rtl81x9.c revision 1.64 1 /* $NetBSD: rtl81x9.c,v 1.64 2006/10/12 01:31:01 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.64 2006/10/12 01:31:01 christos Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, caddr_t);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick(void *);
157
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
173
174 /*
175 * Send a read command and address to the EEPROM, check for ACK.
176 */
177 STATIC void
178 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
179 {
180 int d, i;
181
182 d = (RTK_EECMD_READ << addr_len) | addr;
183
184 /*
185 * Feed in each bit and stobe the clock.
186 */
187 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
188 if (d & (1 << (i - 1))) {
189 EE_SET(RTK_EE_DATAIN);
190 } else {
191 EE_CLR(RTK_EE_DATAIN);
192 }
193 DELAY(4);
194 EE_SET(RTK_EE_CLK);
195 DELAY(4);
196 EE_CLR(RTK_EE_CLK);
197 DELAY(4);
198 }
199 }
200
201 /*
202 * Read a word of data stored in the EEPROM at address 'addr.'
203 */
204 uint16_t
205 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
206 {
207 uint16_t word;
208 int i;
209
210 /* Enter EEPROM access mode. */
211 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
212
213 /*
214 * Send address of word we want to read.
215 */
216 rtk_eeprom_putbyte(sc, addr, addr_len);
217
218 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM|RTK_EE_SEL);
219
220 /*
221 * Start reading bits from EEPROM.
222 */
223 word = 0;
224 for (i = 16; i > 0; i--) {
225 EE_SET(RTK_EE_CLK);
226 DELAY(4);
227 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
228 word |= 1 << (i - 1);
229 EE_CLR(RTK_EE_CLK);
230 DELAY(4);
231 }
232
233 /* Turn off EEPROM access mode. */
234 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
235
236 return word;
237 }
238
239 /*
240 * MII access routines are provided for the 8129, which
241 * doesn't have a built-in PHY. For the 8139, we fake things
242 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
243 * direct access PHY registers.
244 */
245 #define MII_SET(x) \
246 CSR_WRITE_1(sc, RTK_MII, \
247 CSR_READ_1(sc, RTK_MII) | (x))
248
249 #define MII_CLR(x) \
250 CSR_WRITE_1(sc, RTK_MII, \
251 CSR_READ_1(sc, RTK_MII) & ~(x))
252
253 /*
254 * Sync the PHYs by setting data bit and strobing the clock 32 times.
255 */
256 STATIC void
257 rtk_mii_sync(struct rtk_softc *sc)
258 {
259 int i;
260
261 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
262
263 for (i = 0; i < 32; i++) {
264 MII_SET(RTK_MII_CLK);
265 DELAY(1);
266 MII_CLR(RTK_MII_CLK);
267 DELAY(1);
268 }
269 }
270
271 /*
272 * Clock a series of bits through the MII.
273 */
274 STATIC void
275 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
276 {
277 int i;
278
279 MII_CLR(RTK_MII_CLK);
280
281 for (i = cnt; i > 0; i--) {
282 if (bits & (1 << (i - 1))) {
283 MII_SET(RTK_MII_DATAOUT);
284 } else {
285 MII_CLR(RTK_MII_DATAOUT);
286 }
287 DELAY(1);
288 MII_CLR(RTK_MII_CLK);
289 DELAY(1);
290 MII_SET(RTK_MII_CLK);
291 }
292 }
293
294 /*
295 * Read an PHY register through the MII.
296 */
297 STATIC int
298 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
299 {
300 int i, ack, s;
301
302 s = splnet();
303
304 /*
305 * Set up frame for RX.
306 */
307 frame->mii_stdelim = RTK_MII_STARTDELIM;
308 frame->mii_opcode = RTK_MII_READOP;
309 frame->mii_turnaround = 0;
310 frame->mii_data = 0;
311
312 CSR_WRITE_2(sc, RTK_MII, 0);
313
314 /*
315 * Turn on data xmit.
316 */
317 MII_SET(RTK_MII_DIR);
318
319 rtk_mii_sync(sc);
320
321 /*
322 * Send command/address info.
323 */
324 rtk_mii_send(sc, frame->mii_stdelim, 2);
325 rtk_mii_send(sc, frame->mii_opcode, 2);
326 rtk_mii_send(sc, frame->mii_phyaddr, 5);
327 rtk_mii_send(sc, frame->mii_regaddr, 5);
328
329 /* Idle bit */
330 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
331 DELAY(1);
332 MII_SET(RTK_MII_CLK);
333 DELAY(1);
334
335 /* Turn off xmit. */
336 MII_CLR(RTK_MII_DIR);
337
338 /* Check for ack */
339 MII_CLR(RTK_MII_CLK);
340 DELAY(1);
341 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
342 MII_SET(RTK_MII_CLK);
343 DELAY(1);
344
345 /*
346 * Now try reading data bits. If the ack failed, we still
347 * need to clock through 16 cycles to keep the PHY(s) in sync.
348 */
349 if (ack) {
350 for (i = 0; i < 16; i++) {
351 MII_CLR(RTK_MII_CLK);
352 DELAY(1);
353 MII_SET(RTK_MII_CLK);
354 DELAY(1);
355 }
356 goto fail;
357 }
358
359 for (i = 16; i > 0; i--) {
360 MII_CLR(RTK_MII_CLK);
361 DELAY(1);
362 if (!ack) {
363 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
364 frame->mii_data |= 1 << (i - 1);
365 DELAY(1);
366 }
367 MII_SET(RTK_MII_CLK);
368 DELAY(1);
369 }
370
371 fail:
372 MII_CLR(RTK_MII_CLK);
373 DELAY(1);
374 MII_SET(RTK_MII_CLK);
375 DELAY(1);
376
377 splx(s);
378
379 if (ack)
380 return 1;
381 return 0;
382 }
383
384 /*
385 * Write to a PHY register through the MII.
386 */
387 STATIC int
388 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
389 {
390 int s;
391
392 s = splnet();
393 /*
394 * Set up frame for TX.
395 */
396 frame->mii_stdelim = RTK_MII_STARTDELIM;
397 frame->mii_opcode = RTK_MII_WRITEOP;
398 frame->mii_turnaround = RTK_MII_TURNAROUND;
399
400 /*
401 * Turn on data output.
402 */
403 MII_SET(RTK_MII_DIR);
404
405 rtk_mii_sync(sc);
406
407 rtk_mii_send(sc, frame->mii_stdelim, 2);
408 rtk_mii_send(sc, frame->mii_opcode, 2);
409 rtk_mii_send(sc, frame->mii_phyaddr, 5);
410 rtk_mii_send(sc, frame->mii_regaddr, 5);
411 rtk_mii_send(sc, frame->mii_turnaround, 2);
412 rtk_mii_send(sc, frame->mii_data, 16);
413
414 /* Idle bit. */
415 MII_SET(RTK_MII_CLK);
416 DELAY(1);
417 MII_CLR(RTK_MII_CLK);
418 DELAY(1);
419
420 /*
421 * Turn off xmit.
422 */
423 MII_CLR(RTK_MII_DIR);
424
425 splx(s);
426
427 return 0;
428 }
429
430 STATIC int
431 rtk_phy_readreg(struct device *self, int phy, int reg)
432 {
433 struct rtk_softc *sc = (void *)self;
434 struct rtk_mii_frame frame;
435 int rval;
436 int rtk8139_reg;
437
438 if (sc->rtk_type == RTK_8139) {
439 if (phy != 7)
440 return 0;
441
442 switch (reg) {
443 case MII_BMCR:
444 rtk8139_reg = RTK_BMCR;
445 break;
446 case MII_BMSR:
447 rtk8139_reg = RTK_BMSR;
448 break;
449 case MII_ANAR:
450 rtk8139_reg = RTK_ANAR;
451 break;
452 case MII_ANER:
453 rtk8139_reg = RTK_ANER;
454 break;
455 case MII_ANLPAR:
456 rtk8139_reg = RTK_LPAR;
457 break;
458 default:
459 #if 0
460 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
461 #endif
462 return 0;
463 }
464 rval = CSR_READ_2(sc, rtk8139_reg);
465 return rval;
466 }
467
468 memset((char *)&frame, 0, sizeof(frame));
469
470 frame.mii_phyaddr = phy;
471 frame.mii_regaddr = reg;
472 rtk_mii_readreg(sc, &frame);
473
474 return frame.mii_data;
475 }
476
477 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
478 {
479 struct rtk_softc *sc = (void *)self;
480 struct rtk_mii_frame frame;
481 int rtk8139_reg;
482
483 if (sc->rtk_type == RTK_8139) {
484 if (phy != 7)
485 return;
486
487 switch (reg) {
488 case MII_BMCR:
489 rtk8139_reg = RTK_BMCR;
490 break;
491 case MII_BMSR:
492 rtk8139_reg = RTK_BMSR;
493 break;
494 case MII_ANAR:
495 rtk8139_reg = RTK_ANAR;
496 break;
497 case MII_ANER:
498 rtk8139_reg = RTK_ANER;
499 break;
500 case MII_ANLPAR:
501 rtk8139_reg = RTK_LPAR;
502 break;
503 default:
504 #if 0
505 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
506 #endif
507 return;
508 }
509 CSR_WRITE_2(sc, rtk8139_reg, data);
510 return;
511 }
512
513 memset((char *)&frame, 0, sizeof(frame));
514
515 frame.mii_phyaddr = phy;
516 frame.mii_regaddr = reg;
517 frame.mii_data = data;
518
519 rtk_mii_writereg(sc, &frame);
520 }
521
522 STATIC void
523 rtk_phy_statchg(struct device *v __unused)
524 {
525
526 /* Nothing to do. */
527 }
528
529 #define rtk_calchash(addr) \
530 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
531
532 /*
533 * Program the 64-bit multicast hash filter.
534 */
535 void
536 rtk_setmulti(struct rtk_softc *sc)
537 {
538 struct ifnet *ifp;
539 uint32_t hashes[2] = { 0, 0 };
540 uint32_t rxfilt;
541 struct ether_multi *enm;
542 struct ether_multistep step;
543 int h, mcnt;
544
545 ifp = &sc->ethercom.ec_if;
546
547 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
548
549 if (ifp->if_flags & IFF_PROMISC) {
550 allmulti:
551 ifp->if_flags |= IFF_ALLMULTI;
552 rxfilt |= RTK_RXCFG_RX_MULTI;
553 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
554 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
555 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
556 return;
557 }
558
559 /* first, zot all the existing hash bits */
560 CSR_WRITE_4(sc, RTK_MAR0, 0);
561 CSR_WRITE_4(sc, RTK_MAR4, 0);
562
563 /* now program new ones */
564 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
565 mcnt = 0;
566 while (enm != NULL) {
567 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
568 ETHER_ADDR_LEN) != 0)
569 goto allmulti;
570
571 h = rtk_calchash(enm->enm_addrlo);
572 if (h < 32)
573 hashes[0] |= (1 << h);
574 else
575 hashes[1] |= (1 << (h - 32));
576 mcnt++;
577 ETHER_NEXT_MULTI(step, enm);
578 }
579
580 ifp->if_flags &= ~IFF_ALLMULTI;
581
582 if (mcnt)
583 rxfilt |= RTK_RXCFG_RX_MULTI;
584 else
585 rxfilt &= ~RTK_RXCFG_RX_MULTI;
586
587 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
588 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
589 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
590 }
591
592 void
593 rtk_reset(struct rtk_softc *sc)
594 {
595 int i;
596
597 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
598
599 for (i = 0; i < RTK_TIMEOUT; i++) {
600 DELAY(10);
601 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
602 break;
603 }
604 if (i == RTK_TIMEOUT)
605 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
606 }
607
608 /*
609 * Attach the interface. Allocate softc structures, do ifmedia
610 * setup and ethernet/BPF attach.
611 */
612 void
613 rtk_attach(struct rtk_softc *sc)
614 {
615 struct ifnet *ifp;
616 struct rtk_tx_desc *txd;
617 uint16_t val;
618 uint8_t eaddr[ETHER_ADDR_LEN];
619 int error;
620 int i, addr_len;
621
622 callout_init(&sc->rtk_tick_ch);
623
624 /*
625 * Check EEPROM type 9346 or 9356.
626 */
627 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
628 addr_len = RTK_EEADDR_LEN1;
629 else
630 addr_len = RTK_EEADDR_LEN0;
631
632 /*
633 * Get station address.
634 */
635 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
636 eaddr[0] = val & 0xff;
637 eaddr[1] = val >> 8;
638 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
639 eaddr[2] = val & 0xff;
640 eaddr[3] = val >> 8;
641 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
642 eaddr[4] = val & 0xff;
643 eaddr[5] = val >> 8;
644
645 if ((error = bus_dmamem_alloc(sc->sc_dmat,
646 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
647 BUS_DMA_NOWAIT)) != 0) {
648 printf("%s: can't allocate recv buffer, error = %d\n",
649 sc->sc_dev.dv_xname, error);
650 goto fail_0;
651 }
652
653 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
654 RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
655 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
656 printf("%s: can't map recv buffer, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_1;
659 }
660
661 if ((error = bus_dmamap_create(sc->sc_dmat,
662 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
663 &sc->recv_dmamap)) != 0) {
664 printf("%s: can't create recv buffer DMA map, error = %d\n",
665 sc->sc_dev.dv_xname, error);
666 goto fail_2;
667 }
668
669 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
670 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
671 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
672 printf("%s: can't load recv buffer DMA map, error = %d\n",
673 sc->sc_dev.dv_xname, error);
674 goto fail_3;
675 }
676
677 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
678 txd = &sc->rtk_tx_descs[i];
679 if ((error = bus_dmamap_create(sc->sc_dmat,
680 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
681 &txd->txd_dmamap)) != 0) {
682 printf("%s: can't create snd buffer DMA map,"
683 " error = %d\n", sc->sc_dev.dv_xname, error);
684 goto fail_4;
685 }
686 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
687 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
688 }
689 SIMPLEQ_INIT(&sc->rtk_tx_free);
690 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
691
692 /*
693 * From this point forward, the attachment cannot fail. A failure
694 * before this releases all resources thar may have been
695 * allocated.
696 */
697 sc->sc_flags |= RTK_ATTACHED;
698
699 /* Init Early TX threshold. */
700 sc->sc_txthresh = TXTH_256;
701
702 /* Reset the adapter. */
703 rtk_reset(sc);
704
705 printf("%s: Ethernet address %s\n",
706 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
707
708 ifp = &sc->ethercom.ec_if;
709 ifp->if_softc = sc;
710 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
711 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
712 ifp->if_ioctl = rtk_ioctl;
713 ifp->if_start = rtk_start;
714 ifp->if_watchdog = rtk_watchdog;
715 ifp->if_init = rtk_init;
716 ifp->if_stop = rtk_stop;
717 IFQ_SET_READY(&ifp->if_snd);
718
719 /*
720 * Do ifmedia setup.
721 */
722 sc->mii.mii_ifp = ifp;
723 sc->mii.mii_readreg = rtk_phy_readreg;
724 sc->mii.mii_writereg = rtk_phy_writereg;
725 sc->mii.mii_statchg = rtk_phy_statchg;
726 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
727 rtk_ifmedia_sts);
728 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
729 MII_PHY_ANY, MII_OFFSET_ANY, 0);
730
731 /* Choose a default media. */
732 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
733 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
734 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
735 } else {
736 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
737 }
738
739 /*
740 * Call MI attach routines.
741 */
742 if_attach(ifp);
743 ether_ifattach(ifp, eaddr);
744
745 /*
746 * Make sure the interface is shutdown during reboot.
747 */
748 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
749 if (sc->sc_sdhook == NULL)
750 printf("%s: WARNING: unable to establish shutdown hook\n",
751 sc->sc_dev.dv_xname);
752 /*
753 * Add a suspend hook to make sure we come back up after a
754 * resume.
755 */
756 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
757 rtk_power, sc);
758 if (sc->sc_powerhook == NULL)
759 printf("%s: WARNING: unable to establish power hook\n",
760 sc->sc_dev.dv_xname);
761
762
763 #if NRND > 0
764 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
765 RND_TYPE_NET, 0);
766 #endif
767
768 return;
769 fail_4:
770 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
771 txd = &sc->rtk_tx_descs[i];
772 if (txd->txd_dmamap != NULL)
773 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
774 }
775 fail_3:
776 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
777 fail_2:
778 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
779 RTK_RXBUFLEN + 16);
780 fail_1:
781 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
782 fail_0:
783 return;
784 }
785
786 /*
787 * Initialize the transmit descriptors.
788 */
789 STATIC int
790 rtk_list_tx_init(struct rtk_softc *sc)
791 {
792 struct rtk_tx_desc *txd;
793 int i;
794
795 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
796 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
797 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
798 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
799
800 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
801 txd = &sc->rtk_tx_descs[i];
802 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
803 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
804 }
805
806 return 0;
807 }
808
809 /*
810 * rtk_activate:
811 * Handle device activation/deactivation requests.
812 */
813 int
814 rtk_activate(struct device *self, enum devact act)
815 {
816 struct rtk_softc *sc = (void *)self;
817 int s, error;
818
819 error = 0;
820 s = splnet();
821 switch (act) {
822 case DVACT_ACTIVATE:
823 error = EOPNOTSUPP;
824 break;
825 case DVACT_DEACTIVATE:
826 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
827 if_deactivate(&sc->ethercom.ec_if);
828 break;
829 }
830 splx(s);
831
832 return error;
833 }
834
835 /*
836 * rtk_detach:
837 * Detach a rtk interface.
838 */
839 int
840 rtk_detach(struct rtk_softc *sc)
841 {
842 struct ifnet *ifp = &sc->ethercom.ec_if;
843 struct rtk_tx_desc *txd;
844 int i;
845
846 /*
847 * Succeed now if there isn't any work to do.
848 */
849 if ((sc->sc_flags & RTK_ATTACHED) == 0)
850 return 0;
851
852 /* Unhook our tick handler. */
853 callout_stop(&sc->rtk_tick_ch);
854
855 /* Detach all PHYs. */
856 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
857
858 /* Delete all remaining media. */
859 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
860
861 #if NRND > 0
862 rnd_detach_source(&sc->rnd_source);
863 #endif
864
865 ether_ifdetach(ifp);
866 if_detach(ifp);
867
868 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
869 txd = &sc->rtk_tx_descs[i];
870 if (txd->txd_dmamap != NULL)
871 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
872 }
873 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
874 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
875 RTK_RXBUFLEN + 16);
876 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
877
878 shutdownhook_disestablish(sc->sc_sdhook);
879 powerhook_disestablish(sc->sc_powerhook);
880
881 return 0;
882 }
883
884 /*
885 * rtk_enable:
886 * Enable the RTL81X9 chip.
887 */
888 int
889 rtk_enable(struct rtk_softc *sc)
890 {
891
892 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
893 if ((*sc->sc_enable)(sc) != 0) {
894 printf("%s: device enable failed\n",
895 sc->sc_dev.dv_xname);
896 return EIO;
897 }
898 sc->sc_flags |= RTK_ENABLED;
899 }
900 return 0;
901 }
902
903 /*
904 * rtk_disable:
905 * Disable the RTL81X9 chip.
906 */
907 void
908 rtk_disable(struct rtk_softc *sc)
909 {
910
911 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
912 (*sc->sc_disable)(sc);
913 sc->sc_flags &= ~RTK_ENABLED;
914 }
915 }
916
917 /*
918 * rtk_power:
919 * Power management (suspend/resume) hook.
920 */
921 void
922 rtk_power(int why, void *arg)
923 {
924 struct rtk_softc *sc = (void *)arg;
925 struct ifnet *ifp = &sc->ethercom.ec_if;
926 int s;
927
928 s = splnet();
929 switch (why) {
930 case PWR_SUSPEND:
931 case PWR_STANDBY:
932 rtk_stop(ifp, 0);
933 if (sc->sc_power != NULL)
934 (*sc->sc_power)(sc, why);
935 break;
936 case PWR_RESUME:
937 if (ifp->if_flags & IFF_UP) {
938 if (sc->sc_power != NULL)
939 (*sc->sc_power)(sc, why);
940 rtk_init(ifp);
941 }
942 break;
943 case PWR_SOFTSUSPEND:
944 case PWR_SOFTSTANDBY:
945 case PWR_SOFTRESUME:
946 break;
947 }
948 splx(s);
949 }
950
951 /*
952 * A frame has been uploaded: pass the resulting mbuf chain up to
953 * the higher level protocols.
954 *
955 * You know there's something wrong with a PCI bus-master chip design.
956 *
957 * The receive operation is badly documented in the datasheet, so I'll
958 * attempt to document it here. The driver provides a buffer area and
959 * places its base address in the RX buffer start address register.
960 * The chip then begins copying frames into the RX buffer. Each frame
961 * is preceded by a 32-bit RX status word which specifies the length
962 * of the frame and certain other status bits. Each frame (starting with
963 * the status word) is also 32-bit aligned. The frame length is in the
964 * first 16 bits of the status word; the lower 15 bits correspond with
965 * the 'rx status register' mentioned in the datasheet.
966 *
967 * Note: to make the Alpha happy, the frame payload needs to be aligned
968 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
969 * shifted forward 2 bytes.
970 */
971 STATIC void
972 rtk_rxeof(struct rtk_softc *sc)
973 {
974 struct mbuf *m;
975 struct ifnet *ifp;
976 caddr_t rxbufpos, dst;
977 u_int total_len, wrap;
978 uint32_t rxstat;
979 uint16_t cur_rx, new_rx;
980 uint16_t limit;
981 uint16_t rx_bytes, max_bytes;
982
983 ifp = &sc->ethercom.ec_if;
984
985 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
986
987 /* Do not try to read past this point. */
988 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
989
990 if (limit < cur_rx)
991 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
992 else
993 max_bytes = limit - cur_rx;
994 rx_bytes = 0;
995
996 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
997 rxbufpos = sc->rtk_rx_buf + cur_rx;
998 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
999 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1000 rxstat = le32toh(*(uint32_t *)rxbufpos);
1001 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1002 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1003
1004 /*
1005 * Here's a totally undocumented fact for you. When the
1006 * RealTek chip is in the process of copying a packet into
1007 * RAM for you, the length will be 0xfff0. If you spot a
1008 * packet header with this value, you need to stop. The
1009 * datasheet makes absolutely no mention of this and
1010 * RealTek should be shot for this.
1011 */
1012 total_len = rxstat >> 16;
1013 if (total_len == RTK_RXSTAT_UNFINISHED)
1014 break;
1015
1016 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1017 total_len < ETHER_MIN_LEN ||
1018 total_len > ETHER_MAX_LEN) {
1019 ifp->if_ierrors++;
1020
1021 /*
1022 * submitted by:[netbsd-pcmcia:00484]
1023 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1024 * obtain from:
1025 * FreeBSD if_rl.c rev 1.24->1.25
1026 *
1027 */
1028 #if 0
1029 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1030 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1031 RTK_RXSTAT_ALIGNERR)) {
1032 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1033 CSR_WRITE_2(sc, RTK_COMMAND,
1034 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1035 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1036 CSR_WRITE_4(sc, RTK_RXADDR,
1037 sc->recv_dmamap->dm_segs[0].ds_addr);
1038 cur_rx = 0;
1039 }
1040 break;
1041 #else
1042 rtk_init(ifp);
1043 return;
1044 #endif
1045 }
1046
1047 /* No errors; receive the packet. */
1048 rx_bytes += total_len + RTK_RXSTAT_LEN;
1049
1050 /*
1051 * Avoid trying to read more bytes than we know
1052 * the chip has prepared for us.
1053 */
1054 if (rx_bytes > max_bytes)
1055 break;
1056
1057 /*
1058 * Skip the status word, wrapping around to the beginning
1059 * of the Rx area, if necessary.
1060 */
1061 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1062 rxbufpos = sc->rtk_rx_buf + cur_rx;
1063
1064 /*
1065 * Compute the number of bytes at which the packet
1066 * will wrap to the beginning of the ring buffer.
1067 */
1068 wrap = RTK_RXBUFLEN - cur_rx;
1069
1070 /*
1071 * Compute where the next pending packet is.
1072 */
1073 if (total_len > wrap)
1074 new_rx = total_len - wrap;
1075 else
1076 new_rx = cur_rx + total_len;
1077 /* Round up to 32-bit boundary. */
1078 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1079
1080 /*
1081 * The RealTek chip includes the CRC with every
1082 * incoming packet; trim it off here.
1083 */
1084 total_len -= ETHER_CRC_LEN;
1085
1086 /*
1087 * Now allocate an mbuf (and possibly a cluster) to hold
1088 * the packet. Note we offset the packet 2 bytes so that
1089 * data after the Ethernet header will be 4-byte aligned.
1090 */
1091 MGETHDR(m, M_DONTWAIT, MT_DATA);
1092 if (m == NULL) {
1093 printf("%s: unable to allocate Rx mbuf\n",
1094 sc->sc_dev.dv_xname);
1095 ifp->if_ierrors++;
1096 goto next_packet;
1097 }
1098 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1099 MCLGET(m, M_DONTWAIT);
1100 if ((m->m_flags & M_EXT) == 0) {
1101 printf("%s: unable to allocate Rx cluster\n",
1102 sc->sc_dev.dv_xname);
1103 ifp->if_ierrors++;
1104 m_freem(m);
1105 m = NULL;
1106 goto next_packet;
1107 }
1108 }
1109 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1110 m->m_pkthdr.rcvif = ifp;
1111 m->m_pkthdr.len = m->m_len = total_len;
1112 dst = mtod(m, caddr_t);
1113
1114 /*
1115 * If the packet wraps, copy up to the wrapping point.
1116 */
1117 if (total_len > wrap) {
1118 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1119 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1120 memcpy(dst, rxbufpos, wrap);
1121 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1122 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1123 cur_rx = 0;
1124 rxbufpos = sc->rtk_rx_buf;
1125 total_len -= wrap;
1126 dst += wrap;
1127 }
1128
1129 /*
1130 * ...and now the rest.
1131 */
1132 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1133 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1134 memcpy(dst, rxbufpos, total_len);
1135 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1136 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1137
1138 next_packet:
1139 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1140 cur_rx = new_rx;
1141
1142 if (m == NULL)
1143 continue;
1144
1145 ifp->if_ipackets++;
1146
1147 #if NBPFILTER > 0
1148 if (ifp->if_bpf)
1149 bpf_mtap(ifp->if_bpf, m);
1150 #endif
1151 /* pass it on. */
1152 (*ifp->if_input)(ifp, m);
1153 }
1154 }
1155
1156 /*
1157 * A frame was downloaded to the chip. It's safe for us to clean up
1158 * the list buffers.
1159 */
1160 STATIC void
1161 rtk_txeof(struct rtk_softc *sc)
1162 {
1163 struct ifnet *ifp;
1164 struct rtk_tx_desc *txd;
1165 uint32_t txstat;
1166
1167 ifp = &sc->ethercom.ec_if;
1168
1169 /*
1170 * Go through our tx list and free mbufs for those
1171 * frames that have been uploaded.
1172 */
1173 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1174 txstat = CSR_READ_4(sc, txd->txd_txstat);
1175 if ((txstat & (RTK_TXSTAT_TX_OK|
1176 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1177 break;
1178
1179 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1180
1181 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1182 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1184 m_freem(txd->txd_mbuf);
1185 txd->txd_mbuf = NULL;
1186
1187 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1188
1189 if (txstat & RTK_TXSTAT_TX_OK)
1190 ifp->if_opackets++;
1191 else {
1192 ifp->if_oerrors++;
1193
1194 /*
1195 * Increase Early TX threshold if underrun occurred.
1196 * Increase step 64 bytes.
1197 */
1198 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1199 #ifdef DEBUG
1200 printf("%s: transmit underrun;",
1201 sc->sc_dev.dv_xname);
1202 #endif
1203 if (sc->sc_txthresh < TXTH_MAX) {
1204 sc->sc_txthresh += 2;
1205 #ifdef DEBUG
1206 printf(" new threshold: %d bytes",
1207 sc->sc_txthresh * 32);
1208 #endif
1209 }
1210 printf("\n");
1211 }
1212 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1213 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1214 }
1215 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1216 ifp->if_flags &= ~IFF_OACTIVE;
1217 }
1218
1219 /* Clear the timeout timer if there is no pending packet. */
1220 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1221 ifp->if_timer = 0;
1222
1223 }
1224
1225 int
1226 rtk_intr(void *arg)
1227 {
1228 struct rtk_softc *sc;
1229 struct ifnet *ifp;
1230 uint16_t status;
1231 int handled;
1232
1233 sc = arg;
1234 ifp = &sc->ethercom.ec_if;
1235
1236 /* Disable interrupts. */
1237 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1238
1239 handled = 0;
1240 for (;;) {
1241
1242 status = CSR_READ_2(sc, RTK_ISR);
1243 if (status)
1244 CSR_WRITE_2(sc, RTK_ISR, status);
1245
1246 if ((status & RTK_INTRS) == 0)
1247 break;
1248
1249 handled = 1;
1250
1251 if (status & RTK_ISR_RX_OK)
1252 rtk_rxeof(sc);
1253
1254 if (status & RTK_ISR_RX_ERR)
1255 rtk_rxeof(sc);
1256
1257 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1258 rtk_txeof(sc);
1259
1260 if (status & RTK_ISR_SYSTEM_ERR) {
1261 rtk_reset(sc);
1262 rtk_init(ifp);
1263 }
1264 }
1265
1266 /* Re-enable interrupts. */
1267 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1268
1269 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1270 rtk_start(ifp);
1271
1272 #if NRND > 0
1273 if (RND_ENABLED(&sc->rnd_source))
1274 rnd_add_uint32(&sc->rnd_source, status);
1275 #endif
1276
1277 return handled;
1278 }
1279
1280 /*
1281 * Main transmit routine.
1282 */
1283
1284 STATIC void
1285 rtk_start(struct ifnet *ifp)
1286 {
1287 struct rtk_softc *sc;
1288 struct rtk_tx_desc *txd;
1289 struct mbuf *m_head, *m_new;
1290 int error, len;
1291
1292 sc = ifp->if_softc;
1293
1294 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1295 IFQ_POLL(&ifp->if_snd, m_head);
1296 if (m_head == NULL)
1297 break;
1298 m_new = NULL;
1299
1300 /*
1301 * Load the DMA map. If this fails, the packet didn't
1302 * fit in one DMA segment, and we need to copy. Note,
1303 * the packet must also be aligned.
1304 * if the packet is too small, copy it too, so we're sure
1305 * so have enouth room for the pad buffer.
1306 */
1307 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1308 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1309 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1310 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1311 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1312 if (m_new == NULL) {
1313 printf("%s: unable to allocate Tx mbuf\n",
1314 sc->sc_dev.dv_xname);
1315 break;
1316 }
1317 if (m_head->m_pkthdr.len > MHLEN) {
1318 MCLGET(m_new, M_DONTWAIT);
1319 if ((m_new->m_flags & M_EXT) == 0) {
1320 printf("%s: unable to allocate Tx "
1321 "cluster\n", sc->sc_dev.dv_xname);
1322 m_freem(m_new);
1323 break;
1324 }
1325 }
1326 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1327 mtod(m_new, caddr_t));
1328 m_new->m_pkthdr.len = m_new->m_len =
1329 m_head->m_pkthdr.len;
1330 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1331 memset(
1332 mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1333 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1334 m_new->m_pkthdr.len = m_new->m_len =
1335 ETHER_PAD_LEN;
1336 }
1337 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1338 txd->txd_dmamap, m_new,
1339 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1340 if (error) {
1341 printf("%s: unable to load Tx buffer, "
1342 "error = %d\n", sc->sc_dev.dv_xname, error);
1343 break;
1344 }
1345 }
1346 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1347 #if NBPFILTER > 0
1348 /*
1349 * If there's a BPF listener, bounce a copy of this frame
1350 * to him.
1351 */
1352 if (ifp->if_bpf)
1353 bpf_mtap(ifp->if_bpf, m_head);
1354 #endif
1355 if (m_new != NULL) {
1356 m_freem(m_head);
1357 m_head = m_new;
1358 }
1359 txd->txd_mbuf = m_head;
1360
1361 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1362 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1363
1364 /*
1365 * Transmit the frame.
1366 */
1367 bus_dmamap_sync(sc->sc_dmat,
1368 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1369 BUS_DMASYNC_PREWRITE);
1370
1371 len = txd->txd_dmamap->dm_segs[0].ds_len;
1372
1373 CSR_WRITE_4(sc, txd->txd_txaddr,
1374 txd->txd_dmamap->dm_segs[0].ds_addr);
1375 CSR_WRITE_4(sc, txd->txd_txstat, RTK_TX_THRESH(sc) | len);
1376
1377 /*
1378 * Set a timeout in case the chip goes out to lunch.
1379 */
1380 ifp->if_timer = 5;
1381 }
1382
1383 /*
1384 * We broke out of the loop because all our TX slots are
1385 * full. Mark the NIC as busy until it drains some of the
1386 * packets from the queue.
1387 */
1388 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1389 ifp->if_flags |= IFF_OACTIVE;
1390 }
1391
1392 STATIC int
1393 rtk_init(struct ifnet *ifp)
1394 {
1395 struct rtk_softc *sc = ifp->if_softc;
1396 int error, i;
1397 uint32_t rxcfg;
1398
1399 if ((error = rtk_enable(sc)) != 0)
1400 goto out;
1401
1402 /*
1403 * Cancel pending I/O.
1404 */
1405 rtk_stop(ifp, 0);
1406
1407 /* Init our MAC address */
1408 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1409 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1410 }
1411
1412 /* Init the RX buffer pointer register. */
1413 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1414 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1415 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1416
1417 /* Init TX descriptors. */
1418 rtk_list_tx_init(sc);
1419
1420 /* Init Early TX threshold. */
1421 sc->sc_txthresh = TXTH_256;
1422 /*
1423 * Enable transmit and receive.
1424 */
1425 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1426
1427 /*
1428 * Set the initial TX and RX configuration.
1429 */
1430 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1431 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1432
1433 /* Set the individual bit to receive frames for this host only. */
1434 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1435 rxcfg |= RTK_RXCFG_RX_INDIV;
1436
1437 /* If we want promiscuous mode, set the allframes bit. */
1438 if (ifp->if_flags & IFF_PROMISC) {
1439 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1440 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1441 } else {
1442 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1443 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1444 }
1445
1446 /*
1447 * Set capture broadcast bit to capture broadcast frames.
1448 */
1449 if (ifp->if_flags & IFF_BROADCAST) {
1450 rxcfg |= RTK_RXCFG_RX_BROAD;
1451 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1452 } else {
1453 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1454 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1455 }
1456
1457 /*
1458 * Program the multicast filter, if necessary.
1459 */
1460 rtk_setmulti(sc);
1461
1462 /*
1463 * Enable interrupts.
1464 */
1465 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1466
1467 /* Start RX/TX process. */
1468 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1469
1470 /* Enable receiver and transmitter. */
1471 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1472
1473 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1474
1475 /*
1476 * Set current media.
1477 */
1478 mii_mediachg(&sc->mii);
1479
1480 ifp->if_flags |= IFF_RUNNING;
1481 ifp->if_flags &= ~IFF_OACTIVE;
1482
1483 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1484
1485 out:
1486 if (error) {
1487 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1488 ifp->if_timer = 0;
1489 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1490 }
1491 return error;
1492 }
1493
1494 /*
1495 * Set media options.
1496 */
1497 STATIC int
1498 rtk_ifmedia_upd(struct ifnet *ifp)
1499 {
1500 struct rtk_softc *sc;
1501
1502 sc = ifp->if_softc;
1503
1504 return mii_mediachg(&sc->mii);
1505 }
1506
1507 /*
1508 * Report current media status.
1509 */
1510 STATIC void
1511 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1512 {
1513 struct rtk_softc *sc;
1514
1515 sc = ifp->if_softc;
1516
1517 mii_pollstat(&sc->mii);
1518 ifmr->ifm_status = sc->mii.mii_media_status;
1519 ifmr->ifm_active = sc->mii.mii_media_active;
1520 }
1521
1522 STATIC int
1523 rtk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1524 {
1525 struct rtk_softc *sc = ifp->if_softc;
1526 struct ifreq *ifr = (struct ifreq *)data;
1527 int s, error;
1528
1529 s = splnet();
1530
1531 switch (command) {
1532 case SIOCGIFMEDIA:
1533 case SIOCSIFMEDIA:
1534 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1535 break;
1536
1537 default:
1538 error = ether_ioctl(ifp, command, data);
1539 if (error == ENETRESET) {
1540 if (ifp->if_flags & IFF_RUNNING) {
1541 /*
1542 * Multicast list has changed. Set the
1543 * hardware filter accordingly.
1544 */
1545 rtk_setmulti(sc);
1546 }
1547 error = 0;
1548 }
1549 break;
1550 }
1551
1552 splx(s);
1553
1554 return error;
1555 }
1556
1557 STATIC void
1558 rtk_watchdog(struct ifnet *ifp)
1559 {
1560 struct rtk_softc *sc;
1561
1562 sc = ifp->if_softc;
1563
1564 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1565 ifp->if_oerrors++;
1566 rtk_txeof(sc);
1567 rtk_rxeof(sc);
1568 rtk_init(ifp);
1569 }
1570
1571 /*
1572 * Stop the adapter and free any mbufs allocated to the
1573 * RX and TX lists.
1574 */
1575 STATIC void
1576 rtk_stop(struct ifnet *ifp, int disable)
1577 {
1578 struct rtk_softc *sc = ifp->if_softc;
1579 struct rtk_tx_desc *txd;
1580
1581 callout_stop(&sc->rtk_tick_ch);
1582
1583 mii_down(&sc->mii);
1584
1585 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1586 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1587
1588 /*
1589 * Free the TX list buffers.
1590 */
1591 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1592 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1593 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1594 m_freem(txd->txd_mbuf);
1595 txd->txd_mbuf = NULL;
1596 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1597 }
1598
1599 if (disable)
1600 rtk_disable(sc);
1601
1602 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1603 ifp->if_timer = 0;
1604 }
1605
1606 /*
1607 * Stop all chip I/O so that the kernel's probe routines don't
1608 * get confused by errant DMAs when rebooting.
1609 */
1610 STATIC void
1611 rtk_shutdown(void *arg)
1612 {
1613 struct rtk_softc *sc = (struct rtk_softc *)arg;
1614
1615 rtk_stop(&sc->ethercom.ec_if, 0);
1616 }
1617
1618 STATIC void
1619 rtk_tick(void *arg)
1620 {
1621 struct rtk_softc *sc = arg;
1622 int s;
1623
1624 s = splnet();
1625 mii_tick(&sc->mii);
1626 splx(s);
1627
1628 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1629 }
1630