Home | History | Annotate | Line # | Download | only in ic
rtsx.c revision 1.1.6.2
      1 /*	$NetBSD: rtsx.c,v 1.1.6.2 2014/05/22 11:40:22 yamt Exp $	*/
      2 /*	$OpenBSD: rtsx.c,v 1.7 2013/12/08 18:31:03 stsp Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  * Copyright (c) 2012 Stefan Sperling <stsp (at) openbsd.org>
      7  *
      8  * Permission to use, copy, modify, and distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  */
     20 
     21 /*
     22  * Realtek RTS5209/RTS5229 Card Reader driver.
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: rtsx.c,v 1.1.6.2 2014/05/22 11:40:22 yamt Exp $");
     27 
     28 #include <sys/param.h>
     29 #include <sys/device.h>
     30 #include <sys/kernel.h>
     31 #include <sys/systm.h>
     32 #include <sys/proc.h>
     33 #include <sys/mutex.h>
     34 
     35 #include <dev/ic/rtsxreg.h>
     36 #include <dev/ic/rtsxvar.h>
     37 
     38 #include <dev/sdmmc/sdmmcvar.h>
     39 #include <dev/sdmmc/sdmmc_ioreg.h>
     40 
     41 /*
     42  * We use two DMA buffers, a command buffer and a data buffer.
     43  *
     44  * The command buffer contains a command queue for the host controller,
     45  * which describes SD/MMC commands to run, and other parameters. The chip
     46  * runs the command queue when a special bit in the RTSX_HCBAR register is set
     47  * and signals completion with the TRANS_OK interrupt.
     48  * Each command is encoded as a 4 byte sequence containing command number
     49  * (read, write, or check a host controller register), a register address,
     50  * and a data bit-mask and value.
     51  *
     52  * The data buffer is used to transfer data sectors to or from the SD card.
     53  * Data transfer is controlled via the RTSX_HDBAR register. Completion is
     54  * also signalled by the TRANS_OK interrupt.
     55  *
     56  * The chip is unable to perform DMA above 4GB.
     57  *
     58  * SD/MMC commands which do not transfer any data from/to the card only use
     59  * the command buffer.
     60  */
     61 
     62 #define RTSX_DMA_MAX_SEGSIZE	0x80000
     63 #define RTSX_HOSTCMD_MAX	256
     64 #define RTSX_HOSTCMD_BUFSIZE	(sizeof(uint32_t) * RTSX_HOSTCMD_MAX)
     65 #define RTSX_DMA_DATA_BUFSIZE	MAXPHYS
     66 
     67 #define READ4(sc, reg)							\
     68 	(bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)))
     69 #define WRITE4(sc, reg, val)						\
     70 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
     71 
     72 #define RTSX_READ(sc, reg, val) 				\
     73 	do {							\
     74 		int err = rtsx_read((sc), (reg), (val)); 	\
     75 		if (err) 					\
     76 			return err;				\
     77 	} while (/*CONSTCOND*/0)
     78 
     79 #define RTSX_WRITE(sc, reg, val) 				\
     80 	do {							\
     81 		int err = rtsx_write((sc), (reg), 0xff, (val));	\
     82 		if (err) 					\
     83 			return err;				\
     84 	} while (/*CONSTCOND*/0)
     85 
     86 #define RTSX_CLR(sc, reg, bits)					\
     87 	do {							\
     88 		int err = rtsx_write((sc), (reg), (bits), 0); 	\
     89 		if (err) 					\
     90 			return err;				\
     91 	} while (/*CONSTCOND*/0)
     92 
     93 #define RTSX_SET(sc, reg, bits)					\
     94 	do {							\
     95 		int err = rtsx_write((sc), (reg), (bits), 0xff);\
     96 		if (err) 					\
     97 			return err;				\
     98 	} while (/*CONSTCOND*/0)
     99 
    100 static int	rtsx_host_reset(sdmmc_chipset_handle_t);
    101 static uint32_t	rtsx_host_ocr(sdmmc_chipset_handle_t);
    102 static int	rtsx_host_maxblklen(sdmmc_chipset_handle_t);
    103 static int	rtsx_card_detect(sdmmc_chipset_handle_t);
    104 static int	rtsx_write_protect(sdmmc_chipset_handle_t);
    105 static int	rtsx_bus_power(sdmmc_chipset_handle_t, uint32_t);
    106 static int	rtsx_bus_clock(sdmmc_chipset_handle_t, int);
    107 static int	rtsx_bus_width(sdmmc_chipset_handle_t, int);
    108 static int	rtsx_bus_rod(sdmmc_chipset_handle_t, int);
    109 static void	rtsx_exec_command(sdmmc_chipset_handle_t,
    110 		    struct sdmmc_command *);
    111 static int	rtsx_init(struct rtsx_softc *, int);
    112 static void	rtsx_soft_reset(struct rtsx_softc *);
    113 static int	rtsx_bus_power_off(struct rtsx_softc *);
    114 static int	rtsx_bus_power_on(struct rtsx_softc *);
    115 static int	rtsx_set_bus_width(struct rtsx_softc *, int);
    116 static int	rtsx_stop_sd_clock(struct rtsx_softc *);
    117 static int	rtsx_switch_sd_clock(struct rtsx_softc *, uint8_t, int, int);
    118 static int	rtsx_wait_intr(struct rtsx_softc *, int, int);
    119 static int	rtsx_read(struct rtsx_softc *, uint16_t, uint8_t *);
    120 static int	rtsx_write(struct rtsx_softc *, uint16_t, uint8_t, uint8_t);
    121 #ifdef notyet
    122 static int	rtsx_read_phy(struct rtsx_softc *, uint8_t, uint16_t *);
    123 #endif
    124 static int	rtsx_write_phy(struct rtsx_softc *, uint8_t, uint16_t);
    125 static int	rtsx_read_cfg(struct rtsx_softc *, uint8_t, uint16_t,
    126 		    uint32_t *);
    127 #ifdef notyet
    128 static int	rtsx_write_cfg(struct rtsx_softc *, uint8_t, uint16_t, uint32_t,
    129 		    uint32_t);
    130 #endif
    131 static void	rtsx_hostcmd(uint32_t *, int *, uint8_t, uint16_t, uint8_t,
    132 		    uint8_t);
    133 static int	rtsx_hostcmd_send(struct rtsx_softc *, int);
    134 static uint8_t	rtsx_response_type(uint16_t);
    135 static int	rtsx_read_ppbuf(struct rtsx_softc *, struct sdmmc_command *,
    136 		    uint32_t *);
    137 static int	rtsx_write_ppbuf(struct rtsx_softc *, struct sdmmc_command *,
    138 		    uint32_t *);
    139 static int	rtsx_exec_short_xfer(struct rtsx_softc *,
    140 		    struct sdmmc_command *, uint32_t *, uint8_t);
    141 static int	rtsx_xfer(struct rtsx_softc *, struct sdmmc_command *,
    142 		    uint32_t *);
    143 static void	rtsx_card_insert(struct rtsx_softc *);
    144 static void	rtsx_card_eject(struct rtsx_softc *);
    145 static int	rtsx_led_enable(struct rtsx_softc *);
    146 static int	rtsx_led_disable(struct rtsx_softc *);
    147 static void	rtsx_save_regs(struct rtsx_softc *);
    148 static void	rtsx_restore_regs(struct rtsx_softc *);
    149 
    150 #ifdef RTSX_DEBUG
    151 int rtsxdebug = 0;
    152 #define DPRINTF(n,s)	do { if ((n) <= rtsxdebug) printf s; } while (0)
    153 #else
    154 #define DPRINTF(n,s)	/**/
    155 #endif
    156 
    157 #define	DEVNAME(sc)	SDMMCDEVNAME(sc)
    158 
    159 static struct sdmmc_chip_functions rtsx_chip_functions = {
    160 	/* host controller reset */
    161 	.host_reset = rtsx_host_reset,
    162 
    163 	/* host controller capabilities */
    164 	.host_ocr = rtsx_host_ocr,
    165 	.host_maxblklen = rtsx_host_maxblklen,
    166 
    167 	/* card detection */
    168 	.card_detect = rtsx_card_detect,
    169 
    170 	/* write protect */
    171 	.write_protect = rtsx_write_protect,
    172 
    173 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    174 	.bus_power = rtsx_bus_power,
    175 	.bus_clock = rtsx_bus_clock,
    176 	.bus_width = rtsx_bus_width,
    177 	.bus_rod = rtsx_bus_rod,
    178 
    179 	/* command execution */
    180 	.exec_command = rtsx_exec_command,
    181 
    182 	/* card interrupt */
    183 	.card_enable_intr = NULL,
    184 	.card_intr_ack = NULL,
    185 };
    186 
    187 /*
    188  * Called by attachment driver.
    189  */
    190 int
    191 rtsx_attach(struct rtsx_softc *sc, bus_space_tag_t iot,
    192     bus_space_handle_t ioh, bus_size_t iosize, bus_dma_tag_t dmat, int flags)
    193 {
    194 	struct sdmmcbus_attach_args saa;
    195 	uint32_t sdio_cfg;
    196 
    197 	sc->sc_iot = iot;
    198 	sc->sc_ioh = ioh;
    199 	sc->sc_iosize = iosize;
    200 	sc->sc_dmat = dmat;
    201 	sc->sc_flags = flags;
    202 
    203 	mutex_init(&sc->sc_host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    204 	mutex_init(&sc->sc_intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    205 	cv_init(&sc->sc_intr_cv, "rtsxintr");
    206 
    207 	if (rtsx_init(sc, 1))
    208 		goto error;
    209 
    210 	if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) {
    211 		if (sdio_cfg & (RTSX_SDIOCFG_SDIO_ONLY|RTSX_SDIOCFG_HAVE_SDIO)){
    212 			sc->sc_flags |= RTSX_F_SDIO_SUPPORT;
    213 		}
    214 	}
    215 
    216 	if (bus_dmamap_create(sc->sc_dmat, RTSX_HOSTCMD_BUFSIZE, 1,
    217 	    RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &sc->sc_dmap_cmd) != 0)
    218 		goto error;
    219 
    220 	/*
    221 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    222 	 * not invoke any chipset functions before it is attached.)
    223 	 */
    224 	memset(&saa, 0, sizeof(saa));
    225 	saa.saa_busname = "sdmmc";
    226 	saa.saa_sct = &rtsx_chip_functions;
    227 	saa.saa_spi_sct = NULL;
    228 	saa.saa_sch = sc;
    229 	saa.saa_dmat = sc->sc_dmat;
    230 	saa.saa_clkmin = SDMMC_SDCLK_400K;
    231 	saa.saa_clkmax = 25000;
    232 	saa.saa_caps = SMC_CAPS_DMA|SMC_CAPS_4BIT_MODE;
    233 
    234 	sc->sc_sdmmc = config_found(sc->sc_dev, &saa, NULL);
    235 	if (sc->sc_sdmmc == NULL)
    236 		goto destroy_dmamap_cmd;
    237 
    238 	/* Now handle cards discovered during attachment. */
    239 	if (ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
    240 		rtsx_card_insert(sc);
    241 
    242 	return 0;
    243 
    244 destroy_dmamap_cmd:
    245 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap_cmd);
    246 error:
    247 	cv_destroy(&sc->sc_intr_cv);
    248 	mutex_destroy(&sc->sc_intr_mtx);
    249 	mutex_destroy(&sc->sc_host_mtx);
    250 	return 1;
    251 }
    252 
    253 int
    254 rtsx_detach(struct rtsx_softc *sc, int flags)
    255 {
    256 	int rv;
    257 
    258 	if (sc->sc_sdmmc != NULL) {
    259 		rv = config_detach(sc->sc_sdmmc, flags);
    260 		if (rv != 0)
    261 			return rv;
    262 		sc->sc_sdmmc = NULL;
    263 	}
    264 
    265 	/* disable interrupts */
    266 	if ((flags & DETACH_FORCE) == 0) {
    267 		WRITE4(sc, RTSX_BIER, 0);
    268 		rtsx_soft_reset(sc);
    269 	}
    270 
    271 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap_cmd);
    272 	cv_destroy(&sc->sc_intr_cv);
    273 	mutex_destroy(&sc->sc_intr_mtx);
    274 	mutex_destroy(&sc->sc_host_mtx);
    275 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
    276 
    277 	return 0;
    278 }
    279 
    280 bool
    281 rtsx_suspend(device_t dev, const pmf_qual_t *qual)
    282 {
    283 	struct rtsx_softc *sc = device_private(dev);
    284 
    285 	/* Save the host controller state. */
    286 	rtsx_save_regs(sc);
    287 
    288 	return true;
    289 }
    290 
    291 bool
    292 rtsx_resume(device_t dev, const pmf_qual_t *qual)
    293 {
    294 	struct rtsx_softc *sc = device_private(dev);
    295 
    296 	/* Restore the host controller state. */
    297 	rtsx_restore_regs(sc);
    298 
    299 	if (READ4(sc, RTSX_BIPR) & RTSX_SD_EXIST)
    300 		rtsx_card_insert(sc);
    301 	else
    302 		rtsx_card_eject(sc);
    303 
    304 	return true;
    305 }
    306 
    307 bool
    308 rtsx_shutdown(device_t dev, int flags)
    309 {
    310 	struct rtsx_softc *sc = device_private(dev);
    311 
    312 	/* XXX chip locks up if we don't disable it before reboot. */
    313 	(void)rtsx_host_reset(sc);
    314 
    315 	return true;
    316 }
    317 
    318 static int
    319 rtsx_init(struct rtsx_softc *sc, int attaching)
    320 {
    321 	uint32_t status;
    322 	uint8_t ver;
    323 	int error;
    324 
    325 	/* Read IC version from dummy register. */
    326 	if (sc->sc_flags & RTSX_F_5229) {
    327 		RTSX_READ(sc, RTSX_DUMMY_REG, &ver);
    328 		switch (ver & 0x0f) {
    329 		case RTSX_IC_VERSION_A:
    330 		case RTSX_IC_VERSION_B:
    331 		case RTSX_IC_VERSION_D:
    332 			break;
    333 		case RTSX_IC_VERSION_C:
    334 			sc->sc_flags |= RTSX_F_5229_TYPE_C;
    335 			break;
    336 		default:
    337 			aprint_error_dev(sc->sc_dev, "unknown ic %02x\n", ver);
    338 			return 1;
    339 		}
    340 	}
    341 
    342 	/* Enable interrupt write-clear (default is read-clear). */
    343 	RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR);
    344 
    345 	/* Clear any pending interrupts. */
    346 	status = READ4(sc, RTSX_BIPR);
    347 	WRITE4(sc, RTSX_BIPR, status);
    348 
    349 	/* Check for cards already inserted at attach time. */
    350 	if (attaching && (status & RTSX_SD_EXIST))
    351 		sc->sc_flags |= RTSX_F_CARD_PRESENT;
    352 
    353 	/* Enable interrupts. */
    354 	WRITE4(sc, RTSX_BIER,
    355 	    RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN);
    356 
    357 	/* Power on SSC clock. */
    358 	RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN);
    359 	delay(200);
    360 
    361 	/* XXX magic numbers from linux driver */
    362 	if (sc->sc_flags & RTSX_F_5209)
    363 		error = rtsx_write_phy(sc, 0x00, 0xB966);
    364 	else
    365 		error = rtsx_write_phy(sc, 0x00, 0xBA42);
    366 	if (error) {
    367 		aprint_error_dev(sc->sc_dev, "couldn't write phy register\n");
    368 		return 1;
    369 	}
    370 
    371 	RTSX_SET(sc, RTSX_CLK_DIV, 0x07);
    372 
    373 	/* Disable sleep mode. */
    374 	RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE,
    375 	    RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3);
    376 
    377 	/* Disable card clock. */
    378 	RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
    379 
    380 	RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE,
    381 	    RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG | 0x04);
    382 	RTSX_WRITE(sc, RTSX_SD30_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_3V3);
    383 
    384 	/* Enable SSC clock. */
    385 	RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M);
    386 	RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12);
    387 
    388 	RTSX_SET(sc, RTSX_CHANGE_LINK_STATE, RTSX_MAC_PHY_RST_N_DBG);
    389 	RTSX_SET(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT);
    390 
    391 	RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80);
    392 
    393 	/* Set RC oscillator to 400K. */
    394 	RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M);
    395 
    396 	/* Request clock by driving CLKREQ pin to zero. */
    397 	RTSX_SET(sc, RTSX_PETXCFG, RTSX_PETXCFG_CLKREQ_PIN);
    398 
    399 	/* Set up LED GPIO. */
    400 	if (sc->sc_flags & RTSX_F_5209) {
    401 		RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03);
    402 		RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03);
    403 	} else {
    404 		RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
    405 		/* Switch LDO3318 source from DV33 to 3V3. */
    406 		RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
    407 		RTSX_SET(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_3V3);
    408 		/* Set default OLT blink period. */
    409 		RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_PERIOD);
    410 	}
    411 
    412 	return 0;
    413 }
    414 
    415 int
    416 rtsx_led_enable(struct rtsx_softc *sc)
    417 {
    418 
    419 	if (sc->sc_flags & RTSX_F_5209) {
    420 		RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
    421 		RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
    422 		    RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
    423 	} else {
    424 		RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
    425 		RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
    426 	}
    427 
    428 	return 0;
    429 }
    430 
    431 int
    432 rtsx_led_disable(struct rtsx_softc *sc)
    433 {
    434 
    435 	if (sc->sc_flags & RTSX_F_5209) {
    436 		RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
    437 		RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
    438 	} else {
    439 		RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
    440 		RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
    441 	}
    442 
    443 	return 0;
    444 }
    445 
    446 /*
    447  * Reset the host controller.  Called during initialization, when
    448  * cards are removed, upon resume, and during error recovery.
    449  */
    450 int
    451 rtsx_host_reset(sdmmc_chipset_handle_t sch)
    452 {
    453 	struct rtsx_softc *sc = sch;
    454 	int error;
    455 
    456 	DPRINTF(1,("%s: host reset\n", DEVNAME(sc)));
    457 
    458 	mutex_enter(&sc->sc_host_mtx);
    459 
    460 	if (ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
    461 		rtsx_soft_reset(sc);
    462 
    463 	error = rtsx_init(sc, 0);
    464 
    465 	mutex_exit(&sc->sc_host_mtx);
    466 
    467 	return error;
    468 }
    469 
    470 static uint32_t
    471 rtsx_host_ocr(sdmmc_chipset_handle_t sch)
    472 {
    473 
    474 	return RTSX_SUPPORT_VOLTAGE;
    475 }
    476 
    477 static int
    478 rtsx_host_maxblklen(sdmmc_chipset_handle_t sch)
    479 {
    480 
    481 	return 512;
    482 }
    483 
    484 /*
    485  * Return non-zero if the card is currently inserted.
    486  */
    487 static int
    488 rtsx_card_detect(sdmmc_chipset_handle_t sch)
    489 {
    490 	struct rtsx_softc *sc = sch;
    491 
    492 	return ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT);
    493 }
    494 
    495 static int
    496 rtsx_write_protect(sdmmc_chipset_handle_t sch)
    497 {
    498 
    499 	return 0; /* XXX */
    500 }
    501 
    502 /*
    503  * Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and
    504  * RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229
    505  * it is a mask of *enabled* gates.
    506  */
    507 
    508 static int
    509 rtsx_bus_power_off(struct rtsx_softc *sc)
    510 {
    511 	int error;
    512 	uint8_t disable3;
    513 
    514 	error = rtsx_stop_sd_clock(sc);
    515 	if (error)
    516 		return error;
    517 
    518 	/* Disable SD output. */
    519 	RTSX_CLR(sc, RTSX_CARD_OE, RTSX_CARD_OUTPUT_EN);
    520 
    521 	/* Turn off power. */
    522 	disable3 = RTSX_PULL_CTL_DISABLE3;
    523 	if (sc->sc_flags & RTSX_F_5209)
    524 		RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
    525 	else {
    526 		RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1 |
    527 		    RTSX_LDO3318_VCC2);
    528 		if (sc->sc_flags & RTSX_F_5229_TYPE_C)
    529 			disable3 = RTSX_PULL_CTL_DISABLE3_TYPE_C;
    530 	}
    531 
    532 	RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
    533 	RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA);
    534 
    535 	/* Disable pull control. */
    536 	RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12);
    537 	RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
    538 	RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, disable3);
    539 
    540 	return 0;
    541 }
    542 
    543 static int
    544 rtsx_bus_power_on(struct rtsx_softc *sc)
    545 {
    546 	uint8_t enable3;
    547 
    548 	/* Select SD card. */
    549 	RTSX_WRITE(sc, RTSX_CARD_SELECT, RTSX_SD_MOD_SEL);
    550 	RTSX_WRITE(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_48_SD);
    551 	RTSX_SET(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN);
    552 
    553 	/* Enable pull control. */
    554 	RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12);
    555 	RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
    556 	if (sc->sc_flags & RTSX_F_5229_TYPE_C)
    557 		enable3 = RTSX_PULL_CTL_ENABLE3_TYPE_C;
    558 	else
    559 		enable3 = RTSX_PULL_CTL_ENABLE3;
    560 	RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, enable3);
    561 
    562 	/*
    563 	 * To avoid a current peak, enable card power in two phases with a
    564 	 * delay in between.
    565 	 */
    566 
    567 	/* Partial power. */
    568 	RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PARTIAL_PWR_ON);
    569 	if (sc->sc_flags & RTSX_F_5209)
    570 		RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_SUSPEND);
    571 	else
    572 		RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1);
    573 
    574 	delay(200);
    575 
    576 	/* Full power. */
    577 	RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
    578 	if (sc->sc_flags & RTSX_F_5209)
    579 		RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
    580 	else
    581 		RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC2);
    582 
    583 	/* Enable SD card output. */
    584 	RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
    585 
    586 	return 0;
    587 }
    588 
    589 static int
    590 rtsx_set_bus_width(struct rtsx_softc *sc, int width)
    591 {
    592 	uint32_t bus_width;
    593 
    594 	DPRINTF(1,("%s: bus width=%d\n", DEVNAME(sc), width));
    595 
    596 	switch (width) {
    597 	case 8:
    598 		bus_width = RTSX_BUS_WIDTH_8;
    599 		break;
    600 	case 4:
    601 		bus_width = RTSX_BUS_WIDTH_4;
    602 		break;
    603 	case 1:
    604 		bus_width = RTSX_BUS_WIDTH_1;
    605 		break;
    606 	default:
    607 		return EINVAL;
    608 	}
    609 
    610 	if (bus_width == RTSX_BUS_WIDTH_1)
    611 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK);
    612 	else
    613 		RTSX_SET(sc, RTSX_SD_CFG1, bus_width);
    614 
    615 	return 0;
    616 }
    617 
    618 static int
    619 rtsx_stop_sd_clock(struct rtsx_softc *sc)
    620 {
    621 
    622 	RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
    623 	RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP);
    624 
    625 	return 0;
    626 }
    627 
    628 static int
    629 rtsx_switch_sd_clock(struct rtsx_softc *sc, uint8_t n, int div, int mcu)
    630 {
    631 
    632 	/* Enable SD 2.0 mode. */
    633 	RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK);
    634 
    635 	RTSX_SET(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
    636 
    637 	RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
    638 	    RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
    639 	RTSX_CLR(sc, RTSX_SD_SAMPLE_POINT_CTL, RTSX_SD20_RX_SEL_MASK);
    640 	RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE);
    641 	RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu);
    642 	RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB);
    643 	RTSX_CLR(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK);
    644 	RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n);
    645 	RTSX_SET(sc, RTSX_SSC_CTL1, RTSX_RSTB);
    646 	delay(100);
    647 
    648 	RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
    649 
    650 	return 0;
    651 }
    652 
    653 /*
    654  * Set or change SD bus voltage and enable or disable SD bus power.
    655  * Return zero on success.
    656  */
    657 static int
    658 rtsx_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    659 {
    660 	struct rtsx_softc *sc = sch;
    661 	int error = 0;
    662 
    663 	DPRINTF(1,("%s: voltage change ocr=0x%x\n", DEVNAME(sc), ocr));
    664 
    665 	mutex_enter(&sc->sc_host_mtx);
    666 
    667 	/*
    668 	 * Disable bus power before voltage change.
    669 	 */
    670 	error = rtsx_bus_power_off(sc);
    671 	if (error)
    672 		goto ret;
    673 
    674 	delay(200);
    675 
    676 	/* If power is disabled, reset the host and return now. */
    677 	if (ocr == 0) {
    678 		mutex_exit(&sc->sc_host_mtx);
    679 		(void)rtsx_host_reset(sc);
    680 		return 0;
    681 	}
    682 
    683 	if (!ISSET(ocr, RTSX_SUPPORT_VOLTAGE)) {
    684 		/* Unsupported voltage level requested. */
    685 		DPRINTF(1,("%s: unsupported voltage ocr=0x%x\n",
    686 		    DEVNAME(sc), ocr));
    687 		error = EINVAL;
    688 		goto ret;
    689 	}
    690 
    691 	error = rtsx_set_bus_width(sc, 1);
    692 	if (error)
    693 		goto ret;
    694 
    695 	error = rtsx_bus_power_on(sc);
    696 ret:
    697 	mutex_exit(&sc->sc_host_mtx);
    698 
    699 	return error;
    700 }
    701 
    702 /*
    703  * Set or change SDCLK frequency or disable the SD clock.
    704  * Return zero on success.
    705  */
    706 static int
    707 rtsx_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    708 {
    709 	struct rtsx_softc *sc = sch;
    710 	uint8_t n;
    711 	int div;
    712 	int mcu;
    713 	int error = 0;
    714 
    715 	DPRINTF(1,("%s: bus clock change freq=%d\n", DEVNAME(sc), freq));
    716 
    717 	mutex_enter(&sc->sc_host_mtx);
    718 
    719 	if (freq == SDMMC_SDCLK_OFF) {
    720 		error = rtsx_stop_sd_clock(sc);
    721 		goto ret;
    722 	}
    723 
    724 	/*
    725 	 * Configure the clock frequency.
    726 	 */
    727 	switch (freq) {
    728 	case SDMMC_SDCLK_400K:
    729 		n = 80; /* minimum */
    730 		div = RTSX_CLK_DIV_8;
    731 		mcu = 7;
    732 		RTSX_SET(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_128);
    733 		break;
    734 	case 20000:
    735 		n = 80;
    736 		div = RTSX_CLK_DIV_4;
    737 		mcu = 7;
    738 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
    739 		break;
    740 	case 25000:
    741 		n = 100;
    742 		div = RTSX_CLK_DIV_4;
    743 		mcu = 7;
    744 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
    745 		break;
    746 	case 30000:
    747 		n = 120;
    748 		div = RTSX_CLK_DIV_4;
    749 		mcu = 7;
    750 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
    751 		break;
    752 	case 40000:
    753 		n = 80;
    754 		div = RTSX_CLK_DIV_2;
    755 		mcu = 7;
    756 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
    757 		break;
    758 	case 50000:
    759 		n = 100;
    760 		div = RTSX_CLK_DIV_2;
    761 		mcu = 6;
    762 		RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
    763 		break;
    764 	default:
    765 		error = EINVAL;
    766 		goto ret;
    767 	}
    768 
    769 	/*
    770 	 * Enable SD clock.
    771 	 */
    772 	error = rtsx_switch_sd_clock(sc, n, div, mcu);
    773 ret:
    774 	mutex_exit(&sc->sc_host_mtx);
    775 
    776 	return error;
    777 }
    778 
    779 static int
    780 rtsx_bus_width(sdmmc_chipset_handle_t sch, int width)
    781 {
    782 	struct rtsx_softc *sc = sch;
    783 
    784 	return rtsx_set_bus_width(sc, width);
    785 }
    786 
    787 static int
    788 rtsx_bus_rod(sdmmc_chipset_handle_t sch, int on)
    789 {
    790 
    791 	/* Not support */
    792 	return -1;
    793 }
    794 
    795 static int
    796 rtsx_read(struct rtsx_softc *sc, uint16_t addr, uint8_t *val)
    797 {
    798 	int tries = 1024;
    799 	uint32_t reg;
    800 
    801 	WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY |
    802 	    (uint32_t)((addr & 0x3FFF) << 16));
    803 
    804 	while (tries--) {
    805 		reg = READ4(sc, RTSX_HAIMR);
    806 		if (!(reg & RTSX_HAIMR_BUSY))
    807 			break;
    808 	}
    809 
    810 	*val = (reg & 0xff);
    811 	return (tries == 0) ? ETIMEDOUT : 0;
    812 }
    813 
    814 static int
    815 rtsx_write(struct rtsx_softc *sc, uint16_t addr, uint8_t mask, uint8_t val)
    816 {
    817 	int tries = 1024;
    818 	uint32_t reg;
    819 
    820 	WRITE4(sc, RTSX_HAIMR,
    821 	    RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE |
    822 	    (uint32_t)(((addr & 0x3FFF) << 16) |
    823 	    (mask << 8) | val));
    824 
    825 	while (tries--) {
    826 		reg = READ4(sc, RTSX_HAIMR);
    827 		if (!(reg & RTSX_HAIMR_BUSY)) {
    828 			if (val != (reg & 0xff))
    829 				return EIO;
    830 			return 0;
    831 		}
    832 	}
    833 	return ETIMEDOUT;
    834 }
    835 
    836 #ifdef notyet
    837 static int
    838 rtsx_read_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t *val)
    839 {
    840 	int timeout = 100000;
    841 	uint8_t data0;
    842 	uint8_t data1;
    843 	uint8_t rwctl;
    844 
    845 	RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
    846 	RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_READ);
    847 
    848 	while (timeout--) {
    849 		RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
    850 		if (!(rwctl & RTSX_PHY_BUSY))
    851 			break;
    852 	}
    853 	if (timeout == 0)
    854 		return ETIMEDOUT;
    855 
    856 	RTSX_READ(sc, RTSX_PHY_DATA0, &data0);
    857 	RTSX_READ(sc, RTSX_PHY_DATA1, &data1);
    858 	*val = data0 | (data1 << 8);
    859 
    860 	return 0;
    861 }
    862 #endif
    863 
    864 static int
    865 rtsx_write_phy(struct rtsx_softc *sc, uint8_t addr, uint16_t val)
    866 {
    867 	int timeout = 100000;
    868 	uint8_t rwctl;
    869 
    870 	RTSX_WRITE(sc, RTSX_PHY_DATA0, val);
    871 	RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8);
    872 	RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
    873 	RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_WRITE);
    874 
    875 	while (timeout--) {
    876 		RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
    877 		if (!(rwctl & RTSX_PHY_BUSY))
    878 			break;
    879 	}
    880 	if (timeout == 0)
    881 		return ETIMEDOUT;
    882 
    883 	return 0;
    884 }
    885 
    886 static int
    887 rtsx_read_cfg(struct rtsx_softc *sc, uint8_t func, uint16_t addr, uint32_t *val)
    888 {
    889 	int tries = 1024;
    890 	uint8_t data0, data1, data2, data3, rwctl;
    891 
    892 	RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
    893 	RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
    894 	RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4));
    895 
    896 	while (tries--) {
    897 		RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
    898 		if (!(rwctl & RTSX_CFG_BUSY))
    899 			break;
    900 	}
    901 	if (tries == 0)
    902 		return EIO;
    903 
    904 	RTSX_READ(sc, RTSX_CFGDATA0, &data0);
    905 	RTSX_READ(sc, RTSX_CFGDATA1, &data1);
    906 	RTSX_READ(sc, RTSX_CFGDATA2, &data2);
    907 	RTSX_READ(sc, RTSX_CFGDATA3, &data3);
    908 	*val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0;
    909 
    910 	return 0;
    911 }
    912 
    913 #ifdef notyet
    914 static int
    915 rtsx_write_cfg(struct rtsx_softc *sc, uint8_t func, uint16_t addr,
    916     uint32_t mask, uint32_t val)
    917 {
    918 	uint32_t writemask = 0;
    919 	int i, tries = 1024;
    920 	uint8_t rwctl;
    921 
    922 	for (i = 0; i < 4; i++) {
    923 		if (mask & 0xff) {
    924 			RTSX_WRITE(sc, RTSX_CFGDATA0 + i, val & mask & 0xff);
    925 			writemask |= (1 << i);
    926 		}
    927 		mask >>= 8;
    928 		val >>= 8;
    929 	}
    930 
    931 	if (writemask) {
    932 		RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
    933 		RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
    934 		RTSX_WRITE(sc, RTSX_CFGRWCTL,
    935 		    RTSX_CFG_BUSY | writemask | (func & 0x03 << 4));
    936 	}
    937 
    938 	while (tries--) {
    939 		RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
    940 		if (!(rwctl & RTSX_CFG_BUSY))
    941 			break;
    942 	}
    943 	if (tries == 0)
    944 		return EIO;
    945 
    946 	return 0;
    947 }
    948 #endif
    949 
    950 /* Append a properly encoded host command to the host command buffer. */
    951 static void
    952 rtsx_hostcmd(uint32_t *cmdbuf, int *n, uint8_t cmd, uint16_t reg,
    953     uint8_t mask, uint8_t data)
    954 {
    955 
    956 	KASSERT(*n < RTSX_HOSTCMD_MAX);
    957 
    958 	cmdbuf[(*n)++] = htole32((uint32_t)(cmd & 0x3) << 30) |
    959 	    ((uint32_t)(reg & 0x3fff) << 16) |
    960 	    ((uint32_t)(mask) << 8) |
    961 	    ((uint32_t)data);
    962 }
    963 
    964 static void
    965 rtsx_save_regs(struct rtsx_softc *sc)
    966 {
    967 	int i;
    968 	uint16_t reg;
    969 
    970 	mutex_enter(&sc->sc_host_mtx);
    971 
    972 	i = 0;
    973 	for (reg = 0xFDA0; reg < 0xFDAE; reg++)
    974 		(void)rtsx_read(sc, reg, &sc->sc_regs[i++]);
    975 	for (reg = 0xFD52; reg < 0xFD69; reg++)
    976 		(void)rtsx_read(sc, reg, &sc->sc_regs[i++]);
    977 	for (reg = 0xFE20; reg < 0xFE34; reg++)
    978 		(void)rtsx_read(sc, reg, &sc->sc_regs[i++]);
    979 
    980 	sc->sc_regs4[0] = READ4(sc, RTSX_HCBAR);
    981 	sc->sc_regs4[1] = READ4(sc, RTSX_HCBCTLR);
    982 	sc->sc_regs4[2] = READ4(sc, RTSX_HDBAR);
    983 	sc->sc_regs4[3] = READ4(sc, RTSX_HDBCTLR);
    984 	sc->sc_regs4[4] = READ4(sc, RTSX_HAIMR);
    985 	sc->sc_regs4[5] = READ4(sc, RTSX_BIER);
    986 	/* Not saving RTSX_BIPR. */
    987 
    988 	mutex_exit(&sc->sc_host_mtx);
    989 }
    990 
    991 static void
    992 rtsx_restore_regs(struct rtsx_softc *sc)
    993 {
    994 	int i;
    995 	uint16_t reg;
    996 
    997 	mutex_enter(&sc->sc_host_mtx);
    998 
    999 	WRITE4(sc, RTSX_HCBAR, sc->sc_regs4[0]);
   1000 	WRITE4(sc, RTSX_HCBCTLR, sc->sc_regs4[1]);
   1001 	WRITE4(sc, RTSX_HDBAR, sc->sc_regs4[2]);
   1002 	WRITE4(sc, RTSX_HDBCTLR, sc->sc_regs4[3]);
   1003 	WRITE4(sc, RTSX_HAIMR, sc->sc_regs4[4]);
   1004 	WRITE4(sc, RTSX_BIER, sc->sc_regs4[5]);
   1005 	/* Not writing RTSX_BIPR since doing so would clear it. */
   1006 
   1007 	i = 0;
   1008 	for (reg = 0xFDA0; reg < 0xFDAE; reg++)
   1009 		(void)rtsx_write(sc, reg, 0xff, sc->sc_regs[i++]);
   1010 	for (reg = 0xFD52; reg < 0xFD69; reg++)
   1011 		(void)rtsx_write(sc, reg, 0xff, sc->sc_regs[i++]);
   1012 	for (reg = 0xFE20; reg < 0xFE34; reg++)
   1013 		(void)rtsx_write(sc, reg, 0xff, sc->sc_regs[i++]);
   1014 
   1015 	mutex_exit(&sc->sc_host_mtx);
   1016 }
   1017 
   1018 static uint8_t
   1019 rtsx_response_type(uint16_t sdmmc_rsp)
   1020 {
   1021 	static const struct rsp_type {
   1022 		uint16_t	sdmmc_rsp;
   1023 		uint8_t		rtsx_rsp;
   1024 	} rsp_types[] = {
   1025 		{ SCF_RSP_R0,	RTSX_SD_RSP_TYPE_R0 },
   1026 		{ SCF_RSP_R1,	RTSX_SD_RSP_TYPE_R1 },
   1027 		{ SCF_RSP_R1B,	RTSX_SD_RSP_TYPE_R1B },
   1028 		{ SCF_RSP_R2,	RTSX_SD_RSP_TYPE_R2 },
   1029 		{ SCF_RSP_R3,	RTSX_SD_RSP_TYPE_R3 },
   1030 		{ SCF_RSP_R4,	RTSX_SD_RSP_TYPE_R4 },
   1031 		{ SCF_RSP_R5,	RTSX_SD_RSP_TYPE_R5 },
   1032 		{ SCF_RSP_R6,	RTSX_SD_RSP_TYPE_R6 },
   1033 		{ SCF_RSP_R7,	RTSX_SD_RSP_TYPE_R7 }
   1034 	};
   1035 	size_t i;
   1036 
   1037 	for (i = 0; i < __arraycount(rsp_types); i++) {
   1038 		if (sdmmc_rsp == rsp_types[i].sdmmc_rsp)
   1039 			return rsp_types[i].rtsx_rsp;
   1040 	}
   1041 	return 0;
   1042 }
   1043 
   1044 static int
   1045 rtsx_hostcmd_send(struct rtsx_softc *sc, int ncmd)
   1046 {
   1047 
   1048 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
   1049 	    BUS_DMASYNC_PREWRITE);
   1050 
   1051 	mutex_enter(&sc->sc_host_mtx);
   1052 
   1053 	/* Tell the chip where the command buffer is and run the commands. */
   1054 	WRITE4(sc, RTSX_HCBAR, sc->sc_dmap_cmd->dm_segs[0].ds_addr);
   1055 	WRITE4(sc, RTSX_HCBCTLR,
   1056 	    ((ncmd * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP);
   1057 
   1058 	mutex_exit(&sc->sc_host_mtx);
   1059 
   1060 	return 0;
   1061 }
   1062 
   1063 static int
   1064 rtsx_read_ppbuf(struct rtsx_softc *sc, struct sdmmc_command *cmd,
   1065     uint32_t *cmdbuf)
   1066 {
   1067 	uint8_t *ptr;
   1068 	int ncmd, remain;
   1069 	uint16_t reg;
   1070 	int error;
   1071 	int i, j;
   1072 
   1073 	DPRINTF(3,("%s: read %d bytes from ppbuf2\n", DEVNAME(sc),
   1074 	    cmd->c_datalen));
   1075 
   1076 	reg = RTSX_PPBUF_BASE2;
   1077 	ptr = cmd->c_data;
   1078 	remain = cmd->c_datalen;
   1079 	for (j = 0; j < cmd->c_datalen / RTSX_HOSTCMD_MAX; j++) {
   1080 		ncmd = 0;
   1081 		for (i = 0; i < RTSX_HOSTCMD_MAX; i++) {
   1082 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, reg++,
   1083 			    0, 0);
   1084 		}
   1085 		error = rtsx_hostcmd_send(sc, ncmd);
   1086 		if (error == 0)
   1087 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
   1088 		if (error)
   1089 			goto ret;
   1090 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0,
   1091 		    RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_POSTREAD);
   1092 		memcpy(ptr, cmdbuf, RTSX_HOSTCMD_MAX);
   1093 		ptr += RTSX_HOSTCMD_MAX;
   1094 		remain -= RTSX_HOSTCMD_MAX;
   1095 	}
   1096 	if (remain > 0) {
   1097 		ncmd = 0;
   1098 		for (i = 0; i < remain; i++) {
   1099 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, reg++,
   1100 			    0, 0);
   1101 		}
   1102 		error = rtsx_hostcmd_send(sc, ncmd);
   1103 		if (error == 0)
   1104 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
   1105 		if (error)
   1106 			goto ret;
   1107 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0,
   1108 		    RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_POSTREAD);
   1109 		memcpy(ptr, cmdbuf, remain);
   1110 	}
   1111 ret:
   1112 	return error;
   1113 }
   1114 
   1115 static int
   1116 rtsx_write_ppbuf(struct rtsx_softc *sc, struct sdmmc_command *cmd,
   1117     uint32_t *cmdbuf)
   1118 {
   1119 	const uint8_t *ptr;
   1120 	int ncmd, remain;
   1121 	uint16_t reg;
   1122 	int error;
   1123 	int i, j;
   1124 
   1125 	DPRINTF(3,("%s: write %d bytes to ppbuf2\n", DEVNAME(sc),
   1126 	    cmd->c_datalen));
   1127 
   1128 	reg = RTSX_PPBUF_BASE2;
   1129 	ptr = cmd->c_data;
   1130 	remain = cmd->c_datalen;
   1131 	for (j = 0; j < cmd->c_datalen / RTSX_HOSTCMD_MAX; j++) {
   1132 		ncmd = 0;
   1133 		for (i = 0; i < RTSX_HOSTCMD_MAX; i++) {
   1134 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, reg++,
   1135 			    0xff, *ptr++);
   1136 		}
   1137 		error = rtsx_hostcmd_send(sc, ncmd);
   1138 		if (error == 0)
   1139 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
   1140 		if (error)
   1141 			goto ret;
   1142 		remain -= RTSX_HOSTCMD_MAX;
   1143 	}
   1144 	if (remain > 0) {
   1145 		ncmd = 0;
   1146 		for (i = 0; i < remain; i++) {
   1147 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, reg++,
   1148 			    0xff, *ptr++);
   1149 		}
   1150 		error = rtsx_hostcmd_send(sc, ncmd);
   1151 		if (error == 0)
   1152 			error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz / 4);
   1153 		if (error)
   1154 			goto ret;
   1155 	}
   1156 ret:
   1157 	return error;
   1158 }
   1159 
   1160 static int
   1161 rtsx_exec_short_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd,
   1162     uint32_t *cmdbuf, uint8_t rsp_type)
   1163 {
   1164 	int read = ISSET(cmd->c_flags, SCF_CMD_READ);
   1165 	int ncmd;
   1166 	uint8_t tmode = read ? RTSX_TM_NORMAL_READ : RTSX_TM_AUTO_WRITE2;
   1167 	int error;
   1168 
   1169 	DPRINTF(3,("%s: %s short xfer: %d bytes with block size %d\n",
   1170 	    DEVNAME(sc), read ? "read" : "write", cmd->c_datalen,
   1171 	    cmd->c_blklen));
   1172 
   1173 	if (cmd->c_datalen > 512) {
   1174 		DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
   1175 		    DEVNAME(sc), cmd->c_datalen, 512));
   1176 		return ENOMEM;
   1177 	}
   1178 
   1179 	if (!read && cmd->c_data != NULL && cmd->c_datalen > 0) {
   1180 		error = rtsx_write_ppbuf(sc, cmd, cmdbuf);
   1181 		if (error)
   1182 			goto ret;
   1183 	}
   1184 
   1185 	/* The command buffer queues commands the host controller will
   1186 	 * run asynchronously. */
   1187 	ncmd = 0;
   1188 
   1189 	/* Queue commands to set SD command index and argument. */
   1190 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD0,
   1191 	    0xff, 0x40 | cmd->c_opcode);
   1192 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD1,
   1193 	    0xff, cmd->c_arg >> 24);
   1194 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD2,
   1195 	    0xff, cmd->c_arg >> 16);
   1196 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD3,
   1197 	    0xff, cmd->c_arg >> 8);
   1198 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD4,
   1199 	    0xff, cmd->c_arg);
   1200 
   1201 	/* Queue commands to configure data transfer size. */
   1202 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L,
   1203 	    0xff, cmd->c_datalen);
   1204 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H,
   1205 	    0xff, cmd->c_datalen >> 8);
   1206 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L,
   1207 	    0xff, 0x01);
   1208 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H,
   1209 	    0xff, 0x00);
   1210 
   1211 	/* Queue command to set response type. */
   1212 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
   1213 	    0xff, rsp_type);
   1214 
   1215 	if (tmode == RTSX_TM_NORMAL_READ) {
   1216 		rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD,
   1217 		    RTSX_CARD_DATA_SOURCE, 0x01, RTSX_PINGPONG_BUFFER);
   1218 	}
   1219 
   1220 	/* Queue commands to perform SD transfer. */
   1221 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
   1222 	    0xff, tmode | RTSX_SD_TRANSFER_START);
   1223 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
   1224 	    RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
   1225 
   1226 	/* Run the command queue and wait for completion. */
   1227 	error = rtsx_hostcmd_send(sc, ncmd);
   1228 	if (error == 0)
   1229 		error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 2 * hz);
   1230 	if (error)
   1231 		goto ret;
   1232 
   1233 	if (read && cmd->c_data != NULL && cmd->c_datalen > 0)
   1234 		error = rtsx_read_ppbuf(sc, cmd, cmdbuf);
   1235 ret:
   1236 	DPRINTF(3,("%s: short xfer done, error=%d\n", DEVNAME(sc), error));
   1237 	return error;
   1238 }
   1239 
   1240 static int
   1241 rtsx_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd, uint32_t *cmdbuf)
   1242 {
   1243 	int ncmd, dma_dir, error, tmode;
   1244 	int read = ISSET(cmd->c_flags, SCF_CMD_READ);
   1245 	uint8_t cfg2;
   1246 
   1247 	DPRINTF(3,("%s: %s xfer: %d bytes with block size %d\n", DEVNAME(sc),
   1248 	    read ? "read" : "write", cmd->c_datalen, cmd->c_blklen));
   1249 
   1250 	if (cmd->c_datalen > RTSX_DMA_DATA_BUFSIZE) {
   1251 		DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
   1252 		    DEVNAME(sc), cmd->c_datalen, RTSX_DMA_DATA_BUFSIZE));
   1253 		return ENOMEM;
   1254 	}
   1255 
   1256 	/* Configure DMA transfer mode parameters. */
   1257 	cfg2 = RTSX_SD_NO_CHECK_WAIT_CRC_TO | RTSX_SD_CHECK_CRC16 |
   1258 	    RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0;
   1259 	if (read) {
   1260 		dma_dir = RTSX_DMA_DIR_FROM_CARD;
   1261 		/* Use transfer mode AUTO_READ3, which assumes we've already
   1262 		 * sent the read command and gotten the response, and will
   1263 		 * send CMD 12 manually after reading multiple blocks. */
   1264 		tmode = RTSX_TM_AUTO_READ3;
   1265 		cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7;
   1266 	} else {
   1267 		dma_dir = RTSX_DMA_DIR_TO_CARD;
   1268 		/* Use transfer mode AUTO_WRITE3, which assumes we've already
   1269 		 * sent the write command and gotten the response, and will
   1270 		 * send CMD 12 manually after writing multiple blocks. */
   1271 		tmode = RTSX_TM_AUTO_WRITE3;
   1272 		cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7;
   1273 	}
   1274 
   1275 	/* The command buffer queues commands the host controller will
   1276 	 * run asynchronously. */
   1277 	ncmd = 0;
   1278 
   1279 	/* Queue command to set response type. */
   1280 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
   1281 	    0xff, cfg2);
   1282 
   1283 	/* Queue commands to configure data transfer size. */
   1284 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L,
   1285 	    0xff, 0x00);
   1286 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H,
   1287 	    0xff, 0x02);
   1288 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L,
   1289 	    0xff, cmd->c_datalen / cmd->c_blklen);
   1290 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H,
   1291 	    0xff, (cmd->c_datalen / cmd->c_blklen) >> 8);
   1292 
   1293 	/* Use the DMA ring buffer for commands which transfer data. */
   1294 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
   1295 	    0x01, RTSX_RING_BUFFER);
   1296 
   1297 	/* Configure DMA controller. */
   1298 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0,
   1299 	    RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT);
   1300 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC3,
   1301 	    0xff, cmd->c_datalen >> 24);
   1302 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC2,
   1303 	    0xff, cmd->c_datalen >> 16);
   1304 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC1,
   1305 	    0xff, cmd->c_datalen >> 8);
   1306 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC0,
   1307 	    0xff, cmd->c_datalen);
   1308 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMACTL,
   1309 	    RTSX_DMA_EN | RTSX_DMA_DIR | RTSX_DMA_PACK_SIZE_MASK,
   1310 	    RTSX_DMA_EN | dma_dir | RTSX_DMA_512);
   1311 
   1312 	/* Queue commands to perform SD transfer. */
   1313 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
   1314 	    0xff, tmode | RTSX_SD_TRANSFER_START);
   1315 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
   1316 	    RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
   1317 
   1318 	error = rtsx_hostcmd_send(sc, ncmd);
   1319 	if (error)
   1320 		goto ret;
   1321 
   1322 	mutex_enter(&sc->sc_host_mtx);
   1323 
   1324 	/* Tell the chip where the data buffer is and run the transfer. */
   1325 	WRITE4(sc, RTSX_HDBAR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1326 	WRITE4(sc, RTSX_HDBCTLR, RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) |
   1327 	    (cmd->c_dmamap->dm_segs[0].ds_len & 0x00ffffff));
   1328 
   1329 	mutex_exit(&sc->sc_host_mtx);
   1330 
   1331 	/* Wait for completion. */
   1332 	error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 10*hz);
   1333 ret:
   1334 	DPRINTF(3,("%s: xfer done, error=%d\n", DEVNAME(sc), error));
   1335 	return error;
   1336 }
   1337 
   1338 static void
   1339 rtsx_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1340 {
   1341 	struct rtsx_softc *sc = sch;
   1342 	bus_dma_segment_t segs[1];
   1343 	int rsegs;
   1344 	void *cmdkvap;
   1345 	uint32_t *cmdbuf;
   1346 	uint8_t rsp_type;
   1347 	uint16_t r;
   1348 	int ncmd;
   1349 	int error = 0;
   1350 
   1351 	DPRINTF(3,("%s: executing cmd %hu\n", DEVNAME(sc), cmd->c_opcode));
   1352 
   1353 	/* Refuse SDIO probe if the chip doesn't support SDIO. */
   1354 	if (cmd->c_opcode == SD_IO_SEND_OP_COND &&
   1355 	    !ISSET(sc->sc_flags, RTSX_F_SDIO_SUPPORT)) {
   1356 		error = ENOTSUP;
   1357 		goto ret;
   1358 	}
   1359 
   1360 	rsp_type = rtsx_response_type(cmd->c_flags & SCF_RSP_MASK);
   1361 	if (rsp_type == 0) {
   1362 		aprint_error_dev(sc->sc_dev, "unknown response type 0x%x\n",
   1363 		    cmd->c_flags & SCF_RSP_MASK);
   1364 		error = EINVAL;
   1365 		goto ret;
   1366 	}
   1367 
   1368 	/* Allocate and map the host command buffer. */
   1369 	error = bus_dmamem_alloc(sc->sc_dmat, RTSX_HOSTCMD_BUFSIZE, 0, 0,
   1370 	    segs, 1, &rsegs, BUS_DMA_WAITOK);
   1371 	if (error)
   1372 		goto ret;
   1373 	error = bus_dmamem_map(sc->sc_dmat, segs, rsegs, RTSX_HOSTCMD_BUFSIZE,
   1374 	    &cmdkvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
   1375 	if (error)
   1376 		goto free_cmdbuf;
   1377 
   1378 	/* Load command DMA buffer. */
   1379 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap_cmd, cmdkvap,
   1380 	    RTSX_HOSTCMD_BUFSIZE, NULL, BUS_DMA_WAITOK);
   1381 	if (error)
   1382 		goto unmap_cmdbuf;
   1383 
   1384 	/* Use another transfer method when data size < 512. */
   1385 	if (cmd->c_data != NULL && cmd->c_datalen < 512) {
   1386 		error = rtsx_exec_short_xfer(sch, cmd, cmdkvap, rsp_type);
   1387 		goto unload_cmdbuf;
   1388 	}
   1389 
   1390 	/* The command buffer queues commands the host controller will
   1391 	 * run asynchronously. */
   1392 	cmdbuf = cmdkvap;
   1393 	ncmd = 0;
   1394 
   1395 	/* Queue commands to set SD command index and argument. */
   1396 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD0,
   1397 	    0xff, 0x40 | cmd->c_opcode);
   1398 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD1,
   1399 	    0xff, cmd->c_arg >> 24);
   1400 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD2,
   1401 	    0xff, cmd->c_arg >> 16);
   1402 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD3,
   1403 	    0xff, cmd->c_arg >> 8);
   1404 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD4,
   1405 	    0xff, cmd->c_arg);
   1406 
   1407 	/* Queue command to set response type. */
   1408 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
   1409 	    0xff, rsp_type);
   1410 
   1411 	/* Use the ping-pong buffer for commands which do not transfer data. */
   1412 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
   1413 	    0x01, RTSX_PINGPONG_BUFFER);
   1414 
   1415 	/* Queue commands to perform SD transfer. */
   1416 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
   1417 	    0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START);
   1418 	rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
   1419 	    RTSX_SD_TRANSFER_END | RTSX_SD_STAT_IDLE,
   1420 	    RTSX_SD_TRANSFER_END | RTSX_SD_STAT_IDLE);
   1421 
   1422 	/* Queue commands to read back card status response.*/
   1423 	if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
   1424 		for (r = RTSX_PPBUF_BASE2 + 15; r > RTSX_PPBUF_BASE2; r--)
   1425 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
   1426 		rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, RTSX_SD_CMD5,
   1427 		    0, 0);
   1428 	} else if (rsp_type != RTSX_SD_RSP_TYPE_R0) {
   1429 		for (r = RTSX_SD_CMD0; r <= RTSX_SD_CMD4; r++)
   1430 			rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
   1431 	}
   1432 
   1433 	/* Run the command queue and wait for completion. */
   1434 	error = rtsx_hostcmd_send(sc, ncmd);
   1435 	if (error == 0)
   1436 		error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz);
   1437 	if (error)
   1438 		goto unload_cmdbuf;
   1439 
   1440 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
   1441 	    BUS_DMASYNC_POSTREAD);
   1442 
   1443 	/* Copy card response into sdmmc response buffer. */
   1444 	if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1445 		/* Copy bytes like sdhc(4), which on little-endian uses
   1446 		 * different byte order for short and long responses... */
   1447 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1448 			uint8_t *resp = cmdkvap;
   1449 			memcpy(cmd->c_resp, resp + 1, sizeof(cmd->c_resp));
   1450 		} else {
   1451 			/* First byte is CHECK_REG_CMD return value, second
   1452 			 * one is the command op code -- we skip those. */
   1453 			cmd->c_resp[0] =
   1454 			    ((be32toh(cmdbuf[0]) & 0x0000ffff) << 16) |
   1455 			    ((be32toh(cmdbuf[1]) & 0xffff0000) >> 16);
   1456 		}
   1457 	}
   1458 
   1459 	if (cmd->c_data) {
   1460 		error = rtsx_xfer(sc, cmd, cmdbuf);
   1461 		if (error) {
   1462 			uint8_t stat1;
   1463 			if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 &&
   1464 			    (stat1 & RTSX_SD_CRC_ERR)) {
   1465 				aprint_error_dev(sc->sc_dev,
   1466 				    "CRC error (stat=0x%x)\n", stat1);
   1467 			}
   1468 		}
   1469 	}
   1470 
   1471 unload_cmdbuf:
   1472 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap_cmd);
   1473 unmap_cmdbuf:
   1474 	bus_dmamem_unmap(sc->sc_dmat, cmdkvap, RTSX_HOSTCMD_BUFSIZE);
   1475 free_cmdbuf:
   1476 	bus_dmamem_free(sc->sc_dmat, segs, rsegs);
   1477 ret:
   1478 	SET(cmd->c_flags, SCF_ITSDONE);
   1479 	cmd->c_error = error;
   1480 }
   1481 
   1482 /* Prepare for another command. */
   1483 static void
   1484 rtsx_soft_reset(struct rtsx_softc *sc)
   1485 {
   1486 
   1487 	DPRINTF(1,("%s: soft reset\n", DEVNAME(sc)));
   1488 
   1489 	/* Stop command transfer. */
   1490 	WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD);
   1491 
   1492 	(void)rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP|RTSX_SD_CLR_ERR,
   1493 		    RTSX_SD_STOP|RTSX_SD_CLR_ERR);
   1494 
   1495 	/* Stop DMA transfer. */
   1496 	WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA);
   1497 	(void)rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST);
   1498 
   1499 	(void)rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH);
   1500 }
   1501 
   1502 static int
   1503 rtsx_wait_intr(struct rtsx_softc *sc, int mask, int timo)
   1504 {
   1505 	int status;
   1506 	int error = 0;
   1507 
   1508 	mask |= RTSX_TRANS_FAIL_INT;
   1509 
   1510 	mutex_enter(&sc->sc_intr_mtx);
   1511 
   1512 	status = sc->sc_intr_status & mask;
   1513 	while (status == 0) {
   1514 		if (cv_timedwait(&sc->sc_intr_cv, &sc->sc_intr_mtx, timo)
   1515 		    == EWOULDBLOCK) {
   1516 			rtsx_soft_reset(sc);
   1517 			error = ETIMEDOUT;
   1518 			break;
   1519 		}
   1520 		status = sc->sc_intr_status & mask;
   1521 	}
   1522 	sc->sc_intr_status &= ~status;
   1523 
   1524 	/* Has the card disappeared? */
   1525 	if (!ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
   1526 		error = ENODEV;
   1527 
   1528 	mutex_exit(&sc->sc_intr_mtx);
   1529 
   1530 	if (error == 0 && (status & RTSX_TRANS_FAIL_INT))
   1531 		error = EIO;
   1532 	return error;
   1533 }
   1534 
   1535 static void
   1536 rtsx_card_insert(struct rtsx_softc *sc)
   1537 {
   1538 
   1539 	DPRINTF(1, ("%s: card inserted\n", DEVNAME(sc)));
   1540 
   1541 	sc->sc_flags |= RTSX_F_CARD_PRESENT;
   1542 	(void)rtsx_led_enable(sc);
   1543 
   1544 	/* Schedule card discovery task. */
   1545 	sdmmc_needs_discover(sc->sc_sdmmc);
   1546 }
   1547 
   1548 static void
   1549 rtsx_card_eject(struct rtsx_softc *sc)
   1550 {
   1551 
   1552 	DPRINTF(1, ("%s: card ejected\n", DEVNAME(sc)));
   1553 
   1554 	sc->sc_flags &= ~RTSX_F_CARD_PRESENT;
   1555 	(void)rtsx_led_disable(sc);
   1556 
   1557 	/* Schedule card discovery task. */
   1558 	sdmmc_needs_discover(sc->sc_sdmmc);
   1559 }
   1560 
   1561 /*
   1562  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1563  */
   1564 int
   1565 rtsx_intr(void *arg)
   1566 {
   1567 	struct rtsx_softc *sc = arg;
   1568 	uint32_t enabled, status;
   1569 
   1570 	enabled = READ4(sc, RTSX_BIER);
   1571 	status = READ4(sc, RTSX_BIPR);
   1572 
   1573 	/* Ack interrupts. */
   1574 	WRITE4(sc, RTSX_BIPR, status);
   1575 
   1576 	if (((enabled & status) == 0) || status == 0xffffffff)
   1577 		return 0;
   1578 
   1579 	mutex_enter(&sc->sc_intr_mtx);
   1580 
   1581 	if (status & RTSX_SD_INT) {
   1582 		if (status & RTSX_SD_EXIST) {
   1583 			if (!ISSET(sc->sc_flags, RTSX_F_CARD_PRESENT))
   1584 				rtsx_card_insert(sc);
   1585 		} else {
   1586 			rtsx_card_eject(sc);
   1587 		}
   1588 	}
   1589 
   1590 	if (status & (RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT)) {
   1591 		sc->sc_intr_status |= status;
   1592 		cv_broadcast(&sc->sc_intr_cv);
   1593 	}
   1594 
   1595 	mutex_exit(&sc->sc_intr_mtx);
   1596 
   1597 	return 1;
   1598 }
   1599