rtl81x9.c revision 1.78 1 /* $NetBSD: rtl81x9.c,v 1.78 2007/11/06 02:29:20 uwe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.78 2007/11/06 02:29:20 uwe Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <sys/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 #if defined(DEBUG)
129 #define STATIC
130 #else
131 #define STATIC static
132 #endif
133
134 STATIC void rtk_reset(struct rtk_softc *);
135 STATIC void rtk_rxeof(struct rtk_softc *);
136 STATIC void rtk_txeof(struct rtk_softc *);
137 STATIC void rtk_start(struct ifnet *);
138 STATIC int rtk_ioctl(struct ifnet *, u_long, void *);
139 STATIC int rtk_init(struct ifnet *);
140 STATIC void rtk_stop(struct ifnet *, int);
141
142 STATIC void rtk_watchdog(struct ifnet *);
143 STATIC void rtk_shutdown(void *);
144 STATIC int rtk_ifmedia_upd(struct ifnet *);
145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146
147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
148 STATIC void rtk_mii_sync(struct rtk_softc *);
149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
152
153 STATIC int rtk_phy_readreg(device_t, int, int);
154 STATIC void rtk_phy_writereg(device_t, int, int, int);
155 STATIC void rtk_phy_statchg(device_t);
156 STATIC void rtk_tick(void *);
157
158 STATIC int rtk_enable(struct rtk_softc *);
159 STATIC void rtk_disable(struct rtk_softc *);
160 STATIC void rtk_power(int, void *);
161
162 STATIC void rtk_list_tx_init(struct rtk_softc *);
163
164 #define EE_SET(x) \
165 CSR_WRITE_1(sc, RTK_EECMD, \
166 CSR_READ_1(sc, RTK_EECMD) | (x))
167
168 #define EE_CLR(x) \
169 CSR_WRITE_1(sc, RTK_EECMD, \
170 CSR_READ_1(sc, RTK_EECMD) & ~(x))
171
172 #define EE_DELAY() DELAY(100)
173
174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
175
176 /*
177 * Send a read command and address to the EEPROM, check for ACK.
178 */
179 STATIC void
180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
181 {
182 int d, i;
183
184 d = (RTK_EECMD_READ << addr_len) | addr;
185
186 /*
187 * Feed in each bit and stobe the clock.
188 */
189 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
190 if (d & (1 << (i - 1))) {
191 EE_SET(RTK_EE_DATAIN);
192 } else {
193 EE_CLR(RTK_EE_DATAIN);
194 }
195 EE_DELAY();
196 EE_SET(RTK_EE_CLK);
197 EE_DELAY();
198 EE_CLR(RTK_EE_CLK);
199 EE_DELAY();
200 }
201 }
202
203 /*
204 * Read a word of data stored in the EEPROM at address 'addr.'
205 */
206 uint16_t
207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
208 {
209 uint16_t word;
210 int i;
211
212 /* Enter EEPROM access mode. */
213 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
214 EE_DELAY();
215 EE_SET(RTK_EE_SEL);
216
217 /*
218 * Send address of word we want to read.
219 */
220 rtk_eeprom_putbyte(sc, addr, addr_len);
221
222 /*
223 * Start reading bits from EEPROM.
224 */
225 word = 0;
226 for (i = 16; i > 0; i--) {
227 EE_SET(RTK_EE_CLK);
228 EE_DELAY();
229 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
230 word |= 1 << (i - 1);
231 EE_CLR(RTK_EE_CLK);
232 EE_DELAY();
233 }
234
235 /* Turn off EEPROM access mode. */
236 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
237
238 return word;
239 }
240
241 /*
242 * MII access routines are provided for the 8129, which
243 * doesn't have a built-in PHY. For the 8139, we fake things
244 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
245 * direct access PHY registers.
246 */
247 #define MII_SET(x) \
248 CSR_WRITE_1(sc, RTK_MII, \
249 CSR_READ_1(sc, RTK_MII) | (x))
250
251 #define MII_CLR(x) \
252 CSR_WRITE_1(sc, RTK_MII, \
253 CSR_READ_1(sc, RTK_MII) & ~(x))
254
255 /*
256 * Sync the PHYs by setting data bit and strobing the clock 32 times.
257 */
258 STATIC void
259 rtk_mii_sync(struct rtk_softc *sc)
260 {
261 int i;
262
263 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
264
265 for (i = 0; i < 32; i++) {
266 MII_SET(RTK_MII_CLK);
267 DELAY(1);
268 MII_CLR(RTK_MII_CLK);
269 DELAY(1);
270 }
271 }
272
273 /*
274 * Clock a series of bits through the MII.
275 */
276 STATIC void
277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
278 {
279 int i;
280
281 MII_CLR(RTK_MII_CLK);
282
283 for (i = cnt; i > 0; i--) {
284 if (bits & (1 << (i - 1))) {
285 MII_SET(RTK_MII_DATAOUT);
286 } else {
287 MII_CLR(RTK_MII_DATAOUT);
288 }
289 DELAY(1);
290 MII_CLR(RTK_MII_CLK);
291 DELAY(1);
292 MII_SET(RTK_MII_CLK);
293 }
294 }
295
296 /*
297 * Read an PHY register through the MII.
298 */
299 STATIC int
300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
301 {
302 int i, ack, s;
303
304 s = splnet();
305
306 /*
307 * Set up frame for RX.
308 */
309 frame->mii_stdelim = RTK_MII_STARTDELIM;
310 frame->mii_opcode = RTK_MII_READOP;
311 frame->mii_turnaround = 0;
312 frame->mii_data = 0;
313
314 CSR_WRITE_2(sc, RTK_MII, 0);
315
316 /*
317 * Turn on data xmit.
318 */
319 MII_SET(RTK_MII_DIR);
320
321 rtk_mii_sync(sc);
322
323 /*
324 * Send command/address info.
325 */
326 rtk_mii_send(sc, frame->mii_stdelim, 2);
327 rtk_mii_send(sc, frame->mii_opcode, 2);
328 rtk_mii_send(sc, frame->mii_phyaddr, 5);
329 rtk_mii_send(sc, frame->mii_regaddr, 5);
330
331 /* Idle bit */
332 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
333 DELAY(1);
334 MII_SET(RTK_MII_CLK);
335 DELAY(1);
336
337 /* Turn off xmit. */
338 MII_CLR(RTK_MII_DIR);
339
340 /* Check for ack */
341 MII_CLR(RTK_MII_CLK);
342 DELAY(1);
343 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
344 MII_SET(RTK_MII_CLK);
345 DELAY(1);
346
347 /*
348 * Now try reading data bits. If the ack failed, we still
349 * need to clock through 16 cycles to keep the PHY(s) in sync.
350 */
351 if (ack) {
352 for (i = 0; i < 16; i++) {
353 MII_CLR(RTK_MII_CLK);
354 DELAY(1);
355 MII_SET(RTK_MII_CLK);
356 DELAY(1);
357 }
358 goto fail;
359 }
360
361 for (i = 16; i > 0; i--) {
362 MII_CLR(RTK_MII_CLK);
363 DELAY(1);
364 if (!ack) {
365 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
366 frame->mii_data |= 1 << (i - 1);
367 DELAY(1);
368 }
369 MII_SET(RTK_MII_CLK);
370 DELAY(1);
371 }
372
373 fail:
374 MII_CLR(RTK_MII_CLK);
375 DELAY(1);
376 MII_SET(RTK_MII_CLK);
377 DELAY(1);
378
379 splx(s);
380
381 if (ack)
382 return 1;
383 return 0;
384 }
385
386 /*
387 * Write to a PHY register through the MII.
388 */
389 STATIC int
390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
391 {
392 int s;
393
394 s = splnet();
395 /*
396 * Set up frame for TX.
397 */
398 frame->mii_stdelim = RTK_MII_STARTDELIM;
399 frame->mii_opcode = RTK_MII_WRITEOP;
400 frame->mii_turnaround = RTK_MII_TURNAROUND;
401
402 /*
403 * Turn on data output.
404 */
405 MII_SET(RTK_MII_DIR);
406
407 rtk_mii_sync(sc);
408
409 rtk_mii_send(sc, frame->mii_stdelim, 2);
410 rtk_mii_send(sc, frame->mii_opcode, 2);
411 rtk_mii_send(sc, frame->mii_phyaddr, 5);
412 rtk_mii_send(sc, frame->mii_regaddr, 5);
413 rtk_mii_send(sc, frame->mii_turnaround, 2);
414 rtk_mii_send(sc, frame->mii_data, 16);
415
416 /* Idle bit. */
417 MII_SET(RTK_MII_CLK);
418 DELAY(1);
419 MII_CLR(RTK_MII_CLK);
420 DELAY(1);
421
422 /*
423 * Turn off xmit.
424 */
425 MII_CLR(RTK_MII_DIR);
426
427 splx(s);
428
429 return 0;
430 }
431
432 STATIC int
433 rtk_phy_readreg(device_t self, int phy, int reg)
434 {
435 struct rtk_softc *sc = device_private(self);
436 struct rtk_mii_frame frame;
437 int rval;
438 int rtk8139_reg;
439
440 if ((sc->sc_quirk & RTKQ_8129) == 0) {
441 if (phy != 7)
442 return 0;
443
444 switch (reg) {
445 case MII_BMCR:
446 rtk8139_reg = RTK_BMCR;
447 break;
448 case MII_BMSR:
449 rtk8139_reg = RTK_BMSR;
450 break;
451 case MII_ANAR:
452 rtk8139_reg = RTK_ANAR;
453 break;
454 case MII_ANER:
455 rtk8139_reg = RTK_ANER;
456 break;
457 case MII_ANLPAR:
458 rtk8139_reg = RTK_LPAR;
459 break;
460 default:
461 #if 0
462 printf("%s: bad phy register\n", device_xname(self));
463 #endif
464 return 0;
465 }
466 rval = CSR_READ_2(sc, rtk8139_reg);
467 return rval;
468 }
469
470 memset((char *)&frame, 0, sizeof(frame));
471
472 frame.mii_phyaddr = phy;
473 frame.mii_regaddr = reg;
474 rtk_mii_readreg(sc, &frame);
475
476 return frame.mii_data;
477 }
478
479 STATIC void
480 rtk_phy_writereg(device_t self, int phy, int reg, int data)
481 {
482 struct rtk_softc *sc = device_private(self);
483 struct rtk_mii_frame frame;
484 int rtk8139_reg;
485
486 if ((sc->sc_quirk & RTKQ_8129) == 0) {
487 if (phy != 7)
488 return;
489
490 switch (reg) {
491 case MII_BMCR:
492 rtk8139_reg = RTK_BMCR;
493 break;
494 case MII_BMSR:
495 rtk8139_reg = RTK_BMSR;
496 break;
497 case MII_ANAR:
498 rtk8139_reg = RTK_ANAR;
499 break;
500 case MII_ANER:
501 rtk8139_reg = RTK_ANER;
502 break;
503 case MII_ANLPAR:
504 rtk8139_reg = RTK_LPAR;
505 break;
506 default:
507 #if 0
508 printf("%s: bad phy register\n", device_xname(self));
509 #endif
510 return;
511 }
512 CSR_WRITE_2(sc, rtk8139_reg, data);
513 return;
514 }
515
516 memset((char *)&frame, 0, sizeof(frame));
517
518 frame.mii_phyaddr = phy;
519 frame.mii_regaddr = reg;
520 frame.mii_data = data;
521
522 rtk_mii_writereg(sc, &frame);
523 }
524
525 STATIC void
526 rtk_phy_statchg(device_t v)
527 {
528
529 /* Nothing to do. */
530 }
531
532 #define rtk_calchash(addr) \
533 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
534
535 /*
536 * Program the 64-bit multicast hash filter.
537 */
538 void
539 rtk_setmulti(struct rtk_softc *sc)
540 {
541 struct ifnet *ifp;
542 uint32_t hashes[2] = { 0, 0 };
543 uint32_t rxfilt;
544 struct ether_multi *enm;
545 struct ether_multistep step;
546 int h, mcnt;
547
548 ifp = &sc->ethercom.ec_if;
549
550 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
551
552 if (ifp->if_flags & IFF_PROMISC) {
553 allmulti:
554 ifp->if_flags |= IFF_ALLMULTI;
555 rxfilt |= RTK_RXCFG_RX_MULTI;
556 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
557 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
558 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
559 return;
560 }
561
562 /* first, zot all the existing hash bits */
563 CSR_WRITE_4(sc, RTK_MAR0, 0);
564 CSR_WRITE_4(sc, RTK_MAR4, 0);
565
566 /* now program new ones */
567 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
568 mcnt = 0;
569 while (enm != NULL) {
570 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
571 ETHER_ADDR_LEN) != 0)
572 goto allmulti;
573
574 h = rtk_calchash(enm->enm_addrlo);
575 if (h < 32)
576 hashes[0] |= (1 << h);
577 else
578 hashes[1] |= (1 << (h - 32));
579 mcnt++;
580 ETHER_NEXT_MULTI(step, enm);
581 }
582
583 ifp->if_flags &= ~IFF_ALLMULTI;
584
585 if (mcnt)
586 rxfilt |= RTK_RXCFG_RX_MULTI;
587 else
588 rxfilt &= ~RTK_RXCFG_RX_MULTI;
589
590 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
591
592 /*
593 * For some unfathomable reason, RealTek decided to reverse
594 * the order of the multicast hash registers in the PCI Express
595 * parts. This means we have to write the hash pattern in reverse
596 * order for those devices.
597 */
598 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
599 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
600 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
601 } else {
602 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
603 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
604 }
605 }
606
607 void
608 rtk_reset(struct rtk_softc *sc)
609 {
610 int i;
611
612 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
613
614 for (i = 0; i < RTK_TIMEOUT; i++) {
615 DELAY(10);
616 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
617 break;
618 }
619 if (i == RTK_TIMEOUT)
620 printf("%s: reset never completed!\n", device_xname(&sc->sc_dev));
621 }
622
623 /*
624 * Attach the interface. Allocate softc structures, do ifmedia
625 * setup and ethernet/BPF attach.
626 */
627 void
628 rtk_attach(struct rtk_softc *sc)
629 {
630 device_t self = &sc->sc_dev;
631 struct ifnet *ifp;
632 struct rtk_tx_desc *txd;
633 uint16_t val;
634 uint8_t eaddr[ETHER_ADDR_LEN];
635 int error;
636 int i, addr_len;
637
638 callout_init(&sc->rtk_tick_ch, 0);
639
640 /*
641 * Check EEPROM type 9346 or 9356.
642 */
643 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
644 addr_len = RTK_EEADDR_LEN1;
645 else
646 addr_len = RTK_EEADDR_LEN0;
647
648 /*
649 * Get station address.
650 */
651 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
652 eaddr[0] = val & 0xff;
653 eaddr[1] = val >> 8;
654 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
655 eaddr[2] = val & 0xff;
656 eaddr[3] = val >> 8;
657 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
658 eaddr[4] = val & 0xff;
659 eaddr[5] = val >> 8;
660
661 if ((error = bus_dmamem_alloc(sc->sc_dmat,
662 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
663 BUS_DMA_NOWAIT)) != 0) {
664 aprint_error_dev(self,
665 "can't allocate recv buffer, error = %d\n", error);
666 goto fail_0;
667 }
668
669 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
670 RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
671 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
672 aprint_error_dev(self,
673 "can't map recv buffer, error = %d\n", error);
674 goto fail_1;
675 }
676
677 if ((error = bus_dmamap_create(sc->sc_dmat,
678 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
679 &sc->recv_dmamap)) != 0) {
680 aprint_error_dev(self,
681 "can't create recv buffer DMA map, error = %d\n", error);
682 goto fail_2;
683 }
684
685 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
686 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
687 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
688 aprint_error_dev(self,
689 "can't load recv buffer DMA map, error = %d\n", error);
690 goto fail_3;
691 }
692
693 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
694 txd = &sc->rtk_tx_descs[i];
695 if ((error = bus_dmamap_create(sc->sc_dmat,
696 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
697 &txd->txd_dmamap)) != 0) {
698 aprint_error_dev(self,
699 "can't create snd buffer DMA map,"
700 " error = %d\n", error);
701 goto fail_4;
702 }
703 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
704 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
705 }
706 SIMPLEQ_INIT(&sc->rtk_tx_free);
707 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
708
709 /*
710 * From this point forward, the attachment cannot fail. A failure
711 * before this releases all resources thar may have been
712 * allocated.
713 */
714 sc->sc_flags |= RTK_ATTACHED;
715
716 /* Reset the adapter. */
717 rtk_reset(sc);
718
719 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
720
721 ifp = &sc->ethercom.ec_if;
722 ifp->if_softc = sc;
723 strcpy(ifp->if_xname, device_xname(self));
724 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
725 ifp->if_ioctl = rtk_ioctl;
726 ifp->if_start = rtk_start;
727 ifp->if_watchdog = rtk_watchdog;
728 ifp->if_init = rtk_init;
729 ifp->if_stop = rtk_stop;
730 IFQ_SET_READY(&ifp->if_snd);
731
732 /*
733 * Do ifmedia setup.
734 */
735 sc->mii.mii_ifp = ifp;
736 sc->mii.mii_readreg = rtk_phy_readreg;
737 sc->mii.mii_writereg = rtk_phy_writereg;
738 sc->mii.mii_statchg = rtk_phy_statchg;
739 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
740 rtk_ifmedia_sts);
741 mii_attach(self, &sc->mii, 0xffffffff,
742 MII_PHY_ANY, MII_OFFSET_ANY, 0);
743
744 /* Choose a default media. */
745 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
746 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
747 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
748 } else {
749 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
750 }
751
752 /*
753 * Call MI attach routines.
754 */
755 if_attach(ifp);
756 ether_ifattach(ifp, eaddr);
757
758 /*
759 * Make sure the interface is shutdown during reboot.
760 */
761 sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
762 if (sc->sc_sdhook == NULL)
763 aprint_error_dev(self,
764 "WARNING: unable to establish shutdown hook\n");
765 /*
766 * Add a suspend hook to make sure we come back up after a
767 * resume.
768 */
769 sc->sc_powerhook = powerhook_establish(device_xname(self),
770 rtk_power, sc);
771 if (sc->sc_powerhook == NULL)
772 aprint_error_dev(self,
773 "WARNING: unable to establish power hook\n");
774
775
776 #if NRND > 0
777 rnd_attach_source(&sc->rnd_source, device_xname(self),
778 RND_TYPE_NET, 0);
779 #endif
780
781 return;
782 fail_4:
783 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
784 txd = &sc->rtk_tx_descs[i];
785 if (txd->txd_dmamap != NULL)
786 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
787 }
788 fail_3:
789 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
790 fail_2:
791 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
792 RTK_RXBUFLEN + 16);
793 fail_1:
794 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
795 fail_0:
796 return;
797 }
798
799 /*
800 * Initialize the transmit descriptors.
801 */
802 STATIC void
803 rtk_list_tx_init(struct rtk_softc *sc)
804 {
805 struct rtk_tx_desc *txd;
806 int i;
807
808 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
809 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
810 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
811 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
812
813 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
814 txd = &sc->rtk_tx_descs[i];
815 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
816 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
817 }
818 }
819
820 /*
821 * rtk_activate:
822 * Handle device activation/deactivation requests.
823 */
824 int
825 rtk_activate(device_t self, enum devact act)
826 {
827 struct rtk_softc *sc = device_private(self);
828 int s, error;
829
830 error = 0;
831 s = splnet();
832 switch (act) {
833 case DVACT_ACTIVATE:
834 error = EOPNOTSUPP;
835 break;
836 case DVACT_DEACTIVATE:
837 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
838 if_deactivate(&sc->ethercom.ec_if);
839 break;
840 }
841 splx(s);
842
843 return error;
844 }
845
846 /*
847 * rtk_detach:
848 * Detach a rtk interface.
849 */
850 int
851 rtk_detach(struct rtk_softc *sc)
852 {
853 struct ifnet *ifp = &sc->ethercom.ec_if;
854 struct rtk_tx_desc *txd;
855 int i;
856
857 /*
858 * Succeed now if there isn't any work to do.
859 */
860 if ((sc->sc_flags & RTK_ATTACHED) == 0)
861 return 0;
862
863 /* Unhook our tick handler. */
864 callout_stop(&sc->rtk_tick_ch);
865
866 /* Detach all PHYs. */
867 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
868
869 /* Delete all remaining media. */
870 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
871
872 #if NRND > 0
873 rnd_detach_source(&sc->rnd_source);
874 #endif
875
876 ether_ifdetach(ifp);
877 if_detach(ifp);
878
879 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
880 txd = &sc->rtk_tx_descs[i];
881 if (txd->txd_dmamap != NULL)
882 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
883 }
884 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
885 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
886 RTK_RXBUFLEN + 16);
887 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
888
889 shutdownhook_disestablish(sc->sc_sdhook);
890 powerhook_disestablish(sc->sc_powerhook);
891
892 return 0;
893 }
894
895 /*
896 * rtk_enable:
897 * Enable the RTL81X9 chip.
898 */
899 int
900 rtk_enable(struct rtk_softc *sc)
901 {
902
903 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
904 if ((*sc->sc_enable)(sc) != 0) {
905 printf("%s: device enable failed\n",
906 device_xname(&sc->sc_dev));
907 return EIO;
908 }
909 sc->sc_flags |= RTK_ENABLED;
910 }
911 return 0;
912 }
913
914 /*
915 * rtk_disable:
916 * Disable the RTL81X9 chip.
917 */
918 void
919 rtk_disable(struct rtk_softc *sc)
920 {
921
922 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
923 (*sc->sc_disable)(sc);
924 sc->sc_flags &= ~RTK_ENABLED;
925 }
926 }
927
928 /*
929 * rtk_power:
930 * Power management (suspend/resume) hook.
931 */
932 void
933 rtk_power(int why, void *arg)
934 {
935 struct rtk_softc *sc = (void *)arg;
936 struct ifnet *ifp = &sc->ethercom.ec_if;
937 int s;
938
939 s = splnet();
940 switch (why) {
941 case PWR_SUSPEND:
942 case PWR_STANDBY:
943 rtk_stop(ifp, 0);
944 if (sc->sc_power != NULL)
945 (*sc->sc_power)(sc, why);
946 break;
947 case PWR_RESUME:
948 if (ifp->if_flags & IFF_UP) {
949 if (sc->sc_power != NULL)
950 (*sc->sc_power)(sc, why);
951 rtk_init(ifp);
952 }
953 break;
954 case PWR_SOFTSUSPEND:
955 case PWR_SOFTSTANDBY:
956 case PWR_SOFTRESUME:
957 break;
958 }
959 splx(s);
960 }
961
962 /*
963 * A frame has been uploaded: pass the resulting mbuf chain up to
964 * the higher level protocols.
965 *
966 * You know there's something wrong with a PCI bus-master chip design.
967 *
968 * The receive operation is badly documented in the datasheet, so I'll
969 * attempt to document it here. The driver provides a buffer area and
970 * places its base address in the RX buffer start address register.
971 * The chip then begins copying frames into the RX buffer. Each frame
972 * is preceded by a 32-bit RX status word which specifies the length
973 * of the frame and certain other status bits. Each frame (starting with
974 * the status word) is also 32-bit aligned. The frame length is in the
975 * first 16 bits of the status word; the lower 15 bits correspond with
976 * the 'rx status register' mentioned in the datasheet.
977 *
978 * Note: to make the Alpha happy, the frame payload needs to be aligned
979 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
980 * shifted forward 2 bytes.
981 */
982 STATIC void
983 rtk_rxeof(struct rtk_softc *sc)
984 {
985 struct mbuf *m;
986 struct ifnet *ifp;
987 char *rxbufpos, *dst;
988 u_int total_len, wrap;
989 uint32_t rxstat;
990 uint16_t cur_rx, new_rx;
991 uint16_t limit;
992 uint16_t rx_bytes, max_bytes;
993
994 ifp = &sc->ethercom.ec_if;
995
996 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
997
998 /* Do not try to read past this point. */
999 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
1000
1001 if (limit < cur_rx)
1002 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
1003 else
1004 max_bytes = limit - cur_rx;
1005 rx_bytes = 0;
1006
1007 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
1008 rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1009 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1010 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
1011 rxstat = le32toh(*(uint32_t *)rxbufpos);
1012 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
1013 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
1014
1015 /*
1016 * Here's a totally undocumented fact for you. When the
1017 * RealTek chip is in the process of copying a packet into
1018 * RAM for you, the length will be 0xfff0. If you spot a
1019 * packet header with this value, you need to stop. The
1020 * datasheet makes absolutely no mention of this and
1021 * RealTek should be shot for this.
1022 */
1023 total_len = rxstat >> 16;
1024 if (total_len == RTK_RXSTAT_UNFINISHED)
1025 break;
1026
1027 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
1028 total_len < ETHER_MIN_LEN ||
1029 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
1030 ifp->if_ierrors++;
1031
1032 /*
1033 * submitted by:[netbsd-pcmcia:00484]
1034 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
1035 * obtain from:
1036 * FreeBSD if_rl.c rev 1.24->1.25
1037 *
1038 */
1039 #if 0
1040 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
1041 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
1042 RTK_RXSTAT_ALIGNERR)) {
1043 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
1044 CSR_WRITE_2(sc, RTK_COMMAND,
1045 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1046 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1047 CSR_WRITE_4(sc, RTK_RXADDR,
1048 sc->recv_dmamap->dm_segs[0].ds_addr);
1049 cur_rx = 0;
1050 }
1051 break;
1052 #else
1053 rtk_init(ifp);
1054 return;
1055 #endif
1056 }
1057
1058 /* No errors; receive the packet. */
1059 rx_bytes += total_len + RTK_RXSTAT_LEN;
1060
1061 /*
1062 * Avoid trying to read more bytes than we know
1063 * the chip has prepared for us.
1064 */
1065 if (rx_bytes > max_bytes)
1066 break;
1067
1068 /*
1069 * Skip the status word, wrapping around to the beginning
1070 * of the Rx area, if necessary.
1071 */
1072 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1073 rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
1074
1075 /*
1076 * Compute the number of bytes at which the packet
1077 * will wrap to the beginning of the ring buffer.
1078 */
1079 wrap = RTK_RXBUFLEN - cur_rx;
1080
1081 /*
1082 * Compute where the next pending packet is.
1083 */
1084 if (total_len > wrap)
1085 new_rx = total_len - wrap;
1086 else
1087 new_rx = cur_rx + total_len;
1088 /* Round up to 32-bit boundary. */
1089 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
1090
1091 /*
1092 * The RealTek chip includes the CRC with every
1093 * incoming packet; trim it off here.
1094 */
1095 total_len -= ETHER_CRC_LEN;
1096
1097 /*
1098 * Now allocate an mbuf (and possibly a cluster) to hold
1099 * the packet. Note we offset the packet 2 bytes so that
1100 * data after the Ethernet header will be 4-byte aligned.
1101 */
1102 MGETHDR(m, M_DONTWAIT, MT_DATA);
1103 if (m == NULL) {
1104 printf("%s: unable to allocate Rx mbuf\n",
1105 device_xname(&sc->sc_dev));
1106 ifp->if_ierrors++;
1107 goto next_packet;
1108 }
1109 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1110 MCLGET(m, M_DONTWAIT);
1111 if ((m->m_flags & M_EXT) == 0) {
1112 printf("%s: unable to allocate Rx cluster\n",
1113 device_xname(&sc->sc_dev));
1114 ifp->if_ierrors++;
1115 m_freem(m);
1116 m = NULL;
1117 goto next_packet;
1118 }
1119 }
1120 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1121 m->m_pkthdr.rcvif = ifp;
1122 m->m_pkthdr.len = m->m_len = total_len;
1123 dst = mtod(m, void *);
1124
1125 /*
1126 * If the packet wraps, copy up to the wrapping point.
1127 */
1128 if (total_len > wrap) {
1129 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1130 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1131 memcpy(dst, rxbufpos, wrap);
1132 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1133 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1134 cur_rx = 0;
1135 rxbufpos = sc->rtk_rx_buf;
1136 total_len -= wrap;
1137 dst += wrap;
1138 }
1139
1140 /*
1141 * ...and now the rest.
1142 */
1143 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1144 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1145 memcpy(dst, rxbufpos, total_len);
1146 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1147 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1148
1149 next_packet:
1150 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1151 cur_rx = new_rx;
1152
1153 if (m == NULL)
1154 continue;
1155
1156 ifp->if_ipackets++;
1157
1158 #if NBPFILTER > 0
1159 if (ifp->if_bpf)
1160 bpf_mtap(ifp->if_bpf, m);
1161 #endif
1162 /* pass it on. */
1163 (*ifp->if_input)(ifp, m);
1164 }
1165 }
1166
1167 /*
1168 * A frame was downloaded to the chip. It's safe for us to clean up
1169 * the list buffers.
1170 */
1171 STATIC void
1172 rtk_txeof(struct rtk_softc *sc)
1173 {
1174 struct ifnet *ifp;
1175 struct rtk_tx_desc *txd;
1176 uint32_t txstat;
1177
1178 ifp = &sc->ethercom.ec_if;
1179
1180 /*
1181 * Go through our tx list and free mbufs for those
1182 * frames that have been uploaded.
1183 */
1184 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1185 txstat = CSR_READ_4(sc, txd->txd_txstat);
1186 if ((txstat & (RTK_TXSTAT_TX_OK|
1187 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1188 break;
1189
1190 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1191
1192 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1193 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1194 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1195 m_freem(txd->txd_mbuf);
1196 txd->txd_mbuf = NULL;
1197
1198 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1199
1200 if (txstat & RTK_TXSTAT_TX_OK)
1201 ifp->if_opackets++;
1202 else {
1203 ifp->if_oerrors++;
1204
1205 /*
1206 * Increase Early TX threshold if underrun occurred.
1207 * Increase step 64 bytes.
1208 */
1209 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1210 #ifdef DEBUG
1211 printf("%s: transmit underrun;",
1212 device_xname(&sc->sc_dev));
1213 #endif
1214 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1215 sc->sc_txthresh += 2;
1216 #ifdef DEBUG
1217 printf(" new threshold: %d bytes",
1218 sc->sc_txthresh * 32);
1219 #endif
1220 }
1221 printf("\n");
1222 }
1223 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1224 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1225 }
1226 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1227 ifp->if_flags &= ~IFF_OACTIVE;
1228 }
1229
1230 /* Clear the timeout timer if there is no pending packet. */
1231 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1232 ifp->if_timer = 0;
1233
1234 }
1235
1236 int
1237 rtk_intr(void *arg)
1238 {
1239 struct rtk_softc *sc;
1240 struct ifnet *ifp;
1241 uint16_t status;
1242 int handled;
1243
1244 sc = arg;
1245 ifp = &sc->ethercom.ec_if;
1246
1247 /* Disable interrupts. */
1248 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1249
1250 handled = 0;
1251 for (;;) {
1252
1253 status = CSR_READ_2(sc, RTK_ISR);
1254
1255 if (status == 0xffff)
1256 break; /* Card is gone... */
1257
1258 if (status)
1259 CSR_WRITE_2(sc, RTK_ISR, status);
1260
1261 if ((status & RTK_INTRS) == 0)
1262 break;
1263
1264 handled = 1;
1265
1266 if (status & RTK_ISR_RX_OK)
1267 rtk_rxeof(sc);
1268
1269 if (status & RTK_ISR_RX_ERR)
1270 rtk_rxeof(sc);
1271
1272 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1273 rtk_txeof(sc);
1274
1275 if (status & RTK_ISR_SYSTEM_ERR) {
1276 rtk_reset(sc);
1277 rtk_init(ifp);
1278 }
1279 }
1280
1281 /* Re-enable interrupts. */
1282 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1283
1284 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1285 rtk_start(ifp);
1286
1287 #if NRND > 0
1288 if (RND_ENABLED(&sc->rnd_source))
1289 rnd_add_uint32(&sc->rnd_source, status);
1290 #endif
1291
1292 return handled;
1293 }
1294
1295 /*
1296 * Main transmit routine.
1297 */
1298
1299 STATIC void
1300 rtk_start(struct ifnet *ifp)
1301 {
1302 struct rtk_softc *sc;
1303 struct rtk_tx_desc *txd;
1304 struct mbuf *m_head, *m_new;
1305 int error, len;
1306
1307 sc = ifp->if_softc;
1308
1309 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1310 IFQ_POLL(&ifp->if_snd, m_head);
1311 if (m_head == NULL)
1312 break;
1313 m_new = NULL;
1314
1315 /*
1316 * Load the DMA map. If this fails, the packet didn't
1317 * fit in one DMA segment, and we need to copy. Note,
1318 * the packet must also be aligned.
1319 * if the packet is too small, copy it too, so we're sure
1320 * so have enouth room for the pad buffer.
1321 */
1322 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1323 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1324 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1325 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1326 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1327 if (m_new == NULL) {
1328 printf("%s: unable to allocate Tx mbuf\n",
1329 device_xname(&sc->sc_dev));
1330 break;
1331 }
1332 if (m_head->m_pkthdr.len > MHLEN) {
1333 MCLGET(m_new, M_DONTWAIT);
1334 if ((m_new->m_flags & M_EXT) == 0) {
1335 printf("%s: unable to allocate Tx "
1336 "cluster\n", device_xname(&sc->sc_dev));
1337 m_freem(m_new);
1338 break;
1339 }
1340 }
1341 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1342 mtod(m_new, void *));
1343 m_new->m_pkthdr.len = m_new->m_len =
1344 m_head->m_pkthdr.len;
1345 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1346 memset(
1347 mtod(m_new, char *) + m_head->m_pkthdr.len,
1348 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1349 m_new->m_pkthdr.len = m_new->m_len =
1350 ETHER_PAD_LEN;
1351 }
1352 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1353 txd->txd_dmamap, m_new,
1354 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1355 if (error) {
1356 printf("%s: unable to load Tx buffer, "
1357 "error = %d\n", device_xname(&sc->sc_dev), error);
1358 break;
1359 }
1360 }
1361 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1362 #if NBPFILTER > 0
1363 /*
1364 * If there's a BPF listener, bounce a copy of this frame
1365 * to him.
1366 */
1367 if (ifp->if_bpf)
1368 bpf_mtap(ifp->if_bpf, m_head);
1369 #endif
1370 if (m_new != NULL) {
1371 m_freem(m_head);
1372 m_head = m_new;
1373 }
1374 txd->txd_mbuf = m_head;
1375
1376 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1377 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1378
1379 /*
1380 * Transmit the frame.
1381 */
1382 bus_dmamap_sync(sc->sc_dmat,
1383 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1384 BUS_DMASYNC_PREWRITE);
1385
1386 len = txd->txd_dmamap->dm_segs[0].ds_len;
1387
1388 CSR_WRITE_4(sc, txd->txd_txaddr,
1389 txd->txd_dmamap->dm_segs[0].ds_addr);
1390 CSR_WRITE_4(sc, txd->txd_txstat,
1391 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1392
1393 /*
1394 * Set a timeout in case the chip goes out to lunch.
1395 */
1396 ifp->if_timer = 5;
1397 }
1398
1399 /*
1400 * We broke out of the loop because all our TX slots are
1401 * full. Mark the NIC as busy until it drains some of the
1402 * packets from the queue.
1403 */
1404 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1405 ifp->if_flags |= IFF_OACTIVE;
1406 }
1407
1408 STATIC int
1409 rtk_init(struct ifnet *ifp)
1410 {
1411 struct rtk_softc *sc = ifp->if_softc;
1412 int error, i;
1413 uint32_t rxcfg;
1414
1415 if ((error = rtk_enable(sc)) != 0)
1416 goto out;
1417
1418 /*
1419 * Cancel pending I/O.
1420 */
1421 rtk_stop(ifp, 0);
1422
1423 /* Init our MAC address */
1424 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1425 CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1426 }
1427
1428 /* Init the RX buffer pointer register. */
1429 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1430 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1431 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1432
1433 /* Init TX descriptors. */
1434 rtk_list_tx_init(sc);
1435
1436 /* Init Early TX threshold. */
1437 sc->sc_txthresh = RTK_TXTH_256;
1438 /*
1439 * Enable transmit and receive.
1440 */
1441 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1442
1443 /*
1444 * Set the initial TX and RX configuration.
1445 */
1446 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1447 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1448
1449 /* Set the individual bit to receive frames for this host only. */
1450 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1451 rxcfg |= RTK_RXCFG_RX_INDIV;
1452
1453 /* If we want promiscuous mode, set the allframes bit. */
1454 if (ifp->if_flags & IFF_PROMISC) {
1455 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1456 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1457 } else {
1458 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1459 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1460 }
1461
1462 /*
1463 * Set capture broadcast bit to capture broadcast frames.
1464 */
1465 if (ifp->if_flags & IFF_BROADCAST) {
1466 rxcfg |= RTK_RXCFG_RX_BROAD;
1467 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1468 } else {
1469 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1470 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1471 }
1472
1473 /*
1474 * Program the multicast filter, if necessary.
1475 */
1476 rtk_setmulti(sc);
1477
1478 /*
1479 * Enable interrupts.
1480 */
1481 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1482
1483 /* Start RX/TX process. */
1484 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1485
1486 /* Enable receiver and transmitter. */
1487 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1488
1489 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1490
1491 /*
1492 * Set current media.
1493 */
1494 mii_mediachg(&sc->mii);
1495
1496 ifp->if_flags |= IFF_RUNNING;
1497 ifp->if_flags &= ~IFF_OACTIVE;
1498
1499 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1500
1501 out:
1502 if (error) {
1503 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1504 ifp->if_timer = 0;
1505 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1506 }
1507 return error;
1508 }
1509
1510 /*
1511 * Set media options.
1512 */
1513 STATIC int
1514 rtk_ifmedia_upd(struct ifnet *ifp)
1515 {
1516 struct rtk_softc *sc;
1517
1518 sc = ifp->if_softc;
1519
1520 return mii_mediachg(&sc->mii);
1521 }
1522
1523 /*
1524 * Report current media status.
1525 */
1526 STATIC void
1527 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1528 {
1529 struct rtk_softc *sc;
1530
1531 sc = ifp->if_softc;
1532
1533 mii_pollstat(&sc->mii);
1534 ifmr->ifm_status = sc->mii.mii_media_status;
1535 ifmr->ifm_active = sc->mii.mii_media_active;
1536 }
1537
1538 STATIC int
1539 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1540 {
1541 struct rtk_softc *sc = ifp->if_softc;
1542 struct ifreq *ifr = (struct ifreq *)data;
1543 int s, error;
1544
1545 s = splnet();
1546
1547 switch (command) {
1548 case SIOCGIFMEDIA:
1549 case SIOCSIFMEDIA:
1550 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1551 break;
1552
1553 default:
1554 error = ether_ioctl(ifp, command, data);
1555 if (error == ENETRESET) {
1556 if (ifp->if_flags & IFF_RUNNING) {
1557 /*
1558 * Multicast list has changed. Set the
1559 * hardware filter accordingly.
1560 */
1561 rtk_setmulti(sc);
1562 }
1563 error = 0;
1564 }
1565 break;
1566 }
1567
1568 splx(s);
1569
1570 return error;
1571 }
1572
1573 STATIC void
1574 rtk_watchdog(struct ifnet *ifp)
1575 {
1576 struct rtk_softc *sc;
1577
1578 sc = ifp->if_softc;
1579
1580 printf("%s: watchdog timeout\n", device_xname(&sc->sc_dev));
1581 ifp->if_oerrors++;
1582 rtk_txeof(sc);
1583 rtk_rxeof(sc);
1584 rtk_init(ifp);
1585 }
1586
1587 /*
1588 * Stop the adapter and free any mbufs allocated to the
1589 * RX and TX lists.
1590 */
1591 STATIC void
1592 rtk_stop(struct ifnet *ifp, int disable)
1593 {
1594 struct rtk_softc *sc = ifp->if_softc;
1595 struct rtk_tx_desc *txd;
1596
1597 callout_stop(&sc->rtk_tick_ch);
1598
1599 mii_down(&sc->mii);
1600
1601 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1602 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1603
1604 /*
1605 * Free the TX list buffers.
1606 */
1607 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1608 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1609 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1610 m_freem(txd->txd_mbuf);
1611 txd->txd_mbuf = NULL;
1612 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1613 }
1614
1615 if (disable)
1616 rtk_disable(sc);
1617
1618 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1619 ifp->if_timer = 0;
1620 }
1621
1622 /*
1623 * Stop all chip I/O so that the kernel's probe routines don't
1624 * get confused by errant DMAs when rebooting.
1625 */
1626 STATIC void
1627 rtk_shutdown(void *arg)
1628 {
1629 struct rtk_softc *sc = (struct rtk_softc *)arg;
1630
1631 rtk_stop(&sc->ethercom.ec_if, 0);
1632 }
1633
1634 STATIC void
1635 rtk_tick(void *arg)
1636 {
1637 struct rtk_softc *sc = arg;
1638 int s;
1639
1640 s = splnet();
1641 mii_tick(&sc->mii);
1642 splx(s);
1643
1644 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1645 }
1646