rtl81x9.c revision 1.69 1 /* $NetBSD: rtl81x9.c,v 1.69 2007/02/10 03:58:32 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.69 2007/02/10 03:58:32 tsutsui Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, caddr_t);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick(void *);
157
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define EE_DELAY() DELAY(100)
173
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175
176 /*
177 * Send a read command and address to the EEPROM, check for ACK.
178 */
179 STATIC void
180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
181 {
182 int d, i;
183
184 d = (RTK_EECMD_READ << addr_len) | addr;
185
186 /*
187 * Feed in each bit and stobe the clock.
188 */
189 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 if (d & (1 << (i - 1))) {
191 EE_SET(RTK_EE_DATAIN);
192 } else {
193 EE_CLR(RTK_EE_DATAIN);
194 }
195 EE_DELAY();
196 EE_SET(RTK_EE_CLK);
197 EE_DELAY();
198 EE_CLR(RTK_EE_CLK);
199 EE_DELAY();
200 }
201 }
202
203 /*
204 * Read a word of data stored in the EEPROM at address 'addr.'
205 */
206 uint16_t
207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
208 {
209 uint16_t word;
210 int i;
211
212 /* Enter EEPROM access mode. */
213 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
214 EE_DELAY();
215 EE_SET(RTK_EE_SEL);
216
217 /*
218 * Send address of word we want to read.
219 */
220 rtk_eeprom_putbyte(sc, addr, addr_len);
221
222 /*
223 * Start reading bits from EEPROM.
224 */
225 word = 0;
226 for (i = 16; i > 0; i--) {
227 EE_SET(RTK_EE_CLK);
228 EE_DELAY();
229 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
230 word |= 1 << (i - 1);
231 EE_CLR(RTK_EE_CLK);
232 EE_DELAY();
233 }
234
235 /* Turn off EEPROM access mode. */
236 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
237
238 return word;
239 }
240
241 /*
242 * MII access routines are provided for the 8129, which
243 * doesn't have a built-in PHY. For the 8139, we fake things
244 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
245 * direct access PHY registers.
246 */
247 #define MII_SET(x) \
248 CSR_WRITE_1(sc, RTK_MII, \
249 CSR_READ_1(sc, RTK_MII) | (x))
250
251 #define MII_CLR(x) \
252 CSR_WRITE_1(sc, RTK_MII, \
253 CSR_READ_1(sc, RTK_MII) & ~(x))
254
255 /*
256 * Sync the PHYs by setting data bit and strobing the clock 32 times.
257 */
258 STATIC void
259 rtk_mii_sync(struct rtk_softc *sc)
260 {
261 int i;
262
263 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
264
265 for (i = 0; i < 32; i++) {
266 MII_SET(RTK_MII_CLK);
267 DELAY(1);
268 MII_CLR(RTK_MII_CLK);
269 DELAY(1);
270 }
271 }
272
273 /*
274 * Clock a series of bits through the MII.
275 */
276 STATIC void
277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
278 {
279 int i;
280
281 MII_CLR(RTK_MII_CLK);
282
283 for (i = cnt; i > 0; i--) {
284 if (bits & (1 << (i - 1))) {
285 MII_SET(RTK_MII_DATAOUT);
286 } else {
287 MII_CLR(RTK_MII_DATAOUT);
288 }
289 DELAY(1);
290 MII_CLR(RTK_MII_CLK);
291 DELAY(1);
292 MII_SET(RTK_MII_CLK);
293 }
294 }
295
296 /*
297 * Read an PHY register through the MII.
298 */
299 STATIC int
300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
301 {
302 int i, ack, s;
303
304 s = splnet();
305
306 /*
307 * Set up frame for RX.
308 */
309 frame->mii_stdelim = RTK_MII_STARTDELIM;
310 frame->mii_opcode = RTK_MII_READOP;
311 frame->mii_turnaround = 0;
312 frame->mii_data = 0;
313
314 CSR_WRITE_2(sc, RTK_MII, 0);
315
316 /*
317 * Turn on data xmit.
318 */
319 MII_SET(RTK_MII_DIR);
320
321 rtk_mii_sync(sc);
322
323 /*
324 * Send command/address info.
325 */
326 rtk_mii_send(sc, frame->mii_stdelim, 2);
327 rtk_mii_send(sc, frame->mii_opcode, 2);
328 rtk_mii_send(sc, frame->mii_phyaddr, 5);
329 rtk_mii_send(sc, frame->mii_regaddr, 5);
330
331 /* Idle bit */
332 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
333 DELAY(1);
334 MII_SET(RTK_MII_CLK);
335 DELAY(1);
336
337 /* Turn off xmit. */
338 MII_CLR(RTK_MII_DIR);
339
340 /* Check for ack */
341 MII_CLR(RTK_MII_CLK);
342 DELAY(1);
343 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
344 MII_SET(RTK_MII_CLK);
345 DELAY(1);
346
347 /*
348 * Now try reading data bits. If the ack failed, we still
349 * need to clock through 16 cycles to keep the PHY(s) in sync.
350 */
351 if (ack) {
352 for (i = 0; i < 16; i++) {
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 }
358 goto fail;
359 }
360
361 for (i = 16; i > 0; i--) {
362 MII_CLR(RTK_MII_CLK);
363 DELAY(1);
364 if (!ack) {
365 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
366 frame->mii_data |= 1 << (i - 1);
367 DELAY(1);
368 }
369 MII_SET(RTK_MII_CLK);
370 DELAY(1);
371 }
372
373 fail:
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 MII_SET(RTK_MII_CLK);
377 DELAY(1);
378
379 splx(s);
380
381 if (ack)
382 return 1;
383 return 0;
384 }
385
386 /*
387 * Write to a PHY register through the MII.
388 */
389 STATIC int
390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
391 {
392 int s;
393
394 s = splnet();
395 /*
396 * Set up frame for TX.
397 */
398 frame->mii_stdelim = RTK_MII_STARTDELIM;
399 frame->mii_opcode = RTK_MII_WRITEOP;
400 frame->mii_turnaround = RTK_MII_TURNAROUND;
401
402 /*
403 * Turn on data output.
404 */
405 MII_SET(RTK_MII_DIR);
406
407 rtk_mii_sync(sc);
408
409 rtk_mii_send(sc, frame->mii_stdelim, 2);
410 rtk_mii_send(sc, frame->mii_opcode, 2);
411 rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 rtk_mii_send(sc, frame->mii_regaddr, 5);
413 rtk_mii_send(sc, frame->mii_turnaround, 2);
414 rtk_mii_send(sc, frame->mii_data, 16);
415
416 /* Idle bit. */
417 MII_SET(RTK_MII_CLK);
418 DELAY(1);
419 MII_CLR(RTK_MII_CLK);
420 DELAY(1);
421
422 /*
423 * Turn off xmit.
424 */
425 MII_CLR(RTK_MII_DIR);
426
427 splx(s);
428
429 return 0;
430 }
431
432 STATIC int
433 rtk_phy_readreg(struct device *self, int phy, int reg)
434 {
435 struct rtk_softc *sc = (void *)self;
436 struct rtk_mii_frame frame;
437 int rval;
438 int rtk8139_reg;
439
440 if (sc->rtk_type == RTK_8139) {
441 if (phy != 7)
442 return 0;
443
444 switch (reg) {
445 case MII_BMCR:
446 rtk8139_reg = RTK_BMCR;
447 break;
448 case MII_BMSR:
449 rtk8139_reg = RTK_BMSR;
450 break;
451 case MII_ANAR:
452 rtk8139_reg = RTK_ANAR;
453 break;
454 case MII_ANER:
455 rtk8139_reg = RTK_ANER;
456 break;
457 case MII_ANLPAR:
458 rtk8139_reg = RTK_LPAR;
459 break;
460 default:
461 #if 0
462 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
463 #endif
464 return 0;
465 }
466 rval = CSR_READ_2(sc, rtk8139_reg);
467 return rval;
468 }
469
470 memset((char *)&frame, 0, sizeof(frame));
471
472 frame.mii_phyaddr = phy;
473 frame.mii_regaddr = reg;
474 rtk_mii_readreg(sc, &frame);
475
476 return frame.mii_data;
477 }
478
479 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
480 {
481 struct rtk_softc *sc = (void *)self;
482 struct rtk_mii_frame frame;
483 int rtk8139_reg;
484
485 if (sc->rtk_type == RTK_8139) {
486 if (phy != 7)
487 return;
488
489 switch (reg) {
490 case MII_BMCR:
491 rtk8139_reg = RTK_BMCR;
492 break;
493 case MII_BMSR:
494 rtk8139_reg = RTK_BMSR;
495 break;
496 case MII_ANAR:
497 rtk8139_reg = RTK_ANAR;
498 break;
499 case MII_ANER:
500 rtk8139_reg = RTK_ANER;
501 break;
502 case MII_ANLPAR:
503 rtk8139_reg = RTK_LPAR;
504 break;
505 default:
506 #if 0
507 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
508 #endif
509 return;
510 }
511 CSR_WRITE_2(sc, rtk8139_reg, data);
512 return;
513 }
514
515 memset((char *)&frame, 0, sizeof(frame));
516
517 frame.mii_phyaddr = phy;
518 frame.mii_regaddr = reg;
519 frame.mii_data = data;
520
521 rtk_mii_writereg(sc, &frame);
522 }
523
524 STATIC void
525 rtk_phy_statchg(struct device *v)
526 {
527
528 /* Nothing to do. */
529 }
530
531 #define rtk_calchash(addr) \
532 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
533
534 /*
535 * Program the 64-bit multicast hash filter.
536 */
537 void
538 rtk_setmulti(struct rtk_softc *sc)
539 {
540 struct ifnet *ifp;
541 uint32_t hashes[2] = { 0, 0 };
542 uint32_t rxfilt, hwrev;
543 struct ether_multi *enm;
544 struct ether_multistep step;
545 int h, mcnt;
546
547 ifp = &sc->ethercom.ec_if;
548
549 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
550
551 if (ifp->if_flags & IFF_PROMISC) {
552 allmulti:
553 ifp->if_flags |= IFF_ALLMULTI;
554 rxfilt |= RTK_RXCFG_RX_MULTI;
555 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
556 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
557 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
558 return;
559 }
560
561 /* first, zot all the existing hash bits */
562 CSR_WRITE_4(sc, RTK_MAR0, 0);
563 CSR_WRITE_4(sc, RTK_MAR4, 0);
564
565 /* now program new ones */
566 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
567 mcnt = 0;
568 while (enm != NULL) {
569 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
570 ETHER_ADDR_LEN) != 0)
571 goto allmulti;
572
573 h = rtk_calchash(enm->enm_addrlo);
574 if (h < 32)
575 hashes[0] |= (1 << h);
576 else
577 hashes[1] |= (1 << (h - 32));
578 mcnt++;
579 ETHER_NEXT_MULTI(step, enm);
580 }
581
582 ifp->if_flags &= ~IFF_ALLMULTI;
583
584 if (mcnt)
585 rxfilt |= RTK_RXCFG_RX_MULTI;
586 else
587 rxfilt &= ~RTK_RXCFG_RX_MULTI;
588
589 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
590
591 /*
592 * For some unfathomable reason, RealTek decided to reverse
593 * the order of the multicast hash registers in the PCI Express
594 * parts. This means we have to write the hash pattern in reverse
595 * order for those devices.
596 */
597 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
598 if (hwrev == RTK_HWREV_8100E || hwrev == RTK_HWREV_8101E ||
599 hwrev == RTK_HWREV_8168_SPIN1 || hwrev == RTK_HWREV_8168_SPIN2) {
600 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
601 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
602 } else {
603 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
604 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
605 }
606 }
607
608 void
609 rtk_reset(struct rtk_softc *sc)
610 {
611 int i;
612
613 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
614
615 for (i = 0; i < RTK_TIMEOUT; i++) {
616 DELAY(10);
617 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
618 break;
619 }
620 if (i == RTK_TIMEOUT)
621 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
622 }
623
624 /*
625 * Attach the interface. Allocate softc structures, do ifmedia
626 * setup and ethernet/BPF attach.
627 */
628 void
629 rtk_attach(struct rtk_softc *sc)
630 {
631 struct ifnet *ifp;
632 struct rtk_tx_desc *txd;
633 uint16_t val;
634 uint8_t eaddr[ETHER_ADDR_LEN];
635 int error;
636 int i, addr_len;
637
638 callout_init(&sc->rtk_tick_ch);
639
640 /*
641 * Check EEPROM type 9346 or 9356.
642 */
643 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
644 addr_len = RTK_EEADDR_LEN1;
645 else
646 addr_len = RTK_EEADDR_LEN0;
647
648 /*
649 * Get station address.
650 */
651 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
652 eaddr[0] = val & 0xff;
653 eaddr[1] = val >> 8;
654 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
655 eaddr[2] = val & 0xff;
656 eaddr[3] = val >> 8;
657 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
658 eaddr[4] = val & 0xff;
659 eaddr[5] = val >> 8;
660
661 if ((error = bus_dmamem_alloc(sc->sc_dmat,
662 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
663 BUS_DMA_NOWAIT)) != 0) {
664 printf("%s: can't allocate recv buffer, error = %d\n",
665 sc->sc_dev.dv_xname, error);
666 goto fail_0;
667 }
668
669 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
670 RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
671 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
672 printf("%s: can't map recv buffer, error = %d\n",
673 sc->sc_dev.dv_xname, error);
674 goto fail_1;
675 }
676
677 if ((error = bus_dmamap_create(sc->sc_dmat,
678 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
679 &sc->recv_dmamap)) != 0) {
680 printf("%s: can't create recv buffer DMA map, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_2;
683 }
684
685 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
686 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
687 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
688 printf("%s: can't load recv buffer DMA map, error = %d\n",
689 sc->sc_dev.dv_xname, error);
690 goto fail_3;
691 }
692
693 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
694 txd = &sc->rtk_tx_descs[i];
695 if ((error = bus_dmamap_create(sc->sc_dmat,
696 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
697 &txd->txd_dmamap)) != 0) {
698 printf("%s: can't create snd buffer DMA map,"
699 " error = %d\n", sc->sc_dev.dv_xname, error);
700 goto fail_4;
701 }
702 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
703 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
704 }
705 SIMPLEQ_INIT(&sc->rtk_tx_free);
706 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
707
708 /*
709 * From this point forward, the attachment cannot fail. A failure
710 * before this releases all resources thar may have been
711 * allocated.
712 */
713 sc->sc_flags |= RTK_ATTACHED;
714
715 /* Reset the adapter. */
716 rtk_reset(sc);
717
718 printf("%s: Ethernet address %s\n",
719 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
720
721 ifp = &sc->ethercom.ec_if;
722 ifp->if_softc = sc;
723 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
724 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
725 ifp->if_ioctl = rtk_ioctl;
726 ifp->if_start = rtk_start;
727 ifp->if_watchdog = rtk_watchdog;
728 ifp->if_init = rtk_init;
729 ifp->if_stop = rtk_stop;
730 IFQ_SET_READY(&ifp->if_snd);
731
732 /*
733 * Do ifmedia setup.
734 */
735 sc->mii.mii_ifp = ifp;
736 sc->mii.mii_readreg = rtk_phy_readreg;
737 sc->mii.mii_writereg = rtk_phy_writereg;
738 sc->mii.mii_statchg = rtk_phy_statchg;
739 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
740 rtk_ifmedia_sts);
741 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
742 MII_PHY_ANY, MII_OFFSET_ANY, 0);
743
744 /* Choose a default media. */
745 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
746 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
747 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
748 } else {
749 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
750 }
751
752 /*
753 * Call MI attach routines.
754 */
755 if_attach(ifp);
756 ether_ifattach(ifp, eaddr);
757
758 /*
759 * Make sure the interface is shutdown during reboot.
760 */
761 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
762 if (sc->sc_sdhook == NULL)
763 printf("%s: WARNING: unable to establish shutdown hook\n",
764 sc->sc_dev.dv_xname);
765 /*
766 * Add a suspend hook to make sure we come back up after a
767 * resume.
768 */
769 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
770 rtk_power, sc);
771 if (sc->sc_powerhook == NULL)
772 printf("%s: WARNING: unable to establish power hook\n",
773 sc->sc_dev.dv_xname);
774
775
776 #if NRND > 0
777 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
778 RND_TYPE_NET, 0);
779 #endif
780
781 return;
782 fail_4:
783 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
784 txd = &sc->rtk_tx_descs[i];
785 if (txd->txd_dmamap != NULL)
786 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
787 }
788 fail_3:
789 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
790 fail_2:
791 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
792 RTK_RXBUFLEN + 16);
793 fail_1:
794 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
795 fail_0:
796 return;
797 }
798
799 /*
800 * Initialize the transmit descriptors.
801 */
802 STATIC int
803 rtk_list_tx_init(struct rtk_softc *sc)
804 {
805 struct rtk_tx_desc *txd;
806 int i;
807
808 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
809 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
810 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
811 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
812
813 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
814 txd = &sc->rtk_tx_descs[i];
815 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
816 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
817 }
818
819 return 0;
820 }
821
822 /*
823 * rtk_activate:
824 * Handle device activation/deactivation requests.
825 */
826 int
827 rtk_activate(struct device *self, enum devact act)
828 {
829 struct rtk_softc *sc = (void *)self;
830 int s, error;
831
832 error = 0;
833 s = splnet();
834 switch (act) {
835 case DVACT_ACTIVATE:
836 error = EOPNOTSUPP;
837 break;
838 case DVACT_DEACTIVATE:
839 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
840 if_deactivate(&sc->ethercom.ec_if);
841 break;
842 }
843 splx(s);
844
845 return error;
846 }
847
848 /*
849 * rtk_detach:
850 * Detach a rtk interface.
851 */
852 int
853 rtk_detach(struct rtk_softc *sc)
854 {
855 struct ifnet *ifp = &sc->ethercom.ec_if;
856 struct rtk_tx_desc *txd;
857 int i;
858
859 /*
860 * Succeed now if there isn't any work to do.
861 */
862 if ((sc->sc_flags & RTK_ATTACHED) == 0)
863 return 0;
864
865 /* Unhook our tick handler. */
866 callout_stop(&sc->rtk_tick_ch);
867
868 /* Detach all PHYs. */
869 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
870
871 /* Delete all remaining media. */
872 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
873
874 #if NRND > 0
875 rnd_detach_source(&sc->rnd_source);
876 #endif
877
878 ether_ifdetach(ifp);
879 if_detach(ifp);
880
881 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
882 txd = &sc->rtk_tx_descs[i];
883 if (txd->txd_dmamap != NULL)
884 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
885 }
886 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
887 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
888 RTK_RXBUFLEN + 16);
889 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
890
891 shutdownhook_disestablish(sc->sc_sdhook);
892 powerhook_disestablish(sc->sc_powerhook);
893
894 return 0;
895 }
896
897 /*
898 * rtk_enable:
899 * Enable the RTL81X9 chip.
900 */
901 int
902 rtk_enable(struct rtk_softc *sc)
903 {
904
905 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
906 if ((*sc->sc_enable)(sc) != 0) {
907 printf("%s: device enable failed\n",
908 sc->sc_dev.dv_xname);
909 return EIO;
910 }
911 sc->sc_flags |= RTK_ENABLED;
912 }
913 return 0;
914 }
915
916 /*
917 * rtk_disable:
918 * Disable the RTL81X9 chip.
919 */
920 void
921 rtk_disable(struct rtk_softc *sc)
922 {
923
924 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
925 (*sc->sc_disable)(sc);
926 sc->sc_flags &= ~RTK_ENABLED;
927 }
928 }
929
930 /*
931 * rtk_power:
932 * Power management (suspend/resume) hook.
933 */
934 void
935 rtk_power(int why, void *arg)
936 {
937 struct rtk_softc *sc = (void *)arg;
938 struct ifnet *ifp = &sc->ethercom.ec_if;
939 int s;
940
941 s = splnet();
942 switch (why) {
943 case PWR_SUSPEND:
944 case PWR_STANDBY:
945 rtk_stop(ifp, 0);
946 if (sc->sc_power != NULL)
947 (*sc->sc_power)(sc, why);
948 break;
949 case PWR_RESUME:
950 if (ifp->if_flags & IFF_UP) {
951 if (sc->sc_power != NULL)
952 (*sc->sc_power)(sc, why);
953 rtk_init(ifp);
954 }
955 break;
956 case PWR_SOFTSUSPEND:
957 case PWR_SOFTSTANDBY:
958 case PWR_SOFTRESUME:
959 break;
960 }
961 splx(s);
962 }
963
964 /*
965 * A frame has been uploaded: pass the resulting mbuf chain up to
966 * the higher level protocols.
967 *
968 * You know there's something wrong with a PCI bus-master chip design.
969 *
970 * The receive operation is badly documented in the datasheet, so I'll
971 * attempt to document it here. The driver provides a buffer area and
972 * places its base address in the RX buffer start address register.
973 * The chip then begins copying frames into the RX buffer. Each frame
974 * is preceded by a 32-bit RX status word which specifies the length
975 * of the frame and certain other status bits. Each frame (starting with
976 * the status word) is also 32-bit aligned. The frame length is in the
977 * first 16 bits of the status word; the lower 15 bits correspond with
978 * the 'rx status register' mentioned in the datasheet.
979 *
980 * Note: to make the Alpha happy, the frame payload needs to be aligned
981 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
982 * shifted forward 2 bytes.
983 */
984 STATIC void
985 rtk_rxeof(struct rtk_softc *sc)
986 {
987 struct mbuf *m;
988 struct ifnet *ifp;
989 caddr_t rxbufpos, dst;
990 u_int total_len, wrap;
991 uint32_t rxstat;
992 uint16_t cur_rx, new_rx;
993 uint16_t limit;
994 uint16_t rx_bytes, max_bytes;
995
996 ifp = &sc->ethercom.ec_if;
997
998 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
999
1000 /* Do not try to read past this point. */
1001 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1002
1003 if (limit < cur_rx)
1004 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1005 else
1006 max_bytes = limit - cur_rx;
1007 rx_bytes = 0;
1008
1009 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1010 rxbufpos = sc->rtk_rx_buf + cur_rx;
1011 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1012 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1013 rxstat = le32toh(*(uint32_t *)rxbufpos);
1014 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1015 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1016
1017 /*
1018 * Here's a totally undocumented fact for you. When the
1019 * RealTek chip is in the process of copying a packet into
1020 * RAM for you, the length will be 0xfff0. If you spot a
1021 * packet header with this value, you need to stop. The
1022 * datasheet makes absolutely no mention of this and
1023 * RealTek should be shot for this.
1024 */
1025 total_len = rxstat >> 16;
1026 if (total_len == RTK_RXSTAT_UNFINISHED)
1027 break;
1028
1029 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1030 total_len < ETHER_MIN_LEN ||
1031 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
1032 ifp->if_ierrors++;
1033
1034 /*
1035 * submitted by:[netbsd-pcmcia:00484]
1036 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1037 * obtain from:
1038 * FreeBSD if_rl.c rev 1.24->1.25
1039 *
1040 */
1041 #if 0
1042 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1043 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1044 RTK_RXSTAT_ALIGNERR)) {
1045 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1046 CSR_WRITE_2(sc, RTK_COMMAND,
1047 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1048 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1049 CSR_WRITE_4(sc, RTK_RXADDR,
1050 sc->recv_dmamap->dm_segs[0].ds_addr);
1051 cur_rx = 0;
1052 }
1053 break;
1054 #else
1055 rtk_init(ifp);
1056 return;
1057 #endif
1058 }
1059
1060 /* No errors; receive the packet. */
1061 rx_bytes += total_len + RTK_RXSTAT_LEN;
1062
1063 /*
1064 * Avoid trying to read more bytes than we know
1065 * the chip has prepared for us.
1066 */
1067 if (rx_bytes > max_bytes)
1068 break;
1069
1070 /*
1071 * Skip the status word, wrapping around to the beginning
1072 * of the Rx area, if necessary.
1073 */
1074 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1075 rxbufpos = sc->rtk_rx_buf + cur_rx;
1076
1077 /*
1078 * Compute the number of bytes at which the packet
1079 * will wrap to the beginning of the ring buffer.
1080 */
1081 wrap = RTK_RXBUFLEN - cur_rx;
1082
1083 /*
1084 * Compute where the next pending packet is.
1085 */
1086 if (total_len > wrap)
1087 new_rx = total_len - wrap;
1088 else
1089 new_rx = cur_rx + total_len;
1090 /* Round up to 32-bit boundary. */
1091 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1092
1093 /*
1094 * The RealTek chip includes the CRC with every
1095 * incoming packet; trim it off here.
1096 */
1097 total_len -= ETHER_CRC_LEN;
1098
1099 /*
1100 * Now allocate an mbuf (and possibly a cluster) to hold
1101 * the packet. Note we offset the packet 2 bytes so that
1102 * data after the Ethernet header will be 4-byte aligned.
1103 */
1104 MGETHDR(m, M_DONTWAIT, MT_DATA);
1105 if (m == NULL) {
1106 printf("%s: unable to allocate Rx mbuf\n",
1107 sc->sc_dev.dv_xname);
1108 ifp->if_ierrors++;
1109 goto next_packet;
1110 }
1111 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1112 MCLGET(m, M_DONTWAIT);
1113 if ((m->m_flags & M_EXT) == 0) {
1114 printf("%s: unable to allocate Rx cluster\n",
1115 sc->sc_dev.dv_xname);
1116 ifp->if_ierrors++;
1117 m_freem(m);
1118 m = NULL;
1119 goto next_packet;
1120 }
1121 }
1122 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1123 m->m_pkthdr.rcvif = ifp;
1124 m->m_pkthdr.len = m->m_len = total_len;
1125 dst = mtod(m, caddr_t);
1126
1127 /*
1128 * If the packet wraps, copy up to the wrapping point.
1129 */
1130 if (total_len > wrap) {
1131 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1132 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1133 memcpy(dst, rxbufpos, wrap);
1134 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1135 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1136 cur_rx = 0;
1137 rxbufpos = sc->rtk_rx_buf;
1138 total_len -= wrap;
1139 dst += wrap;
1140 }
1141
1142 /*
1143 * ...and now the rest.
1144 */
1145 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1146 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1147 memcpy(dst, rxbufpos, total_len);
1148 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1149 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1150
1151 next_packet:
1152 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1153 cur_rx = new_rx;
1154
1155 if (m == NULL)
1156 continue;
1157
1158 ifp->if_ipackets++;
1159
1160 #if NBPFILTER > 0
1161 if (ifp->if_bpf)
1162 bpf_mtap(ifp->if_bpf, m);
1163 #endif
1164 /* pass it on. */
1165 (*ifp->if_input)(ifp, m);
1166 }
1167 }
1168
1169 /*
1170 * A frame was downloaded to the chip. It's safe for us to clean up
1171 * the list buffers.
1172 */
1173 STATIC void
1174 rtk_txeof(struct rtk_softc *sc)
1175 {
1176 struct ifnet *ifp;
1177 struct rtk_tx_desc *txd;
1178 uint32_t txstat;
1179
1180 ifp = &sc->ethercom.ec_if;
1181
1182 /*
1183 * Go through our tx list and free mbufs for those
1184 * frames that have been uploaded.
1185 */
1186 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1187 txstat = CSR_READ_4(sc, txd->txd_txstat);
1188 if ((txstat & (RTK_TXSTAT_TX_OK|
1189 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1190 break;
1191
1192 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1193
1194 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1195 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1196 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1197 m_freem(txd->txd_mbuf);
1198 txd->txd_mbuf = NULL;
1199
1200 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1201
1202 if (txstat & RTK_TXSTAT_TX_OK)
1203 ifp->if_opackets++;
1204 else {
1205 ifp->if_oerrors++;
1206
1207 /*
1208 * Increase Early TX threshold if underrun occurred.
1209 * Increase step 64 bytes.
1210 */
1211 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1212 #ifdef DEBUG
1213 printf("%s: transmit underrun;",
1214 sc->sc_dev.dv_xname);
1215 #endif
1216 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1217 sc->sc_txthresh += 2;
1218 #ifdef DEBUG
1219 printf(" new threshold: %d bytes",
1220 sc->sc_txthresh * 32);
1221 #endif
1222 }
1223 printf("\n");
1224 }
1225 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1226 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1227 }
1228 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1229 ifp->if_flags &= ~IFF_OACTIVE;
1230 }
1231
1232 /* Clear the timeout timer if there is no pending packet. */
1233 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1234 ifp->if_timer = 0;
1235
1236 }
1237
1238 int
1239 rtk_intr(void *arg)
1240 {
1241 struct rtk_softc *sc;
1242 struct ifnet *ifp;
1243 uint16_t status;
1244 int handled;
1245
1246 sc = arg;
1247 ifp = &sc->ethercom.ec_if;
1248
1249 /* Disable interrupts. */
1250 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1251
1252 handled = 0;
1253 for (;;) {
1254
1255 status = CSR_READ_2(sc, RTK_ISR);
1256 if (status)
1257 CSR_WRITE_2(sc, RTK_ISR, status);
1258
1259 if ((status & RTK_INTRS) == 0)
1260 break;
1261
1262 handled = 1;
1263
1264 if (status & RTK_ISR_RX_OK)
1265 rtk_rxeof(sc);
1266
1267 if (status & RTK_ISR_RX_ERR)
1268 rtk_rxeof(sc);
1269
1270 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1271 rtk_txeof(sc);
1272
1273 if (status & RTK_ISR_SYSTEM_ERR) {
1274 rtk_reset(sc);
1275 rtk_init(ifp);
1276 }
1277 }
1278
1279 /* Re-enable interrupts. */
1280 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1281
1282 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1283 rtk_start(ifp);
1284
1285 #if NRND > 0
1286 if (RND_ENABLED(&sc->rnd_source))
1287 rnd_add_uint32(&sc->rnd_source, status);
1288 #endif
1289
1290 return handled;
1291 }
1292
1293 /*
1294 * Main transmit routine.
1295 */
1296
1297 STATIC void
1298 rtk_start(struct ifnet *ifp)
1299 {
1300 struct rtk_softc *sc;
1301 struct rtk_tx_desc *txd;
1302 struct mbuf *m_head, *m_new;
1303 int error, len;
1304
1305 sc = ifp->if_softc;
1306
1307 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1308 IFQ_POLL(&ifp->if_snd, m_head);
1309 if (m_head == NULL)
1310 break;
1311 m_new = NULL;
1312
1313 /*
1314 * Load the DMA map. If this fails, the packet didn't
1315 * fit in one DMA segment, and we need to copy. Note,
1316 * the packet must also be aligned.
1317 * if the packet is too small, copy it too, so we're sure
1318 * so have enouth room for the pad buffer.
1319 */
1320 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1321 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1322 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1323 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1324 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1325 if (m_new == NULL) {
1326 printf("%s: unable to allocate Tx mbuf\n",
1327 sc->sc_dev.dv_xname);
1328 break;
1329 }
1330 if (m_head->m_pkthdr.len > MHLEN) {
1331 MCLGET(m_new, M_DONTWAIT);
1332 if ((m_new->m_flags & M_EXT) == 0) {
1333 printf("%s: unable to allocate Tx "
1334 "cluster\n", sc->sc_dev.dv_xname);
1335 m_freem(m_new);
1336 break;
1337 }
1338 }
1339 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1340 mtod(m_new, caddr_t));
1341 m_new->m_pkthdr.len = m_new->m_len =
1342 m_head->m_pkthdr.len;
1343 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1344 memset(
1345 mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
1346 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1347 m_new->m_pkthdr.len = m_new->m_len =
1348 ETHER_PAD_LEN;
1349 }
1350 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1351 txd->txd_dmamap, m_new,
1352 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1353 if (error) {
1354 printf("%s: unable to load Tx buffer, "
1355 "error = %d\n", sc->sc_dev.dv_xname, error);
1356 break;
1357 }
1358 }
1359 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1360 #if NBPFILTER > 0
1361 /*
1362 * If there's a BPF listener, bounce a copy of this frame
1363 * to him.
1364 */
1365 if (ifp->if_bpf)
1366 bpf_mtap(ifp->if_bpf, m_head);
1367 #endif
1368 if (m_new != NULL) {
1369 m_freem(m_head);
1370 m_head = m_new;
1371 }
1372 txd->txd_mbuf = m_head;
1373
1374 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1375 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1376
1377 /*
1378 * Transmit the frame.
1379 */
1380 bus_dmamap_sync(sc->sc_dmat,
1381 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1382 BUS_DMASYNC_PREWRITE);
1383
1384 len = txd->txd_dmamap->dm_segs[0].ds_len;
1385
1386 CSR_WRITE_4(sc, txd->txd_txaddr,
1387 txd->txd_dmamap->dm_segs[0].ds_addr);
1388 CSR_WRITE_4(sc, txd->txd_txstat,
1389 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1390
1391 /*
1392 * Set a timeout in case the chip goes out to lunch.
1393 */
1394 ifp->if_timer = 5;
1395 }
1396
1397 /*
1398 * We broke out of the loop because all our TX slots are
1399 * full. Mark the NIC as busy until it drains some of the
1400 * packets from the queue.
1401 */
1402 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1403 ifp->if_flags |= IFF_OACTIVE;
1404 }
1405
1406 STATIC int
1407 rtk_init(struct ifnet *ifp)
1408 {
1409 struct rtk_softc *sc = ifp->if_softc;
1410 int error, i;
1411 uint32_t rxcfg;
1412
1413 if ((error = rtk_enable(sc)) != 0)
1414 goto out;
1415
1416 /*
1417 * Cancel pending I/O.
1418 */
1419 rtk_stop(ifp, 0);
1420
1421 /* Init our MAC address */
1422 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1423 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1424 }
1425
1426 /* Init the RX buffer pointer register. */
1427 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1428 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1429 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1430
1431 /* Init TX descriptors. */
1432 rtk_list_tx_init(sc);
1433
1434 /* Init Early TX threshold. */
1435 sc->sc_txthresh = RTK_TXTH_256;
1436 /*
1437 * Enable transmit and receive.
1438 */
1439 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1440
1441 /*
1442 * Set the initial TX and RX configuration.
1443 */
1444 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1445 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1446
1447 /* Set the individual bit to receive frames for this host only. */
1448 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1449 rxcfg |= RTK_RXCFG_RX_INDIV;
1450
1451 /* If we want promiscuous mode, set the allframes bit. */
1452 if (ifp->if_flags & IFF_PROMISC) {
1453 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1454 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1455 } else {
1456 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1457 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1458 }
1459
1460 /*
1461 * Set capture broadcast bit to capture broadcast frames.
1462 */
1463 if (ifp->if_flags & IFF_BROADCAST) {
1464 rxcfg |= RTK_RXCFG_RX_BROAD;
1465 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1466 } else {
1467 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1468 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1469 }
1470
1471 /*
1472 * Program the multicast filter, if necessary.
1473 */
1474 rtk_setmulti(sc);
1475
1476 /*
1477 * Enable interrupts.
1478 */
1479 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1480
1481 /* Start RX/TX process. */
1482 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1483
1484 /* Enable receiver and transmitter. */
1485 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1486
1487 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1488
1489 /*
1490 * Set current media.
1491 */
1492 mii_mediachg(&sc->mii);
1493
1494 ifp->if_flags |= IFF_RUNNING;
1495 ifp->if_flags &= ~IFF_OACTIVE;
1496
1497 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1498
1499 out:
1500 if (error) {
1501 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1502 ifp->if_timer = 0;
1503 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1504 }
1505 return error;
1506 }
1507
1508 /*
1509 * Set media options.
1510 */
1511 STATIC int
1512 rtk_ifmedia_upd(struct ifnet *ifp)
1513 {
1514 struct rtk_softc *sc;
1515
1516 sc = ifp->if_softc;
1517
1518 return mii_mediachg(&sc->mii);
1519 }
1520
1521 /*
1522 * Report current media status.
1523 */
1524 STATIC void
1525 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1526 {
1527 struct rtk_softc *sc;
1528
1529 sc = ifp->if_softc;
1530
1531 mii_pollstat(&sc->mii);
1532 ifmr->ifm_status = sc->mii.mii_media_status;
1533 ifmr->ifm_active = sc->mii.mii_media_active;
1534 }
1535
1536 STATIC int
1537 rtk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1538 {
1539 struct rtk_softc *sc = ifp->if_softc;
1540 struct ifreq *ifr = (struct ifreq *)data;
1541 int s, error;
1542
1543 s = splnet();
1544
1545 switch (command) {
1546 case SIOCGIFMEDIA:
1547 case SIOCSIFMEDIA:
1548 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1549 break;
1550
1551 default:
1552 error = ether_ioctl(ifp, command, data);
1553 if (error == ENETRESET) {
1554 if (ifp->if_flags & IFF_RUNNING) {
1555 /*
1556 * Multicast list has changed. Set the
1557 * hardware filter accordingly.
1558 */
1559 rtk_setmulti(sc);
1560 }
1561 error = 0;
1562 }
1563 break;
1564 }
1565
1566 splx(s);
1567
1568 return error;
1569 }
1570
1571 STATIC void
1572 rtk_watchdog(struct ifnet *ifp)
1573 {
1574 struct rtk_softc *sc;
1575
1576 sc = ifp->if_softc;
1577
1578 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1579 ifp->if_oerrors++;
1580 rtk_txeof(sc);
1581 rtk_rxeof(sc);
1582 rtk_init(ifp);
1583 }
1584
1585 /*
1586 * Stop the adapter and free any mbufs allocated to the
1587 * RX and TX lists.
1588 */
1589 STATIC void
1590 rtk_stop(struct ifnet *ifp, int disable)
1591 {
1592 struct rtk_softc *sc = ifp->if_softc;
1593 struct rtk_tx_desc *txd;
1594
1595 callout_stop(&sc->rtk_tick_ch);
1596
1597 mii_down(&sc->mii);
1598
1599 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1600 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1601
1602 /*
1603 * Free the TX list buffers.
1604 */
1605 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1606 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1607 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1608 m_freem(txd->txd_mbuf);
1609 txd->txd_mbuf = NULL;
1610 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1611 }
1612
1613 if (disable)
1614 rtk_disable(sc);
1615
1616 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1617 ifp->if_timer = 0;
1618 }
1619
1620 /*
1621 * Stop all chip I/O so that the kernel's probe routines don't
1622 * get confused by errant DMAs when rebooting.
1623 */
1624 STATIC void
1625 rtk_shutdown(void *arg)
1626 {
1627 struct rtk_softc *sc = (struct rtk_softc *)arg;
1628
1629 rtk_stop(&sc->ethercom.ec_if, 0);
1630 }
1631
1632 STATIC void
1633 rtk_tick(void *arg)
1634 {
1635 struct rtk_softc *sc = arg;
1636 int s;
1637
1638 s = splnet();
1639 mii_tick(&sc->mii);
1640 splx(s);
1641
1642 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1643 }
1644