc_sdhook == NULL)
757 printf("%s: WARNING: unable to establish shutdown hook\n",
758 sc->sc_dev.dv_xname);
759 /*
760 * Add a suspend hook to make sure we come back up after a
761 * resume.
762 */
763 sc->sc_powerhook = powerhook_establish(rtk_power, sc);
764 if (sc->sc_powerhook == NULL)
765 printf("%s: WARNING: unable to establish power hook\n",
766 sc->sc_dev.dv_xname);
767
768 return;
769 fail_4:
770 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
771 txd = &sc->rtk_tx_descs[i];
772 if (txd->txd_dmamap != NULL)
773 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
774 }
775 fail_3:
776 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
777 fail_2:
778 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
779 RTK_RXBUFLEN + 16);
780 fail_1:
781 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
782 fail_0:
783 return;
784 }
785
786 /*
787 * Initialize the transmit descriptors.
788 */
789 STATIC int rtk_list_tx_init(sc)
790 struct rtk_softc *sc;
791 {
792 struct rtk_tx_desc *txd;
793 int i;
794
795 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
796 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd, txd_q);
797 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
798 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd, txd_q);
799
800 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
801 txd = &sc->rtk_tx_descs[i];
802 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
803 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
804 }
805
806 return (0);
807 }
808
809 /*
810 * rtk_activate:
811 * Handle device activation/deactivation requests.
812 */
813 int
814 rtk_activate(self, act)
815 struct device *self;
816 enum devact act;
817 {
818 struct rtk_softc *sc = (void *) self;
819 int s, error = 0;
820
821 s = splnet();
822 switch (act) {
823 case DVACT_ACTIVATE:
824 error = EOPNOTSUPP;
825 break;
826 case DVACT_DEACTIVATE:
827 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
828 if_deactivate(&sc->ethercom.ec_if);
829 break;
830 }
831 splx(s);
832
833 return (error);
834 }
835
836 /*
837 * rtk_detach:
838 * Detach a rtk interface.
839 */
840 int
841 rtk_detach(sc)
842 struct rtk_softc *sc;
843 {
844 struct ifnet *ifp = &sc->ethercom.ec_if;
845 struct rtk_tx_desc *txd;
846 int i;
847
848 /*
849 * Succeed now if thereisn't any work to do.
850 */
851 if ((sc->sc_flags & RTK_ATTACHED) == 0)
852 return (0);
853
854 /* Unhook our tick handler. */
855 callout_stop(&sc->rtk_tick_ch);
856
857 /* Detach all PHYs. */
858 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
859
860 /* Delete all remaining media. */
861 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
862
863 ether_ifdetach(ifp);
864 if_detach(ifp);
865
866 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
867 txd = &sc->rtk_tx_descs[i];
868 if (txd->txd_dmamap != NULL)
869 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
870 }
871 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
872 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
873 RTK_RXBUFLEN + 16);
874 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
875
876 shutdownhook_disestablish(sc->sc_sdhook);
877 powerhook_disestablish(sc->sc_powerhook);
878
879 return (0);
880 }
881
882 /*
883 * rtk_enable:
884 * Enable the RTL81X9 chip.
885 */
886 int
887 rtk_enable(sc)
888 struct rtk_softc *sc;
889 {
890
891 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
892 if ((*sc->sc_enable)(sc) != 0) {
893 printf("%s: device enable failed\n",
894 sc->sc_dev.dv_xname);
895 return (EIO);
896 }
897 sc->sc_flags |= RTK_ENABLED;
898 }
899 return (0);
900 }
901
902 /*
903 * rtk_disable:
904 * Disable the RTL81X9 chip.
905 */
906 void
907 rtk_disable(sc)
908 struct rtk_softc *sc;
909 {
910
911 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
912 (*sc->sc_disable)(sc);
913 sc->sc_flags &= ~RTK_ENABLED;
914 }
915 }
916
917 /*
918 * rtk_power:
919 * Power management (suspend/resume) hook.
920 */
921 void
922 rtk_power(why, arg)
923 int why;
924 void *arg;
925 {
926 struct rtk_softc *sc = (void *) arg;
927 struct ifnet *ifp = &sc->ethercom.ec_if;
928 int s;
929
930 s = splnet();
931 switch (why) {
932 case PWR_SUSPEND:
933 case PWR_STANDBY:
934 rtk_stop(ifp, 0);
935 if (sc->sc_power != NULL)
936 (*sc->sc_power)(sc, why);
937 break;
938 case PWR_RESUME:
939 if (ifp->if_flags & IFF_UP) {
940 if (sc->sc_power != NULL)
941 (*sc->sc_power)(sc, why);
942 rtk_init(ifp);
943 }
944 break;
945 case PWR_SOFTSUSPEND:
946 case PWR_SOFTSTANDBY:
947 case PWR_SOFTRESUME:
948 break;
949 }
950 splx(s);
951 }
952
953 /*
954 * A frame has been uploaded: pass the resulting mbuf chain up to
955 * the higher level protocols.
956 *
957 * You know there's something wrong with a PCI bus-master chip design.
958 *
959 * The receive operation is badly documented in the datasheet, so I'll
960 * attempt to document it here. The driver provides a buffer area and
961 * places its base address in the RX buffer start address register.
962 * The chip then begins copying frames into the RX buffer. Each frame
963 * is preceeded by a 32-bit RX status word which specifies the length
964 * of the frame and certain other status bits. Each frame (starting with
965 * the status word) is also 32-bit aligned. The frame length is in the
966 * first 16 bits of the status word; the lower 15 bits correspond with
967 * the 'rx status register' mentioned in the datasheet.
968 *
969 * Note: to make the Alpha happy, the frame payload needs to be aligned
970 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
971 * shifted forward 2 bytes.
972 */
973 STATIC void rtk_rxeof(sc)
974 struct rtk_softc *sc;
975 {
976 struct mbuf *m;
977 struct ifnet *ifp;
978 caddr_t rxbufpos, dst;
979 int total_len, wrap = 0;
980 u_int32_t rxstat;
981 u_int16_t cur_rx, new_rx;
982 u_int16_t limit;
983 u_int16_t rx_bytes = 0, max_bytes;
984
985 ifp = &sc->ethercom.ec_if;
986
987 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
988
989 /* Do not try to read past this point. */
990 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
991
992 if (limit < cur_rx)
993 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
994 else
995 max_bytes = limit - cur_rx;
996
997 while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
998 rxbufpos = sc->rtk_rx_buf + cur_rx;
999 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1000 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1001 rxstat = le32toh(*(u_int32_t *)rxbufpos);
1002 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1003 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1004
1005 /*
1006 * Here's a totally undocumented fact for you. When the
1007 * RealTek chip is in the process of copying a packet into
1008 * RAM for you, the length will be 0xfff0. If you spot a
1009 * packet header with this value, you need to stop. The
1010 * datasheet makes absolutely no mention of this and
1011 * RealTek should be shot for this.
1012 */
1013 total_len = rxstat >> 16;
1014 if (total_len == RTK_RXSTAT_UNFINISHED)
1015 break;
1016
1017 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1018 total_len > ETHER_MAX_LEN) {
1019 ifp->if_ierrors++;
1020
1021 /*
1022 * submitted by:[netbsd-pcmcia:00484]
1023 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1024 * obtain from:
1025 * FreeBSD if_rl.c rev 1.24->1.25
1026 *
1027 */
1028 #if 0
1029 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1030 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1031 RTK_RXSTAT_ALIGNERR)) {
1032 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1033 CSR_WRITE_2(sc, RTK_COMMAND,
1034 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1035 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1036 CSR_WRITE_4(sc, RTK_RXADDR,
1037 sc->recv_dmamap->dm_segs[0].ds_addr);
1038 cur_rx = 0;
1039 }
1040 break;
1041 #else
1042 rtk_init(ifp);
1043 return;
1044 #endif
1045 }
1046
1047 /* No errors; receive the packet. */
1048 rx_bytes += total_len + RTK_RXSTAT_LEN;
1049
1050 /*
1051 * Avoid trying to read more bytes than we know
1052 * the chip has prepared for us.
1053 */
1054 if (rx_bytes > max_bytes)
1055 break;
1056
1057 /*
1058 * Skip the status word, wrapping around to the beginning
1059 * of the Rx area, if necessary.
1060 */
1061 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1062 rxbufpos = sc->rtk_rx_buf + cur_rx;
1063
1064 /*
1065 * Compute the number of bytes at which the packet
1066 * will wrap to the beginning of the ring buffer.
1067 */
1068 wrap = RTK_RXBUFLEN - cur_rx;
1069
1070 /*
1071 * Compute where the next pending packet is.
1072 */
1073 if (total_len > wrap)
1074 new_rx = total_len - wrap;
1075 else
1076 new_rx = cur_rx + total_len;
1077 /* Round up to 32-bit boundary. */
1078 new_rx = (new_rx + 3) & ~3;
1079
1080 /*
1081 * Now allocate an mbuf (and possibly a cluster) to hold
1082 * the packet. Note we offset the packet 2 bytes so that
1083 * data after the Ethernet header will be 4-byte aligned.
1084 */
1085 MGETHDR(m, M_DONTWAIT, MT_DATA);
1086 if (m == NULL) {
1087 printf("%s: unable to allocate Rx mbuf\n",
1088 sc->sc_dev.dv_xname);
1089 ifp->if_ierrors++;
1090 goto next_packet;
1091 }
1092 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1093 MCLGET(m, M_DONTWAIT);
1094 if ((m->m_flags & M_EXT) == 0) {
1095 printf("%s: unable to allocate Rx cluster\n",
1096 sc->sc_dev.dv_xname);
1097 ifp->if_ierrors++;
1098 m_freem(m);
1099 m = NULL;
1100 goto next_packet;
1101 }
1102 }
1103 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1104 m->m_pkthdr.rcvif = ifp;
1105 m->m_pkthdr.len = m->m_len = total_len;
1106 dst = mtod(m, caddr_t);
1107
1108 /*
1109 * If the packet wraps, copy up to the wrapping point.
1110 */
1111 if (total_len > wrap) {
1112 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1113 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1114 memcpy(dst, rxbufpos, wrap);
1115 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1116 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1117 cur_rx = 0;
1118 rxbufpos = sc->rtk_rx_buf;
1119 total_len -= wrap;
1120 dst += wrap;
1121 }
1122
1123 /*
1124 * ...and now the rest.
1125 */
1126 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1127 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1128 memcpy(dst, rxbufpos, total_len);
1129 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1130 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1131
1132 next_packet:
1133 CSR_WRITE_2(sc, RTK_CURRXADDR, new_rx - 16);
1134 cur_rx = new_rx;
1135
1136 if (m == NULL)
1137 continue;
1138
1139 /*
1140 * The RealTek chip includes the CRC with every
1141 * incoming packet.
1142 */
1143 m->m_flags |= M_HASFCS;
1144
1145 ifp->if_ipackets++;
1146
1147 #if NBPFILTER > 0
1148 if (ifp->if_bpf)
1149 bpf_mtap(ifp->if_bpf, m);
1150 #endif
1151 /* pass it on. */
1152 (*ifp->if_input)(ifp, m);
1153 }
1154 }
1155
1156 /*
1157 * A frame was downloaded to the chip. It's safe for us to clean up
1158 * the list buffers.
1159 */
1160 STATIC void rtk_txeof(sc)
1161 struct rtk_softc *sc;
1162 {
1163 struct ifnet *ifp;
1164 struct rtk_tx_desc *txd;
1165 u_int32_t txstat;
1166
1167 ifp = &sc->ethercom.ec_if;
1168
1169 /* Clear the timeout timer. */
1170 ifp->if_timer = 0;
1171
1172 /*
1173 * Go through our tx list and free mbufs for those
1174 * frames that have been uploaded.
1175 */
1176 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1177 txstat = CSR_READ_4(sc, txd->txd_txstat);
1178 if ((txstat & (RTK_TXSTAT_TX_OK|
1179 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1180 break;
1181
1182 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd, txd_q);
1183
1184 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1185 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1186 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1187 m_freem(txd->txd_mbuf);
1188 txd->txd_mbuf = NULL;
1189
1190 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1191
1192 if (txstat & RTK_TXSTAT_TX_OK)
1193 ifp->if_opackets++;
1194 else {
1195 ifp->if_oerrors++;
1196
1197 /*
1198 * Increase Early TX threshold if underrun occurred.
1199 * Increase step 64 bytes.
1200 */
1201 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1202 printf("%s: transmit underrun;",
1203 sc->sc_dev.dv_xname);
1204 if (sc->sc_txthresh < TXTH_MAX) {
1205 sc->sc_txthresh += 2;
1206 printf(" new threshold: %d bytes",
1207 sc->sc_txthresh * 32);
1208 }
1209 printf("\n");
1210 }
1211 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1212 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1213 }
1214 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1215 ifp->if_flags &= ~IFF_OACTIVE;
1216 }
1217 }
1218
1219 int rtk_intr(arg)
1220 void *arg;
1221 {
1222 struct rtk_softc *sc;
1223 struct ifnet *ifp;
1224 u_int16_t status;
1225 int handled = 0;
1226
1227 sc = arg;
1228 ifp = &sc->ethercom.ec_if;
1229
1230 /* Disable interrupts. */
1231 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1232
1233 for (;;) {
1234
1235 status = CSR_READ_2(sc, RTK_ISR);
1236 if (status)
1237 CSR_WRITE_2(sc, RTK_ISR, status);
1238
1239 handled = 1;
1240
1241 if ((status & RTK_INTRS) == 0)
1242 break;
1243
1244 if (status & RTK_ISR_RX_OK)
1245 rtk_rxeof(sc);
1246
1247 if (status & RTK_ISR_RX_ERR)
1248 rtk_rxeof(sc);
1249
1250 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1251 rtk_txeof(sc);
1252
1253 if (status & RTK_ISR_SYSTEM_ERR) {
1254 rtk_reset(sc);
1255 rtk_init(ifp);
1256 }
1257 }
1258
1259 /* Re-enable interrupts. */
1260 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1261
1262 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1263 rtk_start(ifp);
1264
1265 return (handled);
1266 }
1267
1268 /*
1269 * Main transmit routine.
1270 */
1271
1272 STATIC void rtk_start(ifp)
1273 struct ifnet *ifp;
1274 {
1275 struct rtk_softc *sc;
1276 struct rtk_tx_desc *txd;
1277 struct mbuf *m_head = NULL, *m_new;
1278 int error, len;
1279
1280 sc = ifp->if_softc;
1281
1282 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1283 IFQ_POLL(&ifp->if_snd, m_head);
1284 if (m_head == NULL)
1285 break;
1286 m_new = NULL;
1287
1288 /*
1289 * Load the DMA map. If this fails, the packet didn't
1290 * fit in one DMA segment, and we need to copy. Note,
1291 * the packet must also be aligned.
1292 */
1293 if ((mtod(m_head, bus_addr_t) & 3) != 0 ||
1294 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1295 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1296 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1297 if (m_new == NULL) {
1298 printf("%s: unable to allocate Tx mbuf\n",
1299 sc->sc_dev.dv_xname);
1300 break;
1301 }
1302 if (m_head->m_pkthdr.len > MHLEN) {
1303 MCLGET(m_new, M_DONTWAIT);
1304 if ((m_new->m_flags & M_EXT) == 0) {
1305 printf("%s: unable to allocate Tx "
1306 "cluster\n", sc->sc_dev.dv_xname);
1307 m_freem(m_new);
1308 break;
1309 }
1310 }
1311 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1312 mtod(m_new, caddr_t));
1313 m_new->m_pkthdr.len = m_new->m_len =
1314 m_head->m_pkthdr.len;
1315 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1316 txd->txd_dmamap, m_new,
1317 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1318 if (error) {
1319 printf("%s: unable to load Tx buffer, "
1320 "error = %d\n", sc->sc_dev.dv_xname, error);
1321 break;
1322 }
1323 }
1324 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1325 if (m_new != NULL) {
1326 m_freem(m_head);
1327 m_head = m_new;
1328 }
1329 txd->txd_mbuf = m_head;
1330
1331 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd, txd_q);
1332 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1333
1334 #if NBPFILTER > 0
1335 /*
1336 * If there's a BPF listener, bounce a copy of this frame
1337 * to him.
1338 */
1339 if (ifp->if_bpf)
1340 bpf_mtap(ifp->if_bpf, m_head);
1341 #endif
1342 /*
1343 * Transmit the frame.
1344 */
1345 bus_dmamap_sync(sc->sc_dmat,
1346 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1347 BUS_DMASYNC_PREWRITE);
1348
1349 len = txd->txd_dmamap->dm_segs[0].ds_len;
1350 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1351 len = (ETHER_MIN_LEN - ETHER_CRC_LEN);
1352
1353 CSR_WRITE_4(sc, txd->txd_txaddr,
1354 txd->txd_dmamap->dm_segs[0].ds_addr);
1355 CSR_WRITE_4(sc, txd->txd_txstat, RTK_TX_THRESH(sc) | len);
1356 }
1357
1358 /*
1359 * We broke out of the loop because all our TX slots are
1360 * full. Mark the NIC as busy until it drains some of the
1361 * packets from the queue.
1362 */
1363 if (SIMPLEQ_FIRST(&sc->rtk_tx_free) == NULL)
1364 ifp->if_flags |= IFF_OACTIVE;
1365
1366 /*
1367 * Set a timeout in case the chip goes out to lunch.
1368 */
1369 ifp->if_timer = 5;
1370 }
1371
1372 STATIC int rtk_init(ifp)
1373 struct ifnet *ifp;
1374 {
1375 struct rtk_softc *sc = ifp->if_softc;
1376 int error = 0, i;
1377 u_int32_t rxcfg;
1378
1379 if ((error = rtk_enable(sc)) != 0)
1380 goto out;
1381
1382 /*
1383 * Cancel pending I/O.
1384 */
1385 rtk_stop(ifp, 0);
1386
1387 /* Init our MAC address */
1388 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1389 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1390 }
1391
1392 /* Init the RX buffer pointer register. */
1393 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1394 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1395 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1396
1397 /* Init TX descriptors. */
1398 rtk_list_tx_init(sc);
1399
1400 /* Init Early TX threshold. */
1401 sc->sc_txthresh = TXTH_256;
1402 /*
1403 * Enable transmit and receive.
1404 */
1405 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1406
1407 /*
1408 * Set the initial TX and RX configuration.
1409 */
1410 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1411 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1412
1413 /* Set the individual bit to receive frames for this host only. */
1414 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1415 rxcfg |= RTK_RXCFG_RX_INDIV;
1416
1417 /* If we want promiscuous mode, set the allframes bit. */
1418 if (ifp->if_flags & IFF_PROMISC) {
1419 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1420 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1421 } else {
1422 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1423 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1424 }
1425
1426 /*
1427 * Set capture broadcast bit to capture broadcast frames.
1428 */
1429 if (ifp->if_flags & IFF_BROADCAST) {
1430 rxcfg |= RTK_RXCFG_RX_BROAD;
1431 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1432 } else {
1433 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1434 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1435 }
1436
1437 /*
1438 * Program the multicast filter, if necessary.
1439 */
1440 rtk_setmulti(sc);
1441
1442 /*
1443 * Enable interrupts.
1444 */
1445 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1446
1447 /* Start RX/TX process. */
1448 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1449
1450 /* Enable receiver and transmitter. */
1451 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1452
1453 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1454
1455 /*
1456 * Set current media.
1457 */
1458 mii_mediachg(&sc->mii);
1459
1460 ifp->if_flags |= IFF_RUNNING;
1461 ifp->if_flags &= ~IFF_OACTIVE;
1462
1463 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1464
1465 out:
1466 if (error) {
1467 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1468 ifp->if_timer = 0;
1469 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1470 }
1471 return (error);
1472 }
1473
1474 /*
1475 * Set media options.
1476 */
1477 STATIC int rtk_ifmedia_upd(ifp)
1478 struct ifnet *ifp;
1479 {
1480 struct rtk_softc *sc;
1481
1482 sc = ifp->if_softc;
1483
1484 return (mii_mediachg(&sc->mii));
1485 }
1486
1487 /*
1488 * Report current media status.
1489 */
1490 STATIC void rtk_ifmedia_sts(ifp, ifmr)
1491 struct ifnet *ifp;
1492 struct ifmediareq *ifmr;
1493 {
1494 struct rtk_softc *sc;
1495
1496 sc = ifp->if_softc;
1497
1498 mii_pollstat(&sc->mii);
1499 ifmr->ifm_status = sc->mii.mii_media_status;
1500 ifmr->ifm_active = sc->mii.mii_media_active;
1501 }
1502
1503 STATIC int rtk_ioctl(ifp, command, data)
1504 struct ifnet *ifp;
1505 u_long command;
1506 caddr_t data;
1507 {
1508 struct rtk_softc *sc = ifp->if_softc;
1509 struct ifreq *ifr = (struct ifreq *) data;
1510 int s, error = 0;
1511
1512 s = splnet();
1513
1514 switch (command) {
1515 case SIOCGIFMEDIA:
1516 case SIOCSIFMEDIA:
1517 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1518 break;
1519
1520 default:
1521 error = ether_ioctl(ifp, command, data);
1522 if (error == ENETRESET) {
1523 if (RTK_IS_ENABLED(sc)) {
1524 /*
1525 * Multicast list has changed. Set the
1526 * hardware filter accordingly.
1527 */
1528 rtk_setmulti(sc);
1529 }
1530 error = 0;
1531 }
1532 break;
1533 }
1534
1535 splx(s);
1536
1537 return (error);
1538 }
1539
1540 STATIC void rtk_watchdog(ifp)
1541 struct ifnet *ifp;
1542 {
1543 struct rtk_softc *sc;
1544
1545 sc = ifp->if_softc;
1546
1547 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1548 ifp->if_oerrors++;
1549 rtk_txeof(sc);
1550 rtk_rxeof(sc);
1551 rtk_init(ifp);
1552 }
1553
1554 /*
1555 * Stop the adapter and free any mbufs allocated to the
1556 * RX and TX lists.
1557 */
1558 STATIC void rtk_stop(ifp, disable)
1559 struct ifnet *ifp;
1560 int disable;
1561 {
1562 struct rtk_softc *sc = ifp->if_softc;
1563 struct rtk_tx_desc *txd;
1564
1565 callout_stop(&sc->rtk_tick_ch);
1566
1567 mii_down(&sc->mii);
1568
1569 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1570 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1571
1572 /*
1573 * Free the TX list buffers.
1574 */
1575 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1576 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd, txd_q);
1577 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1578 m_freem(txd->txd_mbuf);
1579 txd->txd_mbuf = NULL;
1580 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1581 }
1582
1583 if (disable)
1584 rtk_disable(sc);
1585
1586 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1587 ifp->if_timer = 0;
1588 }
1589
1590 /*
1591 * Stop all chip I/O so that the kernel's probe routines don't
1592 * get confused by errant DMAs when rebooting.
1593 */
1594 STATIC void rtk_shutdown(vsc)
1595 void *vsc;
1596 {
1597 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1598
1599 rtk_stop(&sc->ethercom.ec_if, 0);
1600 }
1601
1602 STATIC void
1603 rtk_tick(arg)
1604 void *arg;
1605 {
1606 struct rtk_softc *sc = arg;
1607 int s = splnet();
1608
1609 mii_tick(&sc->mii);
1610 splx(s);
1611
1612 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1613 }
1614