rtl81x9.c revision 1.90 1 /* $NetBSD: rtl81x9.c,v 1.90 2010/04/05 07:19:36 joerg Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
35 */
36
37 /*
38 * RealTek 8129/8139 PCI NIC driver
39 *
40 * Supports several extremely cheap PCI 10/100 adapters based on
41 * the RealTek chipset. Datasheets can be obtained from
42 * www.realtek.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
51 * probably the worst PCI ethernet controller ever made, with the possible
52 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
53 * DMA, but it has a terrible interface that nullifies any performance
54 * gains that bus-master DMA usually offers.
55 *
56 * For transmission, the chip offers a series of four TX descriptor
57 * registers. Each transmit frame must be in a contiguous buffer, aligned
58 * on a longword (32-bit) boundary. This means we almost always have to
59 * do mbuf copies in order to transmit a frame, except in the unlikely
60 * case where a) the packet fits into a single mbuf, and b) the packet
61 * is 32-bit aligned within the mbuf's data area. The presence of only
62 * four descriptor registers means that we can never have more than four
63 * packets queued for transmission at any one time.
64 *
65 * Reception is not much better. The driver has to allocate a single large
66 * buffer area (up to 64K in size) into which the chip will DMA received
67 * frames. Because we don't know where within this region received packets
68 * will begin or end, we have no choice but to copy data from the buffer
69 * area into mbufs in order to pass the packets up to the higher protocol
70 * levels.
71 *
72 * It's impossible given this rotten design to really achieve decent
73 * performance at 100Mbps, unless you happen to have a 400MHz PII or
74 * some equally overmuscled CPU to drive it.
75 *
76 * On the bright side, the 8139 does have a built-in PHY, although
77 * rather than using an MDIO serial interface like most other NICs, the
78 * PHY registers are directly accessible through the 8139's register
79 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
80 * filter.
81 *
82 * The 8129 chip is an older version of the 8139 that uses an external PHY
83 * chip. The 8129 has a serial MDIO interface for accessing the MII where
84 * the 8139 lets you directly access the on-board PHY registers. We need
85 * to select which interface to use depending on the chip type.
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.90 2010/04/05 07:19:36 joerg Exp $");
90
91 #include "rnd.h"
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/device.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/if_ether.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110
111 #include <net/bpf.h>
112 #if NRND > 0
113 #include <sys/rnd.h>
114 #endif
115
116 #include <sys/bus.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/rtl81x9reg.h>
123 #include <dev/ic/rtl81x9var.h>
124
125 static void rtk_reset(struct rtk_softc *);
126 static void rtk_rxeof(struct rtk_softc *);
127 static void rtk_txeof(struct rtk_softc *);
128 static void rtk_start(struct ifnet *);
129 static int rtk_ioctl(struct ifnet *, u_long, void *);
130 static int rtk_init(struct ifnet *);
131 static void rtk_stop(struct ifnet *, int);
132
133 static void rtk_watchdog(struct ifnet *);
134
135 static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
136 static void rtk_mii_sync(struct rtk_softc *);
137 static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
138 static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
139 static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
140
141 static int rtk_phy_readreg(device_t, int, int);
142 static void rtk_phy_writereg(device_t, int, int, int);
143 static void rtk_phy_statchg(device_t);
144 static void rtk_tick(void *);
145
146 static int rtk_enable(struct rtk_softc *);
147 static void rtk_disable(struct rtk_softc *);
148
149 static void rtk_list_tx_init(struct rtk_softc *);
150
151 #define EE_SET(x) \
152 CSR_WRITE_1(sc, RTK_EECMD, \
153 CSR_READ_1(sc, RTK_EECMD) | (x))
154
155 #define EE_CLR(x) \
156 CSR_WRITE_1(sc, RTK_EECMD, \
157 CSR_READ_1(sc, RTK_EECMD) & ~(x))
158
159 #define EE_DELAY() DELAY(100)
160
161 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
162
163 /*
164 * Send a read command and address to the EEPROM, check for ACK.
165 */
166 static void
167 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
168 {
169 int d, i;
170
171 d = (RTK_EECMD_READ << addr_len) | addr;
172
173 /*
174 * Feed in each bit and stobe the clock.
175 */
176 for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
177 if (d & (1 << (i - 1))) {
178 EE_SET(RTK_EE_DATAIN);
179 } else {
180 EE_CLR(RTK_EE_DATAIN);
181 }
182 EE_DELAY();
183 EE_SET(RTK_EE_CLK);
184 EE_DELAY();
185 EE_CLR(RTK_EE_CLK);
186 EE_DELAY();
187 }
188 }
189
190 /*
191 * Read a word of data stored in the EEPROM at address 'addr.'
192 */
193 uint16_t
194 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
195 {
196 uint16_t word;
197 int i;
198
199 /* Enter EEPROM access mode. */
200 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
201 EE_DELAY();
202 EE_SET(RTK_EE_SEL);
203
204 /*
205 * Send address of word we want to read.
206 */
207 rtk_eeprom_putbyte(sc, addr, addr_len);
208
209 /*
210 * Start reading bits from EEPROM.
211 */
212 word = 0;
213 for (i = 16; i > 0; i--) {
214 EE_SET(RTK_EE_CLK);
215 EE_DELAY();
216 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
217 word |= 1 << (i - 1);
218 EE_CLR(RTK_EE_CLK);
219 EE_DELAY();
220 }
221
222 /* Turn off EEPROM access mode. */
223 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
224
225 return word;
226 }
227
228 /*
229 * MII access routines are provided for the 8129, which
230 * doesn't have a built-in PHY. For the 8139, we fake things
231 * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
232 * direct access PHY registers.
233 */
234 #define MII_SET(x) \
235 CSR_WRITE_1(sc, RTK_MII, \
236 CSR_READ_1(sc, RTK_MII) | (x))
237
238 #define MII_CLR(x) \
239 CSR_WRITE_1(sc, RTK_MII, \
240 CSR_READ_1(sc, RTK_MII) & ~(x))
241
242 /*
243 * Sync the PHYs by setting data bit and strobing the clock 32 times.
244 */
245 static void
246 rtk_mii_sync(struct rtk_softc *sc)
247 {
248 int i;
249
250 MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
251
252 for (i = 0; i < 32; i++) {
253 MII_SET(RTK_MII_CLK);
254 DELAY(1);
255 MII_CLR(RTK_MII_CLK);
256 DELAY(1);
257 }
258 }
259
260 /*
261 * Clock a series of bits through the MII.
262 */
263 static void
264 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
265 {
266 int i;
267
268 MII_CLR(RTK_MII_CLK);
269
270 for (i = cnt; i > 0; i--) {
271 if (bits & (1 << (i - 1))) {
272 MII_SET(RTK_MII_DATAOUT);
273 } else {
274 MII_CLR(RTK_MII_DATAOUT);
275 }
276 DELAY(1);
277 MII_CLR(RTK_MII_CLK);
278 DELAY(1);
279 MII_SET(RTK_MII_CLK);
280 }
281 }
282
283 /*
284 * Read an PHY register through the MII.
285 */
286 static int
287 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
288 {
289 int i, ack, s;
290
291 s = splnet();
292
293 /*
294 * Set up frame for RX.
295 */
296 frame->mii_stdelim = RTK_MII_STARTDELIM;
297 frame->mii_opcode = RTK_MII_READOP;
298 frame->mii_turnaround = 0;
299 frame->mii_data = 0;
300
301 CSR_WRITE_2(sc, RTK_MII, 0);
302
303 /*
304 * Turn on data xmit.
305 */
306 MII_SET(RTK_MII_DIR);
307
308 rtk_mii_sync(sc);
309
310 /*
311 * Send command/address info.
312 */
313 rtk_mii_send(sc, frame->mii_stdelim, 2);
314 rtk_mii_send(sc, frame->mii_opcode, 2);
315 rtk_mii_send(sc, frame->mii_phyaddr, 5);
316 rtk_mii_send(sc, frame->mii_regaddr, 5);
317
318 /* Idle bit */
319 MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
320 DELAY(1);
321 MII_SET(RTK_MII_CLK);
322 DELAY(1);
323
324 /* Turn off xmit. */
325 MII_CLR(RTK_MII_DIR);
326
327 /* Check for ack */
328 MII_CLR(RTK_MII_CLK);
329 DELAY(1);
330 ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
331 MII_SET(RTK_MII_CLK);
332 DELAY(1);
333
334 /*
335 * Now try reading data bits. If the ack failed, we still
336 * need to clock through 16 cycles to keep the PHY(s) in sync.
337 */
338 if (ack) {
339 for (i = 0; i < 16; i++) {
340 MII_CLR(RTK_MII_CLK);
341 DELAY(1);
342 MII_SET(RTK_MII_CLK);
343 DELAY(1);
344 }
345 goto fail;
346 }
347
348 for (i = 16; i > 0; i--) {
349 MII_CLR(RTK_MII_CLK);
350 DELAY(1);
351 if (!ack) {
352 if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
353 frame->mii_data |= 1 << (i - 1);
354 DELAY(1);
355 }
356 MII_SET(RTK_MII_CLK);
357 DELAY(1);
358 }
359
360 fail:
361 MII_CLR(RTK_MII_CLK);
362 DELAY(1);
363 MII_SET(RTK_MII_CLK);
364 DELAY(1);
365
366 splx(s);
367
368 if (ack)
369 return 1;
370 return 0;
371 }
372
373 /*
374 * Write to a PHY register through the MII.
375 */
376 static int
377 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
378 {
379 int s;
380
381 s = splnet();
382 /*
383 * Set up frame for TX.
384 */
385 frame->mii_stdelim = RTK_MII_STARTDELIM;
386 frame->mii_opcode = RTK_MII_WRITEOP;
387 frame->mii_turnaround = RTK_MII_TURNAROUND;
388
389 /*
390 * Turn on data output.
391 */
392 MII_SET(RTK_MII_DIR);
393
394 rtk_mii_sync(sc);
395
396 rtk_mii_send(sc, frame->mii_stdelim, 2);
397 rtk_mii_send(sc, frame->mii_opcode, 2);
398 rtk_mii_send(sc, frame->mii_phyaddr, 5);
399 rtk_mii_send(sc, frame->mii_regaddr, 5);
400 rtk_mii_send(sc, frame->mii_turnaround, 2);
401 rtk_mii_send(sc, frame->mii_data, 16);
402
403 /* Idle bit. */
404 MII_SET(RTK_MII_CLK);
405 DELAY(1);
406 MII_CLR(RTK_MII_CLK);
407 DELAY(1);
408
409 /*
410 * Turn off xmit.
411 */
412 MII_CLR(RTK_MII_DIR);
413
414 splx(s);
415
416 return 0;
417 }
418
419 static int
420 rtk_phy_readreg(device_t self, int phy, int reg)
421 {
422 struct rtk_softc *sc = device_private(self);
423 struct rtk_mii_frame frame;
424 int rval;
425 int rtk8139_reg;
426
427 if ((sc->sc_quirk & RTKQ_8129) == 0) {
428 if (phy != 7)
429 return 0;
430
431 switch (reg) {
432 case MII_BMCR:
433 rtk8139_reg = RTK_BMCR;
434 break;
435 case MII_BMSR:
436 rtk8139_reg = RTK_BMSR;
437 break;
438 case MII_ANAR:
439 rtk8139_reg = RTK_ANAR;
440 break;
441 case MII_ANER:
442 rtk8139_reg = RTK_ANER;
443 break;
444 case MII_ANLPAR:
445 rtk8139_reg = RTK_LPAR;
446 break;
447 default:
448 #if 0
449 printf("%s: bad phy register\n", device_xname(self));
450 #endif
451 return 0;
452 }
453 rval = CSR_READ_2(sc, rtk8139_reg);
454 return rval;
455 }
456
457 memset(&frame, 0, sizeof(frame));
458
459 frame.mii_phyaddr = phy;
460 frame.mii_regaddr = reg;
461 rtk_mii_readreg(sc, &frame);
462
463 return frame.mii_data;
464 }
465
466 static void
467 rtk_phy_writereg(device_t self, int phy, int reg, int data)
468 {
469 struct rtk_softc *sc = device_private(self);
470 struct rtk_mii_frame frame;
471 int rtk8139_reg;
472
473 if ((sc->sc_quirk & RTKQ_8129) == 0) {
474 if (phy != 7)
475 return;
476
477 switch (reg) {
478 case MII_BMCR:
479 rtk8139_reg = RTK_BMCR;
480 break;
481 case MII_BMSR:
482 rtk8139_reg = RTK_BMSR;
483 break;
484 case MII_ANAR:
485 rtk8139_reg = RTK_ANAR;
486 break;
487 case MII_ANER:
488 rtk8139_reg = RTK_ANER;
489 break;
490 case MII_ANLPAR:
491 rtk8139_reg = RTK_LPAR;
492 break;
493 default:
494 #if 0
495 printf("%s: bad phy register\n", device_xname(self));
496 #endif
497 return;
498 }
499 CSR_WRITE_2(sc, rtk8139_reg, data);
500 return;
501 }
502
503 memset(&frame, 0, sizeof(frame));
504
505 frame.mii_phyaddr = phy;
506 frame.mii_regaddr = reg;
507 frame.mii_data = data;
508
509 rtk_mii_writereg(sc, &frame);
510 }
511
512 static void
513 rtk_phy_statchg(device_t v)
514 {
515
516 /* Nothing to do. */
517 }
518
519 #define rtk_calchash(addr) \
520 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
521
522 /*
523 * Program the 64-bit multicast hash filter.
524 */
525 void
526 rtk_setmulti(struct rtk_softc *sc)
527 {
528 struct ifnet *ifp;
529 uint32_t hashes[2] = { 0, 0 };
530 uint32_t rxfilt;
531 struct ether_multi *enm;
532 struct ether_multistep step;
533 int h, mcnt;
534
535 ifp = &sc->ethercom.ec_if;
536
537 rxfilt = CSR_READ_4(sc, RTK_RXCFG);
538
539 if (ifp->if_flags & IFF_PROMISC) {
540 allmulti:
541 ifp->if_flags |= IFF_ALLMULTI;
542 rxfilt |= RTK_RXCFG_RX_MULTI;
543 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
544 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
545 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
546 return;
547 }
548
549 /* first, zot all the existing hash bits */
550 CSR_WRITE_4(sc, RTK_MAR0, 0);
551 CSR_WRITE_4(sc, RTK_MAR4, 0);
552
553 /* now program new ones */
554 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
555 mcnt = 0;
556 while (enm != NULL) {
557 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
558 ETHER_ADDR_LEN) != 0)
559 goto allmulti;
560
561 h = rtk_calchash(enm->enm_addrlo);
562 if (h < 32)
563 hashes[0] |= (1 << h);
564 else
565 hashes[1] |= (1 << (h - 32));
566 mcnt++;
567 ETHER_NEXT_MULTI(step, enm);
568 }
569
570 ifp->if_flags &= ~IFF_ALLMULTI;
571
572 if (mcnt)
573 rxfilt |= RTK_RXCFG_RX_MULTI;
574 else
575 rxfilt &= ~RTK_RXCFG_RX_MULTI;
576
577 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
578
579 /*
580 * For some unfathomable reason, RealTek decided to reverse
581 * the order of the multicast hash registers in the PCI Express
582 * parts. This means we have to write the hash pattern in reverse
583 * order for those devices.
584 */
585 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
586 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
587 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
588 } else {
589 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
590 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
591 }
592 }
593
594 void
595 rtk_reset(struct rtk_softc *sc)
596 {
597 int i;
598
599 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
600
601 for (i = 0; i < RTK_TIMEOUT; i++) {
602 DELAY(10);
603 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
604 break;
605 }
606 if (i == RTK_TIMEOUT)
607 printf("%s: reset never completed!\n",
608 device_xname(sc->sc_dev));
609 }
610
611 /*
612 * Attach the interface. Allocate softc structures, do ifmedia
613 * setup and ethernet/BPF attach.
614 */
615 void
616 rtk_attach(struct rtk_softc *sc)
617 {
618 device_t self = sc->sc_dev;
619 struct ifnet *ifp;
620 struct rtk_tx_desc *txd;
621 uint16_t val;
622 uint8_t eaddr[ETHER_ADDR_LEN];
623 int error;
624 int i, addr_len;
625
626 callout_init(&sc->rtk_tick_ch, 0);
627
628 /*
629 * Check EEPROM type 9346 or 9356.
630 */
631 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
632 addr_len = RTK_EEADDR_LEN1;
633 else
634 addr_len = RTK_EEADDR_LEN0;
635
636 /*
637 * Get station address.
638 */
639 val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
640 eaddr[0] = val & 0xff;
641 eaddr[1] = val >> 8;
642 val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
643 eaddr[2] = val & 0xff;
644 eaddr[3] = val >> 8;
645 val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
646 eaddr[4] = val & 0xff;
647 eaddr[5] = val >> 8;
648
649 if ((error = bus_dmamem_alloc(sc->sc_dmat,
650 RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
651 BUS_DMA_NOWAIT)) != 0) {
652 aprint_error_dev(self,
653 "can't allocate recv buffer, error = %d\n", error);
654 goto fail_0;
655 }
656
657 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
658 RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
659 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
660 aprint_error_dev(self,
661 "can't map recv buffer, error = %d\n", error);
662 goto fail_1;
663 }
664
665 if ((error = bus_dmamap_create(sc->sc_dmat,
666 RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
667 &sc->recv_dmamap)) != 0) {
668 aprint_error_dev(self,
669 "can't create recv buffer DMA map, error = %d\n", error);
670 goto fail_2;
671 }
672
673 if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
674 sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
675 NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
676 aprint_error_dev(self,
677 "can't load recv buffer DMA map, error = %d\n", error);
678 goto fail_3;
679 }
680
681 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
682 txd = &sc->rtk_tx_descs[i];
683 if ((error = bus_dmamap_create(sc->sc_dmat,
684 MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
685 &txd->txd_dmamap)) != 0) {
686 aprint_error_dev(self,
687 "can't create snd buffer DMA map, error = %d\n",
688 error);
689 goto fail_4;
690 }
691 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
692 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
693 }
694 SIMPLEQ_INIT(&sc->rtk_tx_free);
695 SIMPLEQ_INIT(&sc->rtk_tx_dirty);
696
697 /*
698 * From this point forward, the attachment cannot fail. A failure
699 * before this releases all resources thar may have been
700 * allocated.
701 */
702 sc->sc_flags |= RTK_ATTACHED;
703
704 /* Reset the adapter. */
705 rtk_reset(sc);
706
707 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
708
709 ifp = &sc->ethercom.ec_if;
710 ifp->if_softc = sc;
711 strcpy(ifp->if_xname, device_xname(self));
712 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
713 ifp->if_ioctl = rtk_ioctl;
714 ifp->if_start = rtk_start;
715 ifp->if_watchdog = rtk_watchdog;
716 ifp->if_init = rtk_init;
717 ifp->if_stop = rtk_stop;
718 IFQ_SET_READY(&ifp->if_snd);
719
720 /*
721 * Do ifmedia setup.
722 */
723 sc->mii.mii_ifp = ifp;
724 sc->mii.mii_readreg = rtk_phy_readreg;
725 sc->mii.mii_writereg = rtk_phy_writereg;
726 sc->mii.mii_statchg = rtk_phy_statchg;
727 sc->ethercom.ec_mii = &sc->mii;
728 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
729 ether_mediastatus);
730 mii_attach(self, &sc->mii, 0xffffffff,
731 MII_PHY_ANY, MII_OFFSET_ANY, 0);
732
733 /* Choose a default media. */
734 if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
735 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
736 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
737 } else {
738 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
739 }
740
741 /*
742 * Call MI attach routines.
743 */
744 if_attach(ifp);
745 ether_ifattach(ifp, eaddr);
746
747 #if NRND > 0
748 rnd_attach_source(&sc->rnd_source, device_xname(self),
749 RND_TYPE_NET, 0);
750 #endif
751
752 return;
753 fail_4:
754 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
755 txd = &sc->rtk_tx_descs[i];
756 if (txd->txd_dmamap != NULL)
757 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
758 }
759 fail_3:
760 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
761 fail_2:
762 bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
763 RTK_RXBUFLEN + 16);
764 fail_1:
765 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
766 fail_0:
767 return;
768 }
769
770 /*
771 * Initialize the transmit descriptors.
772 */
773 static void
774 rtk_list_tx_init(struct rtk_softc *sc)
775 {
776 struct rtk_tx_desc *txd;
777 int i;
778
779 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
780 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
781 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
782 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
783
784 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
785 txd = &sc->rtk_tx_descs[i];
786 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
787 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
788 }
789 }
790
791 /*
792 * rtk_activate:
793 * Handle device activation/deactivation requests.
794 */
795 int
796 rtk_activate(device_t self, enum devact act)
797 {
798 struct rtk_softc *sc = device_private(self);
799
800 switch (act) {
801 case DVACT_DEACTIVATE:
802 if_deactivate(&sc->ethercom.ec_if);
803 return 0;
804 default:
805 return EOPNOTSUPP;
806 }
807 }
808
809 /*
810 * rtk_detach:
811 * Detach a rtk interface.
812 */
813 int
814 rtk_detach(struct rtk_softc *sc)
815 {
816 struct ifnet *ifp = &sc->ethercom.ec_if;
817 struct rtk_tx_desc *txd;
818 int i;
819
820 /*
821 * Succeed now if there isn't any work to do.
822 */
823 if ((sc->sc_flags & RTK_ATTACHED) == 0)
824 return 0;
825
826 /* Unhook our tick handler. */
827 callout_stop(&sc->rtk_tick_ch);
828
829 /* Detach all PHYs. */
830 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
831
832 /* Delete all remaining media. */
833 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
834
835 #if NRND > 0
836 rnd_detach_source(&sc->rnd_source);
837 #endif
838
839 ether_ifdetach(ifp);
840 if_detach(ifp);
841
842 for (i = 0; i < RTK_TX_LIST_CNT; i++) {
843 txd = &sc->rtk_tx_descs[i];
844 if (txd->txd_dmamap != NULL)
845 bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
846 }
847 bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
848 bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
849 RTK_RXBUFLEN + 16);
850 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
851
852 return 0;
853 }
854
855 /*
856 * rtk_enable:
857 * Enable the RTL81X9 chip.
858 */
859 int
860 rtk_enable(struct rtk_softc *sc)
861 {
862
863 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
864 if ((*sc->sc_enable)(sc) != 0) {
865 printf("%s: device enable failed\n",
866 device_xname(sc->sc_dev));
867 return EIO;
868 }
869 sc->sc_flags |= RTK_ENABLED;
870 }
871 return 0;
872 }
873
874 /*
875 * rtk_disable:
876 * Disable the RTL81X9 chip.
877 */
878 void
879 rtk_disable(struct rtk_softc *sc)
880 {
881
882 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
883 (*sc->sc_disable)(sc);
884 sc->sc_flags &= ~RTK_ENABLED;
885 }
886 }
887
888 /*
889 * A frame has been uploaded: pass the resulting mbuf chain up to
890 * the higher level protocols.
891 *
892 * You know there's something wrong with a PCI bus-master chip design.
893 *
894 * The receive operation is badly documented in the datasheet, so I'll
895 * attempt to document it here. The driver provides a buffer area and
896 * places its base address in the RX buffer start address register.
897 * The chip then begins copying frames into the RX buffer. Each frame
898 * is preceded by a 32-bit RX status word which specifies the length
899 * of the frame and certain other status bits. Each frame (starting with
900 * the status word) is also 32-bit aligned. The frame length is in the
901 * first 16 bits of the status word; the lower 15 bits correspond with
902 * the 'rx status register' mentioned in the datasheet.
903 *
904 * Note: to make the Alpha happy, the frame payload needs to be aligned
905 * on a 32-bit boundary. To achieve this, we copy the data to mbuf
906 * shifted forward 2 bytes.
907 */
908 static void
909 rtk_rxeof(struct rtk_softc *sc)
910 {
911 struct mbuf *m;
912 struct ifnet *ifp;
913 uint8_t *rxbufpos, *dst;
914 u_int total_len, wrap;
915 uint32_t rxstat;
916 uint16_t cur_rx, new_rx;
917 uint16_t limit;
918 uint16_t rx_bytes, max_bytes;
919
920 ifp = &sc->ethercom.ec_if;
921
922 cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
923
924 /* Do not try to read past this point. */
925 limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
926
927 if (limit < cur_rx)
928 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
929 else
930 max_bytes = limit - cur_rx;
931 rx_bytes = 0;
932
933 while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
934 rxbufpos = sc->rtk_rx_buf + cur_rx;
935 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
936 RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
937 rxstat = le32toh(*(uint32_t *)rxbufpos);
938 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
939 RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
940
941 /*
942 * Here's a totally undocumented fact for you. When the
943 * RealTek chip is in the process of copying a packet into
944 * RAM for you, the length will be 0xfff0. If you spot a
945 * packet header with this value, you need to stop. The
946 * datasheet makes absolutely no mention of this and
947 * RealTek should be shot for this.
948 */
949 total_len = rxstat >> 16;
950 if (total_len == RTK_RXSTAT_UNFINISHED)
951 break;
952
953 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
954 total_len < ETHER_MIN_LEN ||
955 total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
956 ifp->if_ierrors++;
957
958 /*
959 * submitted by:[netbsd-pcmcia:00484]
960 * Takahiro Kambe <taca (at) sky.yamashina.kyoto.jp>
961 * obtain from:
962 * FreeBSD if_rl.c rev 1.24->1.25
963 *
964 */
965 #if 0
966 if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
967 RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
968 RTK_RXSTAT_ALIGNERR)) {
969 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
970 CSR_WRITE_2(sc, RTK_COMMAND,
971 RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
972 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
973 CSR_WRITE_4(sc, RTK_RXADDR,
974 sc->recv_dmamap->dm_segs[0].ds_addr);
975 cur_rx = 0;
976 }
977 break;
978 #else
979 rtk_init(ifp);
980 return;
981 #endif
982 }
983
984 /* No errors; receive the packet. */
985 rx_bytes += total_len + RTK_RXSTAT_LEN;
986
987 /*
988 * Avoid trying to read more bytes than we know
989 * the chip has prepared for us.
990 */
991 if (rx_bytes > max_bytes)
992 break;
993
994 /*
995 * Skip the status word, wrapping around to the beginning
996 * of the Rx area, if necessary.
997 */
998 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
999 rxbufpos = sc->rtk_rx_buf + cur_rx;
1000
1001 /*
1002 * Compute the number of bytes at which the packet
1003 * will wrap to the beginning of the ring buffer.
1004 */
1005 wrap = RTK_RXBUFLEN - cur_rx;
1006
1007 /*
1008 * Compute where the next pending packet is.
1009 */
1010 if (total_len > wrap)
1011 new_rx = total_len - wrap;
1012 else
1013 new_rx = cur_rx + total_len;
1014 /* Round up to 32-bit boundary. */
1015 new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
1016
1017 /*
1018 * The RealTek chip includes the CRC with every
1019 * incoming packet; trim it off here.
1020 */
1021 total_len -= ETHER_CRC_LEN;
1022
1023 /*
1024 * Now allocate an mbuf (and possibly a cluster) to hold
1025 * the packet. Note we offset the packet 2 bytes so that
1026 * data after the Ethernet header will be 4-byte aligned.
1027 */
1028 MGETHDR(m, M_DONTWAIT, MT_DATA);
1029 if (m == NULL) {
1030 printf("%s: unable to allocate Rx mbuf\n",
1031 device_xname(sc->sc_dev));
1032 ifp->if_ierrors++;
1033 goto next_packet;
1034 }
1035 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
1036 MCLGET(m, M_DONTWAIT);
1037 if ((m->m_flags & M_EXT) == 0) {
1038 printf("%s: unable to allocate Rx cluster\n",
1039 device_xname(sc->sc_dev));
1040 ifp->if_ierrors++;
1041 m_freem(m);
1042 m = NULL;
1043 goto next_packet;
1044 }
1045 }
1046 m->m_data += RTK_ETHER_ALIGN; /* for alignment */
1047 m->m_pkthdr.rcvif = ifp;
1048 m->m_pkthdr.len = m->m_len = total_len;
1049 dst = mtod(m, void *);
1050
1051 /*
1052 * If the packet wraps, copy up to the wrapping point.
1053 */
1054 if (total_len > wrap) {
1055 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1056 cur_rx, wrap, BUS_DMASYNC_POSTREAD);
1057 memcpy(dst, rxbufpos, wrap);
1058 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1059 cur_rx, wrap, BUS_DMASYNC_PREREAD);
1060 cur_rx = 0;
1061 rxbufpos = sc->rtk_rx_buf;
1062 total_len -= wrap;
1063 dst += wrap;
1064 }
1065
1066 /*
1067 * ...and now the rest.
1068 */
1069 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1070 cur_rx, total_len, BUS_DMASYNC_POSTREAD);
1071 memcpy(dst, rxbufpos, total_len);
1072 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
1073 cur_rx, total_len, BUS_DMASYNC_PREREAD);
1074
1075 next_packet:
1076 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
1077 cur_rx = new_rx;
1078
1079 if (m == NULL)
1080 continue;
1081
1082 ifp->if_ipackets++;
1083
1084 bpf_mtap(ifp, m);
1085 /* pass it on. */
1086 (*ifp->if_input)(ifp, m);
1087 }
1088 }
1089
1090 /*
1091 * A frame was downloaded to the chip. It's safe for us to clean up
1092 * the list buffers.
1093 */
1094 static void
1095 rtk_txeof(struct rtk_softc *sc)
1096 {
1097 struct ifnet *ifp;
1098 struct rtk_tx_desc *txd;
1099 uint32_t txstat;
1100
1101 ifp = &sc->ethercom.ec_if;
1102
1103 /*
1104 * Go through our tx list and free mbufs for those
1105 * frames that have been uploaded.
1106 */
1107 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1108 txstat = CSR_READ_4(sc, txd->txd_txstat);
1109 if ((txstat & (RTK_TXSTAT_TX_OK|
1110 RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
1111 break;
1112
1113 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1114
1115 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
1116 txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1117 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1118 m_freem(txd->txd_mbuf);
1119 txd->txd_mbuf = NULL;
1120
1121 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
1122
1123 if (txstat & RTK_TXSTAT_TX_OK)
1124 ifp->if_opackets++;
1125 else {
1126 ifp->if_oerrors++;
1127
1128 /*
1129 * Increase Early TX threshold if underrun occurred.
1130 * Increase step 64 bytes.
1131 */
1132 if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
1133 #ifdef DEBUG
1134 printf("%s: transmit underrun;",
1135 device_xname(sc->sc_dev));
1136 #endif
1137 if (sc->sc_txthresh < RTK_TXTH_MAX) {
1138 sc->sc_txthresh += 2;
1139 #ifdef DEBUG
1140 printf(" new threshold: %d bytes",
1141 sc->sc_txthresh * 32);
1142 #endif
1143 }
1144 #ifdef DEBUG
1145 printf("\n");
1146 #endif
1147 }
1148 if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
1149 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1150 }
1151 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
1152 ifp->if_flags &= ~IFF_OACTIVE;
1153 }
1154
1155 /* Clear the timeout timer if there is no pending packet. */
1156 if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
1157 ifp->if_timer = 0;
1158
1159 }
1160
1161 int
1162 rtk_intr(void *arg)
1163 {
1164 struct rtk_softc *sc;
1165 struct ifnet *ifp;
1166 uint16_t status;
1167 int handled;
1168
1169 sc = arg;
1170 ifp = &sc->ethercom.ec_if;
1171
1172 if (!device_has_power(sc->sc_dev))
1173 return 0;
1174
1175 /* Disable interrupts. */
1176 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1177
1178 handled = 0;
1179 for (;;) {
1180
1181 status = CSR_READ_2(sc, RTK_ISR);
1182
1183 if (status == 0xffff)
1184 break; /* Card is gone... */
1185
1186 if (status)
1187 CSR_WRITE_2(sc, RTK_ISR, status);
1188
1189 if ((status & RTK_INTRS) == 0)
1190 break;
1191
1192 handled = 1;
1193
1194 if (status & RTK_ISR_RX_OK)
1195 rtk_rxeof(sc);
1196
1197 if (status & RTK_ISR_RX_ERR)
1198 rtk_rxeof(sc);
1199
1200 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
1201 rtk_txeof(sc);
1202
1203 if (status & RTK_ISR_SYSTEM_ERR) {
1204 rtk_reset(sc);
1205 rtk_init(ifp);
1206 }
1207 }
1208
1209 /* Re-enable interrupts. */
1210 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1211
1212 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1213 rtk_start(ifp);
1214
1215 #if NRND > 0
1216 if (RND_ENABLED(&sc->rnd_source))
1217 rnd_add_uint32(&sc->rnd_source, status);
1218 #endif
1219
1220 return handled;
1221 }
1222
1223 /*
1224 * Main transmit routine.
1225 */
1226
1227 static void
1228 rtk_start(struct ifnet *ifp)
1229 {
1230 struct rtk_softc *sc;
1231 struct rtk_tx_desc *txd;
1232 struct mbuf *m_head, *m_new;
1233 int error, len;
1234
1235 sc = ifp->if_softc;
1236
1237 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
1238 IFQ_POLL(&ifp->if_snd, m_head);
1239 if (m_head == NULL)
1240 break;
1241 m_new = NULL;
1242
1243 /*
1244 * Load the DMA map. If this fails, the packet didn't
1245 * fit in one DMA segment, and we need to copy. Note,
1246 * the packet must also be aligned.
1247 * if the packet is too small, copy it too, so we're sure
1248 * so have enough room for the pad buffer.
1249 */
1250 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
1251 m_head->m_pkthdr.len < ETHER_PAD_LEN ||
1252 bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
1253 m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1254 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1255 if (m_new == NULL) {
1256 printf("%s: unable to allocate Tx mbuf\n",
1257 device_xname(sc->sc_dev));
1258 break;
1259 }
1260 if (m_head->m_pkthdr.len > MHLEN) {
1261 MCLGET(m_new, M_DONTWAIT);
1262 if ((m_new->m_flags & M_EXT) == 0) {
1263 printf("%s: unable to allocate Tx "
1264 "cluster\n",
1265 device_xname(sc->sc_dev));
1266 m_freem(m_new);
1267 break;
1268 }
1269 }
1270 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1271 mtod(m_new, void *));
1272 m_new->m_pkthdr.len = m_new->m_len =
1273 m_head->m_pkthdr.len;
1274 if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
1275 memset(
1276 mtod(m_new, char *) + m_head->m_pkthdr.len,
1277 0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
1278 m_new->m_pkthdr.len = m_new->m_len =
1279 ETHER_PAD_LEN;
1280 }
1281 error = bus_dmamap_load_mbuf(sc->sc_dmat,
1282 txd->txd_dmamap, m_new,
1283 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1284 if (error) {
1285 printf("%s: unable to load Tx buffer, "
1286 "error = %d\n",
1287 device_xname(sc->sc_dev), error);
1288 break;
1289 }
1290 }
1291 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1292 /*
1293 * If there's a BPF listener, bounce a copy of this frame
1294 * to him.
1295 */
1296 bpf_mtap(ifp, m_head);
1297 if (m_new != NULL) {
1298 m_freem(m_head);
1299 m_head = m_new;
1300 }
1301 txd->txd_mbuf = m_head;
1302
1303 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
1304 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
1305
1306 /*
1307 * Transmit the frame.
1308 */
1309 bus_dmamap_sync(sc->sc_dmat,
1310 txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
1311 BUS_DMASYNC_PREWRITE);
1312
1313 len = txd->txd_dmamap->dm_segs[0].ds_len;
1314
1315 CSR_WRITE_4(sc, txd->txd_txaddr,
1316 txd->txd_dmamap->dm_segs[0].ds_addr);
1317 CSR_WRITE_4(sc, txd->txd_txstat,
1318 RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
1319
1320 /*
1321 * Set a timeout in case the chip goes out to lunch.
1322 */
1323 ifp->if_timer = 5;
1324 }
1325
1326 /*
1327 * We broke out of the loop because all our TX slots are
1328 * full. Mark the NIC as busy until it drains some of the
1329 * packets from the queue.
1330 */
1331 if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
1332 ifp->if_flags |= IFF_OACTIVE;
1333 }
1334
1335 static int
1336 rtk_init(struct ifnet *ifp)
1337 {
1338 struct rtk_softc *sc = ifp->if_softc;
1339 int error, i;
1340 uint32_t rxcfg;
1341
1342 if ((error = rtk_enable(sc)) != 0)
1343 goto out;
1344
1345 /*
1346 * Cancel pending I/O.
1347 */
1348 rtk_stop(ifp, 0);
1349
1350 /* Init our MAC address */
1351 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1352 CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
1353 }
1354
1355 /* Init the RX buffer pointer register. */
1356 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
1357 sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1358 CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
1359
1360 /* Init TX descriptors. */
1361 rtk_list_tx_init(sc);
1362
1363 /* Init Early TX threshold. */
1364 sc->sc_txthresh = RTK_TXTH_256;
1365 /*
1366 * Enable transmit and receive.
1367 */
1368 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1369
1370 /*
1371 * Set the initial TX and RX configuration.
1372 */
1373 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1374 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1375
1376 /* Set the individual bit to receive frames for this host only. */
1377 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1378 rxcfg |= RTK_RXCFG_RX_INDIV;
1379
1380 /* If we want promiscuous mode, set the allframes bit. */
1381 if (ifp->if_flags & IFF_PROMISC) {
1382 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1383 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1384 } else {
1385 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1386 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1387 }
1388
1389 /*
1390 * Set capture broadcast bit to capture broadcast frames.
1391 */
1392 if (ifp->if_flags & IFF_BROADCAST) {
1393 rxcfg |= RTK_RXCFG_RX_BROAD;
1394 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1395 } else {
1396 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1397 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1398 }
1399
1400 /*
1401 * Program the multicast filter, if necessary.
1402 */
1403 rtk_setmulti(sc);
1404
1405 /*
1406 * Enable interrupts.
1407 */
1408 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
1409
1410 /* Start RX/TX process. */
1411 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1412
1413 /* Enable receiver and transmitter. */
1414 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
1415
1416 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
1417
1418 /*
1419 * Set current media.
1420 */
1421 if ((error = ether_mediachange(ifp)) != 0)
1422 goto out;
1423
1424 ifp->if_flags |= IFF_RUNNING;
1425 ifp->if_flags &= ~IFF_OACTIVE;
1426
1427 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1428
1429 out:
1430 if (error) {
1431 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1432 ifp->if_timer = 0;
1433 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1434 }
1435 return error;
1436 }
1437
1438 static int
1439 rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
1440 {
1441 struct rtk_softc *sc = ifp->if_softc;
1442 int s, error;
1443
1444 s = splnet();
1445 error = ether_ioctl(ifp, command, data);
1446 if (error == ENETRESET) {
1447 if (ifp->if_flags & IFF_RUNNING) {
1448 /*
1449 * Multicast list has changed. Set the
1450 * hardware filter accordingly.
1451 */
1452 rtk_setmulti(sc);
1453 }
1454 error = 0;
1455 }
1456 splx(s);
1457
1458 return error;
1459 }
1460
1461 static void
1462 rtk_watchdog(struct ifnet *ifp)
1463 {
1464 struct rtk_softc *sc;
1465
1466 sc = ifp->if_softc;
1467
1468 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1469 ifp->if_oerrors++;
1470 rtk_txeof(sc);
1471 rtk_rxeof(sc);
1472 rtk_init(ifp);
1473 }
1474
1475 /*
1476 * Stop the adapter and free any mbufs allocated to the
1477 * RX and TX lists.
1478 */
1479 static void
1480 rtk_stop(struct ifnet *ifp, int disable)
1481 {
1482 struct rtk_softc *sc = ifp->if_softc;
1483 struct rtk_tx_desc *txd;
1484
1485 callout_stop(&sc->rtk_tick_ch);
1486
1487 mii_down(&sc->mii);
1488
1489 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1490 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1491
1492 /*
1493 * Free the TX list buffers.
1494 */
1495 while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
1496 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
1497 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
1498 m_freem(txd->txd_mbuf);
1499 txd->txd_mbuf = NULL;
1500 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
1501 }
1502
1503 if (disable)
1504 rtk_disable(sc);
1505
1506 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1507 ifp->if_timer = 0;
1508 }
1509
1510 static void
1511 rtk_tick(void *arg)
1512 {
1513 struct rtk_softc *sc = arg;
1514 int s;
1515
1516 s = splnet();
1517 mii_tick(&sc->mii);
1518 splx(s);
1519
1520 callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
1521 }
1522