rtl81x9.c revision 1.72 1 /* $NetBSD: rtl81x9.c,v 1.72 2007/03/21 12:17:31 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.72 2007/03/21 12:17:31 tsutsui Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <machine/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, void *);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(struct device *, int, int);
154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
155 STATIC void rtk_phy_statchg(struct device *);
156 STATIC void rtk_tick(void *);
157
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161
162 STATIC int rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define EE_DELAY() DELAY(100)
173
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175
176 /*
177 * Send a read command and address to the EEPROM, check for ACK.
178 */
179 STATIC void
180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
181 {
182 int d, i;
183
184 d = (RTK_EECMD_READ << addr_len) | addr;
185
186 /*
187 * Feed in each bit and stobe the clock.
188 */
189 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 if (d & (1 << (i - 1))) {
191 EE_SET(RTK_EE_DATAIN);
192 } else {
193 EE_CLR(RTK_EE_DATAIN);
194 }
195 EE_DELAY();
196 EE_SET(RTK_EE_CLK);
197 EE_DELAY();
198 EE_CLR(RTK_EE_CLK);
199 EE_DELAY();
200 }
201 }
202
203 /*
204 * Read a word of data stored in the EEPROM at address 'addr.'
205 */
206 uint16_t
207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
208 {
209 uint16_t word;
210 int i;
211
212 /* Enter EEPROM access mode. */
213 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
214 EE_DELAY();
215 EE_SET(RTK_EE_SEL);
216
217 /*
218 * Send address of word we want to read.
219 */
220 rtk_eeprom_putbyte(sc, addr, addr_len);
221
222 /*
223 * Start reading bits from EEPROM.
224 */
225 word = 0;
226 for (i = 16; i > 0; i--) {
227 EE_SET(RTK_EE_CLK);
228 EE_DELAY();
229 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
230 word |= 1 << (i - 1);
231 EE_CLR(RTK_EE_CLK);
232 EE_DELAY();
233 }
234
235 /* Turn off EEPROM access mode. */
236 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
237
238 return word;
239 }
240
241 /*
242 * MII access routines are provided for the 8129, which
243 * doesn't have a built-in PHY. For the 8139, we fake things
244 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
245 * direct access PHY registers.
246 */
247 #define MII_SET(x) \
248 CSR_WRITE_1(sc, RTK_MII, \
249 CSR_READ_1(sc, RTK_MII) | (x))
250
251 #define MII_CLR(x) \
252 CSR_WRITE_1(sc, RTK_MII, \
253 CSR_READ_1(sc, RTK_MII) & ~(x))
254
255 /*
256 * Sync the PHYs by setting data bit and strobing the clock 32 times.
257 */
258 STATIC void
259 rtk_mii_sync(struct rtk_softc *sc)
260 {
261 int i;
262
263 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
264
265 for (i = 0; i < 32; i++) {
266 MII_SET(RTK_MII_CLK);
267 DELAY(1);
268 MII_CLR(RTK_MII_CLK);
269 DELAY(1);
270 }
271 }
272
273 /*
274 * Clock a series of bits through the MII.
275 */
276 STATIC void
277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
278 {
279 int i;
280
281 MII_CLR(RTK_MII_CLK);
282
283 for (i = cnt; i > 0; i--) {
284 if (bits & (1 << (i - 1))) {
285 MII_SET(RTK_MII_DATAOUT);
286 } else {
287 MII_CLR(RTK_MII_DATAOUT);
288 }
289 DELAY(1);
290 MII_CLR(RTK_MII_CLK);
291 DELAY(1);
292 MII_SET(RTK_MII_CLK);
293 }
294 }
295
296 /*
297 * Read an PHY register through the MII.
298 */
299 STATIC int
300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
301 {
302 int i, ack, s;
303
304 s = splnet();
305
306 /*
307 * Set up frame for RX.
308 */
309 frame->mii_stdelim = RTK_MII_STARTDELIM;
310 frame->mii_opcode = RTK_MII_READOP;
311 frame->mii_turnaround = 0;
312 frame->mii_data = 0;
313
314 CSR_WRITE_2(sc, RTK_MII, 0);
315
316 /*
317 * Turn on data xmit.
318 */
319 MII_SET(RTK_MII_DIR);
320
321 rtk_mii_sync(sc);
322
323 /*
324 * Send command/address info.
325 */
326 rtk_mii_send(sc, frame->mii_stdelim, 2);
327 rtk_mii_send(sc, frame->mii_opcode, 2);
328 rtk_mii_send(sc, frame->mii_phyaddr, 5);
329 rtk_mii_send(sc, frame->mii_regaddr, 5);
330
331 /* Idle bit */
332 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
333 DELAY(1);
334 MII_SET(RTK_MII_CLK);
335 DELAY(1);
336
337 /* Turn off xmit. */
338 MII_CLR(RTK_MII_DIR);
339
340 /* Check for ack */
341 MII_CLR(RTK_MII_CLK);
342 DELAY(1);
343 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
344 MII_SET(RTK_MII_CLK);
345 DELAY(1);
346
347 /*
348 * Now try reading data bits. If the ack failed, we still
349 * need to clock through 16 cycles to keep the PHY(s) in sync.
350 */
351 if (ack) {
352 for (i = 0; i < 16; i++) {
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 }
358 goto fail;
359 }
360
361 for (i = 16; i > 0; i--) {
362 MII_CLR(RTK_MII_CLK);
363 DELAY(1);
364 if (!ack) {
365 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
366 frame->mii_data |= 1 << (i - 1);
367 DELAY(1);
368 }
369 MII_SET(RTK_MII_CLK);
370 DELAY(1);
371 }
372
373 fail:
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 MII_SET(RTK_MII_CLK);
377 DELAY(1);
378
379 splx(s);
380
381 if (ack)
382 return 1;
383 return 0;
384 }
385
386 /*
387 * Write to a PHY register through the MII.
388 */
389 STATIC int
390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
391 {
392 int s;
393
394 s = splnet();
395 /*
396 * Set up frame for TX.
397 */
398 frame->mii_stdelim = RTK_MII_STARTDELIM;
399 frame->mii_opcode = RTK_MII_WRITEOP;
400 frame->mii_turnaround = RTK_MII_TURNAROUND;
401
402 /*
403 * Turn on data output.
404 */
405 MII_SET(RTK_MII_DIR);
406
407 rtk_mii_sync(sc);
408
409 rtk_mii_send(sc, frame->mii_stdelim, 2);
410 rtk_mii_send(sc, frame->mii_opcode, 2);
411 rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 rtk_mii_send(sc, frame->mii_regaddr, 5);
413 rtk_mii_send(sc, frame->mii_turnaround, 2);
414 rtk_mii_send(sc, frame->mii_data, 16);
415
416 /* Idle bit. */
417 MII_SET(RTK_MII_CLK);
418 DELAY(1);
419 MII_CLR(RTK_MII_CLK);
420 DELAY(1);
421
422 /*
423 * Turn off xmit.
424 */
425 MII_CLR(RTK_MII_DIR);
426
427 splx(s);
428
429 return 0;
430 }
431
432 STATIC int
433 rtk_phy_readreg(struct device *self, int phy, int reg)
434 {
435 struct rtk_softc *sc = (void *)self;
436 struct rtk_mii_frame frame;
437 int rval;
438 int rtk8139_reg;
439
440 if ((sc->sc_quirk & RTKQ_8129) == 0) {
441 if (phy != 7)
442 return 0;
443
444 switch (reg) {
445 case MII_BMCR:
446 rtk8139_reg = RTK_BMCR;
447 break;
448 case MII_BMSR:
449 rtk8139_reg = RTK_BMSR;
450 break;
451 case MII_ANAR:
452 rtk8139_reg = RTK_ANAR;
453 break;
454 case MII_ANER:
455 rtk8139_reg = RTK_ANER;
456 break;
457 case MII_ANLPAR:
458 rtk8139_reg = RTK_LPAR;
459 break;
460 default:
461 #if 0
462 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
463 #endif
464 return 0;
465 }
466 rval = CSR_READ_2(sc, rtk8139_reg);
467 return rval;
468 }
469
470 memset((char *)&frame, 0, sizeof(frame));
471
472 frame.mii_phyaddr = phy;
473 frame.mii_regaddr = reg;
474 rtk_mii_readreg(sc, &frame);
475
476 return frame.mii_data;
477 }
478
479 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
480 {
481 struct rtk_softc *sc = (void *)self;
482 struct rtk_mii_frame frame;
483 int rtk8139_reg;
484
485 if ((sc->sc_quirk & RTKQ_8129) == 0) {
486 if (phy != 7)
487 return;
488
489 switch (reg) {
490 case MII_BMCR:
491 rtk8139_reg = RTK_BMCR;
492 break;
493 case MII_BMSR:
494 rtk8139_reg = RTK_BMSR;
495 break;
496 case MII_ANAR:
497 rtk8139_reg = RTK_ANAR;
498 break;
499 case MII_ANER:
500 rtk8139_reg = RTK_ANER;
501 break;
502 case MII_ANLPAR:
503 rtk8139_reg = RTK_LPAR;
504 break;
505 default:
506 #if 0
507 printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
508 #endif
509 return;
510 }
511 CSR_WRITE_2(sc, rtk8139_reg, data);
512 return;
513 }
514
515 memset((char *)&frame, 0, sizeof(frame));
516
517 frame.mii_phyaddr = phy;
518 frame.mii_regaddr = reg;
519 frame.mii_data = data;
520
521 rtk_mii_writereg(sc, &frame);
522 }
523
524 STATIC void
525 rtk_phy_statchg(struct device *v)
526 {
527
528 /* Nothing to do. */
529 }
530
531 #define rtk_calchash(addr) \
532 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
533
534 /*
535 * Program the 64-bit multicast hash filter.
536 */
537 void
538 rtk_setmulti(struct rtk_softc *sc)
539 {
540 struct ifnet *ifp;
541 uint32_t hashes[2] = { 0, 0 };
542 uint32_t rxfilt;
543 struct ether_multi *enm;
544 struct ether_multistep step;
545 int h, mcnt;
546
547 ifp = &sc->ethercom.ec_if;
548
549 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
550
551 if (ifp->if_flags & IFF_PROMISC) {
552 allmulti:
553 ifp->if_flags |= IFF_ALLMULTI;
554 rxfilt |= RTK_RXCFG_RX_MULTI;
555 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
556 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
557 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
558 return;
559 }
560
561 /* first, zot all the existing hash bits */
562 CSR_WRITE_4(sc, RTK_MAR0, 0);
563 CSR_WRITE_4(sc, RTK_MAR4, 0);
564
565 /* now program new ones */
566 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
567 mcnt = 0;
568 while (enm != NULL) {
569 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
570 ETHER_ADDR_LEN) != 0)
571 goto allmulti;
572
573 h = rtk_calchash(enm->enm_addrlo);
574 if (h < 32)
575 hashes[0] |= (1 << h);
576 else
577 hashes[1] |= (1 << (h - 32));
578 mcnt++;
579 ETHER_NEXT_MULTI(step, enm);
580 }
581
582 ifp->if_flags &= ~IFF_ALLMULTI;
583
584 if (mcnt)
585 rxfilt |= RTK_RXCFG_RX_MULTI;
586 else
587 rxfilt &= ~RTK_RXCFG_RX_MULTI;
588
589 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
590
591 /*
592 * For some unfathomable reason, RealTek decided to reverse
593 * the order of the multicast hash registers in the PCI Express
594 * parts. This means we have to write the hash pattern in reverse
595 * order for those devices.
596 */
597 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
598 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
599 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
600 } else {
601 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
602 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
603 }
604 }
605
606 void
607 rtk_reset(struct rtk_softc *sc)
608 {
609 int i;
610
611 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
612
613 for (i = 0; i < RTK_TIMEOUT; i++) {
614 DELAY(10);
615 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
616 break;
617 }
618 if (i == RTK_TIMEOUT)
619 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
620 }
621
622 /*
623 * Attach the interface. Allocate softc structures, do ifmedia
624 * setup and ethernet/BPF attach.
625 */
626 void
627 rtk_attach(struct rtk_softc *sc)
628 {
629 struct ifnet *ifp;
630 struct rtk_tx_desc *txd;
631 uint16_t val;
632 uint8_t eaddr[ETHER_ADDR_LEN];
633 int error;
634 int i, addr_len;
635
636 callout_init(&sc->rtk_tick_ch);
637
638 /*
639 * Check EEPROM type 9346 or 9356.
640 */
641 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
642 addr_len = RTK_EEADDR_LEN1;
643 else
644 addr_len = RTK_EEADDR_LEN0;
645
646 /*
647 * Get station address.
648 */
649 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
650 eaddr[0] = val & 0xff;
651 eaddr[1] = val >> 8;
652 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
653 eaddr[2] = val & 0xff;
654 eaddr[3] = val >> 8;
655 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
656 eaddr[4] = val & 0xff;
657 eaddr[5] = val >> 8;
658
659 if ((error = bus_dmamem_alloc(sc->sc_dmat,
660 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
661 BUS_DMA_NOWAIT)) != 0) {
662 printf("%s: can't allocate recv buffer, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_0;
665 }
666
667 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
668 RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
669 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
670 printf("%s: can't map recv buffer, error = %d\n",
671 sc->sc_dev.dv_xname, error);
672 goto fail_1;
673 }
674
675 if ((error = bus_dmamap_create(sc->sc_dmat,
676 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
677 &sc->recv_dmamap)) != 0) {
678 printf("%s: can't create recv buffer DMA map, error = %d\n",
679 sc->sc_dev.dv_xname, error);
680 goto fail_2;
681 }
682
683 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
684 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
685 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
686 printf("%s: can't load recv buffer DMA map, error = %d\n",
687 sc->sc_dev.dv_xname, error);
688 goto fail_3;
689 }
690
691 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
692 txd = &sc->rtk_tx_descs[i];
693 if ((error = bus_dmamap_create(sc->sc_dmat,
694 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
695 &txd->txd_dmamap)) != 0) {
696 printf("%s: can't create snd buffer DMA map,"
697 " error = %d\n", sc->sc_dev.dv_xname, error);
698 goto fail_4;
699 }
700 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
701 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
702 }
703 SIMPLEQ_INIT(&sc->rtk_tx_free);
704 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
705
706 /*
707 * From this point forward, the attachment cannot fail. A failure
708 * before this releases all resources thar may have been
709 * allocated.
710 */
711 sc->sc_flags |= RTK_ATTACHED;
712
713 /* Reset the adapter. */
714 rtk_reset(sc);
715
716 printf("%s: Ethernet address %s\n",
717 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
718
719 ifp = &sc->ethercom.ec_if;
720 ifp->if_softc = sc;
721 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
722 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
723 ifp->if_ioctl = rtk_ioctl;
724 ifp->if_start = rtk_start;
725 ifp->if_watchdog = rtk_watchdog;
726 ifp->if_init = rtk_init;
727 ifp->if_stop = rtk_stop;
728 IFQ_SET_READY(&ifp->if_snd);
729
730 /*
731 * Do ifmedia setup.
732 */
733 sc->mii.mii_ifp = ifp;
734 sc->mii.mii_readreg = rtk_phy_readreg;
735 sc->mii.mii_writereg = rtk_phy_writereg;
736 sc->mii.mii_statchg = rtk_phy_statchg;
737 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
738 rtk_ifmedia_sts);
739 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
740 MII_PHY_ANY, MII_OFFSET_ANY, 0);
741
742 /* Choose a default media. */
743 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
744 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
745 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
746 } else {
747 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
748 }
749
750 /*
751 * Call MI attach routines.
752 */
753 if_attach(ifp);
754 ether_ifattach(ifp, eaddr);
755
756 /*
757 * Make sure the interface is shutdown during reboot.
758 */
759 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
760 if (sc->sc_sdhook == NULL)
761 printf("%s: WARNING: unable to establish shutdown hook\n",
762 sc->sc_dev.dv_xname);
763 /*
764 * Add a suspend hook to make sure we come back up after a
765 * resume.
766 */
767 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
768 rtk_power, sc);
769 if (sc->sc_powerhook == NULL)
770 printf("%s: WARNING: unable to establish power hook\n",
771 sc->sc_dev.dv_xname);
772
773
774 #if NRND > 0
775 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
776 RND_TYPE_NET, 0);
777 #endif
778
779 return;
780 fail_4:
781 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
782 txd = &sc->rtk_tx_descs[i];
783 if (txd->txd_dmamap != NULL)
784 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
785 }
786 fail_3:
787 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
788 fail_2:
789 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
790 RTK_RXBUFLEN + 16);
791 fail_1:
792 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
793 fail_0:
794 return;
795 }
796
797 /*
798 * Initialize the transmit descriptors.
799 */
800 STATIC int
801 rtk_list_tx_init(struct rtk_softc *sc)
802 {
803 struct rtk_tx_desc *txd;
804 int i;
805
806 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
807 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
808 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
809 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
810
811 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
812 txd = &sc->rtk_tx_descs[i];
813 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
814 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
815 }
816
817 return 0;
818 }
819
820 /*
821 * rtk_activate:
822 * Handle device activation/deactivation requests.
823 */
824 int
825 rtk_activate(struct device *self, enum devact act)
826 {
827 struct rtk_softc *sc = (void *)self;
828 int s, error;
829
830 error = 0;
831 s = splnet();
832 switch (act) {
833 case DVACT_ACTIVATE:
834 error = EOPNOTSUPP;
835 break;
836 case DVACT_DEACTIVATE:
837 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
838 if_deactivate(&sc->ethercom.ec_if);
839 break;
840 }
841 splx(s);
842
843 return error;
844 }
845
846 /*
847 * rtk_detach:
848 * Detach a rtk interface.
849 */
850 int
851 rtk_detach(struct rtk_softc *sc)
852 {
853 struct ifnet *ifp = &sc->ethercom.ec_if;
854 struct rtk_tx_desc *txd;
855 int i;
856
857 /*
858 * Succeed now if there isn't any work to do.
859 */
860 if ((sc->sc_flags & RTK_ATTACHED) == 0)
861 return 0;
862
863 /* Unhook our tick handler. */
864 callout_stop(&sc->rtk_tick_ch);
865
866 /* Detach all PHYs. */
867 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
868
869 /* Delete all remaining media. */
870 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
871
872 #if NRND > 0
873 rnd_detach_source(&sc->rnd_source);
874 #endif
875
876 ether_ifdetach(ifp);
877 if_detach(ifp);
878
879 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
880 txd = &sc->rtk_tx_descs[i];
881 if (txd->txd_dmamap != NULL)
882 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
883 }
884 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
885 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
886 RTK_RXBUFLEN + 16);
887 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
888
889 shutdownhook_disestablish(sc->sc_sdhook);
890 powerhook_disestablish(sc->sc_powerhook);
891
892 return 0;
893 }
894
895 /*
896 * rtk_enable:
897 * Enable the RTL81X9 chip.
898 */
899 int
900 rtk_enable(struct rtk_softc *sc)
901 {
902
903 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
904 if ((*sc->sc_enable)(sc) != 0) {
905 printf("%s: device enable failed\n",
906 sc->sc_dev.dv_xname);
907 return EIO;
908 }
909 sc->sc_flags |= RTK_ENABLED;
910 }
911 return 0;
912 }
913
914 /*
915 * rtk_disable:
916 * Disable the RTL81X9 chip.
917 */
918 void
919 rtk_disable(struct rtk_softc *sc)
920 {
921
922 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
923 (*sc->sc_disable)(sc);
924 sc->sc_flags &= ~RTK_ENABLED;
925 }
926 }
927
928 /*
929 * rtk_power:
930 * Power management (suspend/resume) hook.
931 */
932 void
933 rtk_power(int why, void *arg)
934 {
935 struct rtk_softc *sc = (void *)arg;
936 struct ifnet *ifp = &sc->ethercom.ec_if;
937 int s;
938
939 s = splnet();
940 switch (why) {
941 case PWR_SUSPEND:
942 case PWR_STANDBY:
943 rtk_stop(ifp, 0);
944 if (sc->sc_power != NULL)
945 (*sc->sc_power)(sc, why);
946 break;
947 case PWR_RESUME:
948 if (ifp->if_flags & IFF_UP) {
949 if (sc->sc_power != NULL)
950 (*sc->sc_power)(sc, why);
951 rtk_init(ifp);
952 }
953 break;
954 case PWR_SOFTSUSPEND:
955 case PWR_SOFTSTANDBY:
956 case PWR_SOFTRESUME:
957 break;
958 }
959 splx(s);
960 }
961
962 /*
963 * A frame has been uploaded: pass the resulting mbuf chain up to
964 * the higher level protocols.
965 *
966 * You know there's something wrong with a PCI bus-master chip design.
967 *
968 * The receive operation is badly documented in the datasheet, so I'll
969 * attempt to document it here. The driver provides a buffer area and
970 * places its base address in the RX buffer start address register.
971 * The chip then begins copying frames into the RX buffer. Each frame
972 * is preceded by a 32-bit RX status word which specifies the length
973 * of the frame and certain other status bits. Each frame (starting with
974 * the status word) is also 32-bit aligned. The frame length is in the
975 * first 16 bits of the status word; the lower 15 bits correspond with
976 * the 'rx status register' mentioned in the datasheet.
977 *
978 * Note: to make the Alpha happy, the frame payload needs to be aligned
979 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
980 * shifted forward 2 bytes.
981 */
982 STATIC void
983 rtk_rxeof(struct rtk_softc *sc)
984 {
985 struct mbuf *m;
986 struct ifnet *ifp;
987 char *rxbufpos, *dst;
988 u_int total_len, wrap;
989 uint32_t rxstat;
990 uint16_t cur_rx, new_rx;
991 uint16_t limit;
992 uint16_t rx_bytes, max_bytes;
993
994 ifp = &sc->ethercom.ec_if;
995
996 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
997
998 /* Do not try to read past this point. */
999 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1000
1001 if (limit < cur_rx)
1002 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1003 else
1004 max_bytes = limit - cur_rx;
1005 rx_bytes = 0;
1006
1007 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1008 rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1009 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1010 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1011 rxstat = le32toh(*(uint32_t *)rxbufpos);
1012 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1013 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1014
1015 /*
1016 * Here's a totally undocumented fact for you. When the
1017 * RealTek chip is in the process of copying a packet into
1018 * RAM for you, the length will be 0xfff0. If you spot a
1019 * packet header with this value, you need to stop. The
1020 * datasheet makes absolutely no mention of this and
1021 * RealTek should be shot for this.
1022 */
1023 total_len = rxstat >> 16;
1024 if (total_len == RTK_RXSTAT_UNFINISHED)
1025 break;
1026
1027 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1028 total_len < ETHER_MIN_LEN ||
1029 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
1030 ifp->if_ierrors++;
1031
1032 /*
1033 * submitted by:[netbsd-pcmcia:00484]
1034 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1035 * obtain from:
1036 * FreeBSD if_rl.c rev 1.24->1.25
1037 *
1038 */
1039 #if 0
1040 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1041 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1042 RTK_RXSTAT_ALIGNERR)) {
1043 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1044 CSR_WRITE_2(sc, RTK_COMMAND,
1045 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1046 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1047 CSR_WRITE_4(sc, RTK_RXADDR,
1048 sc->recv_dmamap->dm_segs[0].ds_addr);
1049 cur_rx = 0;
1050 }
1051 break;
1052 #else
1053 rtk_init(ifp);
1054 return;
1055 #endif
1056 }
1057
1058 /* No errors; receive the packet. */
1059 rx_bytes += total_len + RTK_RXSTAT_LEN;
1060
1061 /*
1062 * Avoid trying to read more bytes than we know
1063 * the chip has prepared for us.
1064 */
1065 if (rx_bytes > max_bytes)
1066 break;
1067
1068 /*
1069 * Skip the status word, wrapping around to the beginning
1070 * of the Rx area, if necessary.
1071 */
1072 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1073 rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1074
1075 /*
1076 * Compute the number of bytes at which the packet
1077 * will wrap to the beginning of the ring buffer.
1078 */
1079 wrap = RTK_RXBUFLEN - cur_rx;
1080
1081 /*
1082 * Compute where the next pending packet is.
1083 */
1084 if (total_len > wrap)
1085 new_rx = total_len - wrap;
1086 else
1087 new_rx = cur_rx + total_len;
1088 /* Round up to 32-bit boundary. */
1089 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1090
1091 /*
1092 * The RealTek chip includes the CRC with every
1093 * incoming packet; trim it off here.
1094 */
1095 total_len -= ETHER_CRC_LEN;
1096
1097 /*
1098 * Now allocate an mbuf (and possibly a cluster) to hold
1099 * the packet. Note we offset the packet 2 bytes so that
1100 * data after the Ethernet header will be 4-byte aligned.
1101 */
1102 MGETHDR(m, M_DONTWAIT, MT_DATA);
1103 if (m == NULL) {
1104 printf("%s: unable to allocate Rx mbuf\n",
1105 sc->sc_dev.dv_xname);
1106 ifp->if_ierrors++;
1107 goto next_packet;
1108 }
1109 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1110 MCLGET(m, M_DONTWAIT);
1111 if ((m->m_flags & M_EXT) == 0) {
1112 printf("%s: unable to allocate Rx cluster\n",
1113 sc->sc_dev.dv_xname);
1114 ifp->if_ierrors++;
1115 m_freem(m);
1116 m = NULL;
1117 goto next_packet;
1118 }
1119 }
1120 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1121 m->m_pkthdr.rcvif = ifp;
1122 m->m_pkthdr.len = m->m_len = total_len;
1123 dst = mtod(m, void *);
1124
1125 /*
1126 * If the packet wraps, copy up to the wrapping point.
1127 */
1128 if (total_len > wrap) {
1129 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1130 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1131 memcpy(dst, rxbufpos, wrap);
1132 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1133 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1134 cur_rx = 0;
1135 rxbufpos = sc->rtk_rx_buf;
1136 total_len -= wrap;
1137 dst += wrap;
1138 }
1139
1140 /*
1141 * ...and now the rest.
1142 */
1143 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1144 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1145 memcpy(dst, rxbufpos, total_len);
1146 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1147 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1148
1149 next_packet:
1150 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1151 cur_rx = new_rx;
1152
1153 if (m == NULL)
1154 continue;
1155
1156 ifp->if_ipackets++;
1157
1158 #if NBPFILTER > 0
1159 if (ifp->if_bpf)
1160 bpf_mtap(ifp->if_bpf, m);
1161 #endif
1162 /* pass it on. */
1163 (*ifp->if_input)(ifp, m);
1164 }
1165 }
1166
1167 /*
1168 * A frame was downloaded to the chip. It's safe for us to clean up
1169 * the list buffers.
1170 */
1171 STATIC void
1172 rtk_txeof(struct rtk_softc *sc)
1173 {
1174 struct ifnet *ifp;
1175 struct rtk_tx_desc *txd;
1176 uint32_t txstat;
1177
1178 ifp = &sc->ethercom.ec_if;
1179
1180 /*
1181 * Go through our tx list and free mbufs for those
1182 * frames that have been uploaded.
1183 */
1184 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1185 txstat = CSR_READ_4(sc, txd->txd_txstat);
1186 if ((txstat & (RTK_TXSTAT_TX_OK|
1187 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1188 break;
1189
1190 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1191
1192 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1193 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1194 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1195 m_freem(txd->txd_mbuf);
1196 txd->txd_mbuf = NULL;
1197
1198 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1199
1200 if (txstat & RTK_TXSTAT_TX_OK)
1201 ifp->if_opackets++;
1202 else {
1203 ifp->if_oerrors++;
1204
1205 /*
1206 * Increase Early TX threshold if underrun occurred.
1207 * Increase step 64 bytes.
1208 */
1209 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1210 #ifdef DEBUG
1211 printf("%s: transmit underrun;",
1212 sc->sc_dev.dv_xname);
1213 #endif
1214 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1215 sc->sc_txthresh += 2;
1216 #ifdef DEBUG
1217 printf(" new threshold: %d bytes",
1218 sc->sc_txthresh * 32);
1219 #endif
1220 }
1221 printf("\n");
1222 }
1223 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1224 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1225 }
1226 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1227 ifp->if_flags &= ~IFF_OACTIVE;
1228 }
1229
1230 /* Clear the timeout timer if there is no pending packet. */
1231 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1232 ifp->if_timer = 0;
1233
1234 }
1235
1236 int
1237 rtk_intr(void *arg)
1238 {
1239 struct rtk_softc *sc;
1240 struct ifnet *ifp;
1241 uint16_t status;
1242 int handled;
1243
1244 sc = arg;
1245 ifp = &sc->ethercom.ec_if;
1246
1247 /* Disable interrupts. */
1248 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1249
1250 handled = 0;
1251 for (;;) {
1252
1253 status = CSR_READ_2(sc, RTK_ISR);
1254 if (status)
1255 CSR_WRITE_2(sc, RTK_ISR, status);
1256
1257 if ((status & RTK_INTRS) == 0)
1258 break;
1259
1260 handled = 1;
1261
1262 if (status & RTK_ISR_RX_OK)
1263 rtk_rxeof(sc);
1264
1265 if (status & RTK_ISR_RX_ERR)
1266 rtk_rxeof(sc);
1267
1268 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1269 rtk_txeof(sc);
1270
1271 if (status & RTK_ISR_SYSTEM_ERR) {
1272 rtk_reset(sc);
1273 rtk_init(ifp);
1274 }
1275 }
1276
1277 /* Re-enable interrupts. */
1278 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1279
1280 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1281 rtk_start(ifp);
1282
1283 #if NRND > 0
1284 if (RND_ENABLED(&sc->rnd_source))
1285 rnd_add_uint32(&sc->rnd_source, status);
1286 #endif
1287
1288 return handled;
1289 }
1290
1291 /*
1292 * Main transmit routine.
1293 */
1294
1295 STATIC void
1296 rtk_start(struct ifnet *ifp)
1297 {
1298 struct rtk_softc *sc;
1299 struct rtk_tx_desc *txd;
1300 struct mbuf *m_head, *m_new;
1301 int error, len;
1302
1303 sc = ifp->if_softc;
1304
1305 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1306 IFQ_POLL(&ifp->if_snd, m_head);
1307 if (m_head == NULL)
1308 break;
1309 m_new = NULL;
1310
1311 /*
1312 * Load the DMA map. If this fails, the packet didn't
1313 * fit in one DMA segment, and we need to copy. Note,
1314 * the packet must also be aligned.
1315 * if the packet is too small, copy it too, so we're sure
1316 * so have enouth room for the pad buffer.
1317 */
1318 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1319 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1320 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1321 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1322 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1323 if (m_new == NULL) {
1324 printf("%s: unable to allocate Tx mbuf\n",
1325 sc->sc_dev.dv_xname);
1326 break;
1327 }
1328 if (m_head->m_pkthdr.len > MHLEN) {
1329 MCLGET(m_new, M_DONTWAIT);
1330 if ((m_new->m_flags & M_EXT) == 0) {
1331 printf("%s: unable to allocate Tx "
1332 "cluster\n", sc->sc_dev.dv_xname);
1333 m_freem(m_new);
1334 break;
1335 }
1336 }
1337 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1338 mtod(m_new, void *));
1339 m_new->m_pkthdr.len = m_new->m_len =
1340 m_head->m_pkthdr.len;
1341 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1342 memset(
1343 mtod(m_new, char *) + m_head->m_pkthdr.len,
1344 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1345 m_new->m_pkthdr.len = m_new->m_len =
1346 ETHER_PAD_LEN;
1347 }
1348 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1349 txd->txd_dmamap, m_new,
1350 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1351 if (error) {
1352 printf("%s: unable to load Tx buffer, "
1353 "error = %d\n", sc->sc_dev.dv_xname, error);
1354 break;
1355 }
1356 }
1357 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1358 #if NBPFILTER > 0
1359 /*
1360 * If there's a BPF listener, bounce a copy of this frame
1361 * to him.
1362 */
1363 if (ifp->if_bpf)
1364 bpf_mtap(ifp->if_bpf, m_head);
1365 #endif
1366 if (m_new != NULL) {
1367 m_freem(m_head);
1368 m_head = m_new;
1369 }
1370 txd->txd_mbuf = m_head;
1371
1372 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1373 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1374
1375 /*
1376 * Transmit the frame.
1377 */
1378 bus_dmamap_sync(sc->sc_dmat,
1379 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1380 BUS_DMASYNC_PREWRITE);
1381
1382 len = txd->txd_dmamap->dm_segs[0].ds_len;
1383
1384 CSR_WRITE_4(sc, txd->txd_txaddr,
1385 txd->txd_dmamap->dm_segs[0].ds_addr);
1386 CSR_WRITE_4(sc, txd->txd_txstat,
1387 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1388
1389 /*
1390 * Set a timeout in case the chip goes out to lunch.
1391 */
1392 ifp->if_timer = 5;
1393 }
1394
1395 /*
1396 * We broke out of the loop because all our TX slots are
1397 * full. Mark the NIC as busy until it drains some of the
1398 * packets from the queue.
1399 */
1400 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1401 ifp->if_flags |= IFF_OACTIVE;
1402 }
1403
1404 STATIC int
1405 rtk_init(struct ifnet *ifp)
1406 {
1407 struct rtk_softc *sc = ifp->if_softc;
1408 int error, i;
1409 uint32_t rxcfg;
1410
1411 if ((error = rtk_enable(sc)) != 0)
1412 goto out;
1413
1414 /*
1415 * Cancel pending I/O.
1416 */
1417 rtk_stop(ifp, 0);
1418
1419 /* Init our MAC address */
1420 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1421 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
1422 }
1423
1424 /* Init the RX buffer pointer register. */
1425 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1426 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1427 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1428
1429 /* Init TX descriptors. */
1430 rtk_list_tx_init(sc);
1431
1432 /* Init Early TX threshold. */
1433 sc->sc_txthresh = RTK_TXTH_256;
1434 /*
1435 * Enable transmit and receive.
1436 */
1437 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1438
1439 /*
1440 * Set the initial TX and RX configuration.
1441 */
1442 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1443 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1444
1445 /* Set the individual bit to receive frames for this host only. */
1446 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1447 rxcfg |= RTK_RXCFG_RX_INDIV;
1448
1449 /* If we want promiscuous mode, set the allframes bit. */
1450 if (ifp->if_flags & IFF_PROMISC) {
1451 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1452 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1453 } else {
1454 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1455 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1456 }
1457
1458 /*
1459 * Set capture broadcast bit to capture broadcast frames.
1460 */
1461 if (ifp->if_flags & IFF_BROADCAST) {
1462 rxcfg |= RTK_RXCFG_RX_BROAD;
1463 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1464 } else {
1465 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1466 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1467 }
1468
1469 /*
1470 * Program the multicast filter, if necessary.
1471 */
1472 rtk_setmulti(sc);
1473
1474 /*
1475 * Enable interrupts.
1476 */
1477 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1478
1479 /* Start RX/TX process. */
1480 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1481
1482 /* Enable receiver and transmitter. */
1483 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1484
1485 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1486
1487 /*
1488 * Set current media.
1489 */
1490 mii_mediachg(&sc->mii);
1491
1492 ifp->if_flags |= IFF_RUNNING;
1493 ifp->if_flags &= ~IFF_OACTIVE;
1494
1495 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1496
1497 out:
1498 if (error) {
1499 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1500 ifp->if_timer = 0;
1501 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1502 }
1503 return error;
1504 }
1505
1506 /*
1507 * Set media options.
1508 */
1509 STATIC int
1510 rtk_ifmedia_upd(struct ifnet *ifp)
1511 {
1512 struct rtk_softc *sc;
1513
1514 sc = ifp->if_softc;
1515
1516 return mii_mediachg(&sc->mii);
1517 }
1518
1519 /*
1520 * Report current media status.
1521 */
1522 STATIC void
1523 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1524 {
1525 struct rtk_softc *sc;
1526
1527 sc = ifp->if_softc;
1528
1529 mii_pollstat(&sc->mii);
1530 ifmr->ifm_status = sc->mii.mii_media_status;
1531 ifmr->ifm_active = sc->mii.mii_media_active;
1532 }
1533
1534 STATIC int
1535 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1536 {
1537 struct rtk_softc *sc = ifp->if_softc;
1538 struct ifreq *ifr = (struct ifreq *)data;
1539 int s, error;
1540
1541 s = splnet();
1542
1543 switch (command) {
1544 case SIOCGIFMEDIA:
1545 case SIOCSIFMEDIA:
1546 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1547 break;
1548
1549 default:
1550 error = ether_ioctl(ifp, command, data);
1551 if (error == ENETRESET) {
1552 if (ifp->if_flags & IFF_RUNNING) {
1553 /*
1554 * Multicast list has changed. Set the
1555 * hardware filter accordingly.
1556 */
1557 rtk_setmulti(sc);
1558 }
1559 error = 0;
1560 }
1561 break;
1562 }
1563
1564 splx(s);
1565
1566 return error;
1567 }
1568
1569 STATIC void
1570 rtk_watchdog(struct ifnet *ifp)
1571 {
1572 struct rtk_softc *sc;
1573
1574 sc = ifp->if_softc;
1575
1576 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1577 ifp->if_oerrors++;
1578 rtk_txeof(sc);
1579 rtk_rxeof(sc);
1580 rtk_init(ifp);
1581 }
1582
1583 /*
1584 * Stop the adapter and free any mbufs allocated to the
1585 * RX and TX lists.
1586 */
1587 STATIC void
1588 rtk_stop(struct ifnet *ifp, int disable)
1589 {
1590 struct rtk_softc *sc = ifp->if_softc;
1591 struct rtk_tx_desc *txd;
1592
1593 callout_stop(&sc->rtk_tick_ch);
1594
1595 mii_down(&sc->mii);
1596
1597 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1598 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1599
1600 /*
1601 * Free the TX list buffers.
1602 */
1603 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1604 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1605 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1606 m_freem(txd->txd_mbuf);
1607 txd->txd_mbuf = NULL;
1608 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1609 }
1610
1611 if (disable)
1612 rtk_disable(sc);
1613
1614 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1615 ifp->if_timer = 0;
1616 }
1617
1618 /*
1619 * Stop all chip I/O so that the kernel's probe routines don't
1620 * get confused by errant DMAs when rebooting.
1621 */
1622 STATIC void
1623 rtk_shutdown(void *arg)
1624 {
1625 struct rtk_softc *sc = (struct rtk_softc *)arg;
1626
1627 rtk_stop(&sc->ethercom.ec_if, 0);
1628 }
1629
1630 STATIC void
1631 rtk_tick(void *arg)
1632 {
1633 struct rtk_softc *sc = arg;
1634 int s;
1635
1636 s = splnet();
1637 mii_tick(&sc->mii);
1638 splx(s);
1639
1640 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1641 }
1642