rtl81x9.c revision 1.52 1 /* $NetBSD: rtl81x9.c,v 1.52 2005/12/08 18:06:42 xtraeme Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.52 2005/12/08 18:06:42 xtraeme Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset (struct rtk_softc *);
135 STATIC void rtk_rxeof (struct rtk_softc *);
136 STATIC void rtk_txeof (struct rtk_softc *);
137 STATIC void rtk_start (struct ifnet *);
138 STATIC int rtk_ioctl (struct ifnet *, u_long, caddr_t);
139 STATIC int rtk_init (struct ifnet *);
140 STATIC void rtk_stop (struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, u_int32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick (void *);
157
158 STATIC int rtk_enable (struct rtk_softc *);
159 STATIC void rtk_disable (struct rtk_softc *);
160 STATIC void rtk_power (int, void *);
161
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
173
174 /*
175 * Send a read command and address to the EEPROM, check for ACK.
176 */
177 STATIC void
178 rtk_eeprom_putbyte(sc, addr, addr_len)
179 struct rtk_softc *sc;
180 int addr, addr_len;
181 {
182 int d, i;
183
184 d = (RTK_EECMD_READ << addr_len) | addr;
185
186 /*
187 * Feed in each bit and stobe the clock.
188 */
189 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 if (d & (1 << (i - 1))) {
191 EE_SET(RTK_EE_DATAIN);
192 } else {
193 EE_CLR(RTK_EE_DATAIN);
194 }
195 DELAY(4);
196 EE_SET(RTK_EE_CLK);
197 DELAY(4);
198 EE_CLR(RTK_EE_CLK);
199 DELAY(4);
200 }
201 }
202
203 /*
204 * Read a word of data stored in the EEPROM at address 'addr.'
205 */
206 u_int16_t
207 rtk_read_eeprom(sc, addr, addr_len)
208 struct rtk_softc *sc;
209 int addr, addr_len;
210 {
211 u_int16_t word = 0;
212 int i;
213
214 /* Enter EEPROM access mode. */
215 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
216
217 /*
218 * Send address of word we want to read.
219 */
220 rtk_eeprom_putbyte(sc, addr, addr_len);
221
222 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
223
224 /*
225 * Start reading bits from EEPROM.
226 */
227 for (i = 16; i > 0; i--) {
228 EE_SET(RTK_EE_CLK);
229 DELAY(4);
230 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
231 word |= 1 << (i - 1);
232 EE_CLR(RTK_EE_CLK);
233 DELAY(4);
234 }
235
236 /* Turn off EEPROM access mode. */
237 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
238
239 return (word);
240 }
241
242 /*
243 * MII access routines are provided for the 8129, which
244 * doesn't have a built-in PHY. For the 8139, we fake things
245 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
246 * direct access PHY registers.
247 */
248 #define MII_SET(x) \
249 CSR_WRITE_1(sc, RTK_MII, \
250 CSR_READ_1(sc, RTK_MII) | (x))
251
252 #define MII_CLR(x) \
253 CSR_WRITE_1(sc, RTK_MII, \
254 CSR_READ_1(sc, RTK_MII) & ~(x))
255
256 /*
257 * Sync the PHYs by setting data bit and strobing the clock 32 times.
258 */
259 STATIC void
260 rtk_mii_sync(sc)
261 struct rtk_softc *sc;
262 {
263 int i;
264
265 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
266
267 for (i = 0; i < 32; i++) {
268 MII_SET(RTK_MII_CLK);
269 DELAY(1);
270 MII_CLR(RTK_MII_CLK);
271 DELAY(1);
272 }
273 }
274
275 /*
276 * Clock a series of bits through the MII.
277 */
278 STATIC void
279 rtk_mii_send(sc, bits, cnt)
280 struct rtk_softc *sc;
281 u_int32_t bits;
282 int cnt;
283 {
284 int i;
285
286 MII_CLR(RTK_MII_CLK);
287
288 for (i = cnt; i > 0; i--) {
289 if (bits & (1 << (i - 1))) {
290 MII_SET(RTK_MII_DATAOUT);
291 } else {
292 MII_CLR(RTK_MII_DATAOUT);
293 }
294 DELAY(1);
295 MII_CLR(RTK_MII_CLK);
296 DELAY(1);
297 MII_SET(RTK_MII_CLK);
298 }
299 }
300
301 /*
302 * Read an PHY register through the MII.
303 */
304 STATIC int
305 rtk_mii_readreg(sc, frame)
306 struct rtk_softc *sc;
307 struct rtk_mii_frame *frame;
308 {
309 int i, ack, s;
310
311 s = splnet();
312
313 /*
314 * Set up frame for RX.
315 */
316 frame->mii_stdelim = RTK_MII_STARTDELIM;
317 frame->mii_opcode = RTK_MII_READOP;
318 frame->mii_turnaround = 0;
319 frame->mii_data = 0;
320
321 CSR_WRITE_2(sc, RTK_MII, 0);
322
323 /*
324 * Turn on data xmit.
325 */
326 MII_SET(RTK_MII_DIR);
327
328 rtk_mii_sync(sc);
329
330 /*
331 * Send command/address info.
332 */
333 rtk_mii_send(sc, frame->mii_stdelim, 2);
334 rtk_mii_send(sc, frame->mii_opcode, 2);
335 rtk_mii_send(sc, frame->mii_phyaddr, 5);
336 rtk_mii_send(sc, frame->mii_regaddr, 5);
337
338 /* Idle bit */
339 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
340 DELAY(1);
341 MII_SET(RTK_MII_CLK);
342 DELAY(1);
343
344 /* Turn off xmit. */
345 MII_CLR(RTK_MII_DIR);
346
347 /* Check for ack */
348 MII_CLR(RTK_MII_CLK);
349 DELAY(1);
350 MII_SET(RTK_MII_CLK);
351 DELAY(1);
352 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
353
354 /*
355 * Now try reading data bits. If the ack failed, we still
356 * need to clock through 16 cycles to keep the PHY(s) in sync.
357 */
358 if (ack) {
359 for (i = 0; i < 16; i++) {
360 MII_CLR(RTK_MII_CLK);
361 DELAY(1);
362 MII_SET(RTK_MII_CLK);
363 DELAY(1);
364 }
365 goto fail;
366 }
367
368 for (i = 16; i > 0; i--) {
369 MII_CLR(RTK_MII_CLK);
370 DELAY(1);
371 if (!ack) {
372 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
373 frame->mii_data |= 1 << (i - 1);
374 DELAY(1);
375 }
376 MII_SET(RTK_MII_CLK);
377 DELAY(1);
378 }
379
380 fail:
381 MII_CLR(RTK_MII_CLK);
382 DELAY(1);
383 MII_SET(RTK_MII_CLK);
384 DELAY(1);
385
386 splx(s);
387
388 if (ack)
389 return (1);
390 return (0);
391 }
392
393 /*
394 * Write to a PHY register through the MII.
395 */
396 STATIC int
397 rtk_mii_writereg(sc, frame)
398 struct rtk_softc *sc;
399 struct rtk_mii_frame *frame;
400 {
401 int s;
402
403 s = splnet();
404 /*
405 * Set up frame for TX.
406 */
407 frame->mii_stdelim = RTK_MII_STARTDELIM;
408 frame->mii_opcode = RTK_MII_WRITEOP;
409 frame->mii_turnaround = RTK_MII_TURNAROUND;
410
411 /*
412 * Turn on data output.
413 */
414 MII_SET(RTK_MII_DIR);
415
416 rtk_mii_sync(sc);
417
418 rtk_mii_send(sc, frame->mii_stdelim, 2);
419 rtk_mii_send(sc, frame->mii_opcode, 2);
420 rtk_mii_send(sc, frame->mii_phyaddr, 5);
421 rtk_mii_send(sc, frame->mii_regaddr, 5);
422 rtk_mii_send(sc, frame->mii_turnaround, 2);
423 rtk_mii_send(sc, frame->mii_data, 16);
424
425 /* Idle bit. */
426 MII_SET(RTK_MII_CLK);
427 DELAY(1);
428 MII_CLR(RTK_MII_CLK);
429 DELAY(1);
430
431 /*
432 * Turn off xmit.
433 */
434 MII_CLR(RTK_MII_DIR);
435
436 splx(s);
437
438 return (0);
439 }
440
441 STATIC int
442 rtk_phy_readreg(self, phy, reg)
443 struct device *self;
444 int phy, reg;
445 {
446 struct rtk_softc *sc = (void *)self;
447 struct rtk_mii_frame frame;
448 int rval = 0;
449 int rtk8139_reg = 0;
450
451 if (sc->rtk_type == RTK_8139) {
452 if (phy != 7)
453 return (0);
454
455 switch(reg) {
456 case MII_BMCR:
457 rtk8139_reg = RTK_BMCR;
458 break;
459 case MII_BMSR:
460 rtk8139_reg = RTK_BMSR;
461 break;
462 case MII_ANAR:
463 rtk8139_reg = RTK_ANAR;
464 break;
465 case MII_ANER:
466 rtk8139_reg = RTK_ANER;
467 break;
468 case MII_ANLPAR:
469 rtk8139_reg = RTK_LPAR;
470 break;
471 default:
472 #if 0
473 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
474 #endif
475 return (0);
476 }
477 rval = CSR_READ_2(sc, rtk8139_reg);
478 return (rval);
479 }
480
481 memset((char *)&frame, 0, sizeof(frame));
482
483 frame.mii_phyaddr = phy;
484 frame.mii_regaddr = reg;
485 rtk_mii_readreg(sc, &frame);
486
487 return (frame.mii_data);
488 }
489
490 STATIC void rtk_phy_writereg(self, phy, reg, data)
491 struct device *self;
492 int phy, reg;
493 int data;
494 {
495 struct rtk_softc *sc = (void *)self;
496 struct rtk_mii_frame frame;
497 int rtk8139_reg = 0;
498
499 if (sc->rtk_type == RTK_8139) {
500 if (phy != 7)
501 return;
502
503 switch(reg) {
504 case MII_BMCR:
505 rtk8139_reg = RTK_BMCR;
506 break;
507 case MII_BMSR:
508 rtk8139_reg = RTK_BMSR;
509 break;
510 case MII_ANAR:
511 rtk8139_reg = RTK_ANAR;
512 break;
513 case MII_ANER:
514 rtk8139_reg = RTK_ANER;
515 break;
516 case MII_ANLPAR:
517 rtk8139_reg = RTK_LPAR;
518 break;
519 default:
520 #if 0
521 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
522 #endif
523 return;
524 }
525 CSR_WRITE_2(sc, rtk8139_reg, data);
526 return;
527 }
528
529 memset((char *)&frame, 0, sizeof(frame));
530
531 frame.mii_phyaddr = phy;
532 frame.mii_regaddr = reg;
533 frame.mii_data = data;
534
535 rtk_mii_writereg(sc, &frame);
536 }
537
538 STATIC void
539 rtk_phy_statchg(v)
540 struct device *v;
541 {
542
543 /* Nothing to do. */
544 }
545
546 #define rtk_calchash(addr) \
547 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
548
549 /*
550 * Program the 64-bit multicast hash filter.
551 */
552 void
553 rtk_setmulti(sc)
554 struct rtk_softc *sc;
555 {
556 struct ifnet *ifp;
557 int h = 0;
558 u_int32_t hashes[2] = { 0, 0 };
559 u_int32_t rxfilt;
560 int mcnt = 0;
561 struct ether_multi *enm;
562 struct ether_multistep step;
563
564 ifp = &sc->ethercom.ec_if;
565
566 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
567
568 if (ifp->if_flags & IFF_PROMISC) {
569 allmulti:
570 ifp->if_flags |= IFF_ALLMULTI;
571 rxfilt |= RTK_RXCFG_RX_MULTI;
572 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
573 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
574 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
575 return;
576 }
577
578 /* first, zot all the existing hash bits */
579 CSR_WRITE_4(sc, RTK_MAR0, 0);
580 CSR_WRITE_4(sc, RTK_MAR4, 0);
581
582 /* now program new ones */
583 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
584 while (enm != NULL) {
585 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
586 ETHER_ADDR_LEN) != 0)
587 goto allmulti;
588
589 h = rtk_calchash(enm->enm_addrlo);
590 if (h < 32)
591 hashes[0] |= (1 << h);
592 else
593 hashes[1] |= (1 << (h - 32));
594 mcnt++;
595 ETHER_NEXT_MULTI(step, enm);
596 }
597
598 ifp->if_flags &= ~IFF_ALLMULTI;
599
600 if (mcnt)
601 rxfilt |= RTK_RXCFG_RX_MULTI;
602 else
603 rxfilt &= ~RTK_RXCFG_RX_MULTI;
604
605 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
606 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
607 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
608 }
609
610 void
611 rtk_reset(sc)
612 struct rtk_softc *sc;
613 {
614 int i;
615
616 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
617
618 for (i = 0; i < RTK_TIMEOUT; i++) {
619 DELAY(10);
620 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
621 break;
622 }
623 if (i == RTK_TIMEOUT)
624 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
625 }
626
627 /*
628 * Attach the interface. Allocate softc structures, do ifmedia
629 * setup and ethernet/BPF attach.
630 */
631 void
632 rtk_attach(sc)
633 struct rtk_softc *sc;
634 {
635 struct ifnet *ifp;
636 struct rtk_tx_desc *txd;
637 u_int16_t val;
638 u_int8_t eaddr[ETHER_ADDR_LEN];
639 int error;
640 int i, addr_len;
641
642 callout_init(&sc->rtk_tick_ch);
643
644 /*
645 * Check EEPROM type 9346 or 9356.
646 */
647 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
648 addr_len = RTK_EEADDR_LEN1;
649 else
650 addr_len = RTK_EEADDR_LEN0;
651
652 /*
653 * Get station address.
654 */
655 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
656 eaddr[0] = val & 0xff;
657 eaddr[1] = val >> 8;
658 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
659 eaddr[2] = val & 0xff;
660 eaddr[3] = val >> 8;
661 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
662 eaddr[4] = val & 0xff;
663 eaddr[5] = val >> 8;
664
665 if ((error = bus_dmamem_alloc(sc->sc_dmat,
666 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
667 BUS_DMA_NOWAIT)) != 0) {
668 printf("%s: can't allocate recv buffer, error = %d\n",
669 sc->sc_dev.dv_xname, error);
670 goto fail_0;
671 }
672
673 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
674 RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
675 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
676 printf("%s: can't map recv buffer, error = %d\n",
677 sc->sc_dev.dv_xname, error);
678 goto fail_1;
679 }
680
681 if ((error = bus_dmamap_create(sc->sc_dmat,
682 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
683 &sc->recv_dmamap)) != 0) {
684 printf("%s: can't create recv buffer DMA map, error = %d\n",
685 sc->sc_dev.dv_xname, error);
686 goto fail_2;
687 }
688
689 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
690 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
691 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
692 printf("%s: can't load recv buffer DMA map, error = %d\n",
693 sc->sc_dev.dv_xname, error);
694 goto fail_3;
695 }
696
697 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
698 txd = &sc->rtk_tx_descs[i];
699 if ((error = bus_dmamap_create(sc->sc_dmat,
700 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
701 &txd->txd_dmamap)) != 0) {
702 printf("%s: can't create snd buffer DMA map,"
703 " error = %d\n", sc->sc_dev.dv_xname, error);
704 goto fail_4;
705 }
706 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
707 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
708 }
709 SIMPLEQ_INIT(&sc->rtk_tx_free);
710 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
711
712 /*
713 * From this point forward, the attachment cannot fail. A failure
714 * before this releases all resources thar may have been
715 * allocated.
716 */
717 sc->sc_flags |= RTK_ATTACHED;
718
719 /* Init Early TX threshold. */
720 sc->sc_txthresh = TXTH_256;
721
722 /* Reset the adapter. */
723 rtk_reset(sc);
724
725 printf("%s: Ethernet address %s\n",
726 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
727
728 ifp = &sc->ethercom.ec_if;
729 ifp->if_softc = sc;
730 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
731 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
732 ifp->if_ioctl = rtk_ioctl;
733 ifp->if_start = rtk_start;
734 ifp->if_watchdog = rtk_watchdog;
735 ifp->if_init = rtk_init;
736 ifp->if_stop = rtk_stop;
737 IFQ_SET_READY(&ifp->if_snd);
738
739 /*
740 * Do ifmedia setup.
741 */
742 sc->mii.mii_ifp = ifp;
743 sc->mii.mii_readreg = rtk_phy_readreg;
744 sc->mii.mii_writereg = rtk_phy_writereg;
745 sc->mii.mii_statchg = rtk_phy_statchg;
746 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd, rtk_ifmedia_sts);
747 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
748 MII_PHY_ANY, MII_OFFSET_ANY, 0);
749
750 /* Choose a default media. */
751 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
752 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
753 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
754 } else {
755 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
756 }
757
758 /*
759 * Call MI attach routines.
760 */
761 if_attach(ifp);
762 ether_ifattach(ifp, eaddr);
763
764 /*
765 * Make sure the interface is shutdown during reboot.
766 */
767 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
768 if (sc->sc_sdhook == NULL)
769 printf("%s: WARNING: unable to establish shutdown hook\n",
770 sc->sc_dev.dv_xname);
771 /*
772 * Add a suspend hook to make sure we come back up after a
773 * resume.
774 */
775 sc->sc_powerhook = powerhook_establish(rtk_power, sc);
776 if (sc->sc_powerhook == NULL)
777 printf("%s: WARNING: unable to establish power hook\n",
778 sc->sc_dev.dv_xname);
779
780
781 #if NRND > 0
782 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
783 RND_TYPE_NET, 0);
784 #endif
785
786 return;
787 fail_4:
788 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
789 txd = &sc->rtk_tx_descs[i];
790 if (txd->txd_dmamap != NULL)
791 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
792 }
793 fail_3:
794 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
795 fail_2:
796 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
797 RTK_RXBUFLEN + 16);
798 fail_1:
799 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
800 fail_0:
801 return;
802 }
803
804 /*
805 * Initialize the transmit descriptors.
806 */
807 STATIC int
808 rtk_list_tx_init(sc)
809 struct rtk_softc *sc;
810 {
811 struct rtk_tx_desc *txd;
812 int i;
813
814 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
815 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
816 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
817 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
818
819 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
820 txd = &sc->rtk_tx_descs[i];
821 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
822 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
823 }
824
825 return (0);
826 }
827
828 /*
829 * rtk_activate:
830 * Handle device activation/deactivation requests.
831 */
832 int
833 rtk_activate(self, act)
834 struct device *self;
835 enum devact act;
836 {
837 struct rtk_softc *sc = (void *) self;
838 int s, error = 0;
839
840 s = splnet();
841 switch (act) {
842 case DVACT_ACTIVATE:
843 error = EOPNOTSUPP;
844 break;
845 case DVACT_DEACTIVATE:
846 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
847 if_deactivate(&sc->ethercom.ec_if);
848 break;
849 }
850 splx(s);
851
852 return (error);
853 }
854
855 /*
856 * rtk_detach:
857 * Detach a rtk interface.
858 */
859 int
860 rtk_detach(sc)
861 struct rtk_softc *sc;
862 {
863 struct ifnet *ifp = &sc->ethercom.ec_if;
864 struct rtk_tx_desc *txd;
865 int i;
866
867 /*
868 * Succeed now if there isn't any work to do.
869 */
870 if ((sc->sc_flags & RTK_ATTACHED) == 0)
871 return (0);
872
873 /* Unhook our tick handler. */
874 callout_stop(&sc->rtk_tick_ch);
875
876 /* Detach all PHYs. */
877 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
878
879 /* Delete all remaining media. */
880 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
881
882 #if NRND > 0
883 rnd_detach_source(&sc->rnd_source);
884 #endif
885
886 ether_ifdetach(ifp);
887 if_detach(ifp);
888
889 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
890 txd = &sc->rtk_tx_descs[i];
891 if (txd->txd_dmamap != NULL)
892 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
893 }
894 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
895 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
896 RTK_RXBUFLEN + 16);
897 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
898
899 shutdownhook_disestablish(sc->sc_sdhook);
900 powerhook_disestablish(sc->sc_powerhook);
901
902 return (0);
903 }
904
905 /*
906 * rtk_enable:
907 * Enable the RTL81X9 chip.
908 */
909 int
910 rtk_enable(sc)
911 struct rtk_softc *sc;
912 {
913
914 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
915 if ((*sc->sc_enable)(sc) != 0) {
916 printf("%s: device enable failed\n",
917 sc->sc_dev.dv_xname);
918 return (EIO);
919 }
920 sc->sc_flags |= RTK_ENABLED;
921 }
922 return (0);
923 }
924
925 /*
926 * rtk_disable:
927 * Disable the RTL81X9 chip.
928 */
929 void
930 rtk_disable(sc)
931 struct rtk_softc *sc;
932 {
933
934 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
935 (*sc->sc_disable)(sc);
936 sc->sc_flags &= ~RTK_ENABLED;
937 }
938 }
939
940 /*
941 * rtk_power:
942 * Power management (suspend/resume) hook.
943 */
944 void
945 rtk_power(why, arg)
946 int why;
947 void *arg;
948 {
949 struct rtk_softc *sc = (void *) arg;
950 struct ifnet *ifp = &sc->ethercom.ec_if;
951 int s;
952
953 s = splnet();
954 switch (why) {
955 case PWR_SUSPEND:
956 case PWR_STANDBY:
957 rtk_stop(ifp, 0);
958 if (sc->sc_power != NULL)
959 (*sc->sc_power)(sc, why);
960 break;
961 case PWR_RESUME:
962 if (ifp->if_flags & IFF_UP) {
963 if (sc->sc_power != NULL)
964 (*sc->sc_power)(sc, why);
965 rtk_init(ifp);
966 }
967 break;
968 case PWR_SOFTSUSPEND:
969 case PWR_SOFTSTANDBY:
970 case PWR_SOFTRESUME:
971 break;
972 }
973 splx(s);
974 }
975
976 /*
977 * A frame has been uploaded: pass the resulting mbuf chain up to
978 * the higher level protocols.
979 *
980 * You know there's something wrong with a PCI bus-master chip design.
981 *
982 * The receive operation is badly documented in the datasheet, so I'll
983 * attempt to document it here. The driver provides a buffer area and
984 * places its base address in the RX buffer start address register.
985 * The chip then begins copying frames into the RX buffer. Each frame
986 * is preceded by a 32-bit RX status word which specifies the length
987 * of the frame and certain other status bits. Each frame (starting with
988 * the status word) is also 32-bit aligned. The frame length is in the
989 * first 16 bits of the status word; the lower 15 bits correspond with
990 * the 'rx status register' mentioned in the datasheet.
991 *
992 * Note: to make the Alpha happy, the frame payload needs to be aligned
993 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
994 * shifted forward 2 bytes.
995 */
996 STATIC void
997 rtk_rxeof(sc)
998 struct rtk_softc *sc;
999 {
1000 struct mbuf *m;
1001 struct ifnet *ifp;
1002 caddr_t rxbufpos, dst;
1003 u_int total_len, wrap = 0;
1004 u_int32_t rxstat;
1005 u_int16_t cur_rx, new_rx;
1006 u_int16_t limit;
1007 u_int16_t rx_bytes = 0, max_bytes;
1008
1009 ifp = &sc->ethercom.ec_if;
1010
1011 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
1012
1013 /* Do not try to read past this point. */
1014 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1015
1016 if (limit < cur_rx)
1017 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1018 else
1019 max_bytes = limit - cur_rx;
1020
1021 while((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1022 rxbufpos = sc->rtk_rx_buf + cur_rx;
1023 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1024 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1025 rxstat = le32toh(*(u_int32_t *)rxbufpos);
1026 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1027 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1028
1029 /*
1030 * Here's a totally undocumented fact for you. When the
1031 * RealTek chip is in the process of copying a packet into
1032 * RAM for you, the length will be 0xfff0. If you spot a
1033 * packet header with this value, you need to stop. The
1034 * datasheet makes absolutely no mention of this and
1035 * RealTek should be shot for this.
1036 */
1037 total_len = rxstat >> 16;
1038 if (total_len == RTK_RXSTAT_UNFINISHED)
1039 break;
1040
1041 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1042 total_len > ETHER_MAX_LEN) {
1043 ifp->if_ierrors++;
1044
1045 /*
1046 * submitted by:[netbsd-pcmcia:00484]
1047 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1048 * obtain from:
1049 * FreeBSD if_rl.c rev 1.24->1.25
1050 *
1051 */
1052 #if 0
1053 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1054 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1055 RTK_RXSTAT_ALIGNERR)) {
1056 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1057 CSR_WRITE_2(sc, RTK_COMMAND,
1058 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1059 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1060 CSR_WRITE_4(sc, RTK_RXADDR,
1061 sc->recv_dmamap->dm_segs[0].ds_addr);
1062 cur_rx = 0;
1063 }
1064 break;
1065 #else
1066 rtk_init(ifp);
1067 return;
1068 #endif
1069 }
1070
1071 /* No errors; receive the packet. */
1072 rx_bytes += total_len + RTK_RXSTAT_LEN;
1073
1074 /*
1075 * Avoid trying to read more bytes than we know
1076 * the chip has prepared for us.
1077 */
1078 if (rx_bytes > max_bytes)
1079 break;
1080
1081 /*
1082 * Skip the status word, wrapping around to the beginning
1083 * of the Rx area, if necessary.
1084 */
1085 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1086 rxbufpos = sc->rtk_rx_buf + cur_rx;
1087
1088 /*
1089 * Compute the number of bytes at which the packet
1090 * will wrap to the beginning of the ring buffer.
1091 */
1092 wrap = RTK_RXBUFLEN - cur_rx;
1093
1094 /*
1095 * Compute where the next pending packet is.
1096 */
1097 if (total_len > wrap)
1098 new_rx = total_len - wrap;
1099 else
1100 new_rx = cur_rx + total_len;
1101 /* Round up to 32-bit boundary. */
1102 new_rx = (new_rx + 3) & ~3;
1103
1104 /*
1105 * Now allocate an mbuf (and possibly a cluster) to hold
1106 * the packet. Note we offset the packet 2 bytes so that
1107 * data after the Ethernet header will be 4-byte aligned.
1108 */
1109 MGETHDR(m, M_DONTWAIT, MT_DATA);
1110 if (m == NULL) {
1111 printf("%s: unable to allocate Rx mbuf\n",
1112 sc->sc_dev.dv_xname);
1113 ifp->if_ierrors++;
1114 goto next_packet;
1115 }
1116 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1117 MCLGET(m, M_DONTWAIT);
1118 if ((m->m_flags & M_EXT) == 0) {
1119 printf("%s: unable to allocate Rx cluster\n",
1120 sc->sc_dev.dv_xname);
1121 ifp->if_ierrors++;
1122 m_freem(m);
1123 m = NULL;
1124 goto next_packet;
1125 }
1126 }
1127 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1128 m->m_pkthdr.rcvif = ifp;
1129 m->m_pkthdr.len = m->m_len = total_len;
1130 dst = mtod(m, caddr_t);
1131
1132 /*
1133 * If the packet wraps, copy up to the wrapping point.
1134 */
1135 if (total_len > wrap) {
1136 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1137 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1138 memcpy(dst, rxbufpos, wrap);
1139 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1140 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1141 cur_rx = 0;
1142 rxbufpos = sc->rtk_rx_buf;
1143 total_len -= wrap;
1144 dst += wrap;
1145 }
1146
1147 /*
1148 * ...and now the rest.
1149 */
1150 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1151 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1152 memcpy(dst, rxbufpos, total_len);
1153 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1154 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1155
1156 next_packet:
1157 CSR_WRITE_2(sc, RTK_CURRXADDR, new_rx - 16);
1158 cur_rx = new_rx;
1159
1160 if (m == NULL)
1161 continue;
1162
1163 /*
1164 * The RealTek chip includes the CRC with every
1165 * incoming packet.
1166 */
1167 m->m_flags |= M_HASFCS;
1168
1169 ifp->if_ipackets++;
1170
1171 #if NBPFILTER > 0
1172 if (ifp->if_bpf)
1173 bpf_mtap(ifp->if_bpf, m);
1174 #endif
1175 /* pass it on. */
1176 (*ifp->if_input)(ifp, m);
1177 }
1178 }
1179
1180 /*
1181 * A frame was downloaded to the chip. It's safe for us to clean up
1182 * the list buffers.
1183 */
1184 STATIC void
1185 rtk_txeof(sc)
1186 struct rtk_softc *sc;
1187 {
1188 struct ifnet *ifp;
1189 struct rtk_tx_desc *txd;
1190 u_int32_t txstat;
1191
1192 ifp = &sc->ethercom.ec_if;
1193
1194 /* Clear the timeout timer. */
1195 ifp->if_timer = 0;
1196
1197 /*
1198 * Go through our tx list and free mbufs for those
1199 * frames that have been uploaded.
1200 */
1201 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1202 txstat = CSR_READ_4(sc, txd->txd_txstat);
1203 if ((txstat & (RTK_TXSTAT_TX_OK|
1204 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1205 break;
1206
1207 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1208
1209 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1210 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1211 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1212 m_freem(txd->txd_mbuf);
1213 txd->txd_mbuf = NULL;
1214
1215 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1216
1217 if (txstat & RTK_TXSTAT_TX_OK)
1218 ifp->if_opackets++;
1219 else {
1220 ifp->if_oerrors++;
1221
1222 /*
1223 * Increase Early TX threshold if underrun occurred.
1224 * Increase step 64 bytes.
1225 */
1226 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1227 #ifdef DEBUG
1228 printf("%s: transmit underrun;",
1229 sc->sc_dev.dv_xname);
1230 #endif
1231 if (sc->sc_txthresh < TXTH_MAX) {
1232 sc->sc_txthresh += 2;
1233 #ifdef DEBUG
1234 printf(" new threshold: %d bytes",
1235 sc->sc_txthresh * 32);
1236 #endif
1237 }
1238 printf("\n");
1239 }
1240 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1241 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1242 }
1243 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1244 ifp->if_flags &= ~IFF_OACTIVE;
1245 }
1246 }
1247
1248 int
1249 rtk_intr(arg)
1250 void *arg;
1251 {
1252 struct rtk_softc *sc;
1253 struct ifnet *ifp;
1254 u_int16_t status;
1255 int handled = 0;
1256
1257 sc = arg;
1258 ifp = &sc->ethercom.ec_if;
1259
1260 /* Disable interrupts. */
1261 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1262
1263 for (;;) {
1264
1265 status = CSR_READ_2(sc, RTK_ISR);
1266 if (status)
1267 CSR_WRITE_2(sc, RTK_ISR, status);
1268
1269 handled = 1;
1270
1271 if ((status & RTK_INTRS) == 0)
1272 break;
1273
1274 if (status & RTK_ISR_RX_OK)
1275 rtk_rxeof(sc);
1276
1277 if (status & RTK_ISR_RX_ERR)
1278 rtk_rxeof(sc);
1279
1280 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1281 rtk_txeof(sc);
1282
1283 if (status & RTK_ISR_SYSTEM_ERR) {
1284 rtk_reset(sc);
1285 rtk_init(ifp);
1286 }
1287 }
1288
1289 /* Re-enable interrupts. */
1290 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1291
1292 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1293 rtk_start(ifp);
1294
1295 #if NRND > 0
1296 if (RND_ENABLED(&sc->rnd_source))
1297 rnd_add_uint32(&sc->rnd_source, status);
1298 #endif
1299
1300 return (handled);
1301 }
1302
1303 /*
1304 * Main transmit routine.
1305 */
1306
1307 STATIC void
1308 rtk_start(ifp)
1309 struct ifnet *ifp;
1310 {
1311 struct rtk_softc *sc;
1312 struct rtk_tx_desc *txd;
1313 struct mbuf *m_head = NULL, *m_new;
1314 int error, len;
1315
1316 sc = ifp->if_softc;
1317
1318 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1319 IFQ_POLL(&ifp->if_snd, m_head);
1320 if (m_head == NULL)
1321 break;
1322 m_new = NULL;
1323
1324 /*
1325 * Load the DMA map. If this fails, the packet didn't
1326 * fit in one DMA segment, and we need to copy. Note,
1327 * the packet must also be aligned.
1328 * if the packet is too small, copy it too, so we're sure
1329 * so have enouth room for the pad buffer.
1330 */
1331 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1332 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1333 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1334 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1335 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1336 if (m_new == NULL) {
1337 printf("%s: unable to allocate Tx mbuf\n",
1338 sc->sc_dev.dv_xname);
1339 break;
1340 }
1341 if (m_head->m_pkthdr.len > MHLEN) {
1342 MCLGET(m_new, M_DONTWAIT);
1343 if ((m_new->m_flags & M_EXT) == 0) {
1344 printf("%s: unable to allocate Tx "
1345 "cluster\n", sc->sc_dev.dv_xname);
1346 m_freem(m_new);
1347 break;
1348 }
1349 }
1350 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1351 mtod(m_new, caddr_t));
1352 m_new->m_pkthdr.len = m_new->m_len =
1353 m_head->m_pkthdr.len;
1354 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1355 memset(
1356 mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1357 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1358 m_new->m_pkthdr.len = m_new->m_len =
1359 ETHER_PAD_LEN;
1360 }
1361 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1362 txd->txd_dmamap, m_new,
1363 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1364 if (error) {
1365 printf("%s: unable to load Tx buffer, "
1366 "error = %d\n", sc->sc_dev.dv_xname, error);
1367 break;
1368 }
1369 }
1370 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1371 #if NBPFILTER > 0
1372 /*
1373 * If there's a BPF listener, bounce a copy of this frame
1374 * to him.
1375 */
1376 if (ifp->if_bpf)
1377 bpf_mtap(ifp->if_bpf, m_head);
1378 #endif
1379 if (m_new != NULL) {
1380 m_freem(m_head);
1381 m_head = m_new;
1382 }
1383 txd->txd_mbuf = m_head;
1384
1385 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1386 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1387
1388 /*
1389 * Transmit the frame.
1390 */
1391 bus_dmamap_sync(sc->sc_dmat,
1392 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1393 BUS_DMASYNC_PREWRITE);
1394
1395 len = txd->txd_dmamap->dm_segs[0].ds_len;
1396
1397 CSR_WRITE_4(sc, txd->txd_txaddr,
1398 txd->txd_dmamap->dm_segs[0].ds_addr);
1399 CSR_WRITE_4(sc, txd->txd_txstat, RTK_TX_THRESH(sc) | len);
1400 }
1401
1402 /*
1403 * We broke out of the loop because all our TX slots are
1404 * full. Mark the NIC as busy until it drains some of the
1405 * packets from the queue.
1406 */
1407 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1408 ifp->if_flags |= IFF_OACTIVE;
1409
1410 /*
1411 * Set a timeout in case the chip goes out to lunch.
1412 */
1413 ifp->if_timer = 5;
1414 }
1415
1416 STATIC int
1417 rtk_init(ifp)
1418 struct ifnet *ifp;
1419 {
1420 struct rtk_softc *sc = ifp->if_softc;
1421 int error = 0, i;
1422 u_int32_t rxcfg;
1423
1424 if ((error = rtk_enable(sc)) != 0)
1425 goto out;
1426
1427 /*
1428 * Cancel pending I/O.
1429 */
1430 rtk_stop(ifp, 0);
1431
1432 /* Init our MAC address */
1433 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1434 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1435 }
1436
1437 /* Init the RX buffer pointer register. */
1438 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1439 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1440 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1441
1442 /* Init TX descriptors. */
1443 rtk_list_tx_init(sc);
1444
1445 /* Init Early TX threshold. */
1446 sc->sc_txthresh = TXTH_256;
1447 /*
1448 * Enable transmit and receive.
1449 */
1450 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1451
1452 /*
1453 * Set the initial TX and RX configuration.
1454 */
1455 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1456 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1457
1458 /* Set the individual bit to receive frames for this host only. */
1459 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1460 rxcfg |= RTK_RXCFG_RX_INDIV;
1461
1462 /* If we want promiscuous mode, set the allframes bit. */
1463 if (ifp->if_flags & IFF_PROMISC) {
1464 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1465 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1466 } else {
1467 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1468 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1469 }
1470
1471 /*
1472 * Set capture broadcast bit to capture broadcast frames.
1473 */
1474 if (ifp->if_flags & IFF_BROADCAST) {
1475 rxcfg |= RTK_RXCFG_RX_BROAD;
1476 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1477 } else {
1478 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1479 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1480 }
1481
1482 /*
1483 * Program the multicast filter, if necessary.
1484 */
1485 rtk_setmulti(sc);
1486
1487 /*
1488 * Enable interrupts.
1489 */
1490 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1491
1492 /* Start RX/TX process. */
1493 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1494
1495 /* Enable receiver and transmitter. */
1496 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1497
1498 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1499
1500 /*
1501 * Set current media.
1502 */
1503 mii_mediachg(&sc->mii);
1504
1505 ifp->if_flags |= IFF_RUNNING;
1506 ifp->if_flags &= ~IFF_OACTIVE;
1507
1508 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1509
1510 out:
1511 if (error) {
1512 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1513 ifp->if_timer = 0;
1514 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1515 }
1516 return (error);
1517 }
1518
1519 /*
1520 * Set media options.
1521 */
1522 STATIC int
1523 rtk_ifmedia_upd(ifp)
1524 struct ifnet *ifp;
1525 {
1526 struct rtk_softc *sc;
1527
1528 sc = ifp->if_softc;
1529
1530 return (mii_mediachg(&sc->mii));
1531 }
1532
1533 /*
1534 * Report current media status.
1535 */
1536 STATIC void
1537 rtk_ifmedia_sts(ifp, ifmr)
1538 struct ifnet *ifp;
1539 struct ifmediareq *ifmr;
1540 {
1541 struct rtk_softc *sc;
1542
1543 sc = ifp->if_softc;
1544
1545 mii_pollstat(&sc->mii);
1546 ifmr->ifm_status = sc->mii.mii_media_status;
1547 ifmr->ifm_active = sc->mii.mii_media_active;
1548 }
1549
1550 STATIC int
1551 rtk_ioctl(ifp, command, data)
1552 struct ifnet *ifp;
1553 u_long command;
1554 caddr_t data;
1555 {
1556 struct rtk_softc *sc = ifp->if_softc;
1557 struct ifreq *ifr = (struct ifreq *) data;
1558 int s, error = 0;
1559
1560 s = splnet();
1561
1562 switch (command) {
1563 case SIOCGIFMEDIA:
1564 case SIOCSIFMEDIA:
1565 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1566 break;
1567
1568 default:
1569 error = ether_ioctl(ifp, command, data);
1570 if (error == ENETRESET) {
1571 if (ifp->if_flags & IFF_RUNNING) {
1572 /*
1573 * Multicast list has changed. Set the
1574 * hardware filter accordingly.
1575 */
1576 rtk_setmulti(sc);
1577 }
1578 error = 0;
1579 }
1580 break;
1581 }
1582
1583 splx(s);
1584
1585 return (error);
1586 }
1587
1588 STATIC void
1589 rtk_watchdog(ifp)
1590 struct ifnet *ifp;
1591 {
1592 struct rtk_softc *sc;
1593
1594 sc = ifp->if_softc;
1595
1596 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1597 ifp->if_oerrors++;
1598 rtk_txeof(sc);
1599 rtk_rxeof(sc);
1600 rtk_init(ifp);
1601 }
1602
1603 /*
1604 * Stop the adapter and free any mbufs allocated to the
1605 * RX and TX lists.
1606 */
1607 STATIC void
1608 rtk_stop(ifp, disable)
1609 struct ifnet *ifp;
1610 int disable;
1611 {
1612 struct rtk_softc *sc = ifp->if_softc;
1613 struct rtk_tx_desc *txd;
1614
1615 callout_stop(&sc->rtk_tick_ch);
1616
1617 mii_down(&sc->mii);
1618
1619 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1620 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1621
1622 /*
1623 * Free the TX list buffers.
1624 */
1625 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1626 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1627 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1628 m_freem(txd->txd_mbuf);
1629 txd->txd_mbuf = NULL;
1630 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1631 }
1632
1633 if (disable)
1634 rtk_disable(sc);
1635
1636 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1637 ifp->if_timer = 0;
1638 }
1639
1640 /*
1641 * Stop all chip I/O so that the kernel's probe routines don't
1642 * get confused by errant DMAs when rebooting.
1643 */
1644 STATIC void
1645 rtk_shutdown(vsc)
1646 void *vsc;
1647 {
1648 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1649
1650 rtk_stop(&sc->ethercom.ec_if, 0);
1651 }
1652
1653 STATIC void
1654 rtk_tick(arg)
1655 void *arg;
1656 {
1657 struct rtk_softc *sc = arg;
1658 int s = splnet();
1659
1660 mii_tick(&sc->mii);
1661 splx(s);
1662
1663 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1664 }
1665