rtl81x9.c revision 1.71 1 /* $NetBSD: rtl81x9.c,v 1.71 2007/03/04 06:02:00 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.71 2007/03/04 06:02:00 christos Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, void *);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick(void *);
157
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define EE_DELAY() DELAY(100)
173
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175
176 /*
177 * Send a read command and address to the EEPROM, check for ACK.
178 */
179 STATIC void
180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
181 {
182 int d, i;
183
184 d = (RTK_EECMD_READ << addr_len) | addr;
185
186 /*
187 * Feed in each bit and stobe the clock.
188 */
189 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 if (d & (1 << (i - 1))) {
191 EE_SET(RTK_EE_DATAIN);
192 } else {
193 EE_CLR(RTK_EE_DATAIN);
194 }
195 EE_DELAY();
196 EE_SET(RTK_EE_CLK);
197 EE_DELAY();
198 EE_CLR(RTK_EE_CLK);
199 EE_DELAY();
200 }
201 }
202
203 /*
204 * Read a word of data stored in the EEPROM at address 'addr.'
205 */
206 uint16_t
207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
208 {
209 uint16_t word;
210 int i;
211
212 /* Enter EEPROM access mode. */
213 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
214 EE_DELAY();
215 EE_SET(RTK_EE_SEL);
216
217 /*
218 * Send address of word we want to read.
219 */
220 rtk_eeprom_putbyte(sc, addr, addr_len);
221
222 /*
223 * Start reading bits from EEPROM.
224 */
225 word = 0;
226 for (i = 16; i > 0; i--) {
227 EE_SET(RTK_EE_CLK);
228 EE_DELAY();
229 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
230 word |= 1 << (i - 1);
231 EE_CLR(RTK_EE_CLK);
232 EE_DELAY();
233 }
234
235 /* Turn off EEPROM access mode. */
236 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
237
238 return word;
239 }
240
241 /*
242 * MII access routines are provided for the 8129, which
243 * doesn't have a built-in PHY. For the 8139, we fake things
244 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
245 * direct access PHY registers.
246 */
247 #define MII_SET(x) \
248 CSR_WRITE_1(sc, RTK_MII, \
249 CSR_READ_1(sc, RTK_MII) | (x))
250
251 #define MII_CLR(x) \
252 CSR_WRITE_1(sc, RTK_MII, \
253 CSR_READ_1(sc, RTK_MII) & ~(x))
254
255 /*
256 * Sync the PHYs by setting data bit and strobing the clock 32 times.
257 */
258 STATIC void
259 rtk_mii_sync(struct rtk_softc *sc)
260 {
261 int i;
262
263 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
264
265 for (i = 0; i < 32; i++) {
266 MII_SET(RTK_MII_CLK);
267 DELAY(1);
268 MII_CLR(RTK_MII_CLK);
269 DELAY(1);
270 }
271 }
272
273 /*
274 * Clock a series of bits through the MII.
275 */
276 STATIC void
277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
278 {
279 int i;
280
281 MII_CLR(RTK_MII_CLK);
282
283 for (i = cnt; i > 0; i--) {
284 if (bits & (1 << (i - 1))) {
285 MII_SET(RTK_MII_DATAOUT);
286 } else {
287 MII_CLR(RTK_MII_DATAOUT);
288 }
289 DELAY(1);
290 MII_CLR(RTK_MII_CLK);
291 DELAY(1);
292 MII_SET(RTK_MII_CLK);
293 }
294 }
295
296 /*
297 * Read an PHY register through the MII.
298 */
299 STATIC int
300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
301 {
302 int i, ack, s;
303
304 s = splnet();
305
306 /*
307 * Set up frame for RX.
308 */
309 frame->mii_stdelim = RTK_MII_STARTDELIM;
310 frame->mii_opcode = RTK_MII_READOP;
311 frame->mii_turnaround = 0;
312 frame->mii_data = 0;
313
314 CSR_WRITE_2(sc, RTK_MII, 0);
315
316 /*
317 * Turn on data xmit.
318 */
319 MII_SET(RTK_MII_DIR);
320
321 rtk_mii_sync(sc);
322
323 /*
324 * Send command/address info.
325 */
326 rtk_mii_send(sc, frame->mii_stdelim, 2);
327 rtk_mii_send(sc, frame->mii_opcode, 2);
328 rtk_mii_send(sc, frame->mii_phyaddr, 5);
329 rtk_mii_send(sc, frame->mii_regaddr, 5);
330
331 /* Idle bit */
332 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
333 DELAY(1);
334 MII_SET(RTK_MII_CLK);
335 DELAY(1);
336
337 /* Turn off xmit. */
338 MII_CLR(RTK_MII_DIR);
339
340 /* Check for ack */
341 MII_CLR(RTK_MII_CLK);
342 DELAY(1);
343 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
344 MII_SET(RTK_MII_CLK);
345 DELAY(1);
346
347 /*
348 * Now try reading data bits. If the ack failed, we still
349 * need to clock through 16 cycles to keep the PHY(s) in sync.
350 */
351 if (ack) {
352 for (i = 0; i < 16; i++) {
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 }
358 goto fail;
359 }
360
361 for (i = 16; i > 0; i--) {
362 MII_CLR(RTK_MII_CLK);
363 DELAY(1);
364 if (!ack) {
365 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
366 frame->mii_data |= 1 << (i - 1);
367 DELAY(1);
368 }
369 MII_SET(RTK_MII_CLK);
370 DELAY(1);
371 }
372
373 fail:
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 MII_SET(RTK_MII_CLK);
377 DELAY(1);
378
379 splx(s);
380
381 if (ack)
382 return 1;
383 return 0;
384 }
385
386 /*
387 * Write to a PHY register through the MII.
388 */
389 STATIC int
390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
391 {
392 int s;
393
394 s = splnet();
395 /*
396 * Set up frame for TX.
397 */
398 frame->mii_stdelim = RTK_MII_STARTDELIM;
399 frame->mii_opcode = RTK_MII_WRITEOP;
400 frame->mii_turnaround = RTK_MII_TURNAROUND;
401
402 /*
403 * Turn on data output.
404 */
405 MII_SET(RTK_MII_DIR);
406
407 rtk_mii_sync(sc);
408
409 rtk_mii_send(sc, frame->mii_stdelim, 2);
410 rtk_mii_send(sc, frame->mii_opcode, 2);
411 rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 rtk_mii_send(sc, frame->mii_regaddr, 5);
413 rtk_mii_send(sc, frame->mii_turnaround, 2);
414 rtk_mii_send(sc, frame->mii_data, 16);
415
416 /* Idle bit. */
417 MII_SET(RTK_MII_CLK);
418 DELAY(1);
419 MII_CLR(RTK_MII_CLK);
420 DELAY(1);
421
422 /*
423 * Turn off xmit.
424 */
425 MII_CLR(RTK_MII_DIR);
426
427 splx(s);
428
429 return 0;
430 }
431
432 STATIC int
433 rtk_phy_readreg(struct device *self, int phy, int reg)
434 {
435 struct rtk_softc *sc = (void *)self;
436 struct rtk_mii_frame frame;
437 int rval;
438 int rtk8139_reg;
439
440 if (sc->rtk_type == RTK_8139) {
441 if (phy != 7)
442 return 0;
443
444 switch (reg) {
445 case MII_BMCR:
446 rtk8139_reg = RTK_BMCR;
447 break;
448 case MII_BMSR:
449 rtk8139_reg = RTK_BMSR;
450 break;
451 case MII_ANAR:
452 rtk8139_reg = RTK_ANAR;
453 break;
454 case MII_ANER:
455 rtk8139_reg = RTK_ANER;
456 break;
457 case MII_ANLPAR:
458 rtk8139_reg = RTK_LPAR;
459 break;
460 default:
461 #if 0
462 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
463 #endif
464 return 0;
465 }
466 rval = CSR_READ_2(sc, rtk8139_reg);
467 return rval;
468 }
469
470 memset((char *)&frame, 0, sizeof(frame));
471
472 frame.mii_phyaddr = phy;
473 frame.mii_regaddr = reg;
474 rtk_mii_readreg(sc, &frame);
475
476 return frame.mii_data;
477 }
478
479 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
480 {
481 struct rtk_softc *sc = (void *)self;
482 struct rtk_mii_frame frame;
483 int rtk8139_reg;
484
485 if (sc->rtk_type == RTK_8139) {
486 if (phy != 7)
487 return;
488
489 switch (reg) {
490 case MII_BMCR:
491 rtk8139_reg = RTK_BMCR;
492 break;
493 case MII_BMSR:
494 rtk8139_reg = RTK_BMSR;
495 break;
496 case MII_ANAR:
497 rtk8139_reg = RTK_ANAR;
498 break;
499 case MII_ANER:
500 rtk8139_reg = RTK_ANER;
501 break;
502 case MII_ANLPAR:
503 rtk8139_reg = RTK_LPAR;
504 break;
505 default:
506 #if 0
507 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
508 #endif
509 return;
510 }
511 CSR_WRITE_2(sc, rtk8139_reg, data);
512 return;
513 }
514
515 memset((char *)&frame, 0, sizeof(frame));
516
517 frame.mii_phyaddr = phy;
518 frame.mii_regaddr = reg;
519 frame.mii_data = data;
520
521 rtk_mii_writereg(sc, &frame);
522 }
523
524 STATIC void
525 rtk_phy_statchg(struct device *v)
526 {
527
528 /* Nothing to do. */
529 }
530
531 #define rtk_calchash(addr) \
532 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
533
534 /*
535 * Program the 64-bit multicast hash filter.
536 */
537 void
538 rtk_setmulti(struct rtk_softc *sc)
539 {
540 struct ifnet *ifp;
541 uint32_t hashes[2] = { 0, 0 };
542 uint32_t rxfilt, hwrev;
543 struct ether_multi *enm;
544 struct ether_multistep step;
545 int h, mcnt;
546
547 ifp = &sc->ethercom.ec_if;
548
549 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
550
551 if (ifp->if_flags & IFF_PROMISC) {
552 allmulti:
553 ifp->if_flags |= IFF_ALLMULTI;
554 rxfilt |= RTK_RXCFG_RX_MULTI;
555 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
556 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
557 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
558 return;
559 }
560
561 /* first, zot all the existing hash bits */
562 CSR_WRITE_4(sc, RTK_MAR0, 0);
563 CSR_WRITE_4(sc, RTK_MAR4, 0);
564
565 /* now program new ones */
566 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
567 mcnt = 0;
568 while (enm != NULL) {
569 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
570 ETHER_ADDR_LEN) != 0)
571 goto allmulti;
572
573 h = rtk_calchash(enm->enm_addrlo);
574 if (h < 32)
575 hashes[0] |= (1 << h);
576 else
577 hashes[1] |= (1 << (h - 32));
578 mcnt++;
579 ETHER_NEXT_MULTI(step, enm);
580 }
581
582 ifp->if_flags &= ~IFF_ALLMULTI;
583
584 if (mcnt)
585 rxfilt |= RTK_RXCFG_RX_MULTI;
586 else
587 rxfilt &= ~RTK_RXCFG_RX_MULTI;
588
589 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
590
591 /*
592 * For some unfathomable reason, RealTek decided to reverse
593 * the order of the multicast hash registers in the PCI Express
594 * parts. This means we have to write the hash pattern in reverse
595 * order for those devices.
596 */
597 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
598 if (hwrev == RTK_HWREV_8100E || hwrev == RTK_HWREV_8100E_SPIN2 ||
599 hwrev == RTK_HWREV_8101E ||
600 hwrev == RTK_HWREV_8168_SPIN1 || hwrev == RTK_HWREV_8168_SPIN2) {
601 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
602 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
603 } else {
604 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
605 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
606 }
607 }
608
609 void
610 rtk_reset(struct rtk_softc *sc)
611 {
612 int i;
613
614 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
615
616 for (i = 0; i < RTK_TIMEOUT; i++) {
617 DELAY(10);
618 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
619 break;
620 }
621 if (i == RTK_TIMEOUT)
622 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
623 }
624
625 /*
626 * Attach the interface. Allocate softc structures, do ifmedia
627 * setup and ethernet/BPF attach.
628 */
629 void
630 rtk_attach(struct rtk_softc *sc)
631 {
632 struct ifnet *ifp;
633 struct rtk_tx_desc *txd;
634 uint16_t val;
635 uint8_t eaddr[ETHER_ADDR_LEN];
636 int error;
637 int i, addr_len;
638
639 callout_init(&sc->rtk_tick_ch);
640
641 /*
642 * Check EEPROM type 9346 or 9356.
643 */
644 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
645 addr_len = RTK_EEADDR_LEN1;
646 else
647 addr_len = RTK_EEADDR_LEN0;
648
649 /*
650 * Get station address.
651 */
652 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
653 eaddr[0] = val & 0xff;
654 eaddr[1] = val >> 8;
655 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
656 eaddr[2] = val & 0xff;
657 eaddr[3] = val >> 8;
658 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
659 eaddr[4] = val & 0xff;
660 eaddr[5] = val >> 8;
661
662 if ((error = bus_dmamem_alloc(sc->sc_dmat,
663 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
664 BUS_DMA_NOWAIT)) != 0) {
665 printf("%s: can't allocate recv buffer, error = %d\n",
666 sc->sc_dev.dv_xname, error);
667 goto fail_0;
668 }
669
670 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
671 RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
672 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
673 printf("%s: can't map recv buffer, error = %d\n",
674 sc->sc_dev.dv_xname, error);
675 goto fail_1;
676 }
677
678 if ((error = bus_dmamap_create(sc->sc_dmat,
679 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
680 &sc->recv_dmamap)) != 0) {
681 printf("%s: can't create recv buffer DMA map, error = %d\n",
682 sc->sc_dev.dv_xname, error);
683 goto fail_2;
684 }
685
686 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
687 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
688 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
689 printf("%s: can't load recv buffer DMA map, error = %d\n",
690 sc->sc_dev.dv_xname, error);
691 goto fail_3;
692 }
693
694 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
695 txd = &sc->rtk_tx_descs[i];
696 if ((error = bus_dmamap_create(sc->sc_dmat,
697 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
698 &txd->txd_dmamap)) != 0) {
699 printf("%s: can't create snd buffer DMA map,"
700 " error = %d\n", sc->sc_dev.dv_xname, error);
701 goto fail_4;
702 }
703 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
704 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
705 }
706 SIMPLEQ_INIT(&sc->rtk_tx_free);
707 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
708
709 /*
710 * From this point forward, the attachment cannot fail. A failure
711 * before this releases all resources thar may have been
712 * allocated.
713 */
714 sc->sc_flags |= RTK_ATTACHED;
715
716 /* Reset the adapter. */
717 rtk_reset(sc);
718
719 printf("%s: Ethernet address %s\n",
720 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
721
722 ifp = &sc->ethercom.ec_if;
723 ifp->if_softc = sc;
724 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
725 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
726 ifp->if_ioctl = rtk_ioctl;
727 ifp->if_start = rtk_start;
728 ifp->if_watchdog = rtk_watchdog;
729 ifp->if_init = rtk_init;
730 ifp->if_stop = rtk_stop;
731 IFQ_SET_READY(&ifp->if_snd);
732
733 /*
734 * Do ifmedia setup.
735 */
736 sc->mii.mii_ifp = ifp;
737 sc->mii.mii_readreg = rtk_phy_readreg;
738 sc->mii.mii_writereg = rtk_phy_writereg;
739 sc->mii.mii_statchg = rtk_phy_statchg;
740 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
741 rtk_ifmedia_sts);
742 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
743 MII_PHY_ANY, MII_OFFSET_ANY, 0);
744
745 /* Choose a default media. */
746 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
747 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
748 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
749 } else {
750 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
751 }
752
753 /*
754 * Call MI attach routines.
755 */
756 if_attach(ifp);
757 ether_ifattach(ifp, eaddr);
758
759 /*
760 * Make sure the interface is shutdown during reboot.
761 */
762 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
763 if (sc->sc_sdhook == NULL)
764 printf("%s: WARNING: unable to establish shutdown hook\n",
765 sc->sc_dev.dv_xname);
766 /*
767 * Add a suspend hook to make sure we come back up after a
768 * resume.
769 */
770 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
771 rtk_power, sc);
772 if (sc->sc_powerhook == NULL)
773 printf("%s: WARNING: unable to establish power hook\n",
774 sc->sc_dev.dv_xname);
775
776
777 #if NRND > 0
778 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
779 RND_TYPE_NET, 0);
780 #endif
781
782 return;
783 fail_4:
784 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
785 txd = &sc->rtk_tx_descs[i];
786 if (txd->txd_dmamap != NULL)
787 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
788 }
789 fail_3:
790 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
791 fail_2:
792 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
793 RTK_RXBUFLEN + 16);
794 fail_1:
795 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
796 fail_0:
797 return;
798 }
799
800 /*
801 * Initialize the transmit descriptors.
802 */
803 STATIC int
804 rtk_list_tx_init(struct rtk_softc *sc)
805 {
806 struct rtk_tx_desc *txd;
807 int i;
808
809 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
810 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
811 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
812 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
813
814 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
815 txd = &sc->rtk_tx_descs[i];
816 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
817 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
818 }
819
820 return 0;
821 }
822
823 /*
824 * rtk_activate:
825 * Handle device activation/deactivation requests.
826 */
827 int
828 rtk_activate(struct device *self, enum devact act)
829 {
830 struct rtk_softc *sc = (void *)self;
831 int s, error;
832
833 error = 0;
834 s = splnet();
835 switch (act) {
836 case DVACT_ACTIVATE:
837 error = EOPNOTSUPP;
838 break;
839 case DVACT_DEACTIVATE:
840 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
841 if_deactivate(&sc->ethercom.ec_if);
842 break;
843 }
844 splx(s);
845
846 return error;
847 }
848
849 /*
850 * rtk_detach:
851 * Detach a rtk interface.
852 */
853 int
854 rtk_detach(struct rtk_softc *sc)
855 {
856 struct ifnet *ifp = &sc->ethercom.ec_if;
857 struct rtk_tx_desc *txd;
858 int i;
859
860 /*
861 * Succeed now if there isn't any work to do.
862 */
863 if ((sc->sc_flags & RTK_ATTACHED) == 0)
864 return 0;
865
866 /* Unhook our tick handler. */
867 callout_stop(&sc->rtk_tick_ch);
868
869 /* Detach all PHYs. */
870 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
871
872 /* Delete all remaining media. */
873 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
874
875 #if NRND > 0
876 rnd_detach_source(&sc->rnd_source);
877 #endif
878
879 ether_ifdetach(ifp);
880 if_detach(ifp);
881
882 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
883 txd = &sc->rtk_tx_descs[i];
884 if (txd->txd_dmamap != NULL)
885 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
886 }
887 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
888 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
889 RTK_RXBUFLEN + 16);
890 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
891
892 shutdownhook_disestablish(sc->sc_sdhook);
893 powerhook_disestablish(sc->sc_powerhook);
894
895 return 0;
896 }
897
898 /*
899 * rtk_enable:
900 * Enable the RTL81X9 chip.
901 */
902 int
903 rtk_enable(struct rtk_softc *sc)
904 {
905
906 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
907 if ((*sc->sc_enable)(sc) != 0) {
908 printf("%s: device enable failed\n",
909 sc->sc_dev.dv_xname);
910 return EIO;
911 }
912 sc->sc_flags |= RTK_ENABLED;
913 }
914 return 0;
915 }
916
917 /*
918 * rtk_disable:
919 * Disable the RTL81X9 chip.
920 */
921 void
922 rtk_disable(struct rtk_softc *sc)
923 {
924
925 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
926 (*sc->sc_disable)(sc);
927 sc->sc_flags &= ~RTK_ENABLED;
928 }
929 }
930
931 /*
932 * rtk_power:
933 * Power management (suspend/resume) hook.
934 */
935 void
936 rtk_power(int why, void *arg)
937 {
938 struct rtk_softc *sc = (void *)arg;
939 struct ifnet *ifp = &sc->ethercom.ec_if;
940 int s;
941
942 s = splnet();
943 switch (why) {
944 case PWR_SUSPEND:
945 case PWR_STANDBY:
946 rtk_stop(ifp, 0);
947 if (sc->sc_power != NULL)
948 (*sc->sc_power)(sc, why);
949 break;
950 case PWR_RESUME:
951 if (ifp->if_flags & IFF_UP) {
952 if (sc->sc_power != NULL)
953 (*sc->sc_power)(sc, why);
954 rtk_init(ifp);
955 }
956 break;
957 case PWR_SOFTSUSPEND:
958 case PWR_SOFTSTANDBY:
959 case PWR_SOFTRESUME:
960 break;
961 }
962 splx(s);
963 }
964
965 /*
966 * A frame has been uploaded: pass the resulting mbuf chain up to
967 * the higher level protocols.
968 *
969 * You know there's something wrong with a PCI bus-master chip design.
970 *
971 * The receive operation is badly documented in the datasheet, so I'll
972 * attempt to document it here. The driver provides a buffer area and
973 * places its base address in the RX buffer start address register.
974 * The chip then begins copying frames into the RX buffer. Each frame
975 * is preceded by a 32-bit RX status word which specifies the length
976 * of the frame and certain other status bits. Each frame (starting with
977 * the status word) is also 32-bit aligned. The frame length is in the
978 * first 16 bits of the status word; the lower 15 bits correspond with
979 * the 'rx status register' mentioned in the datasheet.
980 *
981 * Note: to make the Alpha happy, the frame payload needs to be aligned
982 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
983 * shifted forward 2 bytes.
984 */
985 STATIC void
986 rtk_rxeof(struct rtk_softc *sc)
987 {
988 struct mbuf *m;
989 struct ifnet *ifp;
990 char *rxbufpos, *dst;
991 u_int total_len, wrap;
992 uint32_t rxstat;
993 uint16_t cur_rx, new_rx;
994 uint16_t limit;
995 uint16_t rx_bytes, max_bytes;
996
997 ifp = &sc->ethercom.ec_if;
998
999 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
1000
1001 /* Do not try to read past this point. */
1002 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1003
1004 if (limit < cur_rx)
1005 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1006 else
1007 max_bytes = limit - cur_rx;
1008 rx_bytes = 0;
1009
1010 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1011 rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1012 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1013 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1014 rxstat = le32toh(*(uint32_t *)rxbufpos);
1015 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1016 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1017
1018 /*
1019 * Here's a totally undocumented fact for you. When the
1020 * RealTek chip is in the process of copying a packet into
1021 * RAM for you, the length will be 0xfff0. If you spot a
1022 * packet header with this value, you need to stop. The
1023 * datasheet makes absolutely no mention of this and
1024 * RealTek should be shot for this.
1025 */
1026 total_len = rxstat >> 16;
1027 if (total_len == RTK_RXSTAT_UNFINISHED)
1028 break;
1029
1030 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1031 total_len < ETHER_MIN_LEN ||
1032 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
1033 ifp->if_ierrors++;
1034
1035 /*
1036 * submitted by:[netbsd-pcmcia:00484]
1037 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1038 * obtain from:
1039 * FreeBSD if_rl.c rev 1.24->1.25
1040 *
1041 */
1042 #if 0
1043 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1044 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1045 RTK_RXSTAT_ALIGNERR)) {
1046 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1047 CSR_WRITE_2(sc, RTK_COMMAND,
1048 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1049 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1050 CSR_WRITE_4(sc, RTK_RXADDR,
1051 sc->recv_dmamap->dm_segs[0].ds_addr);
1052 cur_rx = 0;
1053 }
1054 break;
1055 #else
1056 rtk_init(ifp);
1057 return;
1058 #endif
1059 }
1060
1061 /* No errors; receive the packet. */
1062 rx_bytes += total_len + RTK_RXSTAT_LEN;
1063
1064 /*
1065 * Avoid trying to read more bytes than we know
1066 * the chip has prepared for us.
1067 */
1068 if (rx_bytes > max_bytes)
1069 break;
1070
1071 /*
1072 * Skip the status word, wrapping around to the beginning
1073 * of the Rx area, if necessary.
1074 */
1075 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1076 rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1077
1078 /*
1079 * Compute the number of bytes at which the packet
1080 * will wrap to the beginning of the ring buffer.
1081 */
1082 wrap = RTK_RXBUFLEN - cur_rx;
1083
1084 /*
1085 * Compute where the next pending packet is.
1086 */
1087 if (total_len > wrap)
1088 new_rx = total_len - wrap;
1089 else
1090 new_rx = cur_rx + total_len;
1091 /* Round up to 32-bit boundary. */
1092 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1093
1094 /*
1095 * The RealTek chip includes the CRC with every
1096 * incoming packet; trim it off here.
1097 */
1098 total_len -= ETHER_CRC_LEN;
1099
1100 /*
1101 * Now allocate an mbuf (and possibly a cluster) to hold
1102 * the packet. Note we offset the packet 2 bytes so that
1103 * data after the Ethernet header will be 4-byte aligned.
1104 */
1105 MGETHDR(m, M_DONTWAIT, MT_DATA);
1106 if (m == NULL) {
1107 printf("%s: unable to allocate Rx mbuf\n",
1108 sc->sc_dev.dv_xname);
1109 ifp->if_ierrors++;
1110 goto next_packet;
1111 }
1112 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1113 MCLGET(m, M_DONTWAIT);
1114 if ((m->m_flags & M_EXT) == 0) {
1115 printf("%s: unable to allocate Rx cluster\n",
1116 sc->sc_dev.dv_xname);
1117 ifp->if_ierrors++;
1118 m_freem(m);
1119 m = NULL;
1120 goto next_packet;
1121 }
1122 }
1123 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1124 m->m_pkthdr.rcvif = ifp;
1125 m->m_pkthdr.len = m->m_len = total_len;
1126 dst = mtod(m, void *);
1127
1128 /*
1129 * If the packet wraps, copy up to the wrapping point.
1130 */
1131 if (total_len > wrap) {
1132 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1133 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1134 memcpy(dst, rxbufpos, wrap);
1135 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1136 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1137 cur_rx = 0;
1138 rxbufpos = sc->rtk_rx_buf;
1139 total_len -= wrap;
1140 dst += wrap;
1141 }
1142
1143 /*
1144 * ...and now the rest.
1145 */
1146 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1147 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1148 memcpy(dst, rxbufpos, total_len);
1149 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1150 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1151
1152 next_packet:
1153 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1154 cur_rx = new_rx;
1155
1156 if (m == NULL)
1157 continue;
1158
1159 ifp->if_ipackets++;
1160
1161 #if NBPFILTER > 0
1162 if (ifp->if_bpf)
1163 bpf_mtap(ifp->if_bpf, m);
1164 #endif
1165 /* pass it on. */
1166 (*ifp->if_input)(ifp, m);
1167 }
1168 }
1169
1170 /*
1171 * A frame was downloaded to the chip. It's safe for us to clean up
1172 * the list buffers.
1173 */
1174 STATIC void
1175 rtk_txeof(struct rtk_softc *sc)
1176 {
1177 struct ifnet *ifp;
1178 struct rtk_tx_desc *txd;
1179 uint32_t txstat;
1180
1181 ifp = &sc->ethercom.ec_if;
1182
1183 /*
1184 * Go through our tx list and free mbufs for those
1185 * frames that have been uploaded.
1186 */
1187 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1188 txstat = CSR_READ_4(sc, txd->txd_txstat);
1189 if ((txstat & (RTK_TXSTAT_TX_OK|
1190 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1191 break;
1192
1193 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1194
1195 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1196 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1197 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1198 m_freem(txd->txd_mbuf);
1199 txd->txd_mbuf = NULL;
1200
1201 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1202
1203 if (txstat & RTK_TXSTAT_TX_OK)
1204 ifp->if_opackets++;
1205 else {
1206 ifp->if_oerrors++;
1207
1208 /*
1209 * Increase Early TX threshold if underrun occurred.
1210 * Increase step 64 bytes.
1211 */
1212 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1213 #ifdef DEBUG
1214 printf("%s: transmit underrun;",
1215 sc->sc_dev.dv_xname);
1216 #endif
1217 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1218 sc->sc_txthresh += 2;
1219 #ifdef DEBUG
1220 printf(" new threshold: %d bytes",
1221 sc->sc_txthresh * 32);
1222 #endif
1223 }
1224 printf("\n");
1225 }
1226 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1227 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1228 }
1229 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1230 ifp->if_flags &= ~IFF_OACTIVE;
1231 }
1232
1233 /* Clear the timeout timer if there is no pending packet. */
1234 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1235 ifp->if_timer = 0;
1236
1237 }
1238
1239 int
1240 rtk_intr(void *arg)
1241 {
1242 struct rtk_softc *sc;
1243 struct ifnet *ifp;
1244 uint16_t status;
1245 int handled;
1246
1247 sc = arg;
1248 ifp = &sc->ethercom.ec_if;
1249
1250 /* Disable interrupts. */
1251 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1252
1253 handled = 0;
1254 for (;;) {
1255
1256 status = CSR_READ_2(sc, RTK_ISR);
1257 if (status)
1258 CSR_WRITE_2(sc, RTK_ISR, status);
1259
1260 if ((status & RTK_INTRS) == 0)
1261 break;
1262
1263 handled = 1;
1264
1265 if (status & RTK_ISR_RX_OK)
1266 rtk_rxeof(sc);
1267
1268 if (status & RTK_ISR_RX_ERR)
1269 rtk_rxeof(sc);
1270
1271 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1272 rtk_txeof(sc);
1273
1274 if (status & RTK_ISR_SYSTEM_ERR) {
1275 rtk_reset(sc);
1276 rtk_init(ifp);
1277 }
1278 }
1279
1280 /* Re-enable interrupts. */
1281 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1282
1283 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1284 rtk_start(ifp);
1285
1286 #if NRND > 0
1287 if (RND_ENABLED(&sc->rnd_source))
1288 rnd_add_uint32(&sc->rnd_source, status);
1289 #endif
1290
1291 return handled;
1292 }
1293
1294 /*
1295 * Main transmit routine.
1296 */
1297
1298 STATIC void
1299 rtk_start(struct ifnet *ifp)
1300 {
1301 struct rtk_softc *sc;
1302 struct rtk_tx_desc *txd;
1303 struct mbuf *m_head, *m_new;
1304 int error, len;
1305
1306 sc = ifp->if_softc;
1307
1308 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1309 IFQ_POLL(&ifp->if_snd, m_head);
1310 if (m_head == NULL)
1311 break;
1312 m_new = NULL;
1313
1314 /*
1315 * Load the DMA map. If this fails, the packet didn't
1316 * fit in one DMA segment, and we need to copy. Note,
1317 * the packet must also be aligned.
1318 * if the packet is too small, copy it too, so we're sure
1319 * so have enouth room for the pad buffer.
1320 */
1321 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1322 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1323 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1324 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1325 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1326 if (m_new == NULL) {
1327 printf("%s: unable to allocate Tx mbuf\n",
1328 sc->sc_dev.dv_xname);
1329 break;
1330 }
1331 if (m_head->m_pkthdr.len > MHLEN) {
1332 MCLGET(m_new, M_DONTWAIT);
1333 if ((m_new->m_flags & M_EXT) == 0) {
1334 printf("%s: unable to allocate Tx "
1335 "cluster\n", sc->sc_dev.dv_xname);
1336 m_freem(m_new);
1337 break;
1338 }
1339 }
1340 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1341 mtod(m_new, void *));
1342 m_new->m_pkthdr.len = m_new->m_len =
1343 m_head->m_pkthdr.len;
1344 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1345 memset(
1346 mtod(m_new, char *) + m_head->m_pkthdr.len,
1347 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1348 m_new->m_pkthdr.len = m_new->m_len =
1349 ETHER_PAD_LEN;
1350 }
1351 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1352 txd->txd_dmamap, m_new,
1353 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1354 if (error) {
1355 printf("%s: unable to load Tx buffer, "
1356 "error = %d\n", sc->sc_dev.dv_xname, error);
1357 break;
1358 }
1359 }
1360 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1361 #if NBPFILTER > 0
1362 /*
1363 * If there's a BPF listener, bounce a copy of this frame
1364 * to him.
1365 */
1366 if (ifp->if_bpf)
1367 bpf_mtap(ifp->if_bpf, m_head);
1368 #endif
1369 if (m_new != NULL) {
1370 m_freem(m_head);
1371 m_head = m_new;
1372 }
1373 txd->txd_mbuf = m_head;
1374
1375 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1376 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1377
1378 /*
1379 * Transmit the frame.
1380 */
1381 bus_dmamap_sync(sc->sc_dmat,
1382 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1383 BUS_DMASYNC_PREWRITE);
1384
1385 len = txd->txd_dmamap->dm_segs[0].ds_len;
1386
1387 CSR_WRITE_4(sc, txd->txd_txaddr,
1388 txd->txd_dmamap->dm_segs[0].ds_addr);
1389 CSR_WRITE_4(sc, txd->txd_txstat,
1390 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1391
1392 /*
1393 * Set a timeout in case the chip goes out to lunch.
1394 */
1395 ifp->if_timer = 5;
1396 }
1397
1398 /*
1399 * We broke out of the loop because all our TX slots are
1400 * full. Mark the NIC as busy until it drains some of the
1401 * packets from the queue.
1402 */
1403 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1404 ifp->if_flags |= IFF_OACTIVE;
1405 }
1406
1407 STATIC int
1408 rtk_init(struct ifnet *ifp)
1409 {
1410 struct rtk_softc *sc = ifp->if_softc;
1411 int error, i;
1412 uint32_t rxcfg;
1413
1414 if ((error = rtk_enable(sc)) != 0)
1415 goto out;
1416
1417 /*
1418 * Cancel pending I/O.
1419 */
1420 rtk_stop(ifp, 0);
1421
1422 /* Init our MAC address */
1423 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1424 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1425 }
1426
1427 /* Init the RX buffer pointer register. */
1428 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1429 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1430 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1431
1432 /* Init TX descriptors. */
1433 rtk_list_tx_init(sc);
1434
1435 /* Init Early TX threshold. */
1436 sc->sc_txthresh = RTK_TXTH_256;
1437 /*
1438 * Enable transmit and receive.
1439 */
1440 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1441
1442 /*
1443 * Set the initial TX and RX configuration.
1444 */
1445 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1446 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1447
1448 /* Set the individual bit to receive frames for this host only. */
1449 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1450 rxcfg |= RTK_RXCFG_RX_INDIV;
1451
1452 /* If we want promiscuous mode, set the allframes bit. */
1453 if (ifp->if_flags & IFF_PROMISC) {
1454 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1455 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1456 } else {
1457 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1458 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1459 }
1460
1461 /*
1462 * Set capture broadcast bit to capture broadcast frames.
1463 */
1464 if (ifp->if_flags & IFF_BROADCAST) {
1465 rxcfg |= RTK_RXCFG_RX_BROAD;
1466 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1467 } else {
1468 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1469 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1470 }
1471
1472 /*
1473 * Program the multicast filter, if necessary.
1474 */
1475 rtk_setmulti(sc);
1476
1477 /*
1478 * Enable interrupts.
1479 */
1480 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1481
1482 /* Start RX/TX process. */
1483 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1484
1485 /* Enable receiver and transmitter. */
1486 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1487
1488 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1489
1490 /*
1491 * Set current media.
1492 */
1493 mii_mediachg(&sc->mii);
1494
1495 ifp->if_flags |= IFF_RUNNING;
1496 ifp->if_flags &= ~IFF_OACTIVE;
1497
1498 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1499
1500 out:
1501 if (error) {
1502 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1503 ifp->if_timer = 0;
1504 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1505 }
1506 return error;
1507 }
1508
1509 /*
1510 * Set media options.
1511 */
1512 STATIC int
1513 rtk_ifmedia_upd(struct ifnet *ifp)
1514 {
1515 struct rtk_softc *sc;
1516
1517 sc = ifp->if_softc;
1518
1519 return mii_mediachg(&sc->mii);
1520 }
1521
1522 /*
1523 * Report current media status.
1524 */
1525 STATIC void
1526 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1527 {
1528 struct rtk_softc *sc;
1529
1530 sc = ifp->if_softc;
1531
1532 mii_pollstat(&sc->mii);
1533 ifmr->ifm_status = sc->mii.mii_media_status;
1534 ifmr->ifm_active = sc->mii.mii_media_active;
1535 }
1536
1537 STATIC int
1538 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1539 {
1540 struct rtk_softc *sc = ifp->if_softc;
1541 struct ifreq *ifr = (struct ifreq *)data;
1542 int s, error;
1543
1544 s = splnet();
1545
1546 switch (command) {
1547 case SIOCGIFMEDIA:
1548 case SIOCSIFMEDIA:
1549 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1550 break;
1551
1552 default:
1553 error = ether_ioctl(ifp, command, data);
1554 if (error == ENETRESET) {
1555 if (ifp->if_flags & IFF_RUNNING) {
1556 /*
1557 * Multicast list has changed. Set the
1558 * hardware filter accordingly.
1559 */
1560 rtk_setmulti(sc);
1561 }
1562 error = 0;
1563 }
1564 break;
1565 }
1566
1567 splx(s);
1568
1569 return error;
1570 }
1571
1572 STATIC void
1573 rtk_watchdog(struct ifnet *ifp)
1574 {
1575 struct rtk_softc *sc;
1576
1577 sc = ifp->if_softc;
1578
1579 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1580 ifp->if_oerrors++;
1581 rtk_txeof(sc);
1582 rtk_rxeof(sc);
1583 rtk_init(ifp);
1584 }
1585
1586 /*
1587 * Stop the adapter and free any mbufs allocated to the
1588 * RX and TX lists.
1589 */
1590 STATIC void
1591 rtk_stop(struct ifnet *ifp, int disable)
1592 {
1593 struct rtk_softc *sc = ifp->if_softc;
1594 struct rtk_tx_desc *txd;
1595
1596 callout_stop(&sc->rtk_tick_ch);
1597
1598 mii_down(&sc->mii);
1599
1600 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1601 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1602
1603 /*
1604 * Free the TX list buffers.
1605 */
1606 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1607 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1608 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1609 m_freem(txd->txd_mbuf);
1610 txd->txd_mbuf = NULL;
1611 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1612 }
1613
1614 if (disable)
1615 rtk_disable(sc);
1616
1617 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1618 ifp->if_timer = 0;
1619 }
1620
1621 /*
1622 * Stop all chip I/O so that the kernel's probe routines don't
1623 * get confused by errant DMAs when rebooting.
1624 */
1625 STATIC void
1626 rtk_shutdown(void *arg)
1627 {
1628 struct rtk_softc *sc = (struct rtk_softc *)arg;
1629
1630 rtk_stop(&sc->ethercom.ec_if, 0);
1631 }
1632
1633 STATIC void
1634 rtk_tick(void *arg)
1635 {
1636 struct rtk_softc *sc = arg;
1637 int s;
1638
1639 s = splnet();
1640 mii_tick(&sc->mii);
1641 splx(s);
1642
1643 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1644 }
1645