rtl81x9.c revision 1.68 1 /* $NetBSD: rtl81x9.c,v 1.68 2007/02/04 06:01:30 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.68 2007/02/04 06:01:30 tsutsui Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, caddr_t);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick(void *);
157
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define EE_DELAY() DELAY(100)
173
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175
176 /*
177 * Send a read command and address to the EEPROM, check for ACK.
178 */
179 STATIC void
180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
181 {
182 int d, i;
183
184 d = (RTK_EECMD_READ << addr_len) | addr;
185
186 /*
187 * Feed in each bit and stobe the clock.
188 */
189 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 if (d & (1 << (i - 1))) {
191 EE_SET(RTK_EE_DATAIN);
192 } else {
193 EE_CLR(RTK_EE_DATAIN);
194 }
195 EE_DELAY();
196 EE_SET(RTK_EE_CLK);
197 EE_DELAY();
198 EE_CLR(RTK_EE_CLK);
199 EE_DELAY();
200 }
201 }
202
203 /*
204 * Read a word of data stored in the EEPROM at address 'addr.'
205 */
206 uint16_t
207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
208 {
209 uint16_t word;
210 int i;
211
212 /* Enter EEPROM access mode. */
213 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
214 EE_DELAY();
215 EE_SET(RTK_EE_SEL);
216
217 /*
218 * Send address of word we want to read.
219 */
220 rtk_eeprom_putbyte(sc, addr, addr_len);
221
222 /*
223 * Start reading bits from EEPROM.
224 */
225 word = 0;
226 for (i = 16; i > 0; i--) {
227 EE_SET(RTK_EE_CLK);
228 EE_DELAY();
229 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
230 word |= 1 << (i - 1);
231 EE_CLR(RTK_EE_CLK);
232 EE_DELAY();
233 }
234
235 /* Turn off EEPROM access mode. */
236 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
237
238 return word;
239 }
240
241 /*
242 * MII access routines are provided for the 8129, which
243 * doesn't have a built-in PHY. For the 8139, we fake things
244 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
245 * direct access PHY registers.
246 */
247 #define MII_SET(x) \
248 CSR_WRITE_1(sc, RTK_MII, \
249 CSR_READ_1(sc, RTK_MII) | (x))
250
251 #define MII_CLR(x) \
252 CSR_WRITE_1(sc, RTK_MII, \
253 CSR_READ_1(sc, RTK_MII) & ~(x))
254
255 /*
256 * Sync the PHYs by setting data bit and strobing the clock 32 times.
257 */
258 STATIC void
259 rtk_mii_sync(struct rtk_softc *sc)
260 {
261 int i;
262
263 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
264
265 for (i = 0; i < 32; i++) {
266 MII_SET(RTK_MII_CLK);
267 DELAY(1);
268 MII_CLR(RTK_MII_CLK);
269 DELAY(1);
270 }
271 }
272
273 /*
274 * Clock a series of bits through the MII.
275 */
276 STATIC void
277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
278 {
279 int i;
280
281 MII_CLR(RTK_MII_CLK);
282
283 for (i = cnt; i > 0; i--) {
284 if (bits & (1 << (i - 1))) {
285 MII_SET(RTK_MII_DATAOUT);
286 } else {
287 MII_CLR(RTK_MII_DATAOUT);
288 }
289 DELAY(1);
290 MII_CLR(RTK_MII_CLK);
291 DELAY(1);
292 MII_SET(RTK_MII_CLK);
293 }
294 }
295
296 /*
297 * Read an PHY register through the MII.
298 */
299 STATIC int
300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
301 {
302 int i, ack, s;
303
304 s = splnet();
305
306 /*
307 * Set up frame for RX.
308 */
309 frame->mii_stdelim = RTK_MII_STARTDELIM;
310 frame->mii_opcode = RTK_MII_READOP;
311 frame->mii_turnaround = 0;
312 frame->mii_data = 0;
313
314 CSR_WRITE_2(sc, RTK_MII, 0);
315
316 /*
317 * Turn on data xmit.
318 */
319 MII_SET(RTK_MII_DIR);
320
321 rtk_mii_sync(sc);
322
323 /*
324 * Send command/address info.
325 */
326 rtk_mii_send(sc, frame->mii_stdelim, 2);
327 rtk_mii_send(sc, frame->mii_opcode, 2);
328 rtk_mii_send(sc, frame->mii_phyaddr, 5);
329 rtk_mii_send(sc, frame->mii_regaddr, 5);
330
331 /* Idle bit */
332 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
333 DELAY(1);
334 MII_SET(RTK_MII_CLK);
335 DELAY(1);
336
337 /* Turn off xmit. */
338 MII_CLR(RTK_MII_DIR);
339
340 /* Check for ack */
341 MII_CLR(RTK_MII_CLK);
342 DELAY(1);
343 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
344 MII_SET(RTK_MII_CLK);
345 DELAY(1);
346
347 /*
348 * Now try reading data bits. If the ack failed, we still
349 * need to clock through 16 cycles to keep the PHY(s) in sync.
350 */
351 if (ack) {
352 for (i = 0; i < 16; i++) {
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 }
358 goto fail;
359 }
360
361 for (i = 16; i > 0; i--) {
362 MII_CLR(RTK_MII_CLK);
363 DELAY(1);
364 if (!ack) {
365 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
366 frame->mii_data |= 1 << (i - 1);
367 DELAY(1);
368 }
369 MII_SET(RTK_MII_CLK);
370 DELAY(1);
371 }
372
373 fail:
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 MII_SET(RTK_MII_CLK);
377 DELAY(1);
378
379 splx(s);
380
381 if (ack)
382 return 1;
383 return 0;
384 }
385
386 /*
387 * Write to a PHY register through the MII.
388 */
389 STATIC int
390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
391 {
392 int s;
393
394 s = splnet();
395 /*
396 * Set up frame for TX.
397 */
398 frame->mii_stdelim = RTK_MII_STARTDELIM;
399 frame->mii_opcode = RTK_MII_WRITEOP;
400 frame->mii_turnaround = RTK_MII_TURNAROUND;
401
402 /*
403 * Turn on data output.
404 */
405 MII_SET(RTK_MII_DIR);
406
407 rtk_mii_sync(sc);
408
409 rtk_mii_send(sc, frame->mii_stdelim, 2);
410 rtk_mii_send(sc, frame->mii_opcode, 2);
411 rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 rtk_mii_send(sc, frame->mii_regaddr, 5);
413 rtk_mii_send(sc, frame->mii_turnaround, 2);
414 rtk_mii_send(sc, frame->mii_data, 16);
415
416 /* Idle bit. */
417 MII_SET(RTK_MII_CLK);
418 DELAY(1);
419 MII_CLR(RTK_MII_CLK);
420 DELAY(1);
421
422 /*
423 * Turn off xmit.
424 */
425 MII_CLR(RTK_MII_DIR);
426
427 splx(s);
428
429 return 0;
430 }
431
432 STATIC int
433 rtk_phy_readreg(struct device *self, int phy, int reg)
434 {
435 struct rtk_softc *sc = (void *)self;
436 struct rtk_mii_frame frame;
437 int rval;
438 int rtk8139_reg;
439
440 if (sc->rtk_type == RTK_8139) {
441 if (phy != 7)
442 return 0;
443
444 switch (reg) {
445 case MII_BMCR:
446 rtk8139_reg = RTK_BMCR;
447 break;
448 case MII_BMSR:
449 rtk8139_reg = RTK_BMSR;
450 break;
451 case MII_ANAR:
452 rtk8139_reg = RTK_ANAR;
453 break;
454 case MII_ANER:
455 rtk8139_reg = RTK_ANER;
456 break;
457 case MII_ANLPAR:
458 rtk8139_reg = RTK_LPAR;
459 break;
460 default:
461 #if 0
462 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
463 #endif
464 return 0;
465 }
466 rval = CSR_READ_2(sc, rtk8139_reg);
467 return rval;
468 }
469
470 memset((char *)&frame, 0, sizeof(frame));
471
472 frame.mii_phyaddr = phy;
473 frame.mii_regaddr = reg;
474 rtk_mii_readreg(sc, &frame);
475
476 return frame.mii_data;
477 }
478
479 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
480 {
481 struct rtk_softc *sc = (void *)self;
482 struct rtk_mii_frame frame;
483 int rtk8139_reg;
484
485 if (sc->rtk_type == RTK_8139) {
486 if (phy != 7)
487 return;
488
489 switch (reg) {
490 case MII_BMCR:
491 rtk8139_reg = RTK_BMCR;
492 break;
493 case MII_BMSR:
494 rtk8139_reg = RTK_BMSR;
495 break;
496 case MII_ANAR:
497 rtk8139_reg = RTK_ANAR;
498 break;
499 case MII_ANER:
500 rtk8139_reg = RTK_ANER;
501 break;
502 case MII_ANLPAR:
503 rtk8139_reg = RTK_LPAR;
504 break;
505 default:
506 #if 0
507 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
508 #endif
509 return;
510 }
511 CSR_WRITE_2(sc, rtk8139_reg, data);
512 return;
513 }
514
515 memset((char *)&frame, 0, sizeof(frame));
516
517 frame.mii_phyaddr = phy;
518 frame.mii_regaddr = reg;
519 frame.mii_data = data;
520
521 rtk_mii_writereg(sc, &frame);
522 }
523
524 STATIC void
525 rtk_phy_statchg(struct device *v)
526 {
527
528 /* Nothing to do. */
529 }
530
531 #define rtk_calchash(addr) \
532 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
533
534 /*
535 * Program the 64-bit multicast hash filter.
536 */
537 void
538 rtk_setmulti(struct rtk_softc *sc)
539 {
540 struct ifnet *ifp;
541 uint32_t hashes[2] = { 0, 0 };
542 uint32_t rxfilt;
543 struct ether_multi *enm;
544 struct ether_multistep step;
545 int h, mcnt;
546
547 ifp = &sc->ethercom.ec_if;
548
549 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
550
551 if (ifp->if_flags & IFF_PROMISC) {
552 allmulti:
553 ifp->if_flags |= IFF_ALLMULTI;
554 rxfilt |= RTK_RXCFG_RX_MULTI;
555 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
556 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
557 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
558 return;
559 }
560
561 /* first, zot all the existing hash bits */
562 CSR_WRITE_4(sc, RTK_MAR0, 0);
563 CSR_WRITE_4(sc, RTK_MAR4, 0);
564
565 /* now program new ones */
566 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
567 mcnt = 0;
568 while (enm != NULL) {
569 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
570 ETHER_ADDR_LEN) != 0)
571 goto allmulti;
572
573 h = rtk_calchash(enm->enm_addrlo);
574 if (h < 32)
575 hashes[0] |= (1 << h);
576 else
577 hashes[1] |= (1 << (h - 32));
578 mcnt++;
579 ETHER_NEXT_MULTI(step, enm);
580 }
581
582 ifp->if_flags &= ~IFF_ALLMULTI;
583
584 if (mcnt)
585 rxfilt |= RTK_RXCFG_RX_MULTI;
586 else
587 rxfilt &= ~RTK_RXCFG_RX_MULTI;
588
589 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
590 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
591 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
592 }
593
594 void
595 rtk_reset(struct rtk_softc *sc)
596 {
597 int i;
598
599 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
600
601 for (i = 0; i < RTK_TIMEOUT; i++) {
602 DELAY(10);
603 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
604 break;
605 }
606 if (i == RTK_TIMEOUT)
607 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
608 }
609
610 /*
611 * Attach the interface. Allocate softc structures, do ifmedia
612 * setup and ethernet/BPF attach.
613 */
614 void
615 rtk_attach(struct rtk_softc *sc)
616 {
617 struct ifnet *ifp;
618 struct rtk_tx_desc *txd;
619 uint16_t val;
620 uint8_t eaddr[ETHER_ADDR_LEN];
621 int error;
622 int i, addr_len;
623
624 callout_init(&sc->rtk_tick_ch);
625
626 /*
627 * Check EEPROM type 9346 or 9356.
628 */
629 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
630 addr_len = RTK_EEADDR_LEN1;
631 else
632 addr_len = RTK_EEADDR_LEN0;
633
634 /*
635 * Get station address.
636 */
637 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
638 eaddr[0] = val & 0xff;
639 eaddr[1] = val >> 8;
640 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
641 eaddr[2] = val & 0xff;
642 eaddr[3] = val >> 8;
643 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
644 eaddr[4] = val & 0xff;
645 eaddr[5] = val >> 8;
646
647 if ((error = bus_dmamem_alloc(sc->sc_dmat,
648 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
649 BUS_DMA_NOWAIT)) != 0) {
650 printf("%s: can't allocate recv buffer, error = %d\n",
651 sc->sc_dev.dv_xname, error);
652 goto fail_0;
653 }
654
655 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
656 RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
657 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
658 printf("%s: can't map recv buffer, error = %d\n",
659 sc->sc_dev.dv_xname, error);
660 goto fail_1;
661 }
662
663 if ((error = bus_dmamap_create(sc->sc_dmat,
664 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
665 &sc->recv_dmamap)) != 0) {
666 printf("%s: can't create recv buffer DMA map, error = %d\n",
667 sc->sc_dev.dv_xname, error);
668 goto fail_2;
669 }
670
671 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
672 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
673 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
674 printf("%s: can't load recv buffer DMA map, error = %d\n",
675 sc->sc_dev.dv_xname, error);
676 goto fail_3;
677 }
678
679 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
680 txd = &sc->rtk_tx_descs[i];
681 if ((error = bus_dmamap_create(sc->sc_dmat,
682 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
683 &txd->txd_dmamap)) != 0) {
684 printf("%s: can't create snd buffer DMA map,"
685 " error = %d\n", sc->sc_dev.dv_xname, error);
686 goto fail_4;
687 }
688 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
689 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
690 }
691 SIMPLEQ_INIT(&sc->rtk_tx_free);
692 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
693
694 /*
695 * From this point forward, the attachment cannot fail. A failure
696 * before this releases all resources thar may have been
697 * allocated.
698 */
699 sc->sc_flags |= RTK_ATTACHED;
700
701 /* Reset the adapter. */
702 rtk_reset(sc);
703
704 printf("%s: Ethernet address %s\n",
705 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
706
707 ifp = &sc->ethercom.ec_if;
708 ifp->if_softc = sc;
709 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
710 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
711 ifp->if_ioctl = rtk_ioctl;
712 ifp->if_start = rtk_start;
713 ifp->if_watchdog = rtk_watchdog;
714 ifp->if_init = rtk_init;
715 ifp->if_stop = rtk_stop;
716 IFQ_SET_READY(&ifp->if_snd);
717
718 /*
719 * Do ifmedia setup.
720 */
721 sc->mii.mii_ifp = ifp;
722 sc->mii.mii_readreg = rtk_phy_readreg;
723 sc->mii.mii_writereg = rtk_phy_writereg;
724 sc->mii.mii_statchg = rtk_phy_statchg;
725 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
726 rtk_ifmedia_sts);
727 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
728 MII_PHY_ANY, MII_OFFSET_ANY, 0);
729
730 /* Choose a default media. */
731 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
732 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
733 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
734 } else {
735 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
736 }
737
738 /*
739 * Call MI attach routines.
740 */
741 if_attach(ifp);
742 ether_ifattach(ifp, eaddr);
743
744 /*
745 * Make sure the interface is shutdown during reboot.
746 */
747 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
748 if (sc->sc_sdhook == NULL)
749 printf("%s: WARNING: unable to establish shutdown hook\n",
750 sc->sc_dev.dv_xname);
751 /*
752 * Add a suspend hook to make sure we come back up after a
753 * resume.
754 */
755 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
756 rtk_power, sc);
757 if (sc->sc_powerhook == NULL)
758 printf("%s: WARNING: unable to establish power hook\n",
759 sc->sc_dev.dv_xname);
760
761
762 #if NRND > 0
763 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
764 RND_TYPE_NET, 0);
765 #endif
766
767 return;
768 fail_4:
769 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
770 txd = &sc->rtk_tx_descs[i];
771 if (txd->txd_dmamap != NULL)
772 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
773 }
774 fail_3:
775 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
776 fail_2:
777 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
778 RTK_RXBUFLEN + 16);
779 fail_1:
780 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
781 fail_0:
782 return;
783 }
784
785 /*
786 * Initialize the transmit descriptors.
787 */
788 STATIC int
789 rtk_list_tx_init(struct rtk_softc *sc)
790 {
791 struct rtk_tx_desc *txd;
792 int i;
793
794 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
795 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
796 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
797 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
798
799 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
800 txd = &sc->rtk_tx_descs[i];
801 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
802 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
803 }
804
805 return 0;
806 }
807
808 /*
809 * rtk_activate:
810 * Handle device activation/deactivation requests.
811 */
812 int
813 rtk_activate(struct device *self, enum devact act)
814 {
815 struct rtk_softc *sc = (void *)self;
816 int s, error;
817
818 error = 0;
819 s = splnet();
820 switch (act) {
821 case DVACT_ACTIVATE:
822 error = EOPNOTSUPP;
823 break;
824 case DVACT_DEACTIVATE:
825 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
826 if_deactivate(&sc->ethercom.ec_if);
827 break;
828 }
829 splx(s);
830
831 return error;
832 }
833
834 /*
835 * rtk_detach:
836 * Detach a rtk interface.
837 */
838 int
839 rtk_detach(struct rtk_softc *sc)
840 {
841 struct ifnet *ifp = &sc->ethercom.ec_if;
842 struct rtk_tx_desc *txd;
843 int i;
844
845 /*
846 * Succeed now if there isn't any work to do.
847 */
848 if ((sc->sc_flags & RTK_ATTACHED) == 0)
849 return 0;
850
851 /* Unhook our tick handler. */
852 callout_stop(&sc->rtk_tick_ch);
853
854 /* Detach all PHYs. */
855 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
856
857 /* Delete all remaining media. */
858 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
859
860 #if NRND > 0
861 rnd_detach_source(&sc->rnd_source);
862 #endif
863
864 ether_ifdetach(ifp);
865 if_detach(ifp);
866
867 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
868 txd = &sc->rtk_tx_descs[i];
869 if (txd->txd_dmamap != NULL)
870 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
871 }
872 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
873 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
874 RTK_RXBUFLEN + 16);
875 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
876
877 shutdownhook_disestablish(sc->sc_sdhook);
878 powerhook_disestablish(sc->sc_powerhook);
879
880 return 0;
881 }
882
883 /*
884 * rtk_enable:
885 * Enable the RTL81X9 chip.
886 */
887 int
888 rtk_enable(struct rtk_softc *sc)
889 {
890
891 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
892 if ((*sc->sc_enable)(sc) != 0) {
893 printf("%s: device enable failed\n",
894 sc->sc_dev.dv_xname);
895 return EIO;
896 }
897 sc->sc_flags |= RTK_ENABLED;
898 }
899 return 0;
900 }
901
902 /*
903 * rtk_disable:
904 * Disable the RTL81X9 chip.
905 */
906 void
907 rtk_disable(struct rtk_softc *sc)
908 {
909
910 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
911 (*sc->sc_disable)(sc);
912 sc->sc_flags &= ~RTK_ENABLED;
913 }
914 }
915
916 /*
917 * rtk_power:
918 * Power management (suspend/resume) hook.
919 */
920 void
921 rtk_power(int why, void *arg)
922 {
923 struct rtk_softc *sc = (void *)arg;
924 struct ifnet *ifp = &sc->ethercom.ec_if;
925 int s;
926
927 s = splnet();
928 switch (why) {
929 case PWR_SUSPEND:
930 case PWR_STANDBY:
931 rtk_stop(ifp, 0);
932 if (sc->sc_power != NULL)
933 (*sc->sc_power)(sc, why);
934 break;
935 case PWR_RESUME:
936 if (ifp->if_flags & IFF_UP) {
937 if (sc->sc_power != NULL)
938 (*sc->sc_power)(sc, why);
939 rtk_init(ifp);
940 }
941 break;
942 case PWR_SOFTSUSPEND:
943 case PWR_SOFTSTANDBY:
944 case PWR_SOFTRESUME:
945 break;
946 }
947 splx(s);
948 }
949
950 /*
951 * A frame has been uploaded: pass the resulting mbuf chain up to
952 * the higher level protocols.
953 *
954 * You know there's something wrong with a PCI bus-master chip design.
955 *
956 * The receive operation is badly documented in the datasheet, so I'll
957 * attempt to document it here. The driver provides a buffer area and
958 * places its base address in the RX buffer start address register.
959 * The chip then begins copying frames into the RX buffer. Each frame
960 * is preceded by a 32-bit RX status word which specifies the length
961 * of the frame and certain other status bits. Each frame (starting with
962 * the status word) is also 32-bit aligned. The frame length is in the
963 * first 16 bits of the status word; the lower 15 bits correspond with
964 * the 'rx status register' mentioned in the datasheet.
965 *
966 * Note: to make the Alpha happy, the frame payload needs to be aligned
967 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
968 * shifted forward 2 bytes.
969 */
970 STATIC void
971 rtk_rxeof(struct rtk_softc *sc)
972 {
973 struct mbuf *m;
974 struct ifnet *ifp;
975 caddr_t rxbufpos, dst;
976 u_int total_len, wrap;
977 uint32_t rxstat;
978 uint16_t cur_rx, new_rx;
979 uint16_t limit;
980 uint16_t rx_bytes, max_bytes;
981
982 ifp = &sc->ethercom.ec_if;
983
984 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
985
986 /* Do not try to read past this point. */
987 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
988
989 if (limit < cur_rx)
990 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
991 else
992 max_bytes = limit - cur_rx;
993 rx_bytes = 0;
994
995 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
996 rxbufpos = sc->rtk_rx_buf + cur_rx;
997 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
998 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
999 rxstat = le32toh(*(uint32_t *)rxbufpos);
1000 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1001 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1002
1003 /*
1004 * Here's a totally undocumented fact for you. When the
1005 * RealTek chip is in the process of copying a packet into
1006 * RAM for you, the length will be 0xfff0. If you spot a
1007 * packet header with this value, you need to stop. The
1008 * datasheet makes absolutely no mention of this and
1009 * RealTek should be shot for this.
1010 */
1011 total_len = rxstat >> 16;
1012 if (total_len == RTK_RXSTAT_UNFINISHED)
1013 break;
1014
1015 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1016 total_len < ETHER_MIN_LEN ||
1017 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
1018 ifp->if_ierrors++;
1019
1020 /*
1021 * submitted by:[netbsd-pcmcia:00484]
1022 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1023 * obtain from:
1024 * FreeBSD if_rl.c rev 1.24->1.25
1025 *
1026 */
1027 #if 0
1028 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1029 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1030 RTK_RXSTAT_ALIGNERR)) {
1031 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1032 CSR_WRITE_2(sc, RTK_COMMAND,
1033 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1034 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1035 CSR_WRITE_4(sc, RTK_RXADDR,
1036 sc->recv_dmamap->dm_segs[0].ds_addr);
1037 cur_rx = 0;
1038 }
1039 break;
1040 #else
1041 rtk_init(ifp);
1042 return;
1043 #endif
1044 }
1045
1046 /* No errors; receive the packet. */
1047 rx_bytes += total_len + RTK_RXSTAT_LEN;
1048
1049 /*
1050 * Avoid trying to read more bytes than we know
1051 * the chip has prepared for us.
1052 */
1053 if (rx_bytes > max_bytes)
1054 break;
1055
1056 /*
1057 * Skip the status word, wrapping around to the beginning
1058 * of the Rx area, if necessary.
1059 */
1060 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1061 rxbufpos = sc->rtk_rx_buf + cur_rx;
1062
1063 /*
1064 * Compute the number of bytes at which the packet
1065 * will wrap to the beginning of the ring buffer.
1066 */
1067 wrap = RTK_RXBUFLEN - cur_rx;
1068
1069 /*
1070 * Compute where the next pending packet is.
1071 */
1072 if (total_len > wrap)
1073 new_rx = total_len - wrap;
1074 else
1075 new_rx = cur_rx + total_len;
1076 /* Round up to 32-bit boundary. */
1077 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1078
1079 /*
1080 * The RealTek chip includes the CRC with every
1081 * incoming packet; trim it off here.
1082 */
1083 total_len -= ETHER_CRC_LEN;
1084
1085 /*
1086 * Now allocate an mbuf (and possibly a cluster) to hold
1087 * the packet. Note we offset the packet 2 bytes so that
1088 * data after the Ethernet header will be 4-byte aligned.
1089 */
1090 MGETHDR(m, M_DONTWAIT, MT_DATA);
1091 if (m == NULL) {
1092 printf("%s: unable to allocate Rx mbuf\n",
1093 sc->sc_dev.dv_xname);
1094 ifp->if_ierrors++;
1095 goto next_packet;
1096 }
1097 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1098 MCLGET(m, M_DONTWAIT);
1099 if ((m->m_flags & M_EXT) == 0) {
1100 printf("%s: unable to allocate Rx cluster\n",
1101 sc->sc_dev.dv_xname);
1102 ifp->if_ierrors++;
1103 m_freem(m);
1104 m = NULL;
1105 goto next_packet;
1106 }
1107 }
1108 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1109 m->m_pkthdr.rcvif = ifp;
1110 m->m_pkthdr.len = m->m_len = total_len;
1111 dst = mtod(m, caddr_t);
1112
1113 /*
1114 * If the packet wraps, copy up to the wrapping point.
1115 */
1116 if (total_len > wrap) {
1117 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1118 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1119 memcpy(dst, rxbufpos, wrap);
1120 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1121 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1122 cur_rx = 0;
1123 rxbufpos = sc->rtk_rx_buf;
1124 total_len -= wrap;
1125 dst += wrap;
1126 }
1127
1128 /*
1129 * ...and now the rest.
1130 */
1131 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1132 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1133 memcpy(dst, rxbufpos, total_len);
1134 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1135 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1136
1137 next_packet:
1138 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1139 cur_rx = new_rx;
1140
1141 if (m == NULL)
1142 continue;
1143
1144 ifp->if_ipackets++;
1145
1146 #if NBPFILTER > 0
1147 if (ifp->if_bpf)
1148 bpf_mtap(ifp->if_bpf, m);
1149 #endif
1150 /* pass it on. */
1151 (*ifp->if_input)(ifp, m);
1152 }
1153 }
1154
1155 /*
1156 * A frame was downloaded to the chip. It's safe for us to clean up
1157 * the list buffers.
1158 */
1159 STATIC void
1160 rtk_txeof(struct rtk_softc *sc)
1161 {
1162 struct ifnet *ifp;
1163 struct rtk_tx_desc *txd;
1164 uint32_t txstat;
1165
1166 ifp = &sc->ethercom.ec_if;
1167
1168 /*
1169 * Go through our tx list and free mbufs for those
1170 * frames that have been uploaded.
1171 */
1172 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1173 txstat = CSR_READ_4(sc, txd->txd_txstat);
1174 if ((txstat & (RTK_TXSTAT_TX_OK|
1175 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1176 break;
1177
1178 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1179
1180 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1181 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1182 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1183 m_freem(txd->txd_mbuf);
1184 txd->txd_mbuf = NULL;
1185
1186 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1187
1188 if (txstat & RTK_TXSTAT_TX_OK)
1189 ifp->if_opackets++;
1190 else {
1191 ifp->if_oerrors++;
1192
1193 /*
1194 * Increase Early TX threshold if underrun occurred.
1195 * Increase step 64 bytes.
1196 */
1197 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1198 #ifdef DEBUG
1199 printf("%s: transmit underrun;",
1200 sc->sc_dev.dv_xname);
1201 #endif
1202 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1203 sc->sc_txthresh += 2;
1204 #ifdef DEBUG
1205 printf(" new threshold: %d bytes",
1206 sc->sc_txthresh * 32);
1207 #endif
1208 }
1209 printf("\n");
1210 }
1211 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1212 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1213 }
1214 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1215 ifp->if_flags &= ~IFF_OACTIVE;
1216 }
1217
1218 /* Clear the timeout timer if there is no pending packet. */
1219 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1220 ifp->if_timer = 0;
1221
1222 }
1223
1224 int
1225 rtk_intr(void *arg)
1226 {
1227 struct rtk_softc *sc;
1228 struct ifnet *ifp;
1229 uint16_t status;
1230 int handled;
1231
1232 sc = arg;
1233 ifp = &sc->ethercom.ec_if;
1234
1235 /* Disable interrupts. */
1236 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1237
1238 handled = 0;
1239 for (;;) {
1240
1241 status = CSR_READ_2(sc, RTK_ISR);
1242 if (status)
1243 CSR_WRITE_2(sc, RTK_ISR, status);
1244
1245 if ((status & RTK_INTRS) == 0)
1246 break;
1247
1248 handled = 1;
1249
1250 if (status & RTK_ISR_RX_OK)
1251 rtk_rxeof(sc);
1252
1253 if (status & RTK_ISR_RX_ERR)
1254 rtk_rxeof(sc);
1255
1256 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1257 rtk_txeof(sc);
1258
1259 if (status & RTK_ISR_SYSTEM_ERR) {
1260 rtk_reset(sc);
1261 rtk_init(ifp);
1262 }
1263 }
1264
1265 /* Re-enable interrupts. */
1266 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1267
1268 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1269 rtk_start(ifp);
1270
1271 #if NRND > 0
1272 if (RND_ENABLED(&sc->rnd_source))
1273 rnd_add_uint32(&sc->rnd_source, status);
1274 #endif
1275
1276 return handled;
1277 }
1278
1279 /*
1280 * Main transmit routine.
1281 */
1282
1283 STATIC void
1284 rtk_start(struct ifnet *ifp)
1285 {
1286 struct rtk_softc *sc;
1287 struct rtk_tx_desc *txd;
1288 struct mbuf *m_head, *m_new;
1289 int error, len;
1290
1291 sc = ifp->if_softc;
1292
1293 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1294 IFQ_POLL(&ifp->if_snd, m_head);
1295 if (m_head == NULL)
1296 break;
1297 m_new = NULL;
1298
1299 /*
1300 * Load the DMA map. If this fails, the packet didn't
1301 * fit in one DMA segment, and we need to copy. Note,
1302 * the packet must also be aligned.
1303 * if the packet is too small, copy it too, so we're sure
1304 * so have enouth room for the pad buffer.
1305 */
1306 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1307 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1308 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1309 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1310 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1311 if (m_new == NULL) {
1312 printf("%s: unable to allocate Tx mbuf\n",
1313 sc->sc_dev.dv_xname);
1314 break;
1315 }
1316 if (m_head->m_pkthdr.len > MHLEN) {
1317 MCLGET(m_new, M_DONTWAIT);
1318 if ((m_new->m_flags & M_EXT) == 0) {
1319 printf("%s: unable to allocate Tx "
1320 "cluster\n", sc->sc_dev.dv_xname);
1321 m_freem(m_new);
1322 break;
1323 }
1324 }
1325 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1326 mtod(m_new, caddr_t));
1327 m_new->m_pkthdr.len = m_new->m_len =
1328 m_head->m_pkthdr.len;
1329 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1330 memset(
1331 mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1332 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1333 m_new->m_pkthdr.len = m_new->m_len =
1334 ETHER_PAD_LEN;
1335 }
1336 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1337 txd->txd_dmamap, m_new,
1338 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1339 if (error) {
1340 printf("%s: unable to load Tx buffer, "
1341 "error = %d\n", sc->sc_dev.dv_xname, error);
1342 break;
1343 }
1344 }
1345 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1346 #if NBPFILTER > 0
1347 /*
1348 * If there's a BPF listener, bounce a copy of this frame
1349 * to him.
1350 */
1351 if (ifp->if_bpf)
1352 bpf_mtap(ifp->if_bpf, m_head);
1353 #endif
1354 if (m_new != NULL) {
1355 m_freem(m_head);
1356 m_head = m_new;
1357 }
1358 txd->txd_mbuf = m_head;
1359
1360 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1361 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1362
1363 /*
1364 * Transmit the frame.
1365 */
1366 bus_dmamap_sync(sc->sc_dmat,
1367 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1368 BUS_DMASYNC_PREWRITE);
1369
1370 len = txd->txd_dmamap->dm_segs[0].ds_len;
1371
1372 CSR_WRITE_4(sc, txd->txd_txaddr,
1373 txd->txd_dmamap->dm_segs[0].ds_addr);
1374 CSR_WRITE_4(sc, txd->txd_txstat,
1375 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1376
1377 /*
1378 * Set a timeout in case the chip goes out to lunch.
1379 */
1380 ifp->if_timer = 5;
1381 }
1382
1383 /*
1384 * We broke out of the loop because all our TX slots are
1385 * full. Mark the NIC as busy until it drains some of the
1386 * packets from the queue.
1387 */
1388 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1389 ifp->if_flags |= IFF_OACTIVE;
1390 }
1391
1392 STATIC int
1393 rtk_init(struct ifnet *ifp)
1394 {
1395 struct rtk_softc *sc = ifp->if_softc;
1396 int error, i;
1397 uint32_t rxcfg;
1398
1399 if ((error = rtk_enable(sc)) != 0)
1400 goto out;
1401
1402 /*
1403 * Cancel pending I/O.
1404 */
1405 rtk_stop(ifp, 0);
1406
1407 /* Init our MAC address */
1408 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1409 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1410 }
1411
1412 /* Init the RX buffer pointer register. */
1413 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1414 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1415 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1416
1417 /* Init TX descriptors. */
1418 rtk_list_tx_init(sc);
1419
1420 /* Init Early TX threshold. */
1421 sc->sc_txthresh = RTK_TXTH_256;
1422 /*
1423 * Enable transmit and receive.
1424 */
1425 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1426
1427 /*
1428 * Set the initial TX and RX configuration.
1429 */
1430 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1431 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1432
1433 /* Set the individual bit to receive frames for this host only. */
1434 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1435 rxcfg |= RTK_RXCFG_RX_INDIV;
1436
1437 /* If we want promiscuous mode, set the allframes bit. */
1438 if (ifp->if_flags & IFF_PROMISC) {
1439 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1440 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1441 } else {
1442 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1443 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1444 }
1445
1446 /*
1447 * Set capture broadcast bit to capture broadcast frames.
1448 */
1449 if (ifp->if_flags & IFF_BROADCAST) {
1450 rxcfg |= RTK_RXCFG_RX_BROAD;
1451 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1452 } else {
1453 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1454 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1455 }
1456
1457 /*
1458 * Program the multicast filter, if necessary.
1459 */
1460 rtk_setmulti(sc);
1461
1462 /*
1463 * Enable interrupts.
1464 */
1465 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1466
1467 /* Start RX/TX process. */
1468 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1469
1470 /* Enable receiver and transmitter. */
1471 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1472
1473 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1474
1475 /*
1476 * Set current media.
1477 */
1478 mii_mediachg(&sc->mii);
1479
1480 ifp->if_flags |= IFF_RUNNING;
1481 ifp->if_flags &= ~IFF_OACTIVE;
1482
1483 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1484
1485 out:
1486 if (error) {
1487 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1488 ifp->if_timer = 0;
1489 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1490 }
1491 return error;
1492 }
1493
1494 /*
1495 * Set media options.
1496 */
1497 STATIC int
1498 rtk_ifmedia_upd(struct ifnet *ifp)
1499 {
1500 struct rtk_softc *sc;
1501
1502 sc = ifp->if_softc;
1503
1504 return mii_mediachg(&sc->mii);
1505 }
1506
1507 /*
1508 * Report current media status.
1509 */
1510 STATIC void
1511 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1512 {
1513 struct rtk_softc *sc;
1514
1515 sc = ifp->if_softc;
1516
1517 mii_pollstat(&sc->mii);
1518 ifmr->ifm_status = sc->mii.mii_media_status;
1519 ifmr->ifm_active = sc->mii.mii_media_active;
1520 }
1521
1522 STATIC int
1523 rtk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1524 {
1525 struct rtk_softc *sc = ifp->if_softc;
1526 struct ifreq *ifr = (struct ifreq *)data;
1527 int s, error;
1528
1529 s = splnet();
1530
1531 switch (command) {
1532 case SIOCGIFMEDIA:
1533 case SIOCSIFMEDIA:
1534 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1535 break;
1536
1537 default:
1538 error = ether_ioctl(ifp, command, data);
1539 if (error == ENETRESET) {
1540 if (ifp->if_flags & IFF_RUNNING) {
1541 /*
1542 * Multicast list has changed. Set the
1543 * hardware filter accordingly.
1544 */
1545 rtk_setmulti(sc);
1546 }
1547 error = 0;
1548 }
1549 break;
1550 }
1551
1552 splx(s);
1553
1554 return error;
1555 }
1556
1557 STATIC void
1558 rtk_watchdog(struct ifnet *ifp)
1559 {
1560 struct rtk_softc *sc;
1561
1562 sc = ifp->if_softc;
1563
1564 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1565 ifp->if_oerrors++;
1566 rtk_txeof(sc);
1567 rtk_rxeof(sc);
1568 rtk_init(ifp);
1569 }
1570
1571 /*
1572 * Stop the adapter and free any mbufs allocated to the
1573 * RX and TX lists.
1574 */
1575 STATIC void
1576 rtk_stop(struct ifnet *ifp, int disable)
1577 {
1578 struct rtk_softc *sc = ifp->if_softc;
1579 struct rtk_tx_desc *txd;
1580
1581 callout_stop(&sc->rtk_tick_ch);
1582
1583 mii_down(&sc->mii);
1584
1585 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1586 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1587
1588 /*
1589 * Free the TX list buffers.
1590 */
1591 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1592 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1593 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1594 m_freem(txd->txd_mbuf);
1595 txd->txd_mbuf = NULL;
1596 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1597 }
1598
1599 if (disable)
1600 rtk_disable(sc);
1601
1602 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1603 ifp->if_timer = 0;
1604 }
1605
1606 /*
1607 * Stop all chip I/O so that the kernel's probe routines don't
1608 * get confused by errant DMAs when rebooting.
1609 */
1610 STATIC void
1611 rtk_shutdown(void *arg)
1612 {
1613 struct rtk_softc *sc = (struct rtk_softc *)arg;
1614
1615 rtk_stop(&sc->ethercom.ec_if, 0);
1616 }
1617
1618 STATIC void
1619 rtk_tick(void *arg)
1620 {
1621 struct rtk_softc *sc = arg;
1622 int s;
1623
1624 s = splnet();
1625 mii_tick(&sc->mii);
1626 splx(s);
1627
1628 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1629 }
1630