Home | History | Annotate | Line # | Download | only in ic
rtl81x9.c revision 1.83
      1 /*	$NetBSD: rtl81x9.c,v 1.83 2009/04/25 18:27:39 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
     35  */
     36 
     37 /*
     38  * RealTek 8129/8139 PCI NIC driver
     39  *
     40  * Supports several extremely cheap PCI 10/100 adapters based on
     41  * the RealTek chipset. Datasheets can be obtained from
     42  * www.realtek.com.tw.
     43  *
     44  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     45  * Electrical Engineering Department
     46  * Columbia University, New York City
     47  */
     48 
     49 /*
     50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
     51  * probably the worst PCI ethernet controller ever made, with the possible
     52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
     53  * DMA, but it has a terrible interface that nullifies any performance
     54  * gains that bus-master DMA usually offers.
     55  *
     56  * For transmission, the chip offers a series of four TX descriptor
     57  * registers. Each transmit frame must be in a contiguous buffer, aligned
     58  * on a longword (32-bit) boundary. This means we almost always have to
     59  * do mbuf copies in order to transmit a frame, except in the unlikely
     60  * case where a) the packet fits into a single mbuf, and b) the packet
     61  * is 32-bit aligned within the mbuf's data area. The presence of only
     62  * four descriptor registers means that we can never have more than four
     63  * packets queued for transmission at any one time.
     64  *
     65  * Reception is not much better. The driver has to allocate a single large
     66  * buffer area (up to 64K in size) into which the chip will DMA received
     67  * frames. Because we don't know where within this region received packets
     68  * will begin or end, we have no choice but to copy data from the buffer
     69  * area into mbufs in order to pass the packets up to the higher protocol
     70  * levels.
     71  *
     72  * It's impossible given this rotten design to really achieve decent
     73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
     74  * some equally overmuscled CPU to drive it.
     75  *
     76  * On the bright side, the 8139 does have a built-in PHY, although
     77  * rather than using an MDIO serial interface like most other NICs, the
     78  * PHY registers are directly accessible through the 8139's register
     79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
     80  * filter.
     81  *
     82  * The 8129 chip is an older version of the 8139 that uses an external PHY
     83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
     84  * the 8139 lets you directly access the on-board PHY registers. We need
     85  * to select which interface to use depending on the chip type.
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.83 2009/04/25 18:27:39 tsutsui Exp $");
     90 
     91 #include "bpfilter.h"
     92 #include "rnd.h"
     93 
     94 #include <sys/param.h>
     95 #include <sys/systm.h>
     96 #include <sys/callout.h>
     97 #include <sys/device.h>
     98 #include <sys/sockio.h>
     99 #include <sys/mbuf.h>
    100 #include <sys/malloc.h>
    101 #include <sys/kernel.h>
    102 #include <sys/socket.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 
    106 #include <net/if.h>
    107 #include <net/if_arp.h>
    108 #include <net/if_ether.h>
    109 #include <net/if_dl.h>
    110 #include <net/if_media.h>
    111 
    112 #if NBPFILTER > 0
    113 #include <net/bpf.h>
    114 #endif
    115 #if NRND > 0
    116 #include <sys/rnd.h>
    117 #endif
    118 
    119 #include <sys/bus.h>
    120 #include <machine/endian.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 
    125 #include <dev/ic/rtl81x9reg.h>
    126 #include <dev/ic/rtl81x9var.h>
    127 
    128 #if defined(DEBUG)
    129 #define STATIC
    130 #else
    131 #define STATIC static
    132 #endif
    133 
    134 STATIC void rtk_reset(struct rtk_softc *);
    135 STATIC void rtk_rxeof(struct rtk_softc *);
    136 STATIC void rtk_txeof(struct rtk_softc *);
    137 STATIC void rtk_start(struct ifnet *);
    138 STATIC int rtk_ioctl(struct ifnet *, u_long, void *);
    139 STATIC int rtk_init(struct ifnet *);
    140 STATIC void rtk_stop(struct ifnet *, int);
    141 
    142 STATIC void rtk_watchdog(struct ifnet *);
    143 
    144 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
    145 STATIC void rtk_mii_sync(struct rtk_softc *);
    146 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
    147 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
    148 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
    149 
    150 STATIC int rtk_phy_readreg(device_t, int, int);
    151 STATIC void rtk_phy_writereg(device_t, int, int, int);
    152 STATIC void rtk_phy_statchg(device_t);
    153 STATIC void rtk_tick(void *);
    154 
    155 STATIC int rtk_enable(struct rtk_softc *);
    156 STATIC void rtk_disable(struct rtk_softc *);
    157 
    158 STATIC void rtk_list_tx_init(struct rtk_softc *);
    159 
    160 #define EE_SET(x)					\
    161 	CSR_WRITE_1(sc, RTK_EECMD,			\
    162 		CSR_READ_1(sc, RTK_EECMD) | (x))
    163 
    164 #define EE_CLR(x)					\
    165 	CSR_WRITE_1(sc, RTK_EECMD,			\
    166 		CSR_READ_1(sc, RTK_EECMD) & ~(x))
    167 
    168 #define EE_DELAY()	DELAY(100)
    169 
    170 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
    171 
    172 /*
    173  * Send a read command and address to the EEPROM, check for ACK.
    174  */
    175 STATIC void
    176 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
    177 {
    178 	int d, i;
    179 
    180 	d = (RTK_EECMD_READ << addr_len) | addr;
    181 
    182 	/*
    183 	 * Feed in each bit and stobe the clock.
    184 	 */
    185 	for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
    186 		if (d & (1 << (i - 1))) {
    187 			EE_SET(RTK_EE_DATAIN);
    188 		} else {
    189 			EE_CLR(RTK_EE_DATAIN);
    190 		}
    191 		EE_DELAY();
    192 		EE_SET(RTK_EE_CLK);
    193 		EE_DELAY();
    194 		EE_CLR(RTK_EE_CLK);
    195 		EE_DELAY();
    196 	}
    197 }
    198 
    199 /*
    200  * Read a word of data stored in the EEPROM at address 'addr.'
    201  */
    202 uint16_t
    203 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
    204 {
    205 	uint16_t word;
    206 	int i;
    207 
    208 	/* Enter EEPROM access mode. */
    209 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
    210 	EE_DELAY();
    211 	EE_SET(RTK_EE_SEL);
    212 
    213 	/*
    214 	 * Send address of word we want to read.
    215 	 */
    216 	rtk_eeprom_putbyte(sc, addr, addr_len);
    217 
    218 	/*
    219 	 * Start reading bits from EEPROM.
    220 	 */
    221 	word = 0;
    222 	for (i = 16; i > 0; i--) {
    223 		EE_SET(RTK_EE_CLK);
    224 		EE_DELAY();
    225 		if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
    226 			word |= 1 << (i - 1);
    227 		EE_CLR(RTK_EE_CLK);
    228 		EE_DELAY();
    229 	}
    230 
    231 	/* Turn off EEPROM access mode. */
    232 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
    233 
    234 	return word;
    235 }
    236 
    237 /*
    238  * MII access routines are provided for the 8129, which
    239  * doesn't have a built-in PHY. For the 8139, we fake things
    240  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
    241  * direct access PHY registers.
    242  */
    243 #define MII_SET(x)					\
    244 	CSR_WRITE_1(sc, RTK_MII,			\
    245 		CSR_READ_1(sc, RTK_MII) | (x))
    246 
    247 #define MII_CLR(x)					\
    248 	CSR_WRITE_1(sc, RTK_MII,			\
    249 		CSR_READ_1(sc, RTK_MII) & ~(x))
    250 
    251 /*
    252  * Sync the PHYs by setting data bit and strobing the clock 32 times.
    253  */
    254 STATIC void
    255 rtk_mii_sync(struct rtk_softc *sc)
    256 {
    257 	int i;
    258 
    259 	MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
    260 
    261 	for (i = 0; i < 32; i++) {
    262 		MII_SET(RTK_MII_CLK);
    263 		DELAY(1);
    264 		MII_CLR(RTK_MII_CLK);
    265 		DELAY(1);
    266 	}
    267 }
    268 
    269 /*
    270  * Clock a series of bits through the MII.
    271  */
    272 STATIC void
    273 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
    274 {
    275 	int i;
    276 
    277 	MII_CLR(RTK_MII_CLK);
    278 
    279 	for (i = cnt; i > 0; i--) {
    280 		if (bits & (1 << (i - 1))) {
    281 			MII_SET(RTK_MII_DATAOUT);
    282 		} else {
    283 			MII_CLR(RTK_MII_DATAOUT);
    284 		}
    285 		DELAY(1);
    286 		MII_CLR(RTK_MII_CLK);
    287 		DELAY(1);
    288 		MII_SET(RTK_MII_CLK);
    289 	}
    290 }
    291 
    292 /*
    293  * Read an PHY register through the MII.
    294  */
    295 STATIC int
    296 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
    297 {
    298 	int i, ack, s;
    299 
    300 	s = splnet();
    301 
    302 	/*
    303 	 * Set up frame for RX.
    304 	 */
    305 	frame->mii_stdelim = RTK_MII_STARTDELIM;
    306 	frame->mii_opcode = RTK_MII_READOP;
    307 	frame->mii_turnaround = 0;
    308 	frame->mii_data = 0;
    309 
    310 	CSR_WRITE_2(sc, RTK_MII, 0);
    311 
    312 	/*
    313 	 * Turn on data xmit.
    314 	 */
    315 	MII_SET(RTK_MII_DIR);
    316 
    317 	rtk_mii_sync(sc);
    318 
    319 	/*
    320 	 * Send command/address info.
    321 	 */
    322 	rtk_mii_send(sc, frame->mii_stdelim, 2);
    323 	rtk_mii_send(sc, frame->mii_opcode, 2);
    324 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
    325 	rtk_mii_send(sc, frame->mii_regaddr, 5);
    326 
    327 	/* Idle bit */
    328 	MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
    329 	DELAY(1);
    330 	MII_SET(RTK_MII_CLK);
    331 	DELAY(1);
    332 
    333 	/* Turn off xmit. */
    334 	MII_CLR(RTK_MII_DIR);
    335 
    336 	/* Check for ack */
    337 	MII_CLR(RTK_MII_CLK);
    338 	DELAY(1);
    339 	ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
    340 	MII_SET(RTK_MII_CLK);
    341 	DELAY(1);
    342 
    343 	/*
    344 	 * Now try reading data bits. If the ack failed, we still
    345 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
    346 	 */
    347 	if (ack) {
    348 		for (i = 0; i < 16; i++) {
    349 			MII_CLR(RTK_MII_CLK);
    350 			DELAY(1);
    351 			MII_SET(RTK_MII_CLK);
    352 			DELAY(1);
    353 		}
    354 		goto fail;
    355 	}
    356 
    357 	for (i = 16; i > 0; i--) {
    358 		MII_CLR(RTK_MII_CLK);
    359 		DELAY(1);
    360 		if (!ack) {
    361 			if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
    362 				frame->mii_data |= 1 << (i - 1);
    363 			DELAY(1);
    364 		}
    365 		MII_SET(RTK_MII_CLK);
    366 		DELAY(1);
    367 	}
    368 
    369  fail:
    370 	MII_CLR(RTK_MII_CLK);
    371 	DELAY(1);
    372 	MII_SET(RTK_MII_CLK);
    373 	DELAY(1);
    374 
    375 	splx(s);
    376 
    377 	if (ack)
    378 		return 1;
    379 	return 0;
    380 }
    381 
    382 /*
    383  * Write to a PHY register through the MII.
    384  */
    385 STATIC int
    386 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
    387 {
    388 	int s;
    389 
    390 	s = splnet();
    391 	/*
    392 	 * Set up frame for TX.
    393 	 */
    394 	frame->mii_stdelim = RTK_MII_STARTDELIM;
    395 	frame->mii_opcode = RTK_MII_WRITEOP;
    396 	frame->mii_turnaround = RTK_MII_TURNAROUND;
    397 
    398 	/*
    399 	 * Turn on data output.
    400 	 */
    401 	MII_SET(RTK_MII_DIR);
    402 
    403 	rtk_mii_sync(sc);
    404 
    405 	rtk_mii_send(sc, frame->mii_stdelim, 2);
    406 	rtk_mii_send(sc, frame->mii_opcode, 2);
    407 	rtk_mii_send(sc, frame->mii_phyaddr, 5);
    408 	rtk_mii_send(sc, frame->mii_regaddr, 5);
    409 	rtk_mii_send(sc, frame->mii_turnaround, 2);
    410 	rtk_mii_send(sc, frame->mii_data, 16);
    411 
    412 	/* Idle bit. */
    413 	MII_SET(RTK_MII_CLK);
    414 	DELAY(1);
    415 	MII_CLR(RTK_MII_CLK);
    416 	DELAY(1);
    417 
    418 	/*
    419 	 * Turn off xmit.
    420 	 */
    421 	MII_CLR(RTK_MII_DIR);
    422 
    423 	splx(s);
    424 
    425 	return 0;
    426 }
    427 
    428 STATIC int
    429 rtk_phy_readreg(device_t self, int phy, int reg)
    430 {
    431 	struct rtk_softc *sc = device_private(self);
    432 	struct rtk_mii_frame frame;
    433 	int rval;
    434 	int rtk8139_reg;
    435 
    436 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
    437 		if (phy != 7)
    438 			return 0;
    439 
    440 		switch (reg) {
    441 		case MII_BMCR:
    442 			rtk8139_reg = RTK_BMCR;
    443 			break;
    444 		case MII_BMSR:
    445 			rtk8139_reg = RTK_BMSR;
    446 			break;
    447 		case MII_ANAR:
    448 			rtk8139_reg = RTK_ANAR;
    449 			break;
    450 		case MII_ANER:
    451 			rtk8139_reg = RTK_ANER;
    452 			break;
    453 		case MII_ANLPAR:
    454 			rtk8139_reg = RTK_LPAR;
    455 			break;
    456 		default:
    457 #if 0
    458 			printf("%s: bad phy register\n", device_xname(self));
    459 #endif
    460 			return 0;
    461 		}
    462 		rval = CSR_READ_2(sc, rtk8139_reg);
    463 		return rval;
    464 	}
    465 
    466 	memset((char *)&frame, 0, sizeof(frame));
    467 
    468 	frame.mii_phyaddr = phy;
    469 	frame.mii_regaddr = reg;
    470 	rtk_mii_readreg(sc, &frame);
    471 
    472 	return frame.mii_data;
    473 }
    474 
    475 STATIC void
    476 rtk_phy_writereg(device_t self, int phy, int reg, int data)
    477 {
    478 	struct rtk_softc *sc = device_private(self);
    479 	struct rtk_mii_frame frame;
    480 	int rtk8139_reg;
    481 
    482 	if ((sc->sc_quirk & RTKQ_8129) == 0) {
    483 		if (phy != 7)
    484 			return;
    485 
    486 		switch (reg) {
    487 		case MII_BMCR:
    488 			rtk8139_reg = RTK_BMCR;
    489 			break;
    490 		case MII_BMSR:
    491 			rtk8139_reg = RTK_BMSR;
    492 			break;
    493 		case MII_ANAR:
    494 			rtk8139_reg = RTK_ANAR;
    495 			break;
    496 		case MII_ANER:
    497 			rtk8139_reg = RTK_ANER;
    498 			break;
    499 		case MII_ANLPAR:
    500 			rtk8139_reg = RTK_LPAR;
    501 			break;
    502 		default:
    503 #if 0
    504 			printf("%s: bad phy register\n", device_xname(self));
    505 #endif
    506 			return;
    507 		}
    508 		CSR_WRITE_2(sc, rtk8139_reg, data);
    509 		return;
    510 	}
    511 
    512 	memset((char *)&frame, 0, sizeof(frame));
    513 
    514 	frame.mii_phyaddr = phy;
    515 	frame.mii_regaddr = reg;
    516 	frame.mii_data = data;
    517 
    518 	rtk_mii_writereg(sc, &frame);
    519 }
    520 
    521 STATIC void
    522 rtk_phy_statchg(device_t v)
    523 {
    524 
    525 	/* Nothing to do. */
    526 }
    527 
    528 #define	rtk_calchash(addr) \
    529 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    530 
    531 /*
    532  * Program the 64-bit multicast hash filter.
    533  */
    534 void
    535 rtk_setmulti(struct rtk_softc *sc)
    536 {
    537 	struct ifnet *ifp;
    538 	uint32_t hashes[2] = { 0, 0 };
    539 	uint32_t rxfilt;
    540 	struct ether_multi *enm;
    541 	struct ether_multistep step;
    542 	int h, mcnt;
    543 
    544 	ifp = &sc->ethercom.ec_if;
    545 
    546 	rxfilt = CSR_READ_4(sc, RTK_RXCFG);
    547 
    548 	if (ifp->if_flags & IFF_PROMISC) {
    549  allmulti:
    550 		ifp->if_flags |= IFF_ALLMULTI;
    551 		rxfilt |= RTK_RXCFG_RX_MULTI;
    552 		CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
    553 		CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
    554 		CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
    555 		return;
    556 	}
    557 
    558 	/* first, zot all the existing hash bits */
    559 	CSR_WRITE_4(sc, RTK_MAR0, 0);
    560 	CSR_WRITE_4(sc, RTK_MAR4, 0);
    561 
    562 	/* now program new ones */
    563 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
    564 	mcnt = 0;
    565 	while (enm != NULL) {
    566 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    567 		    ETHER_ADDR_LEN) != 0)
    568 			goto allmulti;
    569 
    570 		h = rtk_calchash(enm->enm_addrlo);
    571 		if (h < 32)
    572 			hashes[0] |= (1 << h);
    573 		else
    574 			hashes[1] |= (1 << (h - 32));
    575 		mcnt++;
    576 		ETHER_NEXT_MULTI(step, enm);
    577 	}
    578 
    579 	ifp->if_flags &= ~IFF_ALLMULTI;
    580 
    581 	if (mcnt)
    582 		rxfilt |= RTK_RXCFG_RX_MULTI;
    583 	else
    584 		rxfilt &= ~RTK_RXCFG_RX_MULTI;
    585 
    586 	CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
    587 
    588 	/*
    589 	 * For some unfathomable reason, RealTek decided to reverse
    590 	 * the order of the multicast hash registers in the PCI Express
    591 	 * parts. This means we have to write the hash pattern in reverse
    592 	 * order for those devices.
    593 	 */
    594 	if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
    595 		CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
    596 		CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
    597 	} else {
    598 		CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
    599 		CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
    600 	}
    601 }
    602 
    603 void
    604 rtk_reset(struct rtk_softc *sc)
    605 {
    606 	int i;
    607 
    608 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    609 
    610 	for (i = 0; i < RTK_TIMEOUT; i++) {
    611 		DELAY(10);
    612 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    613 			break;
    614 	}
    615 	if (i == RTK_TIMEOUT)
    616 		printf("%s: reset never completed!\n",
    617 		    device_xname(sc->sc_dev));
    618 }
    619 
    620 /*
    621  * Attach the interface. Allocate softc structures, do ifmedia
    622  * setup and ethernet/BPF attach.
    623  */
    624 void
    625 rtk_attach(struct rtk_softc *sc)
    626 {
    627 	device_t self = sc->sc_dev;
    628 	struct ifnet *ifp;
    629 	struct rtk_tx_desc *txd;
    630 	uint16_t val;
    631 	uint8_t eaddr[ETHER_ADDR_LEN];
    632 	int error;
    633 	int i, addr_len;
    634 
    635 	callout_init(&sc->rtk_tick_ch, 0);
    636 
    637 	/*
    638 	 * Check EEPROM type 9346 or 9356.
    639 	 */
    640 	if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    641 		addr_len = RTK_EEADDR_LEN1;
    642 	else
    643 		addr_len = RTK_EEADDR_LEN0;
    644 
    645 	/*
    646 	 * Get station address.
    647 	 */
    648 	val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
    649 	eaddr[0] = val & 0xff;
    650 	eaddr[1] = val >> 8;
    651 	val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
    652 	eaddr[2] = val & 0xff;
    653 	eaddr[3] = val >> 8;
    654 	val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
    655 	eaddr[4] = val & 0xff;
    656 	eaddr[5] = val >> 8;
    657 
    658 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    659 	    RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
    660 	    BUS_DMA_NOWAIT)) != 0) {
    661 		aprint_error_dev(self,
    662 		    "can't allocate recv buffer, error = %d\n", error);
    663 		goto fail_0;
    664 	}
    665 
    666 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
    667 	    RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
    668 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    669 		aprint_error_dev(self,
    670 		    "can't map recv buffer, error = %d\n", error);
    671 		goto fail_1;
    672 	}
    673 
    674 	if ((error = bus_dmamap_create(sc->sc_dmat,
    675 	    RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
    676 	    &sc->recv_dmamap)) != 0) {
    677 		aprint_error_dev(self,
    678 		    "can't create recv buffer DMA map, error = %d\n", error);
    679 		goto fail_2;
    680 	}
    681 
    682 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
    683 	    sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
    684 	    NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    685 		aprint_error_dev(self,
    686 		    "can't load recv buffer DMA map, error = %d\n", error);
    687 		goto fail_3;
    688 	}
    689 
    690 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    691 		txd = &sc->rtk_tx_descs[i];
    692 		if ((error = bus_dmamap_create(sc->sc_dmat,
    693 		    MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    694 		    &txd->txd_dmamap)) != 0) {
    695 			aprint_error_dev(self,
    696 			    "can't create snd buffer DMA map, error = %d\n",
    697 			    error);
    698 			goto fail_4;
    699 		}
    700 		txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
    701 		txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
    702 	}
    703 	SIMPLEQ_INIT(&sc->rtk_tx_free);
    704 	SIMPLEQ_INIT(&sc->rtk_tx_dirty);
    705 
    706 	/*
    707 	 * From this point forward, the attachment cannot fail. A failure
    708 	 * before this releases all resources thar may have been
    709 	 * allocated.
    710 	 */
    711 	sc->sc_flags |= RTK_ATTACHED;
    712 
    713 	/* Reset the adapter. */
    714 	rtk_reset(sc);
    715 
    716 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
    717 
    718 	ifp = &sc->ethercom.ec_if;
    719 	ifp->if_softc = sc;
    720 	strcpy(ifp->if_xname, device_xname(self));
    721 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    722 	ifp->if_ioctl = rtk_ioctl;
    723 	ifp->if_start = rtk_start;
    724 	ifp->if_watchdog = rtk_watchdog;
    725 	ifp->if_init = rtk_init;
    726 	ifp->if_stop = rtk_stop;
    727 	IFQ_SET_READY(&ifp->if_snd);
    728 
    729 	/*
    730 	 * Do ifmedia setup.
    731 	 */
    732 	sc->mii.mii_ifp = ifp;
    733 	sc->mii.mii_readreg = rtk_phy_readreg;
    734 	sc->mii.mii_writereg = rtk_phy_writereg;
    735 	sc->mii.mii_statchg = rtk_phy_statchg;
    736 	sc->ethercom.ec_mii = &sc->mii;
    737 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
    738 	    ether_mediastatus);
    739 	mii_attach(self, &sc->mii, 0xffffffff,
    740 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    741 
    742 	/* Choose a default media. */
    743 	if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
    744 		ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    745 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
    746 	} else {
    747 		ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
    748 	}
    749 
    750 	/*
    751 	 * Call MI attach routines.
    752 	 */
    753 	if_attach(ifp);
    754 	ether_ifattach(ifp, eaddr);
    755 
    756 #if NRND > 0
    757 	rnd_attach_source(&sc->rnd_source, device_xname(self),
    758 	    RND_TYPE_NET, 0);
    759 #endif
    760 
    761 	return;
    762  fail_4:
    763 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    764 		txd = &sc->rtk_tx_descs[i];
    765 		if (txd->txd_dmamap != NULL)
    766 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
    767 	}
    768  fail_3:
    769 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    770  fail_2:
    771 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
    772 	    RTK_RXBUFLEN + 16);
    773  fail_1:
    774 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    775  fail_0:
    776 	return;
    777 }
    778 
    779 /*
    780  * Initialize the transmit descriptors.
    781  */
    782 STATIC void
    783 rtk_list_tx_init(struct rtk_softc *sc)
    784 {
    785 	struct rtk_tx_desc *txd;
    786 	int i;
    787 
    788 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
    789 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
    790 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
    791 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
    792 
    793 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    794 		txd = &sc->rtk_tx_descs[i];
    795 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
    796 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
    797 	}
    798 }
    799 
    800 /*
    801  * rtk_activate:
    802  *     Handle device activation/deactivation requests.
    803  */
    804 int
    805 rtk_activate(device_t self, enum devact act)
    806 {
    807 	struct rtk_softc *sc = device_private(self);
    808 	int s, error;
    809 
    810 	error = 0;
    811 	s = splnet();
    812 	switch (act) {
    813 	case DVACT_ACTIVATE:
    814 		error = EOPNOTSUPP;
    815 		break;
    816 	case DVACT_DEACTIVATE:
    817 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    818 		if_deactivate(&sc->ethercom.ec_if);
    819 		break;
    820 	}
    821 	splx(s);
    822 
    823 	return error;
    824 }
    825 
    826 /*
    827  * rtk_detach:
    828  *     Detach a rtk interface.
    829  */
    830 int
    831 rtk_detach(struct rtk_softc *sc)
    832 {
    833 	struct ifnet *ifp = &sc->ethercom.ec_if;
    834 	struct rtk_tx_desc *txd;
    835 	int i;
    836 
    837 	/*
    838 	 * Succeed now if there isn't any work to do.
    839 	 */
    840 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    841 		return 0;
    842 
    843 	/* Unhook our tick handler. */
    844 	callout_stop(&sc->rtk_tick_ch);
    845 
    846 	/* Detach all PHYs. */
    847 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    848 
    849 	/* Delete all remaining media. */
    850 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    851 
    852 #if NRND > 0
    853 	rnd_detach_source(&sc->rnd_source);
    854 #endif
    855 
    856 	ether_ifdetach(ifp);
    857 	if_detach(ifp);
    858 
    859 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    860 		txd = &sc->rtk_tx_descs[i];
    861 		if (txd->txd_dmamap != NULL)
    862 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
    863 	}
    864 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    865 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rtk_rx_buf,
    866 	    RTK_RXBUFLEN + 16);
    867 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    868 
    869 	return 0;
    870 }
    871 
    872 /*
    873  * rtk_enable:
    874  *     Enable the RTL81X9 chip.
    875  */
    876 int
    877 rtk_enable(struct rtk_softc *sc)
    878 {
    879 
    880 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    881 		if ((*sc->sc_enable)(sc) != 0) {
    882 			printf("%s: device enable failed\n",
    883 			    device_xname(sc->sc_dev));
    884 			return EIO;
    885 		}
    886 		sc->sc_flags |= RTK_ENABLED;
    887 	}
    888 	return 0;
    889 }
    890 
    891 /*
    892  * rtk_disable:
    893  *     Disable the RTL81X9 chip.
    894  */
    895 void
    896 rtk_disable(struct rtk_softc *sc)
    897 {
    898 
    899 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    900 		(*sc->sc_disable)(sc);
    901 		sc->sc_flags &= ~RTK_ENABLED;
    902 	}
    903 }
    904 
    905 /*
    906  * A frame has been uploaded: pass the resulting mbuf chain up to
    907  * the higher level protocols.
    908  *
    909  * You know there's something wrong with a PCI bus-master chip design.
    910  *
    911  * The receive operation is badly documented in the datasheet, so I'll
    912  * attempt to document it here. The driver provides a buffer area and
    913  * places its base address in the RX buffer start address register.
    914  * The chip then begins copying frames into the RX buffer. Each frame
    915  * is preceded by a 32-bit RX status word which specifies the length
    916  * of the frame and certain other status bits. Each frame (starting with
    917  * the status word) is also 32-bit aligned. The frame length is in the
    918  * first 16 bits of the status word; the lower 15 bits correspond with
    919  * the 'rx status register' mentioned in the datasheet.
    920  *
    921  * Note: to make the Alpha happy, the frame payload needs to be aligned
    922  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
    923  * shifted forward 2 bytes.
    924  */
    925 STATIC void
    926 rtk_rxeof(struct rtk_softc *sc)
    927 {
    928 	struct mbuf *m;
    929 	struct ifnet *ifp;
    930 	char *rxbufpos, *dst;
    931 	u_int total_len, wrap;
    932 	uint32_t rxstat;
    933 	uint16_t cur_rx, new_rx;
    934 	uint16_t limit;
    935 	uint16_t rx_bytes, max_bytes;
    936 
    937 	ifp = &sc->ethercom.ec_if;
    938 
    939 	cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
    940 
    941 	/* Do not try to read past this point. */
    942 	limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
    943 
    944 	if (limit < cur_rx)
    945 		max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
    946 	else
    947 		max_bytes = limit - cur_rx;
    948 	rx_bytes = 0;
    949 
    950 	while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
    951 		rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
    952 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
    953 		    RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
    954 		rxstat = le32toh(*(uint32_t *)rxbufpos);
    955 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
    956 		    RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
    957 
    958 		/*
    959 		 * Here's a totally undocumented fact for you. When the
    960 		 * RealTek chip is in the process of copying a packet into
    961 		 * RAM for you, the length will be 0xfff0. If you spot a
    962 		 * packet header with this value, you need to stop. The
    963 		 * datasheet makes absolutely no mention of this and
    964 		 * RealTek should be shot for this.
    965 		 */
    966 		total_len = rxstat >> 16;
    967 		if (total_len == RTK_RXSTAT_UNFINISHED)
    968 			break;
    969 
    970 		if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
    971 		    total_len < ETHER_MIN_LEN ||
    972 		    total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
    973 			ifp->if_ierrors++;
    974 
    975 			/*
    976 			 * submitted by:[netbsd-pcmcia:00484]
    977 			 *	Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
    978 			 * obtain from:
    979 			 *     FreeBSD if_rl.c rev 1.24->1.25
    980 			 *
    981 			 */
    982 #if 0
    983 			if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
    984 			    RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
    985 			    RTK_RXSTAT_ALIGNERR)) {
    986 				CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
    987 				CSR_WRITE_2(sc, RTK_COMMAND,
    988 				    RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
    989 				CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
    990 				CSR_WRITE_4(sc, RTK_RXADDR,
    991 				    sc->recv_dmamap->dm_segs[0].ds_addr);
    992 				cur_rx = 0;
    993 			}
    994 			break;
    995 #else
    996 			rtk_init(ifp);
    997 			return;
    998 #endif
    999 		}
   1000 
   1001 		/* No errors; receive the packet. */
   1002 		rx_bytes += total_len + RTK_RXSTAT_LEN;
   1003 
   1004 		/*
   1005 		 * Avoid trying to read more bytes than we know
   1006 		 * the chip has prepared for us.
   1007 		 */
   1008 		if (rx_bytes > max_bytes)
   1009 			break;
   1010 
   1011 		/*
   1012 		 * Skip the status word, wrapping around to the beginning
   1013 		 * of the Rx area, if necessary.
   1014 		 */
   1015 		cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
   1016 		rxbufpos = (char *)sc->rtk_rx_buf + cur_rx;
   1017 
   1018 		/*
   1019 		 * Compute the number of bytes at which the packet
   1020 		 * will wrap to the beginning of the ring buffer.
   1021 		 */
   1022 		wrap = RTK_RXBUFLEN - cur_rx;
   1023 
   1024 		/*
   1025 		 * Compute where the next pending packet is.
   1026 		 */
   1027 		if (total_len > wrap)
   1028 			new_rx = total_len - wrap;
   1029 		else
   1030 			new_rx = cur_rx + total_len;
   1031 		/* Round up to 32-bit boundary. */
   1032 		new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
   1033 
   1034 		/*
   1035 		 * The RealTek chip includes the CRC with every
   1036 		 * incoming packet; trim it off here.
   1037 		 */
   1038 		total_len -= ETHER_CRC_LEN;
   1039 
   1040 		/*
   1041 		 * Now allocate an mbuf (and possibly a cluster) to hold
   1042 		 * the packet. Note we offset the packet 2 bytes so that
   1043 		 * data after the Ethernet header will be 4-byte aligned.
   1044 		 */
   1045 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1046 		if (m == NULL) {
   1047 			printf("%s: unable to allocate Rx mbuf\n",
   1048 			    device_xname(sc->sc_dev));
   1049 			ifp->if_ierrors++;
   1050 			goto next_packet;
   1051 		}
   1052 		if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
   1053 			MCLGET(m, M_DONTWAIT);
   1054 			if ((m->m_flags & M_EXT) == 0) {
   1055 				printf("%s: unable to allocate Rx cluster\n",
   1056 				    device_xname(sc->sc_dev));
   1057 				ifp->if_ierrors++;
   1058 				m_freem(m);
   1059 				m = NULL;
   1060 				goto next_packet;
   1061 			}
   1062 		}
   1063 		m->m_data += RTK_ETHER_ALIGN;	/* for alignment */
   1064 		m->m_pkthdr.rcvif = ifp;
   1065 		m->m_pkthdr.len = m->m_len = total_len;
   1066 		dst = mtod(m, void *);
   1067 
   1068 		/*
   1069 		 * If the packet wraps, copy up to the wrapping point.
   1070 		 */
   1071 		if (total_len > wrap) {
   1072 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1073 			    cur_rx, wrap, BUS_DMASYNC_POSTREAD);
   1074 			memcpy(dst, rxbufpos, wrap);
   1075 			bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1076 			    cur_rx, wrap, BUS_DMASYNC_PREREAD);
   1077 			cur_rx = 0;
   1078 			rxbufpos = sc->rtk_rx_buf;
   1079 			total_len -= wrap;
   1080 			dst += wrap;
   1081 		}
   1082 
   1083 		/*
   1084 		 * ...and now the rest.
   1085 		 */
   1086 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1087 		    cur_rx, total_len, BUS_DMASYNC_POSTREAD);
   1088 		memcpy(dst, rxbufpos, total_len);
   1089 		bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
   1090 		    cur_rx, total_len, BUS_DMASYNC_PREREAD);
   1091 
   1092  next_packet:
   1093 		CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
   1094 		cur_rx = new_rx;
   1095 
   1096 		if (m == NULL)
   1097 			continue;
   1098 
   1099 		ifp->if_ipackets++;
   1100 
   1101 #if NBPFILTER > 0
   1102 		if (ifp->if_bpf)
   1103 			bpf_mtap(ifp->if_bpf, m);
   1104 #endif
   1105 		/* pass it on. */
   1106 		(*ifp->if_input)(ifp, m);
   1107 	}
   1108 }
   1109 
   1110 /*
   1111  * A frame was downloaded to the chip. It's safe for us to clean up
   1112  * the list buffers.
   1113  */
   1114 STATIC void
   1115 rtk_txeof(struct rtk_softc *sc)
   1116 {
   1117 	struct ifnet *ifp;
   1118 	struct rtk_tx_desc *txd;
   1119 	uint32_t txstat;
   1120 
   1121 	ifp = &sc->ethercom.ec_if;
   1122 
   1123 	/*
   1124 	 * Go through our tx list and free mbufs for those
   1125 	 * frames that have been uploaded.
   1126 	 */
   1127 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
   1128 		txstat = CSR_READ_4(sc, txd->txd_txstat);
   1129 		if ((txstat & (RTK_TXSTAT_TX_OK|
   1130 		    RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
   1131 			break;
   1132 
   1133 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
   1134 
   1135 		bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
   1136 		    txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1137 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
   1138 		m_freem(txd->txd_mbuf);
   1139 		txd->txd_mbuf = NULL;
   1140 
   1141 		ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
   1142 
   1143 		if (txstat & RTK_TXSTAT_TX_OK)
   1144 			ifp->if_opackets++;
   1145 		else {
   1146 			ifp->if_oerrors++;
   1147 
   1148 			/*
   1149 			 * Increase Early TX threshold if underrun occurred.
   1150 			 * Increase step 64 bytes.
   1151 			 */
   1152 			if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
   1153 #ifdef DEBUG
   1154 				printf("%s: transmit underrun;",
   1155 				    device_xname(sc->sc_dev));
   1156 #endif
   1157 				if (sc->sc_txthresh < RTK_TXTH_MAX) {
   1158 					sc->sc_txthresh += 2;
   1159 #ifdef DEBUG
   1160 					printf(" new threshold: %d bytes",
   1161 					    sc->sc_txthresh * 32);
   1162 #endif
   1163 				}
   1164 				printf("\n");
   1165 			}
   1166 			if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
   1167 				CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1168 		}
   1169 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
   1170 		ifp->if_flags &= ~IFF_OACTIVE;
   1171 	}
   1172 
   1173 	/* Clear the timeout timer if there is no pending packet. */
   1174 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
   1175 		ifp->if_timer = 0;
   1176 
   1177 }
   1178 
   1179 int
   1180 rtk_intr(void *arg)
   1181 {
   1182 	struct rtk_softc *sc;
   1183 	struct ifnet *ifp;
   1184 	uint16_t status;
   1185 	int handled;
   1186 
   1187 	sc = arg;
   1188 	ifp = &sc->ethercom.ec_if;
   1189 
   1190 	if (!device_has_power(sc->sc_dev))
   1191 		return 0;
   1192 
   1193 	/* Disable interrupts. */
   1194 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1195 
   1196 	handled = 0;
   1197 	for (;;) {
   1198 
   1199 		status = CSR_READ_2(sc, RTK_ISR);
   1200 
   1201 		if (status == 0xffff)
   1202 			break; /* Card is gone... */
   1203 
   1204 		if (status)
   1205 			CSR_WRITE_2(sc, RTK_ISR, status);
   1206 
   1207 		if ((status & RTK_INTRS) == 0)
   1208 			break;
   1209 
   1210 		handled = 1;
   1211 
   1212 		if (status & RTK_ISR_RX_OK)
   1213 			rtk_rxeof(sc);
   1214 
   1215 		if (status & RTK_ISR_RX_ERR)
   1216 			rtk_rxeof(sc);
   1217 
   1218 		if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
   1219 			rtk_txeof(sc);
   1220 
   1221 		if (status & RTK_ISR_SYSTEM_ERR) {
   1222 			rtk_reset(sc);
   1223 			rtk_init(ifp);
   1224 		}
   1225 	}
   1226 
   1227 	/* Re-enable interrupts. */
   1228 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
   1229 
   1230 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1231 		rtk_start(ifp);
   1232 
   1233 #if NRND > 0
   1234 	if (RND_ENABLED(&sc->rnd_source))
   1235 		rnd_add_uint32(&sc->rnd_source, status);
   1236 #endif
   1237 
   1238 	return handled;
   1239 }
   1240 
   1241 /*
   1242  * Main transmit routine.
   1243  */
   1244 
   1245 STATIC void
   1246 rtk_start(struct ifnet *ifp)
   1247 {
   1248 	struct rtk_softc *sc;
   1249 	struct rtk_tx_desc *txd;
   1250 	struct mbuf *m_head, *m_new;
   1251 	int error, len;
   1252 
   1253 	sc = ifp->if_softc;
   1254 
   1255 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
   1256 		IFQ_POLL(&ifp->if_snd, m_head);
   1257 		if (m_head == NULL)
   1258 			break;
   1259 		m_new = NULL;
   1260 
   1261 		/*
   1262 		 * Load the DMA map.  If this fails, the packet didn't
   1263 		 * fit in one DMA segment, and we need to copy.  Note,
   1264 		 * the packet must also be aligned.
   1265 		 * if the packet is too small, copy it too, so we're sure
   1266 		 * so have enouth room for the pad buffer.
   1267 		 */
   1268 		if ((mtod(m_head, uintptr_t) & 3) != 0 ||
   1269 		    m_head->m_pkthdr.len < ETHER_PAD_LEN ||
   1270 		    bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
   1271 			m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1272 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1273 			if (m_new == NULL) {
   1274 				printf("%s: unable to allocate Tx mbuf\n",
   1275 				    device_xname(sc->sc_dev));
   1276 				break;
   1277 			}
   1278 			if (m_head->m_pkthdr.len > MHLEN) {
   1279 				MCLGET(m_new, M_DONTWAIT);
   1280 				if ((m_new->m_flags & M_EXT) == 0) {
   1281 					printf("%s: unable to allocate Tx "
   1282 					    "cluster\n",
   1283 					    device_xname(sc->sc_dev));
   1284 					m_freem(m_new);
   1285 					break;
   1286 				}
   1287 			}
   1288 			m_copydata(m_head, 0, m_head->m_pkthdr.len,
   1289 			    mtod(m_new, void *));
   1290 			m_new->m_pkthdr.len = m_new->m_len =
   1291 			    m_head->m_pkthdr.len;
   1292 			if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
   1293 				memset(
   1294 				    mtod(m_new, char *) + m_head->m_pkthdr.len,
   1295 				    0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
   1296 				m_new->m_pkthdr.len = m_new->m_len =
   1297 				    ETHER_PAD_LEN;
   1298 			}
   1299 			error = bus_dmamap_load_mbuf(sc->sc_dmat,
   1300 			    txd->txd_dmamap, m_new,
   1301 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1302 			if (error) {
   1303 				printf("%s: unable to load Tx buffer, "
   1304 				    "error = %d\n",
   1305 				    device_xname(sc->sc_dev), error);
   1306 				break;
   1307 			}
   1308 		}
   1309 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1310 #if NBPFILTER > 0
   1311 		/*
   1312 		 * If there's a BPF listener, bounce a copy of this frame
   1313 		 * to him.
   1314 		 */
   1315 		if (ifp->if_bpf)
   1316 			bpf_mtap(ifp->if_bpf, m_head);
   1317 #endif
   1318 		if (m_new != NULL) {
   1319 			m_freem(m_head);
   1320 			m_head = m_new;
   1321 		}
   1322 		txd->txd_mbuf = m_head;
   1323 
   1324 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
   1325 		SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
   1326 
   1327 		/*
   1328 		 * Transmit the frame.
   1329 		 */
   1330 		bus_dmamap_sync(sc->sc_dmat,
   1331 		    txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
   1332 		    BUS_DMASYNC_PREWRITE);
   1333 
   1334 		len = txd->txd_dmamap->dm_segs[0].ds_len;
   1335 
   1336 		CSR_WRITE_4(sc, txd->txd_txaddr,
   1337 		    txd->txd_dmamap->dm_segs[0].ds_addr);
   1338 		CSR_WRITE_4(sc, txd->txd_txstat,
   1339 		    RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
   1340 
   1341 		/*
   1342 		 * Set a timeout in case the chip goes out to lunch.
   1343 		 */
   1344 		ifp->if_timer = 5;
   1345 	}
   1346 
   1347 	/*
   1348 	 * We broke out of the loop because all our TX slots are
   1349 	 * full. Mark the NIC as busy until it drains some of the
   1350 	 * packets from the queue.
   1351 	 */
   1352 	if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
   1353 		ifp->if_flags |= IFF_OACTIVE;
   1354 }
   1355 
   1356 STATIC int
   1357 rtk_init(struct ifnet *ifp)
   1358 {
   1359 	struct rtk_softc *sc = ifp->if_softc;
   1360 	int error, i;
   1361 	uint32_t rxcfg;
   1362 
   1363 	if ((error = rtk_enable(sc)) != 0)
   1364 		goto out;
   1365 
   1366 	/*
   1367 	 * Cancel pending I/O.
   1368 	 */
   1369 	rtk_stop(ifp, 0);
   1370 
   1371 	/* Init our MAC address */
   1372 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1373 		CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
   1374 	}
   1375 
   1376 	/* Init the RX buffer pointer register. */
   1377 	bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
   1378 	    sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1379 	CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
   1380 
   1381 	/* Init TX descriptors. */
   1382 	rtk_list_tx_init(sc);
   1383 
   1384 	/* Init Early TX threshold. */
   1385 	sc->sc_txthresh = RTK_TXTH_256;
   1386 	/*
   1387 	 * Enable transmit and receive.
   1388 	 */
   1389 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1390 
   1391 	/*
   1392 	 * Set the initial TX and RX configuration.
   1393 	 */
   1394 	CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1395 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1396 
   1397 	/* Set the individual bit to receive frames for this host only. */
   1398 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1399 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1400 
   1401 	/* If we want promiscuous mode, set the allframes bit. */
   1402 	if (ifp->if_flags & IFF_PROMISC) {
   1403 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1404 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1405 	} else {
   1406 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1407 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1408 	}
   1409 
   1410 	/*
   1411 	 * Set capture broadcast bit to capture broadcast frames.
   1412 	 */
   1413 	if (ifp->if_flags & IFF_BROADCAST) {
   1414 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1415 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1416 	} else {
   1417 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1418 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1419 	}
   1420 
   1421 	/*
   1422 	 * Program the multicast filter, if necessary.
   1423 	 */
   1424 	rtk_setmulti(sc);
   1425 
   1426 	/*
   1427 	 * Enable interrupts.
   1428 	 */
   1429 	CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
   1430 
   1431 	/* Start RX/TX process. */
   1432 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1433 
   1434 	/* Enable receiver and transmitter. */
   1435 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
   1436 
   1437 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
   1438 
   1439 	/*
   1440 	 * Set current media.
   1441 	 */
   1442 	if ((error = ether_mediachange(ifp)) != 0)
   1443 		goto out;
   1444 
   1445 	ifp->if_flags |= IFF_RUNNING;
   1446 	ifp->if_flags &= ~IFF_OACTIVE;
   1447 
   1448 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
   1449 
   1450  out:
   1451 	if (error) {
   1452 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1453 		ifp->if_timer = 0;
   1454 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1455 	}
   1456 	return error;
   1457 }
   1458 
   1459 STATIC int
   1460 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1461 {
   1462 	struct rtk_softc *sc = ifp->if_softc;
   1463 	int s, error;
   1464 
   1465 	s = splnet();
   1466 	error = ether_ioctl(ifp, command, data);
   1467 	if (error == ENETRESET) {
   1468 		if (ifp->if_flags & IFF_RUNNING) {
   1469 			/*
   1470 			 * Multicast list has changed.  Set the
   1471 			 * hardware filter accordingly.
   1472 			 */
   1473 			rtk_setmulti(sc);
   1474 		}
   1475 		error = 0;
   1476 	}
   1477 	splx(s);
   1478 
   1479 	return error;
   1480 }
   1481 
   1482 STATIC void
   1483 rtk_watchdog(struct ifnet *ifp)
   1484 {
   1485 	struct rtk_softc *sc;
   1486 
   1487 	sc = ifp->if_softc;
   1488 
   1489 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1490 	ifp->if_oerrors++;
   1491 	rtk_txeof(sc);
   1492 	rtk_rxeof(sc);
   1493 	rtk_init(ifp);
   1494 }
   1495 
   1496 /*
   1497  * Stop the adapter and free any mbufs allocated to the
   1498  * RX and TX lists.
   1499  */
   1500 STATIC void
   1501 rtk_stop(struct ifnet *ifp, int disable)
   1502 {
   1503 	struct rtk_softc *sc = ifp->if_softc;
   1504 	struct rtk_tx_desc *txd;
   1505 
   1506 	callout_stop(&sc->rtk_tick_ch);
   1507 
   1508 	mii_down(&sc->mii);
   1509 
   1510 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   1511 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1512 
   1513 	/*
   1514 	 * Free the TX list buffers.
   1515 	 */
   1516 	while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
   1517 		SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
   1518 		bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
   1519 		m_freem(txd->txd_mbuf);
   1520 		txd->txd_mbuf = NULL;
   1521 		CSR_WRITE_4(sc, txd->txd_txaddr, 0);
   1522 	}
   1523 
   1524 	if (disable)
   1525 		rtk_disable(sc);
   1526 
   1527 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1528 	ifp->if_timer = 0;
   1529 }
   1530 
   1531 STATIC void
   1532 rtk_tick(void *arg)
   1533 {
   1534 	struct rtk_softc *sc = arg;
   1535 	int s;
   1536 
   1537 	s = splnet();
   1538 	mii_tick(&sc->mii);
   1539 	splx(s);
   1540 
   1541 	callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
   1542 }
   1543