rtl81x9.c revision 1.86 1 /* $NetBSD: rtl81x9.c,v 1.86 2009/04/27 14:52:50 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.86 2009/04/27 14:52:50 tsutsui Exp $");
90
91 #include "bpfilter.h"
92 #include "rnd.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/device.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_ether.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 #if NRND > 0
116 #include <sys/rnd.h>
117 #endif
118
119 #include <sys/bus.h>
120 #include <machine/endian.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124
125 #include <dev/ic/rtl81x9reg.h>
126 #include <dev/ic/rtl81x9var.h>
127
128 static void rtk_reset(struct rtk_softc *);
129 static void rtk_rxeof(struct rtk_softc *);
130 static void rtk_txeof(struct rtk_softc *);
131 static void rtk_start(struct ifnet *);
132 static int rtk_ioctl(struct ifnet *, u_long, void *);
133 static int rtk_init(struct ifnet *);
134 static void rtk_stop(struct ifnet *, int);
135
136 static void rtk_watchdog(struct ifnet *);
137
138 static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
139 static void rtk_mii_sync(struct rtk_softc *);
140 static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
141 static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
142 static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
143
144 static int rtk_phy_readreg(device_t, int, int);
145 static void rtk_phy_writereg(device_t, int, int, int);
146 static void rtk_phy_statchg(device_t);
147 static void rtk_tick(void *);
148
149 static int rtk_enable(struct rtk_softc *);
150 static void rtk_disable(struct rtk_softc *);
151
152 static void rtk_list_tx_init(struct rtk_softc *);
153
154 #define EE_SET(x) \
155 CSR_WRITE_1(sc, RTK_EECMD, \
156 CSR_READ_1(sc, RTK_EECMD) | (x))
157
158 #define EE_CLR(x) \
159 CSR_WRITE_1(sc, RTK_EECMD, \
160 CSR_READ_1(sc, RTK_EECMD) & ~(x))
161
162 #define EE_DELAY() DELAY(100)
163
164 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
165
166 /*
167 * Send a read command and address to the EEPROM, check for ACK.
168 */
169 static void
170 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
171 {
172 int d, i;
173
174 d = (RTK_EECMD_READ << addr_len) | addr;
175
176 /*
177 * Feed in each bit and stobe the clock.
178 */
179 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
180 if (d & (1 << (i - 1))) {
181 EE_SET(RTK_EE_DATAIN);
182 } else {
183 EE_CLR(RTK_EE_DATAIN);
184 }
185 EE_DELAY();
186 EE_SET(RTK_EE_CLK);
187 EE_DELAY();
188 EE_CLR(RTK_EE_CLK);
189 EE_DELAY();
190 }
191 }
192
193 /*
194 * Read a word of data stored in the EEPROM at address 'addr.'
195 */
196 uint16_t
197 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
198 {
199 uint16_t word;
200 int i;
201
202 /* Enter EEPROM access mode. */
203 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
204 EE_DELAY();
205 EE_SET(RTK_EE_SEL);
206
207 /*
208 * Send address of word we want to read.
209 */
210 rtk_eeprom_putbyte(sc, addr, addr_len);
211
212 /*
213 * Start reading bits from EEPROM.
214 */
215 word = 0;
216 for (i = 16; i > 0; i--) {
217 EE_SET(RTK_EE_CLK);
218 EE_DELAY();
219 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
220 word |= 1 << (i - 1);
221 EE_CLR(RTK_EE_CLK);
222 EE_DELAY();
223 }
224
225 /* Turn off EEPROM access mode. */
226 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
227
228 return word;
229 }
230
231 /*
232 * MII access routines are provided for the 8129, which
233 * doesn't have a built-in PHY. For the 8139, we fake things
234 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
235 * direct access PHY registers.
236 */
237 #define MII_SET(x) \
238 CSR_WRITE_1(sc, RTK_MII, \
239 CSR_READ_1(sc, RTK_MII) | (x))
240
241 #define MII_CLR(x) \
242 CSR_WRITE_1(sc, RTK_MII, \
243 CSR_READ_1(sc, RTK_MII) & ~(x))
244
245 /*
246 * Sync the PHYs by setting data bit and strobing the clock 32 times.
247 */
248 static void
249 rtk_mii_sync(struct rtk_softc *sc)
250 {
251 int i;
252
253 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
254
255 for (i = 0; i < 32; i++) {
256 MII_SET(RTK_MII_CLK);
257 DELAY(1);
258 MII_CLR(RTK_MII_CLK);
259 DELAY(1);
260 }
261 }
262
263 /*
264 * Clock a series of bits through the MII.
265 */
266 static void
267 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
268 {
269 int i;
270
271 MII_CLR(RTK_MII_CLK);
272
273 for (i = cnt; i > 0; i--) {
274 if (bits & (1 << (i - 1))) {
275 MII_SET(RTK_MII_DATAOUT);
276 } else {
277 MII_CLR(RTK_MII_DATAOUT);
278 }
279 DELAY(1);
280 MII_CLR(RTK_MII_CLK);
281 DELAY(1);
282 MII_SET(RTK_MII_CLK);
283 }
284 }
285
286 /*
287 * Read an PHY register through the MII.
288 */
289 static int
290 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
291 {
292 int i, ack, s;
293
294 s = splnet();
295
296 /*
297 * Set up frame for RX.
298 */
299 frame->mii_stdelim = RTK_MII_STARTDELIM;
300 frame->mii_opcode = RTK_MII_READOP;
301 frame->mii_turnaround = 0;
302 frame->mii_data = 0;
303
304 CSR_WRITE_2(sc, RTK_MII, 0);
305
306 /*
307 * Turn on data xmit.
308 */
309 MII_SET(RTK_MII_DIR);
310
311 rtk_mii_sync(sc);
312
313 /*
314 * Send command/address info.
315 */
316 rtk_mii_send(sc, frame->mii_stdelim, 2);
317 rtk_mii_send(sc, frame->mii_opcode, 2);
318 rtk_mii_send(sc, frame->mii_phyaddr, 5);
319 rtk_mii_send(sc, frame->mii_regaddr, 5);
320
321 /* Idle bit */
322 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
323 DELAY(1);
324 MII_SET(RTK_MII_CLK);
325 DELAY(1);
326
327 /* Turn off xmit. */
328 MII_CLR(RTK_MII_DIR);
329
330 /* Check for ack */
331 MII_CLR(RTK_MII_CLK);
332 DELAY(1);
333 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
334 MII_SET(RTK_MII_CLK);
335 DELAY(1);
336
337 /*
338 * Now try reading data bits. If the ack failed, we still
339 * need to clock through 16 cycles to keep the PHY(s) in sync.
340 */
341 if (ack) {
342 for (i = 0; i < 16; i++) {
343 MII_CLR(RTK_MII_CLK);
344 DELAY(1);
345 MII_SET(RTK_MII_CLK);
346 DELAY(1);
347 }
348 goto fail;
349 }
350
351 for (i = 16; i > 0; i--) {
352 MII_CLR(RTK_MII_CLK);
353 DELAY(1);
354 if (!ack) {
355 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
356 frame->mii_data |= 1 << (i - 1);
357 DELAY(1);
358 }
359 MII_SET(RTK_MII_CLK);
360 DELAY(1);
361 }
362
363 fail:
364 MII_CLR(RTK_MII_CLK);
365 DELAY(1);
366 MII_SET(RTK_MII_CLK);
367 DELAY(1);
368
369 splx(s);
370
371 if (ack)
372 return 1;
373 return 0;
374 }
375
376 /*
377 * Write to a PHY register through the MII.
378 */
379 static int
380 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
381 {
382 int s;
383
384 s = splnet();
385 /*
386 * Set up frame for TX.
387 */
388 frame->mii_stdelim = RTK_MII_STARTDELIM;
389 frame->mii_opcode = RTK_MII_WRITEOP;
390 frame->mii_turnaround = RTK_MII_TURNAROUND;
391
392 /*
393 * Turn on data output.
394 */
395 MII_SET(RTK_MII_DIR);
396
397 rtk_mii_sync(sc);
398
399 rtk_mii_send(sc, frame->mii_stdelim, 2);
400 rtk_mii_send(sc, frame->mii_opcode, 2);
401 rtk_mii_send(sc, frame->mii_phyaddr, 5);
402 rtk_mii_send(sc, frame->mii_regaddr, 5);
403 rtk_mii_send(sc, frame->mii_turnaround, 2);
404 rtk_mii_send(sc, frame->mii_data, 16);
405
406 /* Idle bit. */
407 MII_SET(RTK_MII_CLK);
408 DELAY(1);
409 MII_CLR(RTK_MII_CLK);
410 DELAY(1);
411
412 /*
413 * Turn off xmit.
414 */
415 MII_CLR(RTK_MII_DIR);
416
417 splx(s);
418
419 return 0;
420 }
421
422 static int
423 rtk_phy_readreg(device_t self, int phy, int reg)
424 {
425 struct rtk_softc *sc = device_private(self);
426 struct rtk_mii_frame frame;
427 int rval;
428 int rtk8139_reg;
429
430 if ((sc->sc_quirk & RTKQ_8129) == 0) {
431 if (phy != 7)
432 return 0;
433
434 switch (reg) {
435 case MII_BMCR:
436 rtk8139_reg = RTK_BMCR;
437 break;
438 case MII_BMSR:
439 rtk8139_reg = RTK_BMSR;
440 break;
441 case MII_ANAR:
442 rtk8139_reg = RTK_ANAR;
443 break;
444 case MII_ANER:
445 rtk8139_reg = RTK_ANER;
446 break;
447 case MII_ANLPAR:
448 rtk8139_reg = RTK_LPAR;
449 break;
450 default:
451 #if 0
452 printf("%s: bad phy register\n", device_xname(self));
453 #endif
454 return 0;
455 }
456 rval = CSR_READ_2(sc, rtk8139_reg);
457 return rval;
458 }
459
460 memset(&frame, 0, sizeof(frame));
461
462 frame.mii_phyaddr = phy;
463 frame.mii_regaddr = reg;
464 rtk_mii_readreg(sc, &frame);
465
466 return frame.mii_data;
467 }
468
469 static void
470 rtk_phy_writereg(device_t self, int phy, int reg, int data)
471 {
472 struct rtk_softc *sc = device_private(self);
473 struct rtk_mii_frame frame;
474 int rtk8139_reg;
475
476 if ((sc->sc_quirk & RTKQ_8129) == 0) {
477 if (phy != 7)
478 return;
479
480 switch (reg) {
481 case MII_BMCR:
482 rtk8139_reg = RTK_BMCR;
483 break;
484 case MII_BMSR:
485 rtk8139_reg = RTK_BMSR;
486 break;
487 case MII_ANAR:
488 rtk8139_reg = RTK_ANAR;
489 break;
490 case MII_ANER:
491 rtk8139_reg = RTK_ANER;
492 break;
493 case MII_ANLPAR:
494 rtk8139_reg = RTK_LPAR;
495 break;
496 default:
497 #if 0
498 printf("%s: bad phy register\n", device_xname(self));
499 #endif
500 return;
501 }
502 CSR_WRITE_2(sc, rtk8139_reg, data);
503 return;
504 }
505
506 memset(&frame, 0, sizeof(frame));
507
508 frame.mii_phyaddr = phy;
509 frame.mii_regaddr = reg;
510 frame.mii_data = data;
511
512 rtk_mii_writereg(sc, &frame);
513 }
514
515 static void
516 rtk_phy_statchg(device_t v)
517 {
518
519 /* Nothing to do. */
520 }
521
522 #define rtk_calchash(addr) \
523 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
524
525 /*
526 * Program the 64-bit multicast hash filter.
527 */
528 void
529 rtk_setmulti(struct rtk_softc *sc)
530 {
531 struct ifnet *ifp;
532 uint32_t hashes[2] = { 0, 0 };
533 uint32_t rxfilt;
534 struct ether_multi *enm;
535 struct ether_multistep step;
536 int h, mcnt;
537
538 ifp = &sc->ethercom.ec_if;
539
540 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
541
542 if (ifp->if_flags & IFF_PROMISC) {
543 allmulti:
544 ifp->if_flags |= IFF_ALLMULTI;
545 rxfilt |= RTK_RXCFG_RX_MULTI;
546 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
547 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
548 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
549 return;
550 }
551
552 /* first, zot all the existing hash bits */
553 CSR_WRITE_4(sc, RTK_MAR0, 0);
554 CSR_WRITE_4(sc, RTK_MAR4, 0);
555
556 /* now program new ones */
557 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
558 mcnt = 0;
559 while (enm != NULL) {
560 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
561 ETHER_ADDR_LEN) != 0)
562 goto allmulti;
563
564 h = rtk_calchash(enm->enm_addrlo);
565 if (h < 32)
566 hashes[0] |= (1 << h);
567 else
568 hashes[1] |= (1 << (h - 32));
569 mcnt++;
570 ETHER_NEXT_MULTI(step, enm);
571 }
572
573 ifp->if_flags &= ~IFF_ALLMULTI;
574
575 if (mcnt)
576 rxfilt |= RTK_RXCFG_RX_MULTI;
577 else
578 rxfilt &= ~RTK_RXCFG_RX_MULTI;
579
580 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
581
582 /*
583 * For some unfathomable reason, RealTek decided to reverse
584 * the order of the multicast hash registers in the PCI Express
585 * parts. This means we have to write the hash pattern in reverse
586 * order for those devices.
587 */
588 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
589 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
590 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
591 } else {
592 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
593 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
594 }
595 }
596
597 void
598 rtk_reset(struct rtk_softc *sc)
599 {
600 int i;
601
602 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
603
604 for (i = 0; i < RTK_TIMEOUT; i++) {
605 DELAY(10);
606 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
607 break;
608 }
609 if (i == RTK_TIMEOUT)
610 printf("%s: reset never completed!\n",
611 device_xname(sc->sc_dev));
612 }
613
614 /*
615 * Attach the interface. Allocate softc structures, do ifmedia
616 * setup and ethernet/BPF attach.
617 */
618 void
619 rtk_attach(struct rtk_softc *sc)
620 {
621 device_t self = sc->sc_dev;
622 struct ifnet *ifp;
623 struct rtk_tx_desc *txd;
624 uint16_t val;
625 uint8_t eaddr[ETHER_ADDR_LEN];
626 int error;
627 int i, addr_len;
628
629 callout_init(&sc->rtk_tick_ch, 0);
630
631 /*
632 * Check EEPROM type 9346 or 9356.
633 */
634 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
635 addr_len = RTK_EEADDR_LEN1;
636 else
637 addr_len = RTK_EEADDR_LEN0;
638
639 /*
640 * Get station address.
641 */
642 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
643 eaddr[0] = val & 0xff;
644 eaddr[1] = val >> 8;
645 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
646 eaddr[2] = val & 0xff;
647 eaddr[3] = val >> 8;
648 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
649 eaddr[4] = val & 0xff;
650 eaddr[5] = val >> 8;
651
652 if ((error = bus_dmamem_alloc(sc->sc_dmat,
653 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
654 BUS_DMA_NOWAIT)) != 0) {
655 aprint_error_dev(self,
656 "can't allocate recv buffer, error = %d\n", error);
657 goto fail_0;
658 }
659
660 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
661 RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
662 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
663 aprint_error_dev(self,
664 "can't map recv buffer, error = %d\n", error);
665 goto fail_1;
666 }
667
668 if ((error = bus_dmamap_create(sc->sc_dmat,
669 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
670 &sc->recv_dmamap)) != 0) {
671 aprint_error_dev(self,
672 "can't create recv buffer DMA map, error = %d\n", error);
673 goto fail_2;
674 }
675
676 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
677 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
678 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
679 aprint_error_dev(self,
680 "can't load recv buffer DMA map, error = %d\n", error);
681 goto fail_3;
682 }
683
684 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
685 txd = &sc->rtk_tx_descs[i];
686 if ((error = bus_dmamap_create(sc->sc_dmat,
687 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
688 &txd->txd_dmamap)) != 0) {
689 aprint_error_dev(self,
690 "can't create snd buffer DMA map, error = %d\n",
691 error);
692 goto fail_4;
693 }
694 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
695 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
696 }
697 SIMPLEQ_INIT(&sc->rtk_tx_free);
698 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
699
700 /*
701 * From this point forward, the attachment cannot fail. A failure
702 * before this releases all resources thar may have been
703 * allocated.
704 */
705 sc->sc_flags |= RTK_ATTACHED;
706
707 /* Reset the adapter. */
708 rtk_reset(sc);
709
710 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
711
712 ifp = &sc->ethercom.ec_if;
713 ifp->if_softc = sc;
714 strcpy(ifp->if_xname, device_xname(self));
715 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
716 ifp->if_ioctl = rtk_ioctl;
717 ifp->if_start = rtk_start;
718 ifp->if_watchdog = rtk_watchdog;
719 ifp->if_init = rtk_init;
720 ifp->if_stop = rtk_stop;
721 IFQ_SET_READY(&ifp->if_snd);
722
723 /*
724 * Do ifmedia setup.
725 */
726 sc->mii.mii_ifp = ifp;
727 sc->mii.mii_readreg = rtk_phy_readreg;
728 sc->mii.mii_writereg = rtk_phy_writereg;
729 sc->mii.mii_statchg = rtk_phy_statchg;
730 sc->ethercom.ec_mii = &sc->mii;
731 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
732 ether_mediastatus);
733 mii_attach(self, &sc->mii, 0xffffffff,
734 MII_PHY_ANY, MII_OFFSET_ANY, 0);
735
736 /* Choose a default media. */
737 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
738 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
739 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
740 } else {
741 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
742 }
743
744 /*
745 * Call MI attach routines.
746 */
747 if_attach(ifp);
748 ether_ifattach(ifp, eaddr);
749
750 #if NRND > 0
751 rnd_attach_source(&sc->rnd_source, device_xname(self),
752 RND_TYPE_NET, 0);
753 #endif
754
755 return;
756 fail_4:
757 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
758 txd = &sc->rtk_tx_descs[i];
759 if (txd->txd_dmamap != NULL)
760 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
761 }
762 fail_3:
763 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
764 fail_2:
765 bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
766 RTK_RXBUFLEN + 16);
767 fail_1:
768 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
769 fail_0:
770 return;
771 }
772
773 /*
774 * Initialize the transmit descriptors.
775 */
776 static void
777 rtk_list_tx_init(struct rtk_softc *sc)
778 {
779 struct rtk_tx_desc *txd;
780 int i;
781
782 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
783 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
784 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
785 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
786
787 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
788 txd = &sc->rtk_tx_descs[i];
789 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
790 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
791 }
792 }
793
794 /*
795 * rtk_activate:
796 * Handle device activation/deactivation requests.
797 */
798 int
799 rtk_activate(device_t self, enum devact act)
800 {
801 struct rtk_softc *sc = device_private(self);
802 int s, error;
803
804 error = 0;
805 s = splnet();
806 switch (act) {
807 case DVACT_ACTIVATE:
808 error = EOPNOTSUPP;
809 break;
810 case DVACT_DEACTIVATE:
811 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
812 if_deactivate(&sc->ethercom.ec_if);
813 break;
814 }
815 splx(s);
816
817 return error;
818 }
819
820 /*
821 * rtk_detach:
822 * Detach a rtk interface.
823 */
824 int
825 rtk_detach(struct rtk_softc *sc)
826 {
827 struct ifnet *ifp = &sc->ethercom.ec_if;
828 struct rtk_tx_desc *txd;
829 int i;
830
831 /*
832 * Succeed now if there isn't any work to do.
833 */
834 if ((sc->sc_flags & RTK_ATTACHED) == 0)
835 return 0;
836
837 /* Unhook our tick handler. */
838 callout_stop(&sc->rtk_tick_ch);
839
840 /* Detach all PHYs. */
841 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
842
843 /* Delete all remaining media. */
844 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
845
846 #if NRND > 0
847 rnd_detach_source(&sc->rnd_source);
848 #endif
849
850 ether_ifdetach(ifp);
851 if_detach(ifp);
852
853 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
854 txd = &sc->rtk_tx_descs[i];
855 if (txd->txd_dmamap != NULL)
856 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
857 }
858 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
859 bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
860 RTK_RXBUFLEN + 16);
861 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
862
863 return 0;
864 }
865
866 /*
867 * rtk_enable:
868 * Enable the RTL81X9 chip.
869 */
870 int
871 rtk_enable(struct rtk_softc *sc)
872 {
873
874 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
875 if ((*sc->sc_enable)(sc) != 0) {
876 printf("%s: device enable failed\n",
877 device_xname(sc->sc_dev));
878 return EIO;
879 }
880 sc->sc_flags |= RTK_ENABLED;
881 }
882 return 0;
883 }
884
885 /*
886 * rtk_disable:
887 * Disable the RTL81X9 chip.
888 */
889 void
890 rtk_disable(struct rtk_softc *sc)
891 {
892
893 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
894 (*sc->sc_disable)(sc);
895 sc->sc_flags &= ~RTK_ENABLED;
896 }
897 }
898
899 /*
900 * A frame has been uploaded: pass the resulting mbuf chain up to
901 * the higher level protocols.
902 *
903 * You know there's something wrong with a PCI bus-master chip design.
904 *
905 * The receive operation is badly documented in the datasheet, so I'll
906 * attempt to document it here. The driver provides a buffer area and
907 * places its base address in the RX buffer start address register.
908 * The chip then begins copying frames into the RX buffer. Each frame
909 * is preceded by a 32-bit RX status word which specifies the length
910 * of the frame and certain other status bits. Each frame (starting with
911 * the status word) is also 32-bit aligned. The frame length is in the
912 * first 16 bits of the status word; the lower 15 bits correspond with
913 * the 'rx status register' mentioned in the datasheet.
914 *
915 * Note: to make the Alpha happy, the frame payload needs to be aligned
916 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
917 * shifted forward 2 bytes.
918 */
919 static void
920 rtk_rxeof(struct rtk_softc *sc)
921 {
922 struct mbuf *m;
923 struct ifnet *ifp;
924 uint8_t *rxbufpos, *dst;
925 u_int total_len, wrap;
926 uint32_t rxstat;
927 uint16_t cur_rx, new_rx;
928 uint16_t limit;
929 uint16_t rx_bytes, max_bytes;
930
931 ifp = &sc->ethercom.ec_if;
932
933 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
934
935 /* Do not try to read past this point. */
936 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
937
938 if (limit < cur_rx)
939 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
940 else
941 max_bytes = limit - cur_rx;
942 rx_bytes = 0;
943
944 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
945 rxbufpos = sc->rtk_rx_buf + cur_rx;
946 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
947 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
948 rxstat = le32toh(*(uint32_t *)rxbufpos);
949 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
950 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
951
952 /*
953 * Here's a totally undocumented fact for you. When the
954 * RealTek chip is in the process of copying a packet into
955 * RAM for you, the length will be 0xfff0. If you spot a
956 * packet header with this value, you need to stop. The
957 * datasheet makes absolutely no mention of this and
958 * RealTek should be shot for this.
959 */
960 total_len = rxstat >> 16;
961 if (total_len == RTK_RXSTAT_UNFINISHED)
962 break;
963
964 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
965 total_len < ETHER_MIN_LEN ||
966 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
967 ifp->if_ierrors++;
968
969 /*
970 * submitted by:[netbsd-pcmcia:00484]
971 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
972 * obtain from:
973 * FreeBSD if_rl.c rev 1.24->1.25
974 *
975 */
976 #if 0
977 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
978 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
979 RTK_RXSTAT_ALIGNERR)) {
980 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
981 CSR_WRITE_2(sc, RTK_COMMAND,
982 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
983 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
984 CSR_WRITE_4(sc, RTK_RXADDR,
985 sc->recv_dmamap->dm_segs[0].ds_addr);
986 cur_rx = 0;
987 }
988 break;
989 #else
990 rtk_init(ifp);
991 return;
992 #endif
993 }
994
995 /* No errors; receive the packet. */
996 rx_bytes += total_len + RTK_RXSTAT_LEN;
997
998 /*
999 * Avoid trying to read more bytes than we know
1000 * the chip has prepared for us.
1001 */
1002 if (rx_bytes > max_bytes)
1003 break;
1004
1005 /*
1006 * Skip the status word, wrapping around to the beginning
1007 * of the Rx area, if necessary.
1008 */
1009 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
1010 rxbufpos = sc->rtk_rx_buf + cur_rx;
1011
1012 /*
1013 * Compute the number of bytes at which the packet
1014 * will wrap to the beginning of the ring buffer.
1015 */
1016 wrap = RTK_RXBUFLEN - cur_rx;
1017
1018 /*
1019 * Compute where the next pending packet is.
1020 */
1021 if (total_len > wrap)
1022 new_rx = total_len - wrap;
1023 else
1024 new_rx = cur_rx + total_len;
1025 /* Round up to 32-bit boundary. */
1026 new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
1027
1028 /*
1029 * The RealTek chip includes the CRC with every
1030 * incoming packet; trim it off here.
1031 */
1032 total_len -= ETHER_CRC_LEN;
1033
1034 /*
1035 * Now allocate an mbuf (and possibly a cluster) to hold
1036 * the packet. Note we offset the packet 2 bytes so that
1037 * data after the Ethernet header will be 4-byte aligned.
1038 */
1039 MGETHDR(m, M_DONTWAIT, MT_DATA);
1040 if (m == NULL) {
1041 printf("%s: unable to allocate Rx mbuf\n",
1042 device_xname(sc->sc_dev));
1043 ifp->if_ierrors++;
1044 goto next_packet;
1045 }
1046 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1047 MCLGET(m, M_DONTWAIT);
1048 if ((m->m_flags & M_EXT) == 0) {
1049 printf("%s: unable to allocate Rx cluster\n",
1050 device_xname(sc->sc_dev));
1051 ifp->if_ierrors++;
1052 m_freem(m);
1053 m = NULL;
1054 goto next_packet;
1055 }
1056 }
1057 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1058 m->m_pkthdr.rcvif = ifp;
1059 m->m_pkthdr.len = m->m_len = total_len;
1060 dst = mtod(m, void *);
1061
1062 /*
1063 * If the packet wraps, copy up to the wrapping point.
1064 */
1065 if (total_len > wrap) {
1066 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1067 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1068 memcpy(dst, rxbufpos, wrap);
1069 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1070 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1071 cur_rx = 0;
1072 rxbufpos = sc->rtk_rx_buf;
1073 total_len -= wrap;
1074 dst += wrap;
1075 }
1076
1077 /*
1078 * ...and now the rest.
1079 */
1080 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1081 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1082 memcpy(dst, rxbufpos, total_len);
1083 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1084 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1085
1086 next_packet:
1087 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1088 cur_rx = new_rx;
1089
1090 if (m == NULL)
1091 continue;
1092
1093 ifp->if_ipackets++;
1094
1095 #if NBPFILTER > 0
1096 if (ifp->if_bpf)
1097 bpf_mtap(ifp->if_bpf, m);
1098 #endif
1099 /* pass it on. */
1100 (*ifp->if_input)(ifp, m);
1101 }
1102 }
1103
1104 /*
1105 * A frame was downloaded to the chip. It's safe for us to clean up
1106 * the list buffers.
1107 */
1108 static void
1109 rtk_txeof(struct rtk_softc *sc)
1110 {
1111 struct ifnet *ifp;
1112 struct rtk_tx_desc *txd;
1113 uint32_t txstat;
1114
1115 ifp = &sc->ethercom.ec_if;
1116
1117 /*
1118 * Go through our tx list and free mbufs for those
1119 * frames that have been uploaded.
1120 */
1121 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1122 txstat = CSR_READ_4(sc, txd->txd_txstat);
1123 if ((txstat & (RTK_TXSTAT_TX_OK|
1124 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1125 break;
1126
1127 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1128
1129 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1130 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1131 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1132 m_freem(txd->txd_mbuf);
1133 txd->txd_mbuf = NULL;
1134
1135 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1136
1137 if (txstat & RTK_TXSTAT_TX_OK)
1138 ifp->if_opackets++;
1139 else {
1140 ifp->if_oerrors++;
1141
1142 /*
1143 * Increase Early TX threshold if underrun occurred.
1144 * Increase step 64 bytes.
1145 */
1146 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1147 #ifdef DEBUG
1148 printf("%s: transmit underrun;",
1149 device_xname(sc->sc_dev));
1150 #endif
1151 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1152 sc->sc_txthresh += 2;
1153 #ifdef DEBUG
1154 printf(" new threshold: %d bytes",
1155 sc->sc_txthresh * 32);
1156 #endif
1157 }
1158 #ifdef DEBUG
1159 printf("\n");
1160 #endif
1161 }
1162 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1163 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1164 }
1165 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1166 ifp->if_flags &= ~IFF_OACTIVE;
1167 }
1168
1169 /* Clear the timeout timer if there is no pending packet. */
1170 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1171 ifp->if_timer = 0;
1172
1173 }
1174
1175 int
1176 rtk_intr(void *arg)
1177 {
1178 struct rtk_softc *sc;
1179 struct ifnet *ifp;
1180 uint16_t status;
1181 int handled;
1182
1183 sc = arg;
1184 ifp = &sc->ethercom.ec_if;
1185
1186 if (!device_has_power(sc->sc_dev))
1187 return 0;
1188
1189 /* Disable interrupts. */
1190 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1191
1192 handled = 0;
1193 for (;;) {
1194
1195 status = CSR_READ_2(sc, RTK_ISR);
1196
1197 if (status == 0xffff)
1198 break; /* Card is gone... */
1199
1200 if (status)
1201 CSR_WRITE_2(sc, RTK_ISR, status);
1202
1203 if ((status & RTK_INTRS) == 0)
1204 break;
1205
1206 handled = 1;
1207
1208 if (status & RTK_ISR_RX_OK)
1209 rtk_rxeof(sc);
1210
1211 if (status & RTK_ISR_RX_ERR)
1212 rtk_rxeof(sc);
1213
1214 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1215 rtk_txeof(sc);
1216
1217 if (status & RTK_ISR_SYSTEM_ERR) {
1218 rtk_reset(sc);
1219 rtk_init(ifp);
1220 }
1221 }
1222
1223 /* Re-enable interrupts. */
1224 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1225
1226 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1227 rtk_start(ifp);
1228
1229 #if NRND > 0
1230 if (RND_ENABLED(&sc->rnd_source))
1231 rnd_add_uint32(&sc->rnd_source, status);
1232 #endif
1233
1234 return handled;
1235 }
1236
1237 /*
1238 * Main transmit routine.
1239 */
1240
1241 static void
1242 rtk_start(struct ifnet *ifp)
1243 {
1244 struct rtk_softc *sc;
1245 struct rtk_tx_desc *txd;
1246 struct mbuf *m_head, *m_new;
1247 int error, len;
1248
1249 sc = ifp->if_softc;
1250
1251 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1252 IFQ_POLL(&ifp->if_snd, m_head);
1253 if (m_head == NULL)
1254 break;
1255 m_new = NULL;
1256
1257 /*
1258 * Load the DMA map. If this fails, the packet didn't
1259 * fit in one DMA segment, and we need to copy. Note,
1260 * the packet must also be aligned.
1261 * if the packet is too small, copy it too, so we're sure
1262 * so have enouth room for the pad buffer.
1263 */
1264 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1265 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1266 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1267 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1268 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1269 if (m_new == NULL) {
1270 printf("%s: unable to allocate Tx mbuf\n",
1271 device_xname(sc->sc_dev));
1272 break;
1273 }
1274 if (m_head->m_pkthdr.len > MHLEN) {
1275 MCLGET(m_new, M_DONTWAIT);
1276 if ((m_new->m_flags & M_EXT) == 0) {
1277 printf("%s: unable to allocate Tx "
1278 "cluster\n",
1279 device_xname(sc->sc_dev));
1280 m_freem(m_new);
1281 break;
1282 }
1283 }
1284 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1285 mtod(m_new, void *));
1286 m_new->m_pkthdr.len = m_new->m_len =
1287 m_head->m_pkthdr.len;
1288 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1289 memset(
1290 mtod(m_new, char *) + m_head->m_pkthdr.len,
1291 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1292 m_new->m_pkthdr.len = m_new->m_len =
1293 ETHER_PAD_LEN;
1294 }
1295 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1296 txd->txd_dmamap, m_new,
1297 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1298 if (error) {
1299 printf("%s: unable to load Tx buffer, "
1300 "error = %d\n",
1301 device_xname(sc->sc_dev), error);
1302 break;
1303 }
1304 }
1305 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1306 #if NBPFILTER > 0
1307 /*
1308 * If there's a BPF listener, bounce a copy of this frame
1309 * to him.
1310 */
1311 if (ifp->if_bpf)
1312 bpf_mtap(ifp->if_bpf, m_head);
1313 #endif
1314 if (m_new != NULL) {
1315 m_freem(m_head);
1316 m_head = m_new;
1317 }
1318 txd->txd_mbuf = m_head;
1319
1320 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1321 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1322
1323 /*
1324 * Transmit the frame.
1325 */
1326 bus_dmamap_sync(sc->sc_dmat,
1327 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1328 BUS_DMASYNC_PREWRITE);
1329
1330 len = txd->txd_dmamap->dm_segs[0].ds_len;
1331
1332 CSR_WRITE_4(sc, txd->txd_txaddr,
1333 txd->txd_dmamap->dm_segs[0].ds_addr);
1334 CSR_WRITE_4(sc, txd->txd_txstat,
1335 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1336
1337 /*
1338 * Set a timeout in case the chip goes out to lunch.
1339 */
1340 ifp->if_timer = 5;
1341 }
1342
1343 /*
1344 * We broke out of the loop because all our TX slots are
1345 * full. Mark the NIC as busy until it drains some of the
1346 * packets from the queue.
1347 */
1348 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1349 ifp->if_flags |= IFF_OACTIVE;
1350 }
1351
1352 static int
1353 rtk_init(struct ifnet *ifp)
1354 {
1355 struct rtk_softc *sc = ifp->if_softc;
1356 int error, i;
1357 uint32_t rxcfg;
1358
1359 if ((error = rtk_enable(sc)) != 0)
1360 goto out;
1361
1362 /*
1363 * Cancel pending I/O.
1364 */
1365 rtk_stop(ifp, 0);
1366
1367 /* Init our MAC address */
1368 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1369 CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1370 }
1371
1372 /* Init the RX buffer pointer register. */
1373 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1374 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1375 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1376
1377 /* Init TX descriptors. */
1378 rtk_list_tx_init(sc);
1379
1380 /* Init Early TX threshold. */
1381 sc->sc_txthresh = RTK_TXTH_256;
1382 /*
1383 * Enable transmit and receive.
1384 */
1385 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1386
1387 /*
1388 * Set the initial TX and RX configuration.
1389 */
1390 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1391 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1392
1393 /* Set the individual bit to receive frames for this host only. */
1394 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1395 rxcfg |= RTK_RXCFG_RX_INDIV;
1396
1397 /* If we want promiscuous mode, set the allframes bit. */
1398 if (ifp->if_flags & IFF_PROMISC) {
1399 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1400 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1401 } else {
1402 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1403 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1404 }
1405
1406 /*
1407 * Set capture broadcast bit to capture broadcast frames.
1408 */
1409 if (ifp->if_flags & IFF_BROADCAST) {
1410 rxcfg |= RTK_RXCFG_RX_BROAD;
1411 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1412 } else {
1413 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1414 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1415 }
1416
1417 /*
1418 * Program the multicast filter, if necessary.
1419 */
1420 rtk_setmulti(sc);
1421
1422 /*
1423 * Enable interrupts.
1424 */
1425 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1426
1427 /* Start RX/TX process. */
1428 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1429
1430 /* Enable receiver and transmitter. */
1431 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1432
1433 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1434
1435 /*
1436 * Set current media.
1437 */
1438 if ((error = ether_mediachange(ifp)) != 0)
1439 goto out;
1440
1441 ifp->if_flags |= IFF_RUNNING;
1442 ifp->if_flags &= ~IFF_OACTIVE;
1443
1444 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1445
1446 out:
1447 if (error) {
1448 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1449 ifp->if_timer = 0;
1450 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1451 }
1452 return error;
1453 }
1454
1455 static int
1456 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1457 {
1458 struct rtk_softc *sc = ifp->if_softc;
1459 int s, error;
1460
1461 s = splnet();
1462 error = ether_ioctl(ifp, command, data);
1463 if (error == ENETRESET) {
1464 if (ifp->if_flags & IFF_RUNNING) {
1465 /*
1466 * Multicast list has changed. Set the
1467 * hardware filter accordingly.
1468 */
1469 rtk_setmulti(sc);
1470 }
1471 error = 0;
1472 }
1473 splx(s);
1474
1475 return error;
1476 }
1477
1478 static void
1479 rtk_watchdog(struct ifnet *ifp)
1480 {
1481 struct rtk_softc *sc;
1482
1483 sc = ifp->if_softc;
1484
1485 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1486 ifp->if_oerrors++;
1487 rtk_txeof(sc);
1488 rtk_rxeof(sc);
1489 rtk_init(ifp);
1490 }
1491
1492 /*
1493 * Stop the adapter and free any mbufs allocated to the
1494 * RX and TX lists.
1495 */
1496 static void
1497 rtk_stop(struct ifnet *ifp, int disable)
1498 {
1499 struct rtk_softc *sc = ifp->if_softc;
1500 struct rtk_tx_desc *txd;
1501
1502 callout_stop(&sc->rtk_tick_ch);
1503
1504 mii_down(&sc->mii);
1505
1506 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1507 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1508
1509 /*
1510 * Free the TX list buffers.
1511 */
1512 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1513 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1514 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1515 m_freem(txd->txd_mbuf);
1516 txd->txd_mbuf = NULL;
1517 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1518 }
1519
1520 if (disable)
1521 rtk_disable(sc);
1522
1523 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1524 ifp->if_timer = 0;
1525 }
1526
1527 static void
1528 rtk_tick(void *arg)
1529 {
1530 struct rtk_softc *sc = arg;
1531 int s;
1532
1533 s = splnet();
1534 mii_tick(&sc->mii);
1535 splx(s);
1536
1537 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1538 }
1539